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Abstract

Graph is an effective data structure to characterize ubiquitous connections as well
as evolving behaviors that emerge from the inter-wined system. Limited by the
stereotype of node-to-node connections, learning node representations is often
confined in a graph diffusion process where local information has been exces-
sively aggregated as the random walk of graph neural networks (GNN) explores
far-reaching neighborhoods layer-by-layer. In this regard, tremendous efforts have
been made to alleviate feature over-smoothing issues such that current backbones
can lend themselves in a deep network architecture. However, not as popular as
designing a new GNN, less attention has been paid to underlying topology by
graph re-wiring, which is not only mitigating flaws of the random walk but also
the over-smoothing risk by reducing unnecessary diffusion in deep layers. In-
spired by the human cognition of non-locality, we propose a non-local information
exchange mechanism by establishing an express connection to the distant node,
instead of propagating information along the (possibly very long) original pathway
node-after-node. Since the seek of express connections throughout the graph could
be computationally expensive in real-world applications, we propose a re-wiring
framework (coined express messenger wrapper) to progressively incorporate ex-
press links in a non-local manner, which allows us to capture multi-scale feature
without using a deep model, thus free of the over-smoothing challenge. We have
integrated our express messenger wrapper with existing GNN backbones (either
using graph convolution or tokenized transformer) and achieved a new record on
the Roman-empire dataset along with SOTA performance on both homophilous
and heterophilous datasets.

1 Introduction

Despite various deep models for graph learning, current GNNs are de facto closely bonded under the
overarching umbrella of a topological message-passing paradigm [4, 6]. Given the observed graph
feature representations, the driving factor of GNN is to learn intrinsic feature representations by
alternatively (1) seeking an optimal feature subspace and (2) aggregating the information within a
local neighborhood, where the learned feature representations are supposed to have a better alignment
with the existing labels (supervised manner [18]) or exhibit a more structured behavior (unsupervised
manner [12]). Since the node-to-node information exchange fundamentally underlines the graph
topology, the wiring pattern presented in the graph becomes a pivotal factor steering the heterophily
of graph leading to over-smoothing issues [20].

In the cliché of GNN, there is a converging consensus that the message-passing mechanism allows
us to capture global graph feature representations, in a layer-by-layer fashion, by progressively
aggregating the feature representations from the nearby nodes to the distant nodes. As demonstrated
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Figure 1: Non-local information exchange mechanism (right), a reminiscent of non-local mean technique for
image processing (left), is able to capture global information by express connections (dashed links), which
reduces the over-smoothing risk in GNN. Both ideas integrate information beyond either a spatial or topological
neighbor, in order to preserve distinctive feature representations.

in the top-right panel of Figure 1, local features (centered at node #0 and #1) have to be aggregated
multiple times until the message-passing process reaches node #3. Limited by the pairwise links
in the graph1, however, the cost of such node-after-node message passing is over-smoothed feature
representations due to an excessive number of local aggregations [1, 17]. In this context, the
combination of local and global information by conventional node-after-node message-passing
mechanism often yields over-smoothed feature representations which are mixed with all information
spanning the entire graph pathway.

Inspired by the non-locality of human cognition [10], which is effective in computer vision filed
by non-local means technique [3], we introduce a non-local exchanging (NLE) mechanism to the
field of GNN by re-wiring the original graph with express connections for distant node pairs. In
Figure 1 bottom-right, the selected express connection not only allows us to effectively capture global
information but also offers a new window to maintain the distinctive power of the underlying feature
representations. It is worth noting that our idea of express connection is simple yet effective. The
conjecture is that the graph re-wiring step enhances the expressibility of topology, thus enabling GNN
to learn informative global features prior to the incoming features undergoing significant smoothing
by conventional message-passing routine. To that end, deep network architecture is no longer the
only option to capture global feature representations, thus reducing the over-smoothing risk in GNN.
In this context, we further devise a hierarchical re-wiring wrapper, called express messenger (ExM),
that naturally fits the layer-by-layer network architecture of GNN models.

Our main contributions are summarized below:

• We propose a non-local information exchange mechanism to efficiently integrate feature
representations from non-local neighborhoods by a collection of express connections.

• Current works focus on the optimization of feature representation with a deep GNN model
by overcoming the over-smoothing issue. We address this challenge in a novel perspective
of expressibility, i.e., the insight of our NLE mechanism is to directly combine local and
global information through express links before the over-smoothed features undermine the
discriminative power of feature representation.

• We devise our ExM wrapper as a pre-processing step, which generates new topologies in ad-
vance and facilitates various GNN models to retain SOTA performance on both homophilous
and heterophilous graph data.

1High-order network models such as hyper-graph technique use hyperlink to model relationship among
multiple nodes. However, most graph applications are conducted on 1-simplex graphs [2].
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2 Methods

As explained in Figure 1, our core idea is to capitalize on a collection of express connections for
capturing multi-scale graph feature representations, thus being free of over-smoothed features due to
the conventional diffusion-based message-passing mechanism.

Supposing the non-local search is performed throughout the entire graph, the NLE mechanism yields
a complementary graph topology hop(A, k) in addition to the original graph A, where k is non-local
searching radius. Since most intelligent systems process information in a hierarchical manner [8],
we present a progressive express messenger (ExM) that gradually increases the hopping steps k and
includes distant (but topologically connected) nodes vj for the underlying node vi (i ̸= j) by a node
selection function (1: selected for express connection; 0: otherwise):

hop(A, k)ij =

{
1 for j ∈ N k

i −N k−1
i

0 for j /∈ N k
i −N k−1

i

(1)

where the hopping steps k acts as the the search radius from vi to vj on the graph, and N k
i is the

node set of k-hop neighborhoods around i-th node of graph. In other words, hop(A, k)i rewires i-th
node from its k-hop neighborhood to the boundary non-local nodes. Thus, we can obtain the new
topology as this binary adjacency matrix.

ExM lets k in equation 1 progressively enlarge from Kstart to Kend along with the model depth.
Meanwhile, it replaces the original adjacency matrix A to hop(A, k) in k-th layer of GNN. Conse-
quently, non-local information of the graph is exchanged with those nodes that are more distant when
the model is deeper. That is based on the idea of conventional graph convolution the deeper layer of
which gains more diffused features.

3 Experiments

We evaluate our proposed ExM wrapper through two types of experiments: (1) Benchmark graph
rewiring performance by comparing to prior rewiring methods. (2) Benchmark graph representation
learning performance on node classification using our ExM wrapper.

3.1 Experimental setting

Dataset. Experiments are carried out on a set of nine publicly accessible graph datasets, encompassing
three homophilous graphs (Cora, PubMed, and Citeseer) and six heterophilous graphs (Texas,
Wisconsin, Chameleon, Squirrel, Roman-empire (Roman.), and Amazon-ratings (Amazon.)). The
initial seven graphs are widely recognized for evaluating graph representation learning techniques,
while the last two were introduced by [14]. Our split settings are consistent with those outlined by
[13, 14]. Further details can be found in Appendix.

Experiment setup. We conduct experiments using six baseline GNNs to evaluate our ExM framework:
GAT [18], GT [16], SAGE [9], NAG [5], Jacobi [19], and FSGNN [11]. Among these, GAT, GT,
and SAGE implementations are provided by [14], while the rest are implemented by their respective
studies. We set the hyperparameters through the best model they provided. Graph re-wiring baselines
are DropEdge [15], GDC [7], and SDRF [17]. Our ExM wrapper is employed without altering the
model architecture to ensure a fair comparison. The performance is demonstrated using the optimal
combination of our hyperparameters.

3.2 Benchmark graph re-wiring techniques

Since transformer models have started to prevail in the field of GNN, we select the latest graph
transformer model NAG as the reference to benchmark the effect of various graph re-wiring techniques.
Table 1 presents the results of graph rewiring performance across nine node classification tasks.
Leveraging non-local information has led to improvements in node classification across various graph
types. For instance, on homophilous graphs such as Cora (h=0.81) and Pubmed (h=0.80), as well as
on heterophilous graphs like Roman-empire (h=0.05), the baseline performance has been improved.
Among five heterophilous graphs (h ≤ 0.24), four are improved significantly (denoted by ‘*’). With
the exception of Squirrel and Citeseer, where our method achieved the second-best performance, it
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Table 1: Benchmark results for graph rewiring performance. NAG is the baseline here. Red denotes the first
rank, followed by blue (2nd). ‘–’ means the model has no result reported.

Roman. Texas Wisconsin Squirrel Chameleon Amazon. Citeseer Pubmed Cora
h=0.05 h=0.11 h=0.20 h=0.22 h=0.24 h=0.38 h=0.74 h=0.80 h=0.81

Baseline 73.57±1.30 70.54±3.07 67.45±1.80 34.85±0.85 46.05±1.10 47.08±0.60 71.32±0.65 87.65±0.24 86.08±0.69
DropEdge 75.97±0.83 66.48±3.24 61.18±2.12 34.49±1.13 47.23±1.09 45.34±0.50 72.40±0.46 87.33±0.46 69.08±0.67
GDC 75.62±0.26 72.43±1.62 70.19±3.37 33.84±0.93 45.48±1.09 46.20±0.55 71.76±0.58 87.80±0.28 85.67±0.75
SDRF – 70.35±0.60 61.55±0.86 37.67±0.23 44.46±0.17 – 72.58±0.20 79.10±0.11 82.76±0.23
ExM 77.00∗

±0.59 73.51∗
±2.02 72.75∗

±2.05 37.42∗
±1.19 58.60∗

±1.12 49.67±0.48 72.43±0.76 88.64±0.38 86.68±0.55

Table 2: Performance by using ExM to other SOTA methods. The average improvements by ExM across datasets
and baselines are reported in the last column and row, respectively.

Roman. Texas Wisconsin Squirrel Chameleon Citeseer Pubmed Avg. improveh=0.05 h=0.11 h=0.20 h=0.22 h=0.24 h=0.74 h=0.80
GAT 80.92±0.68 58.92±5.81 60.39±3.67 62.00±1.29 69.85±1.72 74.03±1.23 87.86±0.42 7.80±6.82w/ ExM 86.06±0.35 75.14±7.73 72.35±7.36 69.54±1.30 73.18±1.60 74.25±1.27 88.04±0.42

GT 85.70±0.99 62.43±7.80 57.65±4.91 58.09±1.50 68.99±2.55 74.68±1.46 87.51±0.52 2.95±3.29w/ ExM 89.20±0.63 68.11±10.1 67.06±8.71 58.09±1.50 70.92±1.44 74.83±1.22 87.51±0.52

SAGE 86.96±0.56 80.27±5.70 81.37±5.49 44.53±1.08 62.92±1.70 75.19±1.51 88.59±0.38 1.55±1.42w/ ExM 90.34±0.42 82.97±6.38 84.71±2.23 45.49±1.17 62.92±1.70 75.51±1.46 88.75±0.38

NAG 73.57±1.30 70.54±3.07 67.45±1.80 34.85±0.85 46.05±1.10 71.32±0.65 87.65±0.24 4.13±3.69w/ ExM 77.00±0.59 73.51±2.02 72.75±2.05 37.42±1.19 58.60±1.12 72.43±0.68 88.64±0.38

Jacobi 71.25±0.45 76.49±6.74 76.67±5.00 50.21±2.39 67.94±1.13 76.00±1.44 88.95±0.46 1.73±1.11w/ ExM 72.75±0.64 79.46±3.86 79.22±4.49 53.07±2.54 69.89±1.50 76.08±1.54 89.14±0.42

FSGNN 67.93±0.53 85.95±5.77 85.88±4.94 73.55±2.16 78.16±1.11 76.52±1.76 89.63±0.40 1.04±1.53w/ ExM 72.61±0.57 86.49±4.52 87.06±3.84 73.85±2.08 78.22±0.81 76.95±1.25 89.72±0.49

Avg. improve 3.61±1.16 5.18±5.16 5.62±3.85 4.04±6.13 3.30±4.29 0.39±0.34 0.27±0.33 3.20±4.25

secured the top-1 position in all other cases. In contrast, previous graph re-wiring approaches faced
challenges with homophilous graphs and exhibited lower accuracy on graphs with h > 0.24.

3.3 Evaluation on graph feature representation learning

Table 2 illustrates the contrast between the baseline GNN model and baseline+ExM wrapper, where
our ExM wrapper facilitates most baseline methods retaining SOTA performance. It’s worth noting
that in the majority of cases, the ExM wrapper outperforms the baseline. Specifically, the ExM wrapper
allows us to successfully secure a top-3 ranking across seven different graph datasets characterized
by diverse homophily ratios h. The ExM wrapper is seamlessly integrated into various baselines,
ranging from GAT to the recent FSGNN. Meanwhile, it’s worth noting that SAGE+ExM achieves a
new performance record on the Roman-empire dataset, as reported in the current leaderboard by [14].

4 Conclusion

In this work, we introduce the non-locality of human cognition to GNN through a novel perspective
of topological re-wiring. We put the spotlight on the efficiency of capturing global information by a
deep GNN model to the extent that can be effectively through a set of express connections between
two distant but topologically connected nodes in the graph. By doing so, the new re-wired graph
holds non-local connections and allows GNN to learn global features while reducing the chance of
over-smoothing features in the conventional node-after-node graph diffusion process. Following this
notion, we present an express messenger wrapper, serving as an agnostic pre-processing, to re-wire
the graph topology via non-local information exchange, which is reminiscent of non-local mean
technique prevailing in image processing area more than a decade ago. In practice, the new graph
topology by our ExM can enhance the global feature of representation learning and instantly boost the
node classification performance for current GNN models. Experiments show that our ExM wrapper
can outperform previous graph re-wiring methods and help various GNN backbones to achieve SOTA
performance on nine homophilous/heterophilous graph datasets, indicating the great potential in other
graph learning applications such as brain connectomes and drug medicine data.
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A Appendix

A.1 Dataset details

In Table 3, we show the profile of all graph datasets used in this paper.

Table 3: Graph data profiles.

h Node number Edge number Class number
Cora 0.81 2,708 10,556 7
Pubmed 0.80 19,717 88,648 3
Citeseer 0.74 3,327 9,104 6
Amazon. 0.38 24,492 93,050 5
Chameleon 0.24 2,277 31,421 5
Squirrel 0.22 5,201 198,493 5
Wisconsin 0.20 251 515 5
Texas 0.11 183 325 5
Roman. 0.05 22,662 32,927 18
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