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ABSTRACT

State-space models (SSMs) are a class of networks for sequence learning that
benefit from fixed state size and linear complexity with respect to sequence length,
contrasting the quadratic scaling of typical attention mechanisms. Inspired from
observations in neuroscience, Linear Oscillatory State-Space models (LinOSS) are
a recently proposed class of SSMs constructed from layers of discretized forced
harmonic oscillators. Although these models perform competitively, leveraging
fast parallel scans over diagonal recurrent matrices and achieving state-of-the-art
performance on tasks with sequence length up to 50k, LinOSS models rely on rigid
energy dissipation (“forgetting”) mechanisms that are inherently coupled to the
time scale of state evolution. As forgetting is a crucial mechanism for long-range
reasoning, we demonstrate the representational limitations of these models and
introduce Damped Linear Oscillatory State-Space models (D-LinOSS), a more
general class of oscillatory SSMs that learn to dissipate latent state energy on
arbitrary time scales. We analyze the spectral distribution of the model’s recurrent
matrices and prove that the SSM layers exhibit stable dynamics under a simple,
flexible parameterization. Without additional complexity, D-LinOSS consistently
outperforms previous LinOSS methods on long-range learning tasks, achieves
faster convergence, and relinquishes the need for multiple discretization schemes.

1 INTRODUCTION

State-space models (SSMs) (Gu et al., 2021; Smith et al., 2023; Gu & Dao, 2023; Hasani et al., 2022;
Rusch & Rus, 2025) have emerged as a powerful deep learning architecture for sequence modeling,
demonstrating strong performances across various domains, including natural language processing
(Gu & Dao, 2023), audio generation (Goel et al., 2022), reinforcement learning (Lu et al., 2024), and
scientific and engineering applications (Hu et al., 2024).

Despite the abundance of neural network architectures for sequence modeling, SSMs have gained
significant attention due to their fundamental advantages over both Recurrent Neural Networks
(RNNs) and Transformer architectures based on self-attention mechanisms (Vaswani, 2017). Built
upon layers of sequence-to-sequence transformations defined by linear dynamical systems, SSMs
integrate principles from control theory with modern deep learning techniques, making them highly
effective across multiple modalities. While recent SSM architectures are often formulated as linear
RNNs (Orvieto et al., 2023), they introduce notable improvements over their predecessors, offering
enhanced speed, accuracy, and the ability to capture long-range dependencies more effectively.

In this work, we focus on the regime of linear, time-invariant (LTI) SSMs and extend the recently
introduced Linear Oscillatory State-Space model (LinOSS) (Rusch & Rus, 2025). LinOSS formulates
a continuous-time system of second-order ordinary differential equations (ODEs) that represent
forced harmonic oscillators. These dynamics are then discretized into two conditionally stable
state-space variants, each derived from a different ODE integration method, and the resulting models
are computed efficiently by leveraging associative parallel scans. The structure of the underlying
oscillatory dynamics allows LinOSS to learn long-range interactions with minimal constraints on the
SSM state matrix. However, previous LinOSS models inherently couple the frequency and damping
behaviors of state-space layers, effectively collapsing latent state energy dissipation to a single scale
and limiting the model’s expressivity. To overcome this, we introduce a flexible and controllable
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Figure 1: Previous LinOSS models are derived from harmonic oscillators, directly coupling the
frequency ω and magnitude |λ| of discretized eigenvalues and reducing state energy dissipation to a
single scale when normalizing time by frequency. Instead derived from damped harmonic oscillators,
D-LinOSS learns ω and |λ| independently. The range of representable second-order systems within
each underlying state-space layer is shown above; the particular relationship between frequency and
damping depicted in the right diagram can be selected arbitrarily.

dissipation mechanism and derive the Damped Linear Oscillatory State-Space Model (D-LinOSS),
enhancing the LinOSS architecture by incorporating learnable damping independent of time scale.

Our approach constructs a deep state space model capable of capturing a wide range of temporal
relationships by expanding the expressivity of individual SSM layers. Unlike previous versions of
LinOSS that were constrained to a limited subset of oscillatory systems, our method allows each
layer to independently learn a wider range of stable oscillatory dynamics, collectively leading to a
more powerful sequence model. Our full contributions are:

• We conduct a rigorous spectral analysis of the proposed D-LinOSS model, highlighting the
representational improvements enabled by learnable damping.

• We validate the theoretical expressivity improvements through a synthetic experiment of
learning exponential decay.

• We derive a stable parameterization of D-LinOSS and introduce an initialization procedure
to generate arbitrary eigenvalue distributions in the recurrent matrix. We perform ablations
comparing different initialization techniques.

• We provide extensive empirical evaluation, showing that D-LinOSS on average outperforms
state-of-the-art models across eight different challenging real-world sequential datasets.

• We showcase the additional practical benefits of D-LinOSS, such as faster convergence and
a smaller hyperparameter space by eliminating the need for multiple discretization schemes.

2 BACKGROUND

2.1 CONTINUOUS-TIME FORMULATION

D-LinOSS layers are constructed from a system of damped, forced harmonic oscillators:

y′′(t) = −Ay(t)−Gy′(t) +Bu(t),

x(t) = Cy(t) +Du(t)
(1)

The continuous-time parameters A and G are restricted to diagonal matrices with non-negative
entries, meaning (1) is an uncoupled second-order system. The feed-forward operation Du(t) will
be omitted for the rest of the paper for concision.

D-LinOSS layers provide an expressive, stable, and efficient recurrent primitive for modeling inter-
mediate sequence-to-sequence transformations u 7→ x in Rm through learning parameters A, G,
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B, and C. A controls the natural frequency of the system’s oscillation and G defines the damping,
i.e., the energy dissipation of the latent state. The underlying dynamical system of previous LinOSS
models is (1) subject to G = 0; thus, D-LinOSS is constructed from a more general oscillatory
dynamical system with learnable damping. The additional m learnable parameters from G are a
negligible contribution to model size and have no impact on speed.

2.2 DISCRETIZATION

The D-LinOSS discrete-time state-space layer is derived by adopting an integration scheme to
approximately solve System (1) as an initial-value problem (IVP) subject to y(0) = y′(0) = 0. This
discretization technique is effectively a specification for mapping the underlying continuous-time
parameters A,G, and B to discrete-time counterparts M and F in the following systems.[
z′(t)
y′(t)

]
=

[
−G −A
I 0

] [
z(t)
y(t)

]
+

[
B
0

]
u(t) (2) −→

[
zk+1

yk+1

]
= M

[
zk
yk

]
+ Fuk+1 (3)

Discretization also introduces learnable time-step parameters ∆t ∈ Rm that govern the integration
interval for the ODE solution.

Unlike standard first-order SSMs, oscillatory SSMs explicitly model the acceleration and velocity of
the system state, resulting in smoother outputs due to the twice-integrated dynamical structure. As a
result, although most SSMs discretize the continuous-time dynamics using zero-order hold or the
bilinear method, the second-order structure of D-LinOSS necessitates the use of special discretization
schemes to maintain conditional system stability without over-constraining the matrices A and G.

Specifically, Rusch & Rus (2025) investigate the use of implicit integration (IM) and symplectic
integration, also referred to as implicit-explicit integration (IMEX), as discretization methods for
their proposed continuous-time system of undamped harmonic oscillators. Each integrator endows
the resulting SSM with different energy dissipation properties; IM integration produces a dissipation
term coupled to the eigenvalue phase and IMEX integration completely preserves energy across time.
The selection of discretization technique is thus a binary hyperparameter in the original LinOSS
model used to modulate the amount of “forgetting," giving rise to two SSMs (LinOSS-IM and
LinOSS-IMEX) exhibiting different dynamical behaviors.

We extend the use of IMEX integration to the D-LinOSS framework, as learnable damping allows
for full dynamical control regardless of which discretization method is used. This flexibility in
parameterization removes the need to treat discretization scheme as a binary hyperparameter, reducing
the model search space.

Applying IMEX integration to System (1) yields:

zk+1 = zk +∆t
(
−Ayk −Gzk+1 +Buk+1

)
,

yk+1 = yk +∆tzk+1

(4)

or in matrix form,

[
I+∆tG 0
−∆tI I

] [
zk+1

yk+1

]
=

[
I −∆tA
0 I

] [
zk
yk

]
+

[
∆tB
0

]
uk (5)

Inverting the left hand side block matrix, we arrive at the final discrete-time SSM in the form of (3).

M :=

[
S−1 −∆tS−1A

∆tS−1 I−∆t2S−1A

]
, F :=

[
∆tS−1B
∆t2S−1B

]
(6)

Here, the Schur complement is the diagonal matrix S = I+∆tG and M is a block matrix composed
of diagonal sub-matrices.
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2.3 ASSOCIATIVE PARALLEL SCANS

Many modern SSM architectures (Smith et al., 2023) leverage associative parallel scans (Kogge &
Stone, 1973; Blelloch, 1990) to efficiently compute recurrent operations across long sequences. By
exploiting the associativity of the recurrence operator, naively O(N) sequential operations can be
parallelized and computed in O(logN) time. For SSMs, parallel scans enable sub-linear complexity
of the recurrence computation with respect to sequence length, acting as a key building block for
scaling SSMs to long contexts.

3 THEORETICAL PROPERTIES

Spectral analysis provides a lens to examine the stability and dynamical behavior of SSMs. In the
absence of bounding nonlinearities like tanh, the eigenvalues of the recurrent matrix M fully govern
how latent states evolve across time. In particular, eigenvalues with near unit norm retain energy
across long time horizons, while those closer to zero rapidly dissipate energy.

In the previous LinOSS-IM and LinOSS-IMEX models, the internal system spectra are rigidly
defined by the selection of discretization technique, coupling frequency and damping. As shown in
Figure 1, this effectively reduces latent state energy dissipation to a single scale, limiting the range
of expressible dynamics. For D-LinOSS, the spectrum of M instead arises from damped harmonic
oscillators, introducing a new tunable mechanism that decouples damping from frequency. Unlike the
preceding models, D-LinOSS layers can represent all stable second-order systems, yielding a broader
range of expressible dynamics and thus a more powerful sequence model. Figure 1 depicts this,
where the scale of energy dissipation can be arbitrarily selected regardless of oscillation frequency.

These notions are formalized in this section, where we characterize the eigenvalues of D-LinOSS,
derive stability conditions, and compare the resulting spectral range to that of previous LinOSS models.
In particular, we show that the set of reachable, stable eigenvalue configurations in D-LinOSS is the
full complex unit disk, where that of LinOSS has zero measure in C.

3.1 SPECTRAL ANALYSIS AND STABILITY

Proposition 3.1. The eigenvalues of the D-LinOSS recurrent matrix M ∈ R2m×2m are

λi1,2 =
1 + ∆ti

2 Gi − ∆t2i
2 Ai

1 + ∆tiGi
±

∆ti
2

√
(Gi −∆tiAi)2 − 4Ai

1 + ∆tiGi
, (7)

where pairs of eigenvalues are denoted as λi1,2 and i = 1, 2, ...,m.

Proof. The derivation is provided in Appendix A.1. Because the m second-order systems are
decoupled, it is sufficient to subsequently analyze the spectral properties and stability conditions for a
single system with index i ∈ 1, . . . ,m.

Proposition 3.1 shows that eigenvalues of D-LinOSS are tuned through choices of A, G, and ∆t. We
now detail a sufficient condition for system stability.

Proposition 3.2. Assume Ai, Gi are non-negative, and ∆ti ∈ (0, 1]. If the following is satisfied:

(Gi −∆tiAi)
2 ≤ 4Ai, (8)

then λi1,2 come in complex conjugate pairs λi, λ∗
i with the following magnitude:

|λi| =
1√

1 + ∆tiGi

≤ 1, (9)

i.e., the eigenvalues are unit-bounded. Define Si to be the set of all (Ai,Gi) that satisfy the above
condition. For notational convenience, we order the eigenvalues such that Im(λi) ≥ 0, Im(λ∗

i ) ≤ 0.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Proof. The proof is detailed in Appendix A.2. Condition (8) is simply the non-positivity of the
discriminant in the eigenvalue expression of Proposition 3.1, which is shown to be sufficient for the
unit-boundedness of |λi|.

We now demonstrate that the spectral image of Si is the full unit disk, meaning D-LinOSS is capable
of representing every stable, damped, uncoupled second-order system.
Proposition 3.3. The mapping Φ : Si → C|z|≤1 \ {0} defined by (Ai,Gi) 7→ (λi, λ

∗
i ) is bijective.

Proof. In Appendix A.3, a well-defined inverse mapping Φ−1 : C|z|≤1 \ {0} → Si, (λi, λ
∗
i ) 7→

(Ai,Gi) is constructed. This inverse map has practical utility in matrix initialization, enabling the
selection of arbitrary distributions of stable eigenvalues.

In contrast to the full expressive range of D-LinOSS layers, LinOSS-IM and LinOSS-IMEX layers
are limited in reachable eigenvalues. We recall the respective expressions from Rusch & Rus (2025):

λIM
i1,2 =

1

1 +∆t2iAi
± j

∆ti
√
Ai

1 + ∆t2iAi
, λIMEX

i1,2 =
1

2
(2−∆t2iAi)±

j

2

√
∆t2iAi(4−∆t2iAi), (10)

It can be seen that both forms impose a rigid relationship between frequency and damping, con-
straining the reachable spectra. The following proposition formalizes this by showing that the set of
eigenvalues reachable under these parameterizations occupies zero area within the unit disk. Figure 2
shows the respective expressions graphed on C for a visual interpretation.
Proposition 3.4. For both LinOSS-IM and LinOSS-IMEX, the set of eigenvalues constructed from
Ai ∈ R≥0 and ∆ti ∈ (0, 1] is of measure zero in C.

Proof. Detailed in Appendix A.4, the change of variables γi = ∆ti
√
Ai renders both eigenvalue

expressions one-dimensional curves, which have zero measure in C.

Figure 2: Reachable eigenvalue sets for the
different oscillatory SSMs. The eigenvalue
λ = 0.8 of the exponential decay experiment
only lies in the spectral range of D-LinOSS.

The incorporation of explicitly learnable damping
enables D-LinOSS to model a wider range of stable
dynamical systems, increasing the representational
capacity of the overall deep sequence model. The
empirical performance benefits are discussed in the
following sections.

3.2 MOTIVATION

A natural question is whether or not a larger set of
reachable eigenvalues is empirically useful. Notably,
LinOSS is provably universal (Rusch & Rus, 2025;
Lanthaler et al., 2024), meaning it can approximate
any causal and continuous operator between input
and output signals to arbitrary accuracy (see Ap-
pendix A.5 for a formal definition). This property
trivially extends to D-LinOSS, as setting G = 0 re-
covers LinOSS-IMEX. However, while universality
characterizes theoretical capacity, it is not necessarily
indicative of how well a model learns in practice. To
motivate the empirical benefits of a broader spectral
range, we study the following synthetic experiment.

We simulate a dynamical system with a single dis-
crete eigenvalue λ = 0.8, corresponding to an expo-
nentially decaying response. No input or output transformations are applied. Random sequences of
scalar values are passed through this system, and models are trained to predict the resulting output.
A small hyperparameter grid was searched for each model, three random seeds were trained per
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Table 1: Learning exponential decay.

Model RMSE ×10−3

LinOSS-IMEX 24.5 ± 2.3 30.6 ×
LinOSS-IM 8.0 ± 1.7 10.0 ×
D-LinOSS 0.8 ± 0.1 1.0 ×

configuration, and models are compared in terms of the best average test root mean squared error
(RMSE) across seeds. (Appendix B.1 provides more detail on the experimental setup.)

D-LinOSS achieves test RMSE approximately 10× lower than LinOSS-IM and 30× lower than
LinOSS-IMEX. Reflecting on the eigenvalue ranges depicted in Appendix A.4, the target eigenvalue
λ = 0.8 lies outside the reachable spectra of both baseline models. This gap in performance suggests
that although the previous LinOSS models are universal, a limited spectral range can impair the
models’ ability to represent certain temporal relationships. By directly learning system damping G,
D-LinOSS moves beyond rigidly defined energy dissipation behavior and is capable of accurately
capturing a wider range of dynamics.

3.3 PARAMETERIZATION

During training, the learnable parameters A,G, and ∆t must satisfy the constraints detailed in
Proposition 3.2 to ensure system stability. Unconstrained (denoted by bar) continuous-time SSM
matrices and integration time steps are reparameterized through the following activations to enforce
these conditions.

∆t = σ(∆̄t), G = ReLU(Ḡ), A = Clamp(Ā, L(G,∆t), U(G,∆t))

Here, Clamp(·) bounds Ā between lower bound L and upper bound U , which are expressions derived
from the quadratic inequality of the stability criterion S.

3.4 INITIALIZATION

Performance of SSMs can be heavily impacted by the initialized distribution of eigenvalues (Orvieto
et al., 2023). Many approaches, e.g., Gu et al. (2021); Smith et al. (2023), leverage structured
initialization schemes such as the HiPPO framework (Gu et al. (2020)) to enhance long-range
learning capability, but Orvieto et al. (2023) indicates that simpler initialization techniques, such as
uniform ring initialization, are capable of recovering equal performance.

Given the parameterization in Section 3.3 and the bijective mapping between the parameter space
(Ai,Gi) and the eigenspace (λi, λ

∗
i ) established in Proposition 3.3, we investigate initialization

strategies for SSM layers based on uniform sampling in each of these spaces. Appendix B.6 details a
comparison between two approaches: (i) uniformly sampling parameters (Ai,Gi) across different
ranges [Amin, Amax] and [Gmin, Gmax], and (ii) uniformly sampling eigenvalues within a complex
ring across different radial bounds [rmin, rmax] and angular bounds [θmin, θmax]. In the latter case,
parameters are then obtained via the inverse mapping (Ai,Gi) = Φ−1(λi) for all i ∈ {1, . . . ,m}.
Our study indicates that sampling eigenvalues within the radial band [0.9, 1.0] and the full angular
range [0, 2π) yields strong performance. This technique is used for all subsequent D-LinOSS results.

4 RESULTS

Following the experimental design from Rusch & Rus (2025); Walker et al. (2024); Zhou et al. (2021),
we evaluate the empirical performance of D-LinOSS on a suite of real-world learning tasks that span
disciplines across biology, medicine, chemistry, photonics, and climate. As the linear complexity and
fixed state size of SSMs emphasize their utility for learning long-range dependencies, we evaluate
candidate models on datasets with temporal relationships spanning thousands of measurements.
We compare model performance with a total of sixteen other state-of-the-art sequence modeling
approaches, including the precursor models LinOSS-IM and LinOSS-IMEX. Experimental design
and hyperparameter spreads are kept consistent across all models to ensure fair comparison.
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Table 2: Test accuracies averaged over five different seeds on UEA time-series classification datasets.
The highest score is indicated in bold and the second highest is underlined. The dataset names are
abbreviations of the following UEA datasets: EigenWorms (Worms), SelfRegulationSCP1 (SCP1),
SelfRegulationSCP2 (SCP2), EthanolConcentration (Ethanol), Heartbeat, and MotorImagery (Motor).

Worms SCP1 SCP2 Ethanol Heartbeat Motor Avg
Seq. length 17,984 896 1,152 1,751 405 3,000
# of Classes 5 2 2 4 2 2

NRDE 83.9 ± 7.3 80.9 ± 2.5 53.7 ± 6.9 25.3 ± 1.8 72.9 ± 4.8 47.0 ± 5.7 60.6
NCDE 75.0 ± 3.9 79.8 ± 5.6 53.0 ± 2.8 29.9 ± 6.5 73.9 ± 2.6 49.5 ± 2.8 60.2
Log-NCDE 85.6 ± 5.1 83.1 ± 2.8 53.7 ± 4.1 34.4 ± 6.4 75.2 ± 4.6 53.7 ± 5.3 64.3
LRU 87.8 ± 2.8 82.6 ± 3.4 51.2 ± 3.6 21.5 ± 2.1 78.4 ± 6.7 48.4 ± 5.0 61.7
S5 81.1 ± 3.7 89.9 ± 4.6 50.5 ± 2.6 24.1 ± 4.3 77.7 ± 5.5 47.7 ± 5.5 61.8
S6 85.0 ± 16.1 82.8 ± 2.7 49.9 ± 9.4 26.4 ± 6.4 76.5 ± 8.3 51.3 ± 4.7 62.0
Mamba 70.9 ± 15.8 80.7 ± 1.4 48.2 ± 3.9 27.9 ± 4.5 76.2 ± 3.8 47.7 ± 4.5 58.6
LinOSS-IMEX 80.0 ± 2.7 87.5 ± 4.0 58.9 ± 8.1 29.9 ± 1.0 75.5 ± 4.3 57.9 ± 5.3 65.0
LinOSS-IM 95.0 ± 4.4 87.8 ± 2.6 58.2 ± 6.9 29.9 ± 0.6 75.8 ± 3.7 60.0 ± 7.5 67.8

D-LinOSS 93.9 ± 3.2 88.9 ± 3.0 58.6 ± 2.3 29.9 ± 0.6 75.8 ± 4.9 61.1 ± 2.0 68.0

4.1 UEA TIME-SERIES CLASSIFICATION

We consider a benchmark from the University of East Anglia (UEA) Multivariate Time Series
Classification Archive (UEA-MTSCA) Bagnall et al. (2018) introduced in Walker et al. (2024). This
benchmark consists of six datasets chosen to evaluate the ability of sequence models to capture long-
range interactions. The UEA datasets are classification tasks, ranging from classifying organisms
from motion readings (EigenWorms) to classifying fluid alcohol percentage based on measurements
of transmissive light spectra (EthanolConcentration). We precisely follow the experimental design
proposed in Walker et al. (2024), conducting a model hyperparameter search over a grid of 162
predetermined configurations for each dataset. Further, each model instance is trained on five seeds,
and the average test accuracy for the top performing model instances are reported. The high scoring
hyperparameter configurations of D-LinOSS model instances are tabulated in Appendix B.4. All
models use the same 70-15-15 train-validation-test data splits, controlled by the seed for a given trial.
Model scores for LinOSS-IM and LinOSS-IMEX are sourced from Rusch & Rus (2025) and all other
model scores are sourced from Walker et al. (2024).

Out of all models tested, D-LinOSS achieves the highest average test accuracy across the six UEA
datasets–raising the previous high score from 67.8% to 68.0%. Notably, D-LinOSS improves state-of-
the-art accuracy on MotorImagery by 1.1% and scores in the top two for five out of the six datasets.
D-LinOSS also outperforms the combination of both preceding models: the average score-wise
maximum between LinOSS-IM and LinOSS-IMEX is 67.9%, still shy of D-LinOSS. D-LinOSS
improves on or matches the second best model, LinOSS-IM, in all but one dataset, EigenWorms,
which is the smallest dataset out of the six.

4.2 PPG-DALIA TIME-SERIES REGRESSION

We evaluate model performance on the PPG dataset for motion compensation and heart rate esti-
mation in Daily Life Activities (PPG-DaLiA) (Reiss et al., 2019), which is a time-series regression
task. Here, models are challenged with learning human heart rate patterns as a function of various
sensor measurements, such as ECG readings, wearable accelerometers, and respiration sensing. The
dataset consists of 15 different subjects performing a variety of daily tasks, and bio-sensory data is
collected in sequences up to 50,000 points in length. We follow the same experimental design as
before, searching model hyperparameters over a grid of 162 configurations and training each model
instance on five seeds. All models use the same 70-15-15 data split. D-LinOSS achieves the best
results, reducing the lowest MSE from 6.4 to 6.16 (×10−2) compared to LinOSS-IM.
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Table 3: Test accuracies averaged over five different seeds on the PPG-DaLiA time-series regression
dataset. The best score is indicated in bold and the second best is underlined.

Model MSE ×10−2

NRDE Morrill et al. (2021) 9.90 ± 0.97
NCDE (Kidger et al., 2020) 13.54 ± 0.69
Log-NCDE Walker et al. (2024) 9.56 ± 0.59
LRU Orvieto et al. (2023) 12.17 ± 0.49
S5 Smith et al. (2023) 12.63 ± 1.25
S6 Gu & Dao (2023) 12.88 ± 2.05
Mamba Gu & Dao (2023) 10.65 ± 2.20
LinOSS-IMEX Rusch & Rus (2025) 7.5 ± 0.46
LinOSS-IM Rusch & Rus (2025) 6.4 ± 0.23

D-LinOSS 6.16 ± 0.73

Table 4: Mean absolute error on the weather dataset predicting the future 720 time steps based on the
past 720 time steps. The best score is indicated in bold and the second best is underlined.

Model Mean Absolute Error

Informer (Zhou et al., 2021) 0.731
Informer† (Zhou et al., 2021) 0.741
LogTrans (Li et al., 2019) 0.773
Reformer (Kitaev et al., 2020) 1.575
LSTMa (Bahdanau et al., 2016) 1.109
LSTnet (Lai et al., 2018) 0.757
S4 (Gu et al., 2021) 0.578
LinOSS-IMEX Rusch & Rus (2025) 0.508
LinOSS-IM Rusch & Rus (2025) 0.528

D-LinOSS 0.486

4.3 WEATHER TIME-SERIES FORECASTING

To assess the generality of D-LinOSS as a sequence-to-sequence model, as in Gu et al. (2021), we
evaluate its performance on a long-horizon time-series forecasting task without any architectural
modifications. In this setting, forecasting is framed as a masked sequence transformation problem,
allowing the model to predict future values based solely on partially masked input sequences.

We focus on the weather forecasting task introduced in Zhou et al. (2021), which involves predicting
one month of hourly measured multivariate local climatological data based on the previous month’s
measurements. The dataset spans 1,600 U.S. locations between 2010 to 2013; further details are
provided in NCEI (2025).

In this benchmark, D-LinOSS is compared against Transformer-based architectures, LSTM variants,
the structured state-space model S4, and previous versions of LinOSS. D-LinOSS achieves the best
performance, reducing the lowest mean absolute error (MAE) from 0.508 (LinOSS-IMEX) to 0.486.

4.4 SYNTHETIC ADDING

An additional practical benefit of D-LinOSS is faster training convergence compared to preceding
models. To showcase this, we consider the synthetic adding task (Hochreiter, 1997), where the model
must compute the sum of two randomly specified numbers embedded in a sequence of white noise.
To make the task challenging, models are required to predict the sum using only the final output
token, rather than aggregating all outputs across the sequence. We evaluate sequence lengths of 500,
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Figure 3: Validation metric convergence for the adding task of different sequence lengths.

2000, and 5000, and perform a small grid search for all LinOSS variants. Further details are provided
in Appendix B.3.

Comparing the best-performing instances, we find that D-LinOSS is not only more capable of
reaching a correct solution but it also converges faster. As shown in Figure 3, D-LinOSS attains a
validation MSE of 10−2 about 1.7× faster than LinOSS-IM for both sequence lengths of 500 and
2000 and about 1.4× faster for length 5000. In contrast, LinOSS-IMEX fails to outperform the
baseline of random guessing (with MSE of 0.167) for any task. These results highlight the greater
flexibility and expressivity of D-LinOSS, which translate into more efficient and consistent learning.

5 RELATED WORK

State Space Models (SSMs) were introduced as a deep learning framework for sequential data in
Gu et al. (2021). Early variants (Gu et al., 2022; Nguyen et al., 2022; Goel et al., 2022) relied on
Fast Fourier Transform (FFT) and HiPPO parameterizations (Gu et al., 2020) to efficiently compute
linear recurrences. More recent architectures employ diagonal state matrices in combination with
fast associative parallel scans, which was first developed for RNNs (Martin & Cundy, 2017; Kaul,
2020) and later adapted to SSMs in Smith et al. (2023). While these models initially required
HiPPO matrices to initialize weights, subsequent work has shown that simple random initialization is
sufficient (Orvieto et al., 2023). Finally, D-LinOSS and the models above are based on LTI systems,
there is growing interest in time-varying SSMs for challenging domains such as language and video
(Gu & Dao, 2023; Dao & Gu, 2024; Hasani et al., 2022; Merrill et al., 2024).

The most closely related model to our proposed D-LinOSS is the original LinOSS, introduced in
Rusch & Rus (2025). While LinOSS was the first SSM to explicitly leverage oscillatory dynamics,
the idea of incorporating oscillatory behavior into deep learning architectures has also appeared in
other domains. For instance, recurrent models such as coupled oscillatory RNNs (coRNNs) (Rusch &
Mishra, 2021a) and UnICORNNs (Rusch & Mishra, 2021b) introduce oscillations into their hidden
state dynamics, while graph-based approaches like Graph Coupled Oscillator Networks (GraphCON)
(Rusch et al., 2022) extend similar principles to structured data.

6 DISCUSSION AND CONCLUSION

We introduced D-LinOSS, an extension of the LinOSS model that incorporates learnable damping
across arbitrary time scales. Through spectral analysis, we showed that existing LinOSS variants
are rigidly defined by their discretization scheme and can only express a narrow set of dynamical
behaviors. In contrast, D-LinOSS captures the full range of stable second-order dynamics.

This expanded expressivity yields a 10–30× improvement on a synthetic regression task, leads
to consistent performance gains across eight real-world benchmarks, and enables faster conver-
gence on the adding task. D-LinOSS outperforms all baselines considered in this work, including
Transformer-based models, LSTM variants, other modern SSMs, as well as previous versions of
LinOSS. Additionally, D-LinOSS reduces the LinOSS hyperparameter search space without adding
any computational overhead. These results establish D-LinOSS as an efficient and powerful extension
to the family of deep state space models.

9
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While D-LinOSS demonstrates strong empirical results as a general sequence model, it is based on
layers of LTI systems, which are fundamentally limited in their ability to capture certain contextual
dependencies, such as selective copying (Gu & Dao (2023), Jing et al. (2019)). Building on the
growing interest in time-varying SSMs sparked by Gu & Dao (2023); Dao & Gu (2024), we aim to
explore future work on variants of D-LinOSS that integrate the selectivity of time-varying dynamics.

As D-LinOSS is inherently well-suited to represent temporal relationships with oscillatory structure,
we aim to explore applications where such patterns are fundamental. In particular, climate science,
seismic monitoring, and astrophysics data all exhibit complex patterns governed by oscillatory
behavior. Moving forward, we believe that D-LinOSS will be a key player in advancing machine-
learning based approaches in domains grounded in the physical sciences.
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Supplementary Material for:
Learning to Dissipate Energy in Oscillatory State-Space Models

A THEORETICAL PROPERTIES

A.1 D-LINOSS EIGENVALUES

Proposition A.1. The eigenvalues of the D-LinOSS recurrent matrix M ∈ R2m×2m are

λi1,2 =
1 + ∆ti

2 Gi − ∆t2i
2 Ai

1 + ∆tiGi
±

∆ti
2

√
(Gi −∆tiAi)2 − 4Ai

1 + ∆tiGi
,

where pairs of eigenvalues are denoted as λi1,2 and i = 1, 2, ...,m.

Proof. M (6) is a matrix with diagonal sub-blocks M11, M12, M21, and M22, i.e. it follows the
structure:

M =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(M11)1
. . .

(M11)m


(M12)1

. . .
(M12)m


(M21)1

. . .
(M21)m


(M22)1

. . .
(M22)m



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since M represents m uncoupled oscillatory systems, we see that the operation Mw, w⊺ = [z⊺,x⊺]
can be independently split across the m pairs of state variables [zi,xi]. Thus, it suffices to re-arrange
M into m different 2× 2 systems and analyze the eigenvalues of each system separately. Substituting
the real expressions for M11, M12, M21, and M22, and using brackets to denote the 2× 2 matrix
formed by diagonally indexing along the sub-blocks of M, the ith system matrix is:

[M]i =

[
S−1
i −∆tiS

−1
i Ai

∆tiS
−1
i 1−∆t2iS

−1
i Ai

]
A straightforward exercise using the definition S = I+∆tG leads us to the ith pair of eigenvalues.

det(λI− [M]i) = det

[
λ− S−1

i ∆tiS
−1
i Ai

−∆tiS
−1
i λ− 1 + ∆t2iS

−1
i Ai

]

= (λ− S−1
i )(λ− 1 + ∆t2iS

−1
i Ai) + (∆tiS

−1
i )(∆tiS

−1
i Ai)

= λ2 + λ(S−1
i (∆t2iAi − 1)− 1) + S−1

i

= λ2 + λ
−2−∆tiGi +∆t2iAi

1 + ∆tiGi
+

1

1 +∆tiGi
= 0

=⇒ λi1,2 =
1 + ∆ti

2 Gi − ∆t2i
2 Ai

1 + ∆tiGi
±

∆ti
2

√
(Gi −∆tiAi)2 − 4Ai

1 + ∆tiGi
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A.2 STABILITY CRITERION

Proposition A.2. Assume Ai, Gi are non-negative, and ∆ti ∈ (0, 1]. If the following is satisfied:

(Gi −∆tiAi)
2 ≤ 4Ai (11)

Then λi1,2 come in complex conjugate pairs λi, λ∗
i with the following magnitude:

|λi| =
1√

1 + ∆tiGi

≤ 1,

i.e. the eigenvalues are unit-bounded. Define Si to be the set of all (Ai,Gi) that satisfy the above
condition. For notational convenience, we order the eigenvalues such that Im(λi) ≥ 0, Im(λ∗

i ) ≤ 0.

Proof. (Gi −∆tiAi)
2 − 4Ai is the determinant of each eigenvalue pair, so (Gi −∆tiAi)

2 ≤ 4Ai

means λi can be written in complex form with the following real and imaginary components.

Re(λi) =
1 + ∆ti

2 Gi − ∆t2i
2 Ai

1 + ∆tiGi

Im(λi) = ±
∆ti
2

√
4Ai − (Gi −∆tiAi)2

1 + ∆tiGi

The magnitude of this complex number is:

|λi| =
√

Re(λi)2 + Im(λi)2 =
1√

1 + ∆tiGi

∆ti,Gi ≥ 0 =⇒ |λi| ≤ 1

We note that this stability criterion is a sufficient but not necessary condition. There exists solutions
(Ai,Gi) rendering |λi| ≤ 1 that do not lie in Si. However, as shown in Proposition 3.3, there already
exists a bijection from Si to the full complex unit disk.

A.3 SPECTRAL IMAGE OF D-LINOSS

Proposition A.3. The mapping Φ : Si → C|z|≤1 \ {0} defined by (Ai,Gi) 7→ (λi, λ
∗
i ) is bijective.

Proof. The “bijective relationship between (Ai,Gi) ∈ Si and (λi, λ
∗
i ) ∈ C|z|≤1 \ {0}" is an abuse

of notation for the bijective relationship between (Ai,Gi) ∈ Si and just the first eigenvalue λi1 (with
non-negative imaginary part) over the half-disk C|z|≤1, Im(z)≥0 \ {0}. Conjugate symmetry of the
eigenvalues then “fills out" the full space C|z|≤1 \ {0}.

As such, we aim to show Φ1 : Si → C|z|≤1, Im(z)≥0 \ {0}, (Ai,Gi) 7→ λi is a bijection. We first
show that Φ1 is bijective over some larger region; equivalently, Φ1 has a well-defined inverse function
Ψ1 (a function Ψ1 such that Φ1 ◦ Ψ1 = idY and Ψ1 ◦ Φ1 = idX ). The first relation is equivalent
to surjectivity: Φ1(Ψ1(y)) = y means all y are reachable through Φ1 via x = Ψ1(y). The second
relation is equivalent to injectivity: Ψ1(Φ1(x)) = x means all x and y such that Φ1(x) = Φ1(y) must
satisfy x = y. Afterward, we show that the image of Φ1 is correct, i.e. Φ1(Si) = C|z|≤1, Im(z)≥0\{0},
which shows that Φ1 is bijective with respect to the desired regions.

We assume constant ∆ti ∈ (0, 1]. Consider the function Ψ1 : λi 7→ (Ai,Gi) as defined below.

Ai =
λiλ

∗
i − λi − λ∗

i + 1

∆t2iλiλ∗
i

, Gi =
1− λiλ

∗
i

∆tiλiλ∗
i
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Plugging the expressions for Ai, Gi above into Φ1 and doing some algebra reveals the intermediate
result:

Re(Φ1(Ψ1(λi))) =
1 + ∆ti

2 Gi − ∆t2i
2 Ai

1 + ∆tiGi

∣∣∣∣∣
(Ai,Gi)=Ψ1(λi)

=
1

2
(λi + λ∗

i )

Im(Φ1(Ψ1(λi))) =
∆ti
2

√
(Gi −∆tiAi)2 − 4Ai

1 + ∆tiGi

∣∣∣∣∣
(Ai,Gi)=Ψ1(λi)

=
1

2
(λi − λ∗

i )

⇒ Φ1(Ψ1(λi)) = λi

Similarly, plugging the eigenvalue expression for λi into Ψ1 and doing some algebra shows:

Ψ1(Φ1((Ai,Gi))0 =
λiλ

∗
i − λi − λ∗

i + 1

∆t2iλiλ∗
i

∣∣∣∣∣
λi=Φ1((Ai,Gi))

= Ai

Ψ1(Φ1((Ai,Gi))1 =
1− λiλ

∗
i

∆tiλiλ∗
i

∣∣∣∣∣
λi=Φ1((Ai,Gi))

= Gi

⇒ Ψ1(Φ1((Ai,Gi)) = (Ai,Gi)

So Φ1, Ψ1 are well-defined inverses of each other. In the above derivations, we used the fact that
λi ̸= 0.

It remains to show that Φ1(Si) = C|z|≤1, Im(z)≥0 \ {0}. Proposition 3.2 has already shown that
Φ(Si) ⊆ C|z|≤1, Im(z)≥0 \ {0}, so it remains to show the reverse set inclusion Ψ1(C|z|≤1, Im(z)≥0 \
{0}) ⊆ Si.

It’s clear that Ai, Gi are non-negative as the numerators are denominators of the expressions in Ψ1

are both non-negative given 0 < |λi| ≤ 1. Now freely leveraging the inverse function, we see the
final stability inequality is also satisfied:

(Gi −∆tiAi)
2 − 4Ai =

(λi − λ∗
i )

2

(∆tiλiλ∗
i )

2
=

−4Im(λi)
2

(∆tiλiλ∗
i )

2
≤ 0

In other words, parameters (Ai,Gi) derived from the inverse map Ψ(λi) lie within the stable region
Si when λi ∈ C|z|≤1, Im(z)≥0 \ {0}, which is exactly the reverse set inclusion.

A.4 SET MEASURE OF LINOSS EIGENVALUES

Proposition A.4. For both LinOSS-IM and LinOSS-IMEX, the set of eigenvalues constructed from
Ai ∈ R≥0 and ∆ti ∈ (0, 1] is of measure zero in C.

Proof. Recall the eigenvalue expressions from Rusch & Rus (2025):

λIM
i1,2 =

1

1 +∆t2iAi
± j

∆ti
√
Ai

1 + ∆t2iAi
, λIMEX

i1,2 =
1

2
(2−∆t2iAi)±

j

2

√
∆t2iAi(4−∆t2iAi),

Since λi1 = λ∗
i2

, it suffices to prove the proposition for the first eigenvalue, i.e. {λi1 ∈ C | Ai ∈
R≥0,∆ti ∈ (0, 1]} is a set of measure zero. We start with the following lemma:
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Lemma A.5. Let f : M → N be a continuously differentiable map of manifolds where dimM <
dimN . Then f(M) is of measure zero in N (Gualtieri, 2016).

Using Lemma A.5, it suffices to show that range(λIM
i1

) is a 1-manifold in C ∼= R2. Beginning with
the LinOSS-IM expression, apply the change of variables γi := ∆ti

√
Ai, where Ai ∈ R≥0,∆ti ∈

(0, 1] ⇐⇒ γi ∈ R≥0:

λIM
i1 (γi) =

(
1

1 + γ2
i

,
γi

1 + γ2
i

)
This map is continuously differentiable, injective on C (and surjective onto its image), and its inverse
is continuously differentiable, so it satisfies the conditions of Lemma A.5. So, the range of λIM

i1
is an

embedded 1-manifold in R2 and therefore a set of measure zero.

Using the same change of variables, an identical argument can be applied to the LinOSS-IMEX
expression to show it also produces a set of measure zero; this argument is omitted for concision.

A.5 UNIVERSALITY

An operator Φ : C0([0, T ];Rp) → C0([0, T ];Rq) is said to be causal if ∀t ∈ [0, T ], if u,v ∈
C0([0, T ];Rp) are two input signals such that u|[0,t] ≡ v|[0,t], then Φ(u)(t) = Φ(v)(t).

An operator is said to be continuous if Φ : (C0([0, T ];Rp), ∥ · ∥∞) → (C0([0, T ];Rq), ∥ · ∥∞), i.e.
Φ is a map between continuous functions with respect to the L∞-norms on the input/output signals.

The theorem of Rusch & Rus (2025) is briefly paraphrased:

Theorem A.6. Let Φ be any causal and continuous operator. Let K ⊂ C0([0, T ];Rp) be compact.
Then for any ϵ > 0, there exists a configuration of hyperparameters and weight matrices, such that
the output z : [0, T ] → Rq of a LinOSS block satisfies:

sup
t∈[0,T ]

|Φ(u)(t)− z(t)| ≤ ϵ, ∀u ∈ K.

In other words, a LinOSS block can approximate any causal and continuous operator on compact
input spaces to arbitrarily high accuracy.

B EXPERIMENTS AND RESULTS

B.1 REGRESSION EXPERIMENT

A small hyperparameter grid search was conducted over hidden dimension ∈ {8, 64}, SSM dimension
∈ {8, 64}, and number of blocks ∈ {2, 6}. Learning rate was kept constant at 1e-3.

Input sequences were sampled from white noise and passed through the discrete state-space system
corresponding to parameters A = 0.8, B = 1, C = 1, D = 0. A sequence length of 1000 was
selected to study the model behaviors within the regime of long range learning.

B.2 VISUALIZING EIGENVALUES

The learned eigenvalue distributions across each layer are plotted for the highest-performing D-
LinOSS, LinOSS-IM, and LinOSS-IMEX model instances on the MotorImagery classification task.
Qualitatively, the learned eigenvalues are roughly distributed similarly to the initialized distribution.
Recall that particular initialization techniques have been developed for each model that initializes
eigenvalues only within a subset of the full range depicted in Figure 2. In the case of D-LinOSS,
eigenvalues are initialized via uniform sampling in the magnitude band |λ| ∈ [0.9, 1.0], whereas
previous LinOSS uniformly sample the underlying A and ∆t parameters.
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Figure 4: Learned eigenvalues across layers for best model instances on the MotorImagery task.

B.3 ADDING TASK

Models were varied across number of blocks ∈ {2, 4, 6} while keeping constant hidden dimension
= 128, SSM dimension = 128, and learning rate = 1e-4. Each model configuration was trained on
5 different seeds and the highest performing model instances (as measured by fastest validation set
convergence time) are compared in Figure 3.

B.4 HYPERPARAMETERS

For the UEA-MTSCA classification and PPG regression experiments of Section 4.1 and Section 4.2,
model hyperparameters were searched over a grid of 162 total configurations defined by Walker et al.
(2024). This grid consists of learning rate ∈ {1e-3, 1e-4, 1e-5}, hidden dimension ∈ {16, 64, 128},
SSM dimension ∈ {16, 64, 256}, number of SSM blocks ∈ {2, 4, 6}, and inclusion of time ∈ {True,
False}. For the weather forecasting experiment of Section 4.3, we instead perform random search
over the same grid, except we sample learning rate continuously from a log-uniform distribution and
allow for odd-numbered selections of the number of blocks.

Table 5: Best performing hyperparameters for D-LinOSS across each of the eight datasets.

Dataset lr hidden dim state dim num blocks include time

Worms 1e-3 128 64 2 False

SCP1 1e-4 128 256 6 True

SCP2 1e-5 128 64 6 False

Ethanol 1e-5 16 256 4 False

Heartbeat 1e-4 16 16 2 False

Motor 1e-3 16 64 4 False

PPG 1e-3 64 64 4 True

Weather 7.95e-5 128 128 3 False

B.5 COMPUTE REQUIREMENTS

Below, we tabulate the compute resources required for each model across all datasets considered in
the UEA-MTSCA classification experiments of Section 4.1. The main table is sourced from Rusch &
Rus (2025), which lists the total number of parameters, average GPU memory usage measured in
MB, and average run time per 1000 training steps measured in seconds. All models operate on the
same codebase and python libraries, adopted from both Walker et al. (2024) and Rusch & Rus (2025).
These compute requirements are evaluated using an Nvidia RTX 4090 GPU.
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Table 6: Compute requirements for the classification experiments considered in Section 4.1.

NRDE NCDE Log-NCDE LRU S5 Mamba S6 LinOSS-IMEX LinOSS-IM D-LinOSS

Worms
|θ| 105110 166789 37977 101129 22007 27381 15045 26119 134279 134279

mem. 2506 2484 2510 10716 6646 13486 7922 6556 3488 3488
time 5386 24595 1956 94 31 122 68 37 14 14

SCP1
|θ| 117187 166274 91557 25892 226328 184194 24898 447944 991240 992776

mem. 716 694 724 960 1798 1110 904 4768 4772 4790
time 1014 973 635 9 17 7 3 42 38 38

SCP2
|θ| 200707 182914 36379 26020 5652 356290 26018 448072 399112 399496

mem. 712 692 714 954 762 2460 1222 4772 2724 2736
time 1404 1251 583 9 9 32 7 55 22 22

Ethanol
|θ| 93212 133252 31452 76522 76214 1032772 5780 70088 6728 71112

mem. 712 692 710 1988 1520 4876 938 4766 1182 4774
time 2256 2217 2056 16 9 255 4 48 8 37

Heartbeat
|θ| 15657742 1098114 168320 338820 158310 1034242 6674 29444 10936 4356

mem. 6860 1462 2774 1466 1548 1650 606 922 928 672
time 9539 1177 826 8 11 34 4 4 7 4

Motor
|θ| 1134395 186962 81391 107544 17496 228226 52802 106024 91844 20598

mem. 4552 4534 4566 8646 4616 3120 4056 12708 4510 4518
time 7616 3778 730 51 16 35 34 128 11 20

B.6 INITIALIZATION TECHNIQUES

Figure 5: Initialization study varying intervals of eigenvalue magnitude and methods of sampling.

To understand how to best initialize the D-LinOSS parameters, we conduct a study on model
performance comparing four different sampling techniques.

• Experiment 1: Uniformly sample G ∈ [0, Gmax] for different values of Gmax and uniformly
sample A ∈ [0, 1]

• Experiment 2: Uniformly sample G ∈ [0, Gmax] for different values of Gmax and uniformly
sample ϕ ∈ [0, π)

• Experiment 3: Radially uniform sample |λ| ∈ [rmin, 1] for different values of rmin and
uniformly sample A ∈ [0, 1]

• Experiment 4: Radially uniform sample |λ| ∈ [rmin, 1] for different values of rmin and
uniformly sample ϕ ∈ [0, π)

Where sampling G or sampling |λ| are two different ways of controlling eigenvalue magnitude, and
sampling A or sampling ϕ := arg(λ) are two different ways of controlling eigenvalue phase. Note
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that eigenvalues come in complex conjugate pairs, so sampling a single eigenvalue in ϕ ∈ [0, π)
covers the full complex disk. “Radially uniform sampling" refers to uniformly sampling over the area
of the cartesian coordinate ring described by the polar coordinate boundaries as opposed to uniformly
sampling in the polar coordinates themselves.

For each experiment, values of Gmax or rmin are varied to generate different eigenvalue distributions.
For each evaluation of an initialization technique (a single point on figure 5), D-LinOSS is trained
over a small sweep of 16 hyper-parameter configurations, and each model configuration is trained on
5 different seeds. This process is repeated for the three datasets SelfRegulationSCP1, Heartbeat, and
MotorImagery. Figure 5 displays the average highest test score over all three datasets.

Radially uniform sampling eigenvalue magnitude and uniformly sampling eigenvalue phase is the best
performing initialization technique observed. For these three datasets, a lower bound of rmin = 0.9
results in the highest average test accuracy.

C ADDITIONAL EXPERIMENTS

C.1 VARIATIONS OF ADDING

We develop additional variations of the Adding task to interpret how the underlying learnable damping
mechanism relates to long-range learning. In particular, we conduct a parameter saliency (“sensitivity"
or “importance") analysis to understand what subset of the learned recurrent matrix eigenvalues
(modulated by the damping parameter G) are most important for a given task. Further, we compare
how different distributions of eigenvalues impact performance on task variations designed to express
long-range dependencies.

As before, we consider the task of computing the sum of two numbers randomly selected within a
sequence of uniform noise. However, we study two new task variations, both on sequences of length
1000: 1. the selected indices are always chosen within the first 100 elements, and 2. the selected
indices are always chosen within the last 100 elements. As the model prediction is defined as the
SSM’s final sequential output, the first variation skews model requirements toward longer-range
memory retention, whereas the second variation does not necessitate the same level of memory.

We begin by training D-LinOSS on these tasks, defaulting hyperparameters to hidden dimension =
128, SSM dimension = 128, learning rate = 1e-4, number of blocks = 3, and inclusion of time = False.
Eigenvalue magnitude initialization range is set to |λ| ∈ [0.5, 1.0] to capture a large spectral range
for interpretation. 5 random seeds are trained and the best performing model instance is analyzed.

Given a trained model instance, the importance of each eigenvalue can be measured via the loss
function’s sensitivity to changes in the corresponding model parameters. We follow methods in
classical neural network compression theory (LeCun et al., 1989; Hassibi & Stork, 1992) to measure
parameter saliency using second-order derivative information. In particular, Li, the saliency of the
i’th weight Wi, is defined as the approximate increase in loss when Wi is eliminated from the network.

Li =
1

2

W 2
i

(H−1)ii
(12)

H = ∇2l(W ;X, y) is the Hessian matrix of the loss function taken with respect to model parameters
W . Materializing and inverting the full matrix is computationally intractable for large networks, so we
follow standard practice in using the simplifying assumption (H−1)ii ≈ (Hii)

−1. In the D-LinOSS
parameterization, each eigenvalue λi is a function of the corresponding parameters Ai,Gi,∆ti, so
we approximate the saliency of an eigenvalue Lλi ≈ LAi + LGi + L∆ti .

Figure 6 shows eigenvalues with larger magnitude (equivalently, smaller Gi), are more important to
computing the sum in the First-100 Adding task. Figure 7 shows a similar trend but less pronounced,
indicating that the low-damping recurrent modes are not as important to the Last-100 Adding
task. This relationship is more precisely viewed in Figure 8; comparing the best-fit exponential
functions Lλ ≈ c1e

5.5|λ| (First-100 Adding) to Lλ ≈ c2e
3.4|λ| (Last-100 Adding) indeed shows

high-magnitude eigenvalues are more important in the long-range task variation.
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Figure 6: Parameter saliency versus eigenvalue across layers for the First-100 Adding task.

Figure 7: Parameter saliency versus eigenvalue across layers for the Last-100 Adding task.

The above D-LinOSS instances are also compared to another set of instances trained with eigenvalue
magnitudes initialized in [0.9, 1.0]. Other hyperparameters are kept the same and aggregate test-set
performance statistics across 5 random seeds are reported in Table 7 below.

Table 7: D-LinOSS on Position-Skewed Adding Task Variations.

First-100 Adding Last-100 Adding

Range |λ| Avg. MSE Min. MSE Avg. MSE Min. MSE

[0.5, 1.0] 7.6e-2 1.1e-3 1.9e-4 1.5e-4
[0.9, 1.0] 4.4e-2 4.7e-4 2.4e-4 1.5e-4

On the First-100 Adding task, the average MSE for D-LinOSS initialized with |λ| ∈ [0.9, 1.0] is
1.7× lower than with |λ| ∈ [0.5, 1.0], and the best in-class MSE is 2.3× lower. For the Last-100
Adding task, lower damping doesn’t appear to offer any empirical benefit over the larger range of
initialized eigenvalues, and in fact it performs worse on average by a factor of 1.3×.
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Figure 8: Parameter saliency versus eigenvalue magnitude for the First-100 Adding task (Left) and
Last-100 Adding task (Right)

C.2 STATIC DAMPING BASELINE

A natural question to ask about the proposed energy dissipation mechanism is whether or not a static
amount of system damping suffices for expressive model performance. “Static" damping is defined
as a constant value of G which is not updated throughout the training loop. We develop this baseline
and compare performance to D-LinOSS on the classification and regression tasks of Tables 2 and 3.

For each dataset, the top-performing D-LinOSS hyperparameter configurations from Table 5 are
re-used in the statically damped model variations. Damping values are set identically to G = 1 and
held constant through training. Model instances are run across the same 5 random seeds and average
test-set metrics are reported below.

Table 8: D-LinOSS compared to a static damping baseline using the same hyperparameters. Test
accuracies averaged over five different seeds on the UEA classification tasks and PPG regression task.

Worms ↑ SCP1 ↑ SCP2 ↑ Ethanol ↑ Heartbeat ↑ Motor ↑ PPG ×10−2 ↓
Variable G 93.9 ± 3.2 88.9 ± 3.0 58.6 ± 2.3 29.9 ± 0.6 75.8 ± 4.9 61.1 ± 2.0 6.16 ± 0.73
Static G 85.6 ± 5.3 85.7 ± 6.5 51.9 ± 8.4 26.1 ± 3.8 69.7 ± 3.1 53.7 ± 7.7 12.36 ± 0.49

The statically damped model instances perform significantly worse than D-LinOSS. Although the
full set of hyperparameter sweeps was not run for the baseline, which would be a fairer comparison,
the poor performance indicates that statically defined damping is not a robust parameterization
within the D-LinOSS framework, compared to adaptively learning distributions of G. In fact, the
unassuming selection of G = 1 appears to be an adversarial choice of constant damping, as this
baseline performs worse than the identically undamped variant LinOSS-IMEX. In conclusion, the
eigenvalue distributions and underlying gradient landscape of parameters G, A, and ∆t are a sensitive
and critical aspect of these state-space models that require principled and flexible mechanisms, such
as learnable damping terms and properly tuned initialization schemes.

C.3 PPG CONVERGENCE

We show the model convergence of D-LinOSS, LinOSS-IM, and LinOSS-IMEX on the PPG-DaLiA
long-range regression experiment. Additional randomly seeded model instances of the top-performing
hyperparameter configurations from Table 5 and the corresponding table in Rusch & Rus (2025) are
trained, and the validation metrics of the best performing model instances are shown in Figure 9.
D-LinOSS converges to a validation metric of 7.5e-2 2.7× faster than LinOSS-IM and 4.6× faster
than LinOSS-IMEX. Complementing the convergence results on the synthetic task of Section 4.4, we
see that D-LinOSS converges faster on real-world datasets as well.
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Figure 9: Validation metric convergence for top-performing model configurations on PPG-DaLiA.

D GLOSSARY

D.1 ENERGY DISSIPATION, FORGETTING, AND DAMPING

In this paper, the terms “energy dissipation," “forgetting," and “damping" are used frequently and
somewhat interchangeably. We provide a more formal description of these terms below.

• Energy dissipation refers to the time-evolution of the norm || · || of the SSM layers’ internal
state vector, denoted x ∈ Rm. This state vector norm can be interpreted as the “energy"
or “informational content" held by the recurrence at any given time step. When viewing
the recurrence as a decoupled second-order system expressed in some eigen-basis, we see
that the dissipation of this system energy is due to the exponentiation of eigenvalues with
magnitude less than 1.

xn = Mnx0 = λnx0

||xn|| = |λ|n||x0||
|λ| < 1 ⇒ lim

n→∞
||xn|| = 0

The amount of energy dissipation is equivalently interpreted as how far below 1 the eigen-
value magnitudes are, i.e. how quickly the above limit converges.

• Forgetting is used equivalently to energy dissipation, but may reflect a more abstract
interpretation of shedding informational content contained in the recurrent state vector x.

• Damping refers to the underlying continuous-time parameter G that D-LinOSS layers are
discretized from. As there is a bijective relationship between parameters and eigenvalues,
and further there is an inversely proportional relationship between Gi and |λi|, more system
damping (higher G) can be interpreted as more energy dissipation, and less system damping
(lower G) can be interpreted as more energy retention.

|λi| =
1√

1 + ∆tiGi
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