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Abstract

Neural operators (NOs) have become popular for learning partial differential equa-1

tion (PDE) operators. As a mapping between infinite-dimensional function spaces,2

each layer of NO contains a kernel operator and a linear transform, followed by3

nonlinear activation. NO can accurately simulate the operator and conduct super-4

resolution, i.e., train and test on grids with different resolutions. Despite its success,5

NO’s design of kernel operator, choice of grids, the capability of generalization6

and super-resolution, and applicability to general problems on irregular domains7

are poorly understood. To this end, we systematically analyze NOs from a unified8

perspective, considering the orthogonal bases in their kernel operators. This analy-9

sis facilitates a better understanding and enhancement of NOs in the following: (1)10

Generalization bounds of NOs, (2) Construction of NOs on arbitrary domains, (3)11

Enhancement of NOs’ performance by designing proper orthogonal bases that align12

with the operator and domain, (4) Improvement of NOs’ through the allocation13

of suitable grids, and (5) Investigation of super-resolution error. Our theory has14

multiple implications in practice: choosing the orthogonal basis and grid points to15

accelerate training, improving the generalization and super-resolution capabilities,16

and adapting NO to irregular domains. Corresponding experiments are conducted17

to verify our theory. Our paper provides a new perspective for studying NOs.18

1 Introduction19

Partial differential equation (PDE) operators are widespread in science and engineering. However,20

traditional numerical methods are known to be slow and ill-suited for high-dimensional problems.21

As a result, there has been a surge in the popularity of utilizing deep learning techniques for22

operator learning. Neural operators (NOs) [20, 19, 8, 21] are among the most important models.23

As a mapping between infinite-dimensional function spaces, each layer of NO contains a kernel24

operator and a linear transform to convert the input function, followed by nonlinear activation,25

conducted numerically based on the discretization of the input function on a grid. With appropriate26

kernels, e.g., shift-invariant kernels in Fourier NO (FNO) [20], facilitates the construction of complex27

operators. Stacking multiple NO layers further enhances the operator’s complexity and demonstrates28

its universal approximation capabilities [15]. Moreover, empirical evidence reveals that NO exhibits29

fast convergence and excellent generalization, making it a practical choice. In addition to its operator30

fitting and generalization abilities, NO can also perform super-resolution tasks. This involves training31

the model on a low-resolution grid and accurately predicting outcomes on a high-resolution grid. This32

capability expands the utility of NO beyond precise operator fitting and generalization, showcasing33

its versatility and accuracy in super-resolution applications.34

Insufficient understanding surrounds the design of kernel operators, choice of grid points, and35

NOs’ capabilities, despite their notable features in generalization and super-resolution tasks. For36
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instance, while the Fourier basis-based FNO has been established, alternative approaches employing37

polynomial basis [21] and wavelet basis [8, 28] have been proposed to enhance NO’s performance in38

handling operators related to non-periodic functions and multiscale functions, respectively. However,39

the underlying reasons for their effectiveness through basis changes remain elusive. Besides, the40

effectiveness of the super-resolution effect in NO is currently based on empirical observations, and41

the factors influencing its efficacy remain unknown. Furthermore, NO is commonly trained on a42

predefined uniform grid with a predetermined sparsity level. The impact of utilizing grids with43

varying sparsity levels or randomly sampled grid points on NO’s performance remains unexplored.44

On the other hand, the applicability of NOs to general problems on irregular domains poses a45

significant challenge, mainly because the kernel operators utilized in popular models [20, 21, 28]46

are typically defined on regular bounded domains. Extending NO, based on orthogonal bases, to47

encompass general irregular domains remains a formidable task. The difficulty lies in effectively48

incorporating the physical information of the domain into the design of NO’s basis and grid.49

In this paper, we provide a novel perspective for studying NOs by examining the role of orthogonal50

bases within their kernel operators. The kernel operators in NOs are constructed such that their51

eigenfunctions are predefined orthogonal bases, and eigenvalues are trainable parameters. This unified52

view enables the analysis of NOs in various aspects. Firstly, we establish generalization bounds53

for NOs, considering them mappings between infinite-dimensional function spaces. Moreover, by54

carefully designing orthogonal bases for the input domain and functions, NOs can be constructed55

on irregular domains, improving generalization. The impact of grid points on NO convergence and56

generalization is also investigated. Additionally, we analyze factors influencing the super-resolution57

error in NOs. Our theory carries practical implications, such as selecting appropriate orthogonal58

bases and grid points to accelerate convergence, enhance generalization and super-resolution abilities,59

and adapt NOs to irregular domains. Extensive experiments are conducted to validate our theory,60

which sheds new light on understanding NOs and improving their properties in practical applications.61

2 Preliminary62

2.1 Notation & Problem Definition63

Notation. We use ∥·∥2 to denote vector 2-norm or matrix spectral norm, while ∥·∥l2 and ∥·∥L2 are the64

norms in l2 andL2 spaces, respectively. We use |·| to denote the cardinality of a set. For a metric space65

(S, ρ) and T ⊂ S we say that T̂ ⊂ S is an ϵ-cover of T , if ∀t ∈ T , there ∃t̂ ∈ T̂ such that ρ(t, t̂) ≤ ϵ.66

The ϵ-covering number of T is defined as [13, 29]: N (ϵ, T, ρ) = min{|T̂ | : T̂ is an ϵ− cover of T}.67

Problem Definition. We consider the operator learning problem in [20] on the (possibly irregular68

or unbounded) domain Ω ⊂ Rd, with the input function space A = A(Ω) and output function69

space H = H(Ω), and the operator to be learned G : A → H. Adding a project can extend the70

model to different input and output domains. We are given training data {fj ,G(fj)}Ntrain
j=1 , where71

fj ∼ µ are i.i.d. samples from an unknown distribution µ over the functions supported on A. We72

aim to approximate G by a neural operator (NO) Gθ, which requires discretization. Thus, the input73

functions are represented by their pointwise values on a discrete grid {x⃗, fj(x⃗)} = {xi, fj(xi)}
Ngrid
i=1 .74

Labels are also discretized on the same grid {x⃗,G(fj)(x⃗)} = {xi,G(fj)(xi)}
Ngrid
i=1 , and train Gθ75

via minimizing Ltrain(θ) =
1

Ntrain

∑Ntrain
j=1

1
Ngrid

∥G(fj)(x⃗)− Gθ(fj)(x⃗)∥22 . The corresponding (regular)76

test loss on the same grid x⃗ is Ltest-reg(θ) = Ef∼µ
1

Ngrid
∥G(f)(x⃗)− Gθ(f)(x⃗)∥22 . We also consider77

the super-resolution task, i.e., the model can make predictions on all x ∈ Ω, which is approximated by78

taking another different and usually finer grid x⃗test as input and yields the output function pointwise79

values on the new grid. Note that the characteristic of NO is to take in an arbitrary grid and output the80

values of the target function on this grid, and the grid size can be arbitrary [19, 20]. This reflects that81

NO is a mapping between infinite-dimensional spaces. The super-resolution test loss on a different82

grid x⃗test is Ltest-sr(θ) = Ef∼µ ∥G(f)− Gθ(f)∥2L2(Ω) ≈ Ef∼µ
1

Ngrid,test
∥G(f)(x⃗test)− Gθ(f)(x⃗test)∥22 .83

2.2 Understanding Neural Operator84

Given an input function f : Ω ⊂ Rd → Rh where h is the hidden/output dim, and the complete85

orthogonal basis set {ϕi}∞i=0 on L2(Ω;R) arranged with increasing frequencies/degrees/orders, each86
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layer of NOs contains three operations: (1) the kernel transform, (2) the linear transform, and (3) the87

nonlinear activation. The overall model structure can be summarized as follows.88

Overall Model. Denote the input function as û0(x), then the recursive formulation of NO is89

ûl(x) = σ (ul(x)) , l ≥ 1; û0(x) = û0(x),

ul+1(x) =

∫
K(Bl,x,y)ûl(y)dy +W lûl(x),

v(x) = uL(x),

(1)

where v(x) is the output, l is the layer index, and L is the total number of layers. û and u are the90

post-activation and pre-activation input functions, respectively.91

Kernel Transform κ. We set up trainable kernels such that the basis set with Nmodes lowest92

frequencies form the eigenfunctions of the kernels, i.e., K(B;x,y) =
∑Nmodes

i=0 Biϕi(x)ϕi(y) where93

Bi ∈ Rh×h and B ∈ RNmodes×h×h are trainable, and h is the hidden dim. Thanks to the low-94

rank property of the kernel, i.e., the dimension of its kernel spectra are only Nmodes, κ(f)(x) =95 ∫
K(B;x,y)f(y)dy =

∑Nmodes
i=0 Biciϕi(x) ∈ Rh, where ci = ⟨f, ϕi⟩ ∈ Rh is the dimension-wise96

inner product between the input f and the basis ϕi. This form is exactly the same as the kernel in97

FNO if the basis ϕi is Fourier series. For implementation, we usually (1) project the input function98

onto the basis with Nmodes lowest frequencies to get {ci}Nmodes
i=1 ; (2) linear transform the coefficients99

ci with the matrices Bi; (3) finally project from the coefficient space back to the function space by100

multiplying ϕi(x) to each Bici.101

Linear Transform ω. The linear transform ω is a straightforward operation ω[f ](x) =102

W f(x),W ∈ Rh×h, f(x) ∈ Rh. Unlike the kernel operator, the linear transform can be con-103

ducted in the original function space without projection. The final output is obtained by combining104

the results from the kernel transform and the linear transform: T [f ](x) = κ(f)(x) + ω[f ](x).105

Finally, the transformer function is passed through a nonlinear activation, i.e., σ (T [f ](x)).106

Examples of Bases. In FNO [20], the orthogonal basis used is the Fourier basis, specifically over a107

bounded regular domain. However, alternative orthogonal bases are employed in other variations108

of FNO, such as those discussed in [8, 21], including polynomial and wavelet bases. Regarding the109

implementation of the most popular FNO [20]: (1) is the fast Fourier transform (FFT); (2) is its110

coefficient transform; (3) is the inverse FFT.111

Numerical Integration. In practice, input functions are discretized on a grid. Transformations and112

activations can be applied pointwise, but kernel transforms relying on the inner product with bases113

require numerical integration on the grid. However, the linear transform does not need numerical114

integration and can be implemented more easily in the original function space.115

Efficiency of Numerical Integration. In FNO, the Fast Fourier Transform (FFT) is used to compute116

integrals, with a time complexity of O(Ngrid logNgrid). However, in practice, only the first Nmodes117

integrations between the basis and input need to be calculated. This reduces the complexity toO(Ngrid)118

since Nmodes ≪ Ngrid. This approach, adopted in Geo-FNO [19], ensures that the integration step119

does not become a bottleneck in the NO model’s time complexity. As a result, NO models are120

generally faster than Transformers.121

3 Theory122

We have examined the traditional function perspective of NOs. However, machine learning often123

overlooks the complexity of mappings between infinite-dimensional functions. To address this, we124

propose studying NOs in the coefficient space. By representing NOs as mappings between infinite125

sequences of real numbers, derived from the expansion of input functions on an orthogonal basis, we126

can leverage the extensive literature on mappings between finite-dimensional vectors and extend it to127

our context. This enables a comprehensive analysis of NOs from a new perspective.128

Given a complete orthogonal basis {ϕi}∞i=0, the input function f and the output function G(f) can be129

expanded as f =
∑∞

i=0 ciϕi,G(f) =
∑∞

i=0 diϕi where ci = ⟨f, ϕi⟩ and di = ⟨G(f), ϕi⟩. For the130

infinite sums to converge, the infinite sequences {ci}, {di} ∈ l2. So, the operator learning problem131

on G can be abstracted to a mapping between infinite sequences between numbers in the l2 space, i.e.,132
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NOs aim to learn the mapping {ci}∞i=0 7→ {di}∞i=0. Thus, we can define the input space from the133

viewpoint of coefficients B := {(⟨f, ϕi⟩)∞i=1, f ∈ A}. where A is the space of input functions.134

We reinterpreted the operations in NOs from the sequences mapping perspective in l2.135

Kernel Transform. It maps f =
∑∞

i=0 ciϕi to κ(f) =
∫
K(B;x, y)f(y)dy =

∑Nmodes
i=0 Biciϕi,136

which can be abstracted to: c≤Nmodes 7→ B≤Nmodesc≤Nmodes , c>Nmodes 7→ 0, due to the kernel’s local137

rankness and truncation at the Nmodes-lowest frequency.138

Linear Transform. For an input function f(x), the linear transform maps f(x) to W f(x). Also,139

considering the channel-wise operation, from the sequence space point of view, it is ci 7→ W ci.140

Compared to the previous kernel transform, the linear coefficient is the same for all elements in the141

sequence, but those are different and truncated in the previous kernel transform.142

Nonlinear Activation. The nonlinear activation σ is an abstract and fixed mapping between l2143

to itself, denoted Σ : l2 → l2, c 7→ Σc. In the original function space, the mapping is from the144

input function f(x) to σ(f)(x) where σ : C(Ω) → C(Ω). However, in the sequence space, the145

original ci is ci = ⟨f, ϕi⟩, and (Σc)i = ⟨σ(f), ϕi⟩. The ith entry of Σc may depend on all ci for146

every i since the activation is performed on the whole input function. For instance, for the input147

function f(x) = cos(kx) and the cosine basis, only ck = 0 while other entries equal zero. But148

σ(f)(x) = σ(cos(kx)) is a very complicated function even for simple σ like ReLU, Sigmoid, and149

Tanh activations, with the post-transformed coefficients (Σc)i ̸= 0 for all i. Although it is abstract,150

the Lipschitz continuity is kept:151

Proposition 3.1. If σ is L-Lipschitz, i.e., |σ(x) − σ(y)| ≤ L|x − y|, then the mapping Σ is also152

L-Lipschitz in the l2 space.153

Model Summary. Denote the input function as û0(x), and its expansion over the orthogonal basis to154

be {ĉ0,i}∞i=1, i.e., û0 =
∑
ĉ0,iϕi, then the recursive formulation of NO in the coefficient space is155

ĉl,i = Σcl,i, l ≥ 1;

cl+1,≤Nmodes = (Bl,≤Nmodes +W l)ĉl,≤Nmodes , cl+1,>Nmodes = W lĉl,>Nmodes ;

vi = cL,i;

(2)

where vi is the coefficient for the output function, i.e., the output function v(x) =
∑∞

i=1 viϕi(x),156

l is the layer index, and L is the total number of layers. For all the indices cl,i, the first l is for the157

layer, while the second i is for the index of the orthogonal basis. ĉ and c are the post-activation and158

pre-activation input coefficients, respectively.159

3.1 Generalization of NOs160

From the sequence perspective, we can derive the generalization bound of NOs via the robustness161

bound [29, 13]. The generalization gap of the model given in equation (2) can be bounded as follows.162

Theorem 3.1. (Generalization bound of NOs) For any δ ∈ (0, 1), with probability at least 1− δ over163

the choice of random samples S = {fj}Ntrain
j=1 ∼ µ, let the model parameters after optimization to be164

θS = {{Bl,i}Nmodes
i=1 ,W l}Ll=0, the following bound holds:165

|Ltest-reg(θS)− Ltrain(θS)| ≤
L∏

l=0

(
max

i
{∥Bl,i +W l∥2, ∥W l∥2}

)
γ +M

√
2K log 2 + 2 log(1/δ)

Ntrain
, (3)

for all γ > 0, where K = N (γ/2,B, ∥ · ∥l2) is the γ/2-covering number of the input space B under166

the norm ∥ · ∥l2 . M is the upper bound of the loss function.167

All proofs are presented in the Appendix. The generalization bounds, similar to vanilla neural nets,168

rely on the products of multilayer parameter norms [2, 29]. Theorem 3.1 offers a more detailed169

characterization of the generalization bounds compared to the findings in [14], and it guides selecting170

orthogonal bases in NO. We will delve into this topic further in Section 4.171

Extension to Discretized NOs. In Theorem 3.1, we primarily focus on continuous NOs. However,172

the presented theory can be extended to discrete NOs by substituting the infinite-dimensional l2173

space with a finite-dimensional vector space. In this context, inner products and orthogonal bases174

can still be defined. The modification lies in the term involving the covering number in the bound175

N (γ/2,B, ∥ · ∥l2). Here, we replace the l2 space and norm with the finite-dimensional Euclidean176

space corresponding to the discrete NO and its vector 2-norm.177
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3.2 Super-resolution Error178

Super-resolution involves training a model on a low-resolution grid and evaluating it on a high-179

resolution grid, with the expectation of comparable performance. While FNO [20] demonstrates180

excellent super-resolution capabilities, the underlying reasons remain poorly understood. This181

understanding is crucial for two reasons: (1) enabling training on sparse grids, leading to reduced182

training time, and (2) ensuring NOs can effectively handle inputs of the same function on different183

grids and produce satisfactory results.184

Before delving into the analysis, it is important to address the numerical integration errors that185

arise when training NOs on low-resolution grids compared to high-resolution grids during super-186

resolution. Intuitively, if the integration error is significant, there will be notable discrepancies in the187

integral values obtained from the sparse training grid and the high-resolution testing grid, resulting in188

inconsistent model performance between training and testing.189

As ul, ûl, and v represent variables in continuous NOs, we use Ul, Ûl, and V to represent variables190

in the discrete NOs using numerical integration rule
∫̂
g ≈

∑Ngrid
i=1 wig(xi) for any integrand g:191

Ûl(x) = σ (Ul(x)) , l ≥ 1; V = UL; U0 = f ;

Ul+1(x) =

∫̂
K(Bl,x,y)Ûl(y)dy +W lÛl(x) =

Ngrid∑
i=1

wiK(Bl,x,xi)Ûl(xi) +W lÛl(x),

where f is the input function, wi is the weight for numerical integral at the grid point xi. The error in192

numerical integration generally depends on two factors: the grid size (defined as egrid(Ngrid)) and the193

smoothness of the integrand function (defined as efunc(f)).194

For instance, on a uniform grid over the interval [a, b], the integral is approximated using the Darboux195

method
∫ b

a
f ≈ 1/Ngrid

∑Ngrid
i=1 f(xi) where xi = a+(i−1)(b−a)/Ngrid, which yields an integration196

error of O(f ′′(ξ)/Ngrid) where ξ ∈ (a, b), i.e., egrid(Ngrid) = 1/N2
grid, efunc(f) = f ′′(ξ). However,197

using the trapezoidal rule instead, the error can be reduced to O(f ′′(ξ)/N2
grid) without requiring198

additional computations. FNO [20] assumes that the input function is periodic, so the error of the199

uniform grid decreases toO(f ′′(ξ)/N2
grid). For the Gaussian quadrature on the interval [a, b], the error200

can be reduced to O
(
(Ngrid!)

4f2(Ngrid)(ξ)/[(2Ngrid)!]
3
)

for ξ ∈ (a, b) [10]. With the background, we201

can write the discretization error of NOs:202

Theorem 3.2. (Discretization error of NOs) Suppose the numerical integration’s error is203

egrid(Ngrid)efunc(f) where Ngrid is the grid size, and f is the integrand, then the discretization204

error of discrete NOs compared with continuous ones due to numerical integral is upper bounded by205

∥v − V ∥L2 ≤
L∑

l=0

L∏
k=l

max
i

{∥Bk,i +W k∥2, ∥W k∥2}

(
Nmodes∑
i=0

∥Bi,l∥2egrid(Ngrid)efunc

(
Ûl · ϕi

))
. (4)

The discretization error in discrete NOs relies on the norm of model parameters and the accuracy of206

the integration method employed for integrating intermediate output functions. Building upon this,207

we can derive the super-resolution error of discrete NOs. Firstly, we bound the prediction error of208

continuous NOs across all points in the domain Ω (i.e., the super-resolution error of continuous NOs).209

During the training phase, NOs are trained on a finite training grid, leading to this error. Subsequently,210

we bound the discrepancy between continuous and discrete NOs, corresponding to the discretization211

error stated in Theorem 3.2. These two terms are reflected in the following theorem.212

Theorem 3.3. (Super-resolution error of NOs) Assuming a uniform grid on a bounded regular213

domain with Ngrid points in the FNO [20] setting, under the same notation as Theorem 3.1. Then, the214

super-resolution error of the discrete NO model for the input function f with intermediate output Ûl215

(as detailed in equation (3.2)) can be bounded as follows:216

|Ltest-sr(θS)− Ltest-reg(θS)| ≤
L∑

l=0

L∏
k=l

max
i

{∥Bk,i +W k∥2, ∥W k∥2}

(
Nmodes∑
i=0

∥Bl,i∥2egrid(Ngrid)efunc

(
Ûl · ϕi

))

+

{
Nmodes∑
i=0

L−1∑
l=0

(
L−1∏

k=l+1

∥W k∥2

)
∥Bl,i⟨ûl, ϕi⟩∥2Lip(ϕi) +

L−1∏
l=0

∥W l∥2Lip(f)

}
/Ngrid.

(5)
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The first term pertains to the integral error in Theorem 3.2, while the second term relates to the217

interpolation and generalization ability of NOs across the entire domain. These factors significantly218

influence the super-resolution of NOs. Understanding and addressing these factors is crucial for219

enhancing super-resolution accuracy in NOs, which will be thoroughly discussed in Section 4.220

4 Implication and Application of the Theory221

In this subsection, we introduce the implications and applications of the proposed theory and222

correspond them to the following numerical experiments.223

Tighter Bound in Theorem 3.1. Our bound’s proof and form are much more general and tighter224

than previous work [14]. In particular, in terms of parameter matrix norm contributed by each layer,225

the bound in [14] depends on ∥W l∥F + ∥Bl∥FNd/2
modes where ∥ · ∥ denotes the Frobienus norm.226

So, our reliance of maxi {∥Bl,i +W l∥2, ∥W l∥2} is a significant improvement. Additionally, our227

bound suggests that increasing the number of modes does not necessarily increase the complexity228

of the model. However, it is important to note that selecting high-frequency basis functions to fit229

high-frequency noise can adversely impact generalization, as it leads to larger values of ∥Bl,i+W l∥2.230

We shall verify the advantage of our bound in Experiment 6.1.231

Super-Resolution Error. From Theorem 3.3, super-resolution in NOs depends on two critical232

factors: (1) the accuracy of integration trained on low-resolution grids, and (2) the density of the233

low-resolution grid to facilitate generalization to other points. It is important to note that numerical234

integration accuracy does not necessarily imply grid density, especially in the case of low-precision235

integration formats. We shall experiment on the super-resolution error in Experiment 6.2.236

Choice of Grid. The choice of grids depends on the specific function and its domain. In the case237

of a finite interval, a uniform grid is commonly used, and integration can be performed using the238

trapezoidal rule. Furthermore, selecting a grid that allows for accurate integration effectively captures239

the function’s characteristics at a finite number of points. For instance, in density functional theory240

(DFT), where the domain is R3, the function typically involves a multi-center Gaussian mixture. In241

such cases, designing an integral scheme tailored to multi-center functions is more reasonable. For242

example, selecting points in the vicinity of each Gaussian center enables better characterization and243

integration accuracy for the input function. We will conduct the corresponding DFT experiment on244

molecules in 6.3.245

Extending NOs to Irregular Domains. The limitation of FNO [19, 23] is its reliance on Fourier246

bases, which restricts its application to regular domains and limits its usage in real-world complex247

geometries. Geo-FNO [19] assumes that irregular domains can be mapped to regular ones through a248

bijection, which is not applicable for arbitrarily irregular domains. Fortunately, under our framework249

in equation (2), we can overcome this limitation by utilizing random Fourier features (RFFs) and250

polynomials on irregular domains. By employing Gram-Schmidt orthogonalization, we can obtain an251

orthogonal basis and perform numerical integration on a discrete grid for the inner product. Moreover,252

we can select a suitable orthogonal basis based on the domain, such as Gauss-Hermite polynomials253

for the unbounded whole space R. As a result, we successfully extend NOs to irregular domains,254

enhancing their applicability in various scenarios. In the first setting of Experiment 6.3, we validate255

our general NOs on unbounded domains.256

Guiding the Choice of Orthogonal Basis. The choice of basis in NOs significantly impacts their257

expressiveness, as highlighted by Theorem 3.1. If the target function can be well represented by a258

finite combination of basis functions, a small number of modes (Nmodes) is sufficient. This leads to259

fewer parameters and increased model efficiency. Conversely, if an infinite series of basis functions is260

needed to expand the target function, the model tends to generalize poorly. For example, Fourier bases261

are suitable for periodic functions, wavelets excel in capturing rapid changes and discontinuities, and262

polynomials (e.g., orthogonal Legendre polynomials) provide a versatile basis for all functions. These263

bases have distinct capabilities and cannot efficiently represent each other. Additionally, wavelets264

are effective in handling multi-scale and multi-physics problems. Combining multiple basis sets can265

yield superior results by leveraging complementary effects. The selection of the basis is guided by266

the characteristics of the function and the operator in the dataset. For instance, if the function exhibits267

periodicity in certain subdomains but not in others, a combination of Fourier and polynomial basis268

functions can effectively model both parts simultaneously, which is verified in Experiment 6.4.269
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5 Related Work270

Orthogonal Basis in NOs. Various orthogonal bases are adopted for kernel transform in neural271

operators, e.g., Fourier NO (FNO) [20] and its variant [25, 27, 30] adopt Fourier bases, Geo-FNO272

[19] utilizes Fourier bases under deformation, [21] uses orthogonal Legendre polynomials, and [28, 8]273

use multi-wavelets.274

NOs on Arbitrary Domains. Some operator networks different from NO are grid-free. DeepONet275

[22] encodes the input function and the grid, respectively, and then combines them by dot product as276

the operator network output. MIONet [12] extends DeepONet to multiple input functions. Trans-277

former operators [3, 18, 9] directly process the inputs by the attention mechanism [26]. The NO278

we proposed can also be applied to any domain and incorporates its prior knowledge, so our NO279

generally outperforms these two approaches.280

Theory of Neural Operators. DeepONet and FNO are analyzed theoretically in the literature.281

Theory on DeepONet [16, 7] relies on the discretization over function and the input grid to transform282

the model into mapping between finite-dimensional vector space. The generalization theory on FNO283

[14] relies on discretization and proposes Rademacher complexity bounds. [15] proves the universal284

approximation and errors bound for approximating Darcy type elliptic PDE and the incompressible285

Navier-Stokes equations. [5, 6, 23] proposes theories for NO’s approximation. [4] proves convergence286

rates for linear operators.287

6 Experiment288

6.1 Validation of Theorem 3.1289

This section provides empirical evidence demonstrating the superior tightness and quality of our290

generalization bound presented in Theorem 3.1 compared to related works such as [14]. It is291

customary in the literature to compare the numerical values of various generalization bounds as a292

means to showcase their tightness, e.g., [24, 1, 11, 2]. In Figure 1, we provide numerical values293

of the generalization bounds for FNO models trained on four distinct datasets (1D Burgers, 2D294

Darcy Flow, 2D+time Navier-Stokes equation, 3D Navier-Stokes equation) as provided by FNO [20].295

Following FNO’s experimental setup, we normalize the value of our proposed bound to 1 for clarity.296

Remarkably, our robustness-based bound outperforms existing bounds by 2-3 orders of magnitude,297

underscoring its superior tightness and reliability.298
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Our bound is much tighter than previous bound.
Rademacher Complexity Bound
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Figure 1: In the four datasets, our generaliza-
tion bounds (green) are tighter by 2-3 orders
of magnitude compared to [14] (blue).
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Figure 2: The relationship between super-
resolution error, integration format, and the
number of integration grid points.

6.2 Super-resolution Error299

We validate Theorem 3.3 that super-resolution error is affected by both the integration scheme and300

the grid size. We conduct experiments on the previously mentioned Burgers dataset from FNO301
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Table 1: Relative L2 error results on DFT datasets with unbounded domains. ANO achieves the best
result and can conduct SR.

FNO Geo-FNO DeepONet LT OFormer NO-Ours
QHO-vanilla / 1.22E-2 2.63E-3 3.04E-3 3.31E-3 1.50E-3

QHO-superres / 1.32E-1 1.42E+0 7.15E-3 7.91E-3 2.02E-3
CO2-vanilla / 4.97E-1 5.82E-1 2.46E-1 2.41E-1 2.22E-1

CO2-superres / 5.44E-1 1.44E+0 2.51E-1 2.47E-1 2.23E-1
Water-vanilla / 2.41E-1 3.22E-1 3.03E-1 2.86E-1 1.52E-1

Water-superres / 5.07E-1 1.75E+0 4.52E-1 3.07E-1 1.58E-1
CH4-vanilla / 3.16E-1 5.19E-1 2.76E-1 2.62E-1 2.05E-1

CH4-superres / 3.95E-1 1.82E+0 2.81E-1 2.79E-1 2.07E-1

[20], where we use the random scheme (error: 1/
√
N , blue), Darboux rule based on a uniform grid302

(error: 1/N , green), and trapezoidal rule based on a uniform grid (error: 1/N2, red) as integration303

schemes in FNO [20]. The grid sizes are chosen to be 26 (first column), 28 (second column), 210304

(third column) points. The super-resolution performance is evaluated by the super-resolution gap305

Ltest-reg − Ltest-sr originally defined in Theorem 3.3. Figure 2 illustrates the following findings: (1)306

increasing the grid size for the same integration scheme improves super-resolution performance, and307

(2) for the same grid size, integration schemes with higher accuracy yield lower super-resolution308

error. These results confirm the validity of our theory. It is important to note that the original FNO309

framework cannot operate on random grids. Our reinterpretation of NOs, utilizing random grids as310

the integration format and Fourier bases, enabled this capability.311

6.3 NOs on Unbounded Domain312

In this subsection, we select several Density Functional Theory (DFT) Hamiltonian operators to test313

our NOs with suitable orthogonal bases with other strong baselines.314

Baselines. (1) FNO [20]: cannot be adopted on an arbitrary domain. (2) Geo-FNO [19]: uses a315

bijection to map the irregular domain to a regular one and perform FNO. Here the unbounded domains316

can be mapped to the regular domain by the bijection tan−1, which can conduct super-resolution. (3)317

DeepONet [22] can operate on arbitrary domains but accepts fixed-length discretized input function,318

which restricts its super-resolution performance. (4) Linear Transformer (LT) [3] and (5) OFormer319

[18] are all transformers for operator learning, they can handle arbitrary domains and grids.320

In Density Functional Theory (DFT), the Hamiltonian operator plays a crucial role in characterizing321

the ground state energy through its spectra. In this subsection, we evaluate different NOs’ performance322

in learning Hamiltonian operators defined on unbounded domains across various dimensions.323

QHO. In the quantum harmonic oscillator (QHO), the Hamiltonian operator, given the wave function324

ϕ, is
(
ĤQHOϕ

)
(x) = − 1

2∇
2ϕ(x) + 1

2x
2ϕ(x), x ∈ R. We use random linear combinations of the325

1D Hermite polynomial for data generation: ϕi(x) =
1

π
1
4 2

i
2

√
i!
Hi(x)e

− x2

2 , x ∈ R, The grid for326

training is the points in the Gauss-Hermite quadrature with 32 points, and the super-resolution testing327

grid is with degree 64. Geo-FNO adopts the grid generated by the tan−1 transform of uniform grid328

over (−π
2 ,

π
2 ). The orthogonal basis in our NO is Gauss-Hermite polynomials.329

Molecules. Following D4FT [17], we consider Hamiltonian operators in real-world 3D molecules,330

which take the wave function ϕ(r), and the density ρ(r) as inputs is given by four different terms331

(kinetic, external potential, Hartree and exchange-correlation):332 (
ĤKS-DFT(ϕ, ρ)

)
(r) = −1

2
∇2ϕ(r) + vext(r)ϕ(r) +

∫
R3

ρ(r′)

|r − r′|dr
′ϕ(r) + vxc(r)ϕ(r), r ∈ R3. (6)

KS-DFT offers natural basis sets that can be linearly combined to generate the training functions.333

Additionally, grids with varying resolutions, characterized by levels, are provided based on the334

multi-center Gaussian nature of the functions in DFT. In our experiments, we select level 1 for335

training and level 2, which has more points, for testing. In Geo-FNO, the grid is generated using336

the tan−1 transform of a uniform grid over the domain (−π
2 ,

π
2 )

3. To ensure a fair comparison, the337
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Table 2: Relative L2 error results for the advection case.

NO-Sin/Sin NO-Poly/Poly NO-Sin/Poly
Advection (1) 8.34E-3 1.96E-2 1.01E-2
Advection (2) 1.00E-2 1.76E-2 7.66E-3

number of grid points in Geo-FNO is similar to the quadrature used in D4FT. For the D4FT setting,338

we consider three molecules: CO2, water, and CH4.339

Results. Relative L2 errors for DFT experiments are shown in Table 1. (1) NO-Ours exhibits slightly340

superior performance on regular testing and significantly outperforms in super-resolution tasks.341

(2) The uniform grid deformation in Geo-FNO is less efficient compared to quadrature, resulting342

in NO-Ours surpassing Geo-FNO. (3) As the molecule size increases, atom distribution extends343

throughout the R3 domain. Consequently, the input wave function and density function disperse344

near the atoms rather than concentrating near the unit box. Thus, using a unit box grid in Geo-FNO345

becomes inefficient. (4) NO-Ours adapts to various grids based on the problem, utilizing efficient346

quadrature points in D4FT to accurately represent the input wave function and density. As a result,347

NO-Ours achieves super-resolution with minimal additional error. This highlights the significance of348

selecting appropriate integral points based on the characteristics of the input functions.349

6.4 Conbining Multiple Bases350

We try the advection equation ut + ux = 0, x ∈ [0, 1], t ∈ [0, 1] with/without periodic bound-351

ary conditions taken from [23]. Given the initial condition u0(x), we aim to learn the non-352

linear operator G : u0(x) 7→ u(x, t)2, (x, t) ∈ [0, 1] × [0, 1] with the hybrid input functions353

u0(x) = h11{c1−w
2 ,c1+

w
2 } +

√
max(h22 − a2(x− c2)2, 0) where c1, c2, w, h1, h2 are randomly354

chosen to generate samples. The full problem is named Advection (1), which is periodic in both t355

and x axis, i.e., u(x, 0) = u(x, 1) and u(0, t) = u(1, t). To construct a non-periodic problem, we356

truncate the target function on (x, t) ∈ [0, 1]× [0, 0.5], so that it is periodic on the x-axis but not the357

t-axis. We use sinusoidal and/or polynomial bases. Specifically, there are two axes, for NO-Sin/Sin,358

we use sinusoidal bases on both axes; for NO-Poly/Poly, we use Legendre polynomial bases on both359

axes; for NO-Sin/Poly, we use sinusoidal on the x-axis and polynomial on t-axis. More specifically,360

if we have a set of basis functions {ϕi(x)}∞i=0 on the domain Ωx along the x-axis, and another set of361

basis functions {ψj(t)}∞j=0 on the domain Ωt along the t-axis, then the set of tensor product basis362

functions {ϕi(x)ψj(t)}∞i,j=0 forms a basis for the two-dimensional space Ωx × Ωt. We train all363

models with 1000 epochs.364

Table 2 verifies the effectiveness of sinusoidal bases for periodic functions and polynomials for365

general non-periodic functions. Additionally, the combination of multiple different bases has been366

shown to be effective, taking into account the properties of the data. This approach deviates from367

previous works that typically focus on utilizing a single basis.368

7 Conclusion369

This paper proposes a novel perspective for studying NOs. We have provided a comprehensive370

understanding of NO through a detailed analysis of the infinite sequence space under orthogonal371

basis projection. Based on this versatile framework, we have proposed a method to adapt NO to372

arbitrary complex domains. We have also analyzed the generalization bound of NO, demonstrating373

its superiority over previous works. Furthermore, we have explained the importance of selecting374

the type and quantity of basis functions in NO, emphasizing the benefits of using multiple bases in375

a complementary manner based on operator characteristics. Additionally, we have examined the376

impact of grid points on super-resolution error, highlighting the crucial role of the integration format377

associated with the grid and the density of the grid itself. All the theoretical analyses have been378

extensively validated through experiments on multiple data sources, including numerical PDE and379

DFT. We shed new light on understanding NOs and improving them in practical applications.380
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