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Abstract—Recent work introduced DiffTune, a neural network-
based technique to automatically learn the microarchitecture-
specific parameters of basic block CPU simulators. The authors
apply their approach to the llvm-mca simulator. They show
that the learned parameter values achieve an accuracy on the
BHive benchmark suite that is comparable, and in some cases
even better than that of the original, expert-provided llvm-mca
parameter values.

In this paper, we show that an accuracy in this range is actually
trivial to achieve: We propose a simple set of parameter values
that outperforms the values learned by DiffTune. In fact, our set
of parameter values is so simple that it can be fully described
within this abstract: We set the dispatch width to 4, the reorder
buffer size to 100, the latencies and µop counts of all instructions
to 1, and all other parameters to 0. These parameter values lead
to more accurate predictions than DiffTune’s values on all four
microarchitectures that were considered in the DiffTune paper.

We then develop a simple learning algorithm for the llvm-
mca parameters. We show that the parameter values learned by
our algorithm lead to an average error on the BHive benchmark
suite that is between 29% and 47% lower compared to DiffTune’s
values.

I. INTRODUCTION

Basic block CPU simulators such as llvm-mca [1], uiCA [4],
or CQA [6] are widely used to understand, predict, and opti-
mize the performance of software on x86 systems. Such tools
typically support multiple microarchitectures; the details of
these microarchitectures are provided via a set of parameters.

Setting the parameter values correctly for a specific microar-
chitecture can be challenging. The number of parameters is
typically high; usually, there are multiple parameters for each
instruction variant, such as the latency and the execution port
usage, and recent CPUs support several thousand instruction
variants. Moreover, the relevant properties are typically not
documented. Thus, they are often reverse-engineered using
microbenchmarks [2], [3], [8], [9], [13].

Recent work by Renda et al. [12] introduced DiffTune, an
alternative approach that aims at overcoming these challenges
by learning the microarchitecture-specific parameters of CPU
simulators automatically, based only on coarse-grained end-
to-end measurements.

DiffTune works as follows. It takes a dataset of benchmarks,
in which each benchmark is labeled with performance mea-

surements on the actual hardware. Then, it learns a neural
network-based differentiable surrogate for the original sim-
ulator, i.e., a differentiable function that takes as input a
benchmark from the dataset and a set of parameter values, and
outputs an approximation of the output that the original simu-
lator would produce for this input. Finally, it applies gradient-
based optimization techniques to find parameter values that
minimize the difference between the surrogate’s output and
the measurements on the benchmarks of the dataset; using
such techniques would not be possible on the original, non-
differentiable simulator.

Renda et al. apply DiffTune to the llvm-mca simulator,
which is a tool that analyzes the performance of basic blocks
using information that is available in LLVM. As the dataset,
they use the BHive benchmark suite [7], which contains basic
blocks that were extracted from applications from different
domains, along with throughput measurements for different
x86 microarchitectures.

There are, in total, more than 10, 000 llvm-mca parameters
that correspond to instructions that occur in the BHive set.
Renda et al. show that the values learned by DiffTune for
these parameters lead to throughput predictions that have a
lower error compared to the measurements than predictions
obtained with the original, expert-provided and hand-written
llvm-mca parameter values.

In this paper, we will address the question of how difficult
it actually is to set the parameters in a way that achieves a
comparable accuracy on the BHive benchmark set.

It should be noted that the goal of llvm-mca is not only to
predict the throughput but also to provide other insights into
how the code is executed. It is therefore possible that if one
focuses, as in the DiffTune paper, only on throughput predic-
tions, the problem of setting values that lead to a high accuracy
might be easier than the problem the original authors of llvm-
mca attempted to solve. Furthermore, a closer inspection of
the BHive set reveals that many of the instructions that occur
in the benchmarks are relatively simple instructions with a low
latency and a small number of µops; more complex instruc-
tions occur only in a relatively small number of benchmarks. It
is therefore likely that not all of the more than 10, 000 llvm-
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TABLE I: llvm-mca parameters

Parameter Count Description

Dispatch width 1 global The maximum number of µops that can be sent from the front end to the scheduler in each cycle.
Reorder buffer size 1 global The number of entries in the reorder buffer.
Latency 1 per instruction The number of cycles until the destination operands of the instruction have been written.
Number of µops 1 per instruction The number of µops that the instruction is decoded into.
ReadAdvance cycles 7 per instruction How much the effective latency of each source operand is decreased.
PortMap 23 per instruction For how many cycles the instruction occupies each execution port or each group of execution ports.

mca parameters are equally important for achieving a good
accuracy on the BHive set, and it might be sufficient to focus
on the commonly occurring, simple instructions.

To test this hypothesis, we consider one of the simplest
sets of parameter values that is possible: We assume that all
instructions are decoded into one µop, and that they have
a latency of one cycle; we set all other instruction-specific
parameters to 0. We set the two global llvm-mca parameters,
the dispatch width and the reorder buffer size, to 4 and
100, respectively. Some insights into why these values were
selected are provided in Section III.

Surprisingly, on all four microarchitectures that were con-
sidered in the DiffTune paper, this basic set of parameter
values leads to predictions that are more accurate than the
predictions obtained with both DiffTune’s learned parameters
and llvm-mca’s default parameters; more details can be found
in Section V. Note that we use exactly the same parameter
values for all four microarchitectures. This shows that it is
actually easy to find parameter values that achieve an error
that is competitive with DiffTune’s learned and llvm-mca’s
default values on the BHive benchmarks.

Based on these insights, we then propose in Section IV
a new learning algorithm for the llvm-mca parameters. Our
algorithm first initializes all parameter values with the simple
values described previously. Then, it iterates over all instruc-
tions and their parameters one-by-one, and checks if a better
accuracy can be achieved with a higher parameter value. Un-
like DiffTune, our approach does not require differentiability,
and can thus be directly used with the original simulator,
instead of requiring a differentiable surrogate.

We show in Section V that the parameter values learned
with our approach lead to an average error that is between 29%
and 47% lower compared to DiffTune’s values, even though
DiffTune’s approach is significantly more complex.

II. PROBLEM STATEMENT

Given a set B of benchmarks, our goal is to find values for
the parameters shown in Table I, such that the average error
of llvm-mca’s predictions relative to the measured throughput
is minimized. The average error, or “mean absolute percent-
age error” (MAPE) is defined as follows. Let m(b) be the
measured throughput of a benchmark b, and p(b) llvm-mca’s
prediction for b for a specific set of parameter values. Then

MAPE(B) =
1

|B|
·
∑
b∈B

|m(b)− p(b)|
m(b)

III. A BASIC SET OF PARAMETERS

In this section, we provide some further insights regarding
our basic set of parameter values that we proposed in the
introduction.

We set the dispatch width to 4. This value applies to all
microarchitectures that were considered in the DiffTune paper,
and it corresponds to the decoding limits that are documented
in Intel’s and AMD’s manuals [5], [10]; note that with the
methodology that is used to measure the throughput of the
BHive benchmarks [7], the benchmarks are executed in a way
in which they are not able to use the µop cache, but have to
go through the decode units [4].

We set the reorder buffer size to 100. Renda et al. [12]
showed that all values above 70 lead to the same average error
on the BHive suite.

For the instruction-specific parameters, we set the latency
and the number of µops to 1, and all other parameters to 0.
These values typically correspond to a best-case scenario (with
a few exceptions due to, e.g., zero-latency moves).

One reason for picking values that correspond to a best-case
scenario is that the average error, as defined in Section II, can
never be higher than 100% for predictions that are smaller than
the measurements, but it can be arbitrarily high for predictions
that are too large.

Another reason is that even though the actual values for
the parameters might be higher, modern processors implement
many optimization that aim to bring the actual performance
close to the best case, and thus, smaller values can lead to
more accurate predictions than the actual values. An example
of such an optimization is “micro fusion”. Here, two µops of
the same instruction are fused together by the decoders and
treated as on µop in the early stages of the pipeline; they are
then split again into two µops in the later stages of the pipeline.
llvm-mca does not model micro fusion. Therefore, using a µop
count that is lower than the actual count can result in a better
throughput prediction.

IV. A SIMPLE LEARNING ALGORITHM

In this section, we describe a fairly straightforward algo-
rithm for learning the parameters of llvm-mca. The corre-
sponding pseudo code is shown in Algorithm 1.

We first initialize all parameters to the values described in
Section III (line 1 to line 7). Then, we iterate over all the
instructions that occur in the BHive benchmark suite. For each
instruction, we select 1, 000 basic blocks from the training
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Algorithm 1: Simple learning algorithm

1 par[DispatchWidth]← 4
2 par[ReorderBufferSize]← 100
3 foreach instr in instructions do
4 par[instr][Latency]← 1
5 par[instr][µops]← 1
6 foreach p in remainingParameters do
7 par[instr][p]← 0

8 foreach instr in instructions do
9 blocks← 1, 000 BHive blocks that contain instr

10 bestError← getMAPE(blocks, par)
11 foreach p in parameters do
12 while par[instr][p] < 10 do
13 par[instr][p]++
14 e← getMAPE(blocks, par)
15 if e < bestError then
16 bestError← e

17 else
18 par[instr][p]--
19 break

20 return par

set that contain this instruction; if there are fewer than 1, 000
such blocks, we select all of them. We then iterate over all
the instruction-specific parameters in the order in which they
are shown in Table I. We keep increasing the value of each
parameter until it reaches 10, or until the average error of the
throughput predictions for the 1, 000 basic blocks becomes
worse than with the previous value, whichever happens first.
Finally, we return the current set of parameter values.

Note that our approach attempts to learn all 23 PortMap
parameters (see Table I). DiffTune sets the 13 PortMap pa-
rameters that correspond to port groups to zero; port groups
are used to model the execution of instructions that have µops
that can use more than one port. According to Renda et al.,
DiffTune sets these parameters to zero because “the simulation
of port group parameters in the PortMap does not correspond
to standard definitions of port groups”, though it is not clear
why that would be relevant.

V. EVALUATION

A. Methodology

We use the same methodology that was used in the DiffTune
paper, which we summarize in the following.

We use the BHive dataset, which was proposed by Chen et
al. [7]. This dataset contains 287, 639 basic blocks that were
extracted from applications from different domains, such as
numerical computation, databases, compilers, machine learn-
ing, and cryptography. We use the reference measurements that
are published on GitHub1. 80% of the blocks of the dataset

1https://github.com/ithemal/bhive/tree/5878a18/benchmark/throughput

are used as a training set, 10% as a validation set, and the
remaining 10% as the test set; we use the same training,
validation and test sets as in the DiffTune paper.

The results are evaluated according to the following metrics:

• The mean absolute percentage error (MAPE) of the
predictions relative to the measurements, as defined in
Section II.

• Kendall’s tau coefficient [11], which is a measure for how
well the pairwise ordering is preserved.

B. Results

Table II shows the average error and Kendall’s tau coef-
ficient on the test set for the same four microarchitectures
that were considered in the DiffTune paper. The rows labeled
with “Simple” contain the results for the simple parameter set
proposed in Section III; note that we use exactly the same
parameter values here for all four microarchitectures. The
results for the learning approach described in Section IV can
be found in the rows labeled with “Learned”. The results for
DiffTune were obtained with the learned parameters provided
at2. Note that the values are slightly different than the values
reported in the DiffTune paper. This is because the values in
the DiffTune paper are averages over three different runs of
DiffTune; unfortunately, according to the authors, the learned
parameters of the other two runs have been overwritten and
are thus not available any more2. We also provide data for the
default parameters of llvm-mca (version 8.0.1).

Table III shows the average error on the Haswell microarchi-
tecture of the different tools for the applications, from which
the BHive blocks were extracted, and for different categories
of basic blocks, such as basic blocks that contain mostly vector
instructions (Vec), or basic blocks that contain mostly loads
(Ld) or stores (St).

1) Comparison with DiffTune: Both of our approaches
perform better than DiffTune on all four microarchitectures.
For the simple parameter set from Section III, the average
error is between 2% and 15% lower. The learning technique
from Section IV leads to an average error that is between 29%
and 47% lower.

Kendall’s tau coefficient for the simple parameter set is
slightly better than DiffTune’s; for the learning approach, it
outperforms DiffTune significantly.

Table III shows that both of our approaches perform better
than DiffTune for all source applications and for all benchmark
categories.

2) Comparison with llvm-mca: Our two approaches lead
to a lower average error than llvm-mca’s default parameters
on all four microarchitectures; DiffTune’s parameters lead to
a lower error on three of the microarchitectures.

Kendall’s tau coefficient of the learning approach described
in Section IV is higher than with the default parameters,
whereas it is lower for the simple parameter set and for
DiffTune.

2https://github.com/ithemal/DiffTune/issues/1
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However, we think that the comparison of llvm-mca’s
default parameters with DiffTune’s and with our parameters
should be treated with some caution for the following reasons.
• As pointed out in [4], the reference measurements for

the BHive benchmarks contain a significant number of
measurement errors. It is therefore possible that the lower
error of DiffTune and of our learning approach is partly
due to overfitting to these measurement errors.

• As also pointed out in [4], the measurement methodology
that was used to obtain the reference measurements is
not based on exactly the same throughput definition that
llvm-mca uses, and there are a number of benchmarks
that have an input-dependent throughput. It is therefore
possible that with a different measurement methodology,
the accuracy of llvm-mca relative to these measurements
would be higher.

• It is not clear whether the results generalize to datasets
other than the BHive benchmarks. Certain benchmark
types appear to be overrepresented in the BHive suite; for
example, there are 12, 919 benchmarks that only consist
of a single cmp instruction (with different registers, im-
mediates, and memory offsets). On the other hand, bench-
marks with vector instructions, which are common in
performance-critical code, appear to be underrepresented.

• The goal of llvm-mca is not only to predict the
throughput, but to also provide other insights into how the
code is executed, such as which execution ports are used
by which instructions. On the other hand, the learning
approaches only focus on predicting the throughput
accurately; the learned parameters may not correspond
to the actual parameters used by the hardware. For
benchmarks which are bottlenecked by some component
that is not modeled by llvm-mca, such as the instruction
decoders, the learning approaches might lead to a higher
parameter value for some other parameter in such cases
that might lead to a better timing prediction, but doesn’t
provide any actual insight into how the code is executed.

C. Execution Time

The learning algorithm from Section IV requires around 14
hours per microarchitecture on an Intel Core i5-12600K.

VI. CONCLUSIONS AND FUTURE WORK

Neural network-based machine learning techniques are cur-
rently a hot research topic. They have proven to be suitable for
many different applications. However, it is not clear whether
learning llvm-mca parameters is actually one of them — our
results show that state-of-the-art neural network-based tech-
niques are not able to beat a trivial set of parameters values,
and are outperformed significantly by a simple, straightforward
learning algorithm.

It is not known what the optimal solution to the problem
of finding llvm-mca parameter values is; an average error
close to 0 is probably not achievable just by modifying
the instruction-specific parameter values, as there are other
performance-relevant aspects of the microarchitecture that

TABLE II: Comparison of different approaches

µArch Predictor MAPE Kendall

Ivy Bridge

llvm-mca-8 32.05% 0.7872
DiffTune 25.92% 0.7244
Simple 24.01% 0.7366
Learned 14.35% 0.8260

Haswell

llvm-mca-8 24.77% 0.7808
DiffTune 25.22% 0.7333
Simple 22.51% 0.7470
Learned 13.45% 0.8331

Skylake

llvm-mca-8 26.51% 0.7721
DiffTune 24.73% 0.7367
Simple 21.07% 0.7477
Learned 13.34% 0.8359

Zen 2

llvm-mca-8 34.90% 0.7940
DiffTune 25.65% 0.6812
Simple 25.06% 0.7197
Learned 18.21% 0.8196

TABLE III: Average error on Haswell for different applications
and categories

Block type # Blocks llvm-mca DiffTune Simple Learned

OpenBLAS 1478 28.77% 38.01% 28.47% 15.44%
Redis 839 41.16% 26.77% 23.93% 14.79%
SQLite 764 32.83% 26.29% 25.24% 16.09%
GZip 182 40.63% 32.97% 25.78% 17.80%
TensorFlow 6399 33.47% 24.12% 23.36% 14.89%
Clang/LLVM 18781 22.00% 24.55% 21.97% 12.97%
Eigen 387 44.35% 28.03% 25.16% 17.19%
Embree 1067 34.07% 27.53% 22.54% 13.41%
FFmpeg 1516 30.91% 26.92% 23.18% 14.81%
OpenSSL 582 36.99% 27.07% 23.83% 15.09%

Scalar 7952 17.24% 23.22% 18.14% 12.44%
Vec 104 35.28% 63.14% 44.15% 21.36%
Scalar/Vec 614 53.56% 44.15% 43.72% 20.58%
Ld 10850 27.22% 28.74% 27.12% 14.44%
St 4490 24.70% 11.98% 9.13% 6.74%
Ld/St 4754 27.91% 29.77% 28.74% 18.13%

would need to be modeled in order to achieve such an
accuracy. Due to the simplicity of our learning algorithm, it
is unlikely that it is able to find a solution that is close to
the actual optimum. Thus, there is likely a lot of potential
for further improvements that could be explored in future
work; our results can serve as a baseline for evaluating such
future work. Whether neural network-based techniques can be
made competitive, or whether other techniques provide a more
promising way forward, will remain to be seen.
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An implementation of our learning algorithm, as well as the
parameter sets that we used for the evaluation, are available
at https://github.com/andreas-abel/DiffTune-Revisited.
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