GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Anonymous Authors'

Abstract

Graph structure learning is a fundamental prob-
lem critical for interpretability and uncovering
relationships in data. While graphical data is cen-
tral to information representation, inferring graph
structures remains challenging. Existing methods
falter with expanding graphs, requiring costly re-
learning of the entire structure for new nodes, and
face severe computational and memory demands
on large graphs. To overcome these challenges,
we propose GraphFLEXx: a unified framework
for structure learning in Large and Expanding
Graphs. GraphFLEXx efficiently limits potential
connections to relevant nodes by leveraging clus-
tering and coarsening techniques, significantly re-
ducing computational costs and enhancing scala-
bility. GraphFLEX provides 48 flexible methods
for graph structure learning by integrating diverse
learning, coarsening, and clustering approaches.
Extensive experiments with various GNN models
demonstrate its effectiveness. Our code is avail-
able here.

1. Introduction

Graph representations capture relationships between enti-
ties, vital across diverse fields like biology, finance, soci-
ology, engineering, and operations research (Zhou et al.,
2020; Fout et al., 2017; Wu et al., 2020). While some re-
lationships, such as social connections or sensor networks,
are directly observable, many, including gene regulatory
networks, scene graph generation (Gu et al., 2019), brain
networks, (Zhu et al., 2021) and drug interactions, require
inference (Allen et al., 2012). Even when available, graph
data often contains noise, requiring denoising and recalibra-
tion. Thus, inferring graph structures becomes crucial, often
surpassing the choice of graph or algorithm itself.

Graph Structure Learning (GSL) offers a solution, enabling
the construction and refinement of graph topologies. GSL
has been widely studied in both supervised and unsupervised

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

contexts (Liu et al., 2022; Chen & Wu, 2022). In supervised
GSL (s-SGL), the adjacency matrix and Graph Neural Net-
works (GNNGs) are jointly optimized for a downstream task,
such as node classification. Notable examples of s-GSL
include NodeFormer (Wu et al., 2022), Pro— GN N (Jin
et al., 2020), WSGNN (Lao et al., 2022), and SLAPS
(Fatemi et al., 2021). Unsupervised GSL (u-SGL), on the
other hand, focuses solely on learning the underlying graph
structure, typically through adjacency or Laplacian matrices.
Methods in this category include approximate nearest neigh-
bours (A— N N) (Dong et al., 2011; Muja & Lowe, 2014), k-
nearest neighbours (k— N N) (MacQueen et al., 1967; Wang
& Zhang, 2006), covariance estimation (emp.Cov.) (Hsich
et al., 2011), graphical lasso (G Lasso) (Friedman et al.,
2008), and signal processing techniques like [2-model,log-
model, and large-model (Dong et al., 2016; Kalofolias,
2016).

While s-SGL methods offer promising results, they have lim-
itations: (1) they rely on label information, restricting their
applicability in settings without annotations; (2) they are
often task-specific, optimizing for node classification rather
than general graph topology (Liu et al., 2022). These issues
are avoided in u-SGL approaches, which are the focus of
this work. However, both s-SGL and u-SGL face challenges
when applied to large-scale or expanding datasets.

1200 1200
—e— GraphFlex ANN —o— AN
—4— GraphFlex KNN —a— KNN
1050 Log model
—— L2model

1050

<
<
3

—4— GraphFiex Large model

&

Time in Seconds
Time in Seconds

300

10000 20000 30000 40000 50000 10600 20000 30000 40000 50000

Number of Nodes Number of Nodes

(a) GraphFLEx (b) Vanilla

Figure 1: High computational time required to learn graph struc-
tures using existing methods, whereas GraphFLEXx effectively con-
trols computational growth, achieving near-linear scalability. No-
tably, Vanilla KNN failed to construct graph structures with fewer
than 10k nodes due to memory limitations.

As contemporary datasets grow in size, scalability becomes
a critical challenge, with existing methods proving too com-
putationally expensive for large-scale graphs. In such cases,
Approximate Nearest Neighbours (A— N N), with time com-

https://anonymous.4open.science/r/Scaling_Graph_Learning-5644

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

GNN Clustering

Mclust

Projection back to
original space

E[Graph Learning]

Most relevant nodes

Graph Coarsening

c1 | P
I h
i)
> | B
| i \I
A D
10 = .-
11 \J 1 @
H» ® D 1
o, c3 1 e
Graph Communities
MCDQT
Most relevant
communities Super-nodes
formation

Figure 2: General pipeline of GraphFLEX, it processes a graph (G;—1) and incoming nodes (£;) at time ¢, comprising three main
components: a) Clustering, which infers & nodes to existing communities using a pre-trained model M.iusi(Go); b) Coarsening, reduces
the size of the desired community; and c) Learning, where the structure associated with £ nodes are learned using the coarsened graph,
followed by projecting this structure onto the original graph to create graph G; at time ¢.

plexity O(N log(NN)), is often the only feasible solution. In
contrast, methods like £-NN, log-model, and /[2-model are
significantly more costly, with time complexities exceeding
O(N?).

The aforementioned techniques are ineffective for learning
large-scale graphs because they consider the entire collec-
tion of nodes to determine connections for every individual
node. All nodes, however, only have connections to a very
small set of nodes. Therefore, we need to devise a method
that can refine the entire graph’s node set to a smaller subset
of potential node sets, with the aim of identifying feasible
connections. Additionally, expanding graphs where new
nodes continuously arrive further complicates the issue, as
existing methods require re-learning the entire graph struc-
ture with each new node (Khazane et al., 2019; Holme &
Saramiki, 2012). This makes them inefficient for expanding
data. To address these challenges, we propose GraphFLEX,
a comprehensive framework that tackles both scalability for
large datasets and adaptability for growing graphs.

As shown in Figure 2, GraphFLEx comprises three key
modules: (i) Graph Clustering, (ii) Graph Coarsening, and
(iii) Graph Learning. By leveraging clustering and coarsen-
ing, GraphFLEXx significantly reduces computational over-
head by restricting possible connections to only relevant
nodes. Figure 1 compares the graph structure learning time,
highlighting GraphFLEX’s efficiency over existing methods.
Key contributions of GraphFLEx include:

Key Contributions and Novelty.

* We provide strong theoretical guarantees that the struc-
ture learned from a small subset of nodes is equivalent
to that learned from the full set. This is supported by
empirical results using real-world and synthetic datasets,
demonstrating the effectiveness of GraphFLEx across di-
verse graph structures.

* GraphFLEXx is composed of independently operating mod-
ules, allowing the creation of new learning frameworks by
modifying any of its three modules. It currently supports
48 distinct methods for learning graph structure, offering
flexibility across various domains.

* GraphFLEXx efficiently handles large-scale and expanding
graphs, enhancing scalability for graph learning tasks.

* GraphFLExX serves as a comprehensive framework appli-
cable individually for clustering, coarsening, and learning
tasks.

2. Problem Formulation and Background

A graph G is represented using G(V, A, X) where V =
{v1,va...un} is the set of N nodes, each node v; has
a d—dimensional feature vector z; in X € R4 and
A € RN¥*N js adjacency matrix representing connection
between " and j'" nodes when entry 4;; > 0. An ex-
panding graph &g can be considered a variant of graph G
where nodes v now have an associated timestamp 7,. We
can represent a expanding graph as a sequence of graphs,

ie., & = {Go,G1,...Gr} where {Gy C Gjy.... C Gr} at

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

7 € {0,...T'} timestamps. New nodes arriving at different
timestamps are seamlessly integrating into initial graph G.

Problem statement. Given a partially known or missing
graph structure, our goal is to incrementally learn the whole
graph, i.e., learn adjacency or laplacian matrix. Specifically,
we consider two unsupervised GSL tasks:

Goal 1. Large Datasets with Missing Graph Structure:
In this setting, the graph structure is entirely unavailable,
and existing methods are computationally infeasible for
learning the whole graph in a single step. To address this
issue, we first randomly partition the dataset into exclusive
subsets. We then learn the initial graph Go(Vy, Xo) over
a small subset of nodes and incrementally expand it by
integrating additional partitions, ultimately reconstructing
the full graph Gr.

Goal 2. Partially Available Graph: In this case, we only
have access to the graph G, at timestamp t, with new nodes
arriving over time. The goal is to update the graph incre-
mentally to obtain G, without re-learning it from scratch
at each timestamp.

GraphFlex addresses these challenges with a unified frame-
work, outlined in Section 3. Before delving into the frame-
work, we review some key concepts.

2.1. Graph Reduction

Graph reduction encompasses sparsification, clustering,
coarsening, and condensation (Hashemi et al., 2024). Graph-
Flex employs clustering and coarsening to refine the set of
relevant nodes for potential connections.

Graph Clustering. Graphs often exhibit global heterogene-
ity with localized homogeneity, making them well-suited for
clustering (Fortunato, 2010). Clusters capture higher-order
structures, aiding graph learning. Methods like DMoN (Tsit-
sulin et al., 2023) use GNNs for soft cluster assignments,
while Spectral Clustering (SC) (Kamvar et al., 2003) and
K-means (Wagstaff et al., 2001; MacQueen et al., 1967)
efficiently detect communities. DiffPool (Bruna et al., 2014;
Defferrard et al., 2016) applies SC for pooling in GNNs.
Graph Coarsening. Graph Coarsening (GC) reduces a
graph G(V, E, X) with N nodes and features X € RN x4
into a smaller graph 90(17, E‘, X) with n < N nodes and
X € R"*4_ This is achieved via learning a coarsening ma-
trix P € RN, mapping similar nodes in G to super-nodes
in G., ensuring X = PX while preserving key properties
(Loukas, 2019; Kataria et al., 2023; Kumar et al., 2023;
Kataria et al., 2024).

2.2. Unsupervised Graph Structure Learning

Unsupervised graph learning spans from simple k-NN
weighting (Wang & Zhang, 2006; Zhu et al., 2003) to ad-
vanced statistical and graph signal processing (GSP) tech-

Table 1: Unsupervised Graph Structure Learning Methods

Method Time Complexity Formulation
GLasso O(N?) maxe log det ©
—(50) - pll6|ls
log-model O(N?) minwew [|[Wo Z|11
—a17 log(W1) + gHWH?z
12-model O(N?) minwew |[Wo Z||1,1
+a|W1|* + o[W[5
FH{[Wli,1 = n}
large-model ~ O(N log(N)) ming, 5, [|[Wo Z||11

—a17 log(W1) + gHWH?z

niques. Statistical methods, also known as probabilistic
graphical models, assume an underlying graph G governs
the joint distribution of data X € R¥*9 (Koller & Fried-
man, 2009; Banerjee et al., 2008; Friedman et al., 2008).
Some approaches (Dempster, 1972) prune elements in the in-
verse sample covariance matrix ¥ = d—ilX X7 and sparse
inverse covariance estimators, such as Graphical Lasso
(GLasso) (Friedman et al., 2008): maximizeg log det © —
tr(X0) —p||O]|1, where O is the inverse covariance matrix.
However, these methods struggle with small sample sizes.
Graph Signal Processing (GSP) techniques analyze signals
on known graphs, ensuring properties like smoothness and
sparsity. Signal smoothness on a graph G is quantified by

the Laplacian quadratic form:
1 , .
QL) = x"Lx = 3 3wy (x(i) — x())*
0,J

For a set of vectors X, smoothness is measured using the
Dirichlet energy (Belkin et al., 2006): tr(XTLX). State-
of-the-art methods (Dong et al., 2016; Kalofolias, 2016;
Hu et al., 2013) optimize Dirichlet energy while enforcing
sparsity or specific structural constraints. Table 1 compares
various graph learning methods based on their formulations
and time complexities.

Remark 1. Graph Structure Learning (GSL) differs signifi-
cantly from Continual Learning (CL) (Van de Ven & Tolias,
2019; Zhang et al., 2022; Parisi et al., 2019) and Dynamic
Graph Learning (DGL) (Kim et al., 2022; Wu et al., 2023;
You et al., 2022), as discussed in Appendix C.

3. GraphFLEx

In this section, we introduce GraphFLEx, which has three
main modules:

* Graph Clustering. Identifies communities and extracts
higher-order structural information,

* Graph Coarsening. Is used to coarsen down the desired
community, if the community itself is large,

* Graph Learning. Learns the graph’s structure using a

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

limited subset of nodes from the clustering and coarsening
modules, enabling scalability.

For more details, see Algorithm | in Appendix E.

3.1. Incremental Graph Learning for Large Datasets

Real-world graph data is continuously expanding. For in-
stance, e-commerce networks accumulate new clicks and
purchases daily (Xiang et al., 2010), while academic net-
works grow with new researchers and publications (Wang
et al., 2020). This expanding behaviour suggests that large
graphs can be efficiently processed by learning them incre-
mentally in smaller segments.

Given a large dataset £(V., X), where V. is the node set
and X represents node features, we define an expanding
dataset setting Lg = {EL_,}. Initially, £ is split into: (i)
a static dataset Ey(Vy, Xo) and (ii) an expanding dataset
E ={&(V;, X,)}_,. Both Goal I (large datasets with
missing graph structure) and Goal 2 (partially available
graphs with incremental updates), discussed in Section 2,
share the common objective of incrementally learning and
updating the graph structure as new data arrives. Graph-
FLEx handles these by decomposing the problem into two
key components:

* Initial Graph Gy(Vy, Ay, Xo): For Goal 1, where the
graph structure is entirely missing, £ (Vp, Xo) is used
to construct Gy from scratch using structure learning
methods (see Section 2.2). For Goal 2, the initial graph
Go(Vo, Ap, Xo) is already available and serves as the start-
ing point for incremental updates.

 Expanding Dataset £ = {&,(V;,X,)}Z_;: In both
cases, £ consists of incoming nodes and features arriv-
ing over 7' timestamps. These nodes are progressively
integrated into the existing graph, enabling continuous
adaptation and growth.

The partition is controlled by a parameter r, which deter-
mines the proportion of static nodes: r = H“//Z ||‘| . For exam-
ple, » = 0.2 implies that 20% of V. is treated as static, while
the remaining 80% arrives incrementally over T' timestamps.

In our experiments, we set r = 0.5 and T" = 25.

Remark 2. We can learn G (V;, A;, X) by aggregating &,
nodes in G, _1 graph. Our goal is to learn Gr(Vr, Ap, X1)
after T*"-timestamp.

3.2. Detecting Communities

From the static graph Gy, our goal is to learn higher-order
structural information, identifying potential communities
to which incoming nodes (V' € V1) may belong. We train
the community detection/clustering model M., once
using Gy, allowing subsequent inference of clusters for all
incoming nodes. While our framework supports spectral
and k-means clustering, our primary focus has been on

Graph Neural Network (GNN)-based clustering methods.
Specifically, we use DMoN (Tsitsulin et al., 2023; Bianchi
et al., 2020; Bianchi, 2022), which maximizes spectral
modularity. Modularity (Newman, 2006) measures the
divergence between intra-cluster edges and the expected
number. These methods use a GNN layer to compute the
partition matrix C' = softmax(MLP(X, Oy p)) € RV*E,
where K is the number of clusters and X is the updated fea-
ture embedding generated by one or more message-passing
layers. To optimize the C' matrix, we minimize the loss
function A(C; A) = —sL-Tr(CTBC) + YE|5,C7 |5 — 1,
which combines spectral modularity maximization with
regularization to prevent trivial solutions, where B is the
modularity matrix (Tsitsulin et al., 2023). Our static graph
Go and incoming nodes & follow Assumption 1.

Assumption 1. We assume that the generated graphs ad-
here to the Degree-Corrected Stochastic Block Model (DC-
SBM) (Zhao et al., 2012), where intra-class (or intra-
community) links are more likely than inter-class links.

For more details on DC-SBM, see Appendix A.

Lemma 1. M,y Consistency. We adopt the theoretical
framework of (Zhao et al., 2012) for a DC-SBM with N
nodes and k classes. The edge probability matrix is parame-
terized as Py = pn P, where P € REXE 5 ¢ symmetric ma-
trix containing the between/within community edge probabil-
ities and it is independent of N, py = An /N, and A is the
average degree of the network. Let i = [41, U2, - - -, UN]
denote the predicted class labels, and let C\ be the corre-
sponding N X k one-hot matrix. Let the true class label
matrix is Cy, and v is any k X k permutation matrix. Un-
der the adjacency matrix AN), the global maximum of the
objective A(-; AN is denoted as é}(, The consistency of
class predictions is defined as:

1. Strong Consistency.
Py [min”é’]{;ﬂ —Cnl|7 = O} —1 as N — oo,
N

2. Weak Consistency.
1 Ak
Ve >0, Py {minNHCN/A —Cn||7 < 5} —las N — co.
I

where || - || is the Frobenius norm. Under the conditions
of Theorem 3.1 from (Zhao et al., 2012):
* The My objective is strongly consistent if

AN/ log(N) — oo, and
e It is weakly consistent when Ay — o0.

Remark 3. Structure Learning within Communities. In
GraphF LEz, we focus on learning the structure within
each community rather than the structure of the entire
dataset at once. Strong consistency ensures perfect com-
munity recovery, meaning no inter-community edges exist

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

representing the ideal case. Weak consistency, however,
allows for a small fraction (¢) of inter-community edges,
where € is controlled by p,, in P,, = p,, P, influencing graph
sparsity.

By Lemma | and Assumption 1, stronger consistency leads
to more precise structure learning, whereas weaker consis-
tency permits a limited number of inter-community edges.

3.3. Learning Graph Structure on a Coarse Graph

After training M5, we identify communities for incoming
nodes, starting with 7 = 1. Once assigned, we determine
significant communities those with at least one incoming
node and learn their connections to the respective commu-
nity subgraphs. For large datasets, substantial community
sizes may again introduce scalability issues. To mitigate this,
we first coarsen the large community graph into a smaller
graph and use it to identify potential connections for incom-
ing nodes. This process constitutes the second module of
GraphFLEX, denoted as M ,r, which employs LSH-based
hashing for graph coarsening. The supernode index for ‘"
node is given as:

H; = maxOccurance { Ll’ -W- X + b)J } M

where r (bin width) controls the coarsened graph size,
W represents random projection matrix, X is the feature
matrix, and b is the bias term. For further details, refer
to UGC (Kataria et al., 2024). After coarsening the ith
community (C;), Mcoar(C;) = {P;, S;} yields a partition
matrix P; € RIS and a set of coarsened supernodes
(S;), as discussed in Section 2.

Definition 1. The neighborhood of a set of nodes &; is
defined as the union of the top k most similar nodes in C;
for each node v € &;, where similarity is measured by the
distance function d(v,u). A node u € C; is considered part
of the neighborhood if its distance d(v,u) is among the k
smallest distances for all u’ € C;.

Ni(&) = | {u € Ci | d(v,u) < top-kld(v,) : v € Ci}

vEE;

Goal 3. The neighborhood of incoming nodes Ny, (E;) repre-
sents the ideal set of nodes where the incoming nodes &; are
likely to establish connections when the entire community is
provided to a structure learning framework.. A robust coars-
ening framework must reduce the number of nodes within
each community C; while ensuring that the neighborhood
of the incoming nodes is preserved.

3.4. Graph Learning only with Potential Nodes

As we now have a smaller representation of the community,
we can employ any graph learning algorithms discussed in

Section 2.2 to learn a graph between coarsened supernodes
S; and incoming nodes (V! € V). This is the third module
of GraphFLEXx, i.e., graph learning; we denote it as M.
The number of supernodes in S; is much smaller compared
to the original size of the community, i.e., ||.S;|| < ||Cill;
scalability is not an issue now. We learn a small graph first
using My (S;, Xi) = GL(V,<, AS) where X! represents
features of new nodes belonging to ith community at time
7, GL(V.E, AS) representing the graph between supernodes
and incoming nodes. Utilizing the partition matrix P;
obtained from M. ,:, we can precisely determine the set
of nodes associated with each supernode. For every new
node V € V!, we identify the connected supernodes and
subsequently select nodes within those supernodes. This
subset of nodes is denoted by wy::, the sub-graph associated
with wy: represented by G ;(wy:) then undergoes an
additional round of graph learning M (G (wy:), X1),
ultimately providing a clear and accurate connection of new
nodes V! with nodes of G,_1, ultimately updating it to
G . This multi-step approach, characterized by coarsening,
learning on coarsened graphs, and translation to the original
graph, ensures scalability.

Theorem 1. Neighborhood Preservation. Let N.(E;) de-
note the neighborhood of incoming nodes &; for the i™
community. With partition matrix P; and Mg (S;, Xt) =
GS(Ve, AS) we identify the supernodes connected to incom-
ing nodes &; and subsequently select nodes within those
supernodes; this subset of nodes is denoted by wyi. For-

mally,
wyy = J{ U)45 (w,5) # 03}

veEE; SES;

Then, with probability I1{.c 4 p(c), it holds that Ni(E;) C wy

where
6772/(262)} ,

ple)<1-—=C[1-

Vo T

and ¢ is a set containing all pairwise distance values (¢ = ||v—ul|)
between every node v € E; and the nodes u € Wyi. Here, 1™~ (s)
denotes the set of nodes mapped to supernode s, r is the bin-width
hyperparameter of M coar-

Proof. The proof is deferred in Appendix B. O

Remark 4. Theorem | establishes that, with a constant prob-
ability of success, the neighborhood of incoming nodes
Ni(&;) can be effectively recovered using the GraphFLEx
multistep approach, which involves coarsening and learning
on the coarsened graph, i.e., Ny (&;) C wyi. The set wy,
estimated by GraphFLEX, identifies potential candidates
where incoming nodes are likely to connect. The probability
of failure can be reduced by regulating the average degree
of connectivity in M(S;, Xt) = GE(VE, AS). While a
fully connected G¢ ensures all nodes in the community are
candidates, it significantly increases computational costs for
large communities.

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Table 2: Time complexity analysis of GraphFLEx. Here, N is the number of nodes in the graph, k is the number of nodes in the static
subgraph used for clustering (k <), and c represents the number of detected communities. k, denotes the number of nodes at
timestamp 7. Finally, o = ||S7| + ||€+|| is the sum of coarsened and incoming nodes in the relevant community at 7 timestamp.

Miust M oar My GraphFLEx
Best (kNN-UGC-ANN) O(k?) o (k= O(aloga) O(k? + k= + aloga)
Worst (SC-FGC-GLasso) ~ O(k%) O ((’%)2 ||Si||) O(a?) Ok + ()7 [[Si] + o)

3.5. GraphFLEx Offering Multiple SGL Frameworks

Each module in Figure 3, controls distinct properties: clus-
tering influences community detection, coarsening governs
supernode formation to reduce graph complexity, and the
learning module enforces diverse structural properties. Al-
tering any of these modules results in a new graph learning
method. Currently, we support 48 different graph learning
configurations, and this number scales exponentially with
the addition of new methods to any module. The number
of possible frameworks is given by a x 3 X -y, where «, (3,
and y represent the number of clustering, coarsening, and
learning methods, respectively.

[ST finmiee T
5 UGC & ~>| Log model
FGC > | L2 model
Kmeans ~ A
JEN LVE &« > KNN
Spectral
Clustering LVN (_L_<_) Empirical
Covariance
DMoN
HEM
> < > | GLasso
DiffPool
Ki
> e “ > | Large model
> GCond <’ G ANN
N 4 N\ Y

Graph Clustering Graph Coarsening Graph Learning

Figure 3: The versatility of GraphFlex in supporting multiple
methods for structure learning.

3.6. Run Time Analysis

We evaluate the run-time complexity of GraphFLEx in two
scenarios: (a) the worst-case scenario, where computation-
ally intensive clustering and coarsening modules are se-
lected, providing an upper bound on time complexity, and
(b) the best-case scenario, where the most efficient mod-
ules are chosen. Table 2 summarizes the analysis. The run
time of GraphFLEX is primarily determined by the learning
module (M ;). GraphFLEx computational time is always
bounded by existing approaches, as it operates on a signifi-
cantly reduced graph space, ensuring efficient performance,
especially for larger or expanding graphs. This is also illus-
trated in Table 3.

4. Experiments

In this section, we conclude the experiments to back up our
findings.

Tasks and Datasets. The experiments focus on four key
aspects of GraphFLEx: its computational efficiency, scal-
ability in handling large graphs, the quality of the learned
graph structure, and its ability to efficiently handle expand-
ing graphs. To validate the characteristics of GraphFLEx,
we conduct extensive experiments on 22 different datasets,
including (a) datasets that already have a complete graph
structure (allowing comparison between the learned and the
original structure), (b) datasets with missing graph struc-
tures, (c) synthetic datasets, and (d) small datasets for visu-
alizing the graph structure. More details about datasets are
presented in Table 6 in Appendix D.

System Specifications: All the experiments conducted for
this work were performed on an Intel Xeon W-295 CPU and
64GB of RAM desktop using the Python environment.

Computational Efficiency. Existing methods like k-NN
and [og-model struggle to learn graph structures even for
20k nodes due to out-of-memory (OOM) or out-of-time
(OOT) issues, while [2-model and large-model struggle
beyond 50k nodes. Although A-NN and emp-Covar. are
faster, GraphFLEx outperforms them on sufficiently large
graphs (Table 3). While traditional methods may be efficient
for small graphs, GraphFLEx scales significantly better,
excelling on large datasets like Pubmed and Syn 5, where
most methods fail. It accelerates structure learning, making
A-NN 3x faster and emp-Covar. 2x faster.

4.1. Node Classification Accuracy

Experimental Setup. We now evaluate the prediction per-
formance of GNN models when trained on graph structures
learned from three distinct scenarios: 1) Original Struc-
ture: GNN models trained on the original graph structure,
which we refer to as the Base Structure, 2) GraphFLEx
Structure: GNN models trained on the graph structure
learned from GraphFLEXx, and 3)Vanilla Structure: GNN
models trained on the graph structure learned from other
existing methods.

For each scenario, a unique graph structure is obtained. We
trained GNN models on each of these three structure. For
more details on GNN model parameters, see Appendix F.

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Table 3: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods (Vanilla referred to as Van.).
The experimental setup involves treating 50% of the data as static, while the remaining 50% of nodes are treated as incoming nodes

arriving in 25 different timestamps. The best times are highlighted by color

. OOM and OOT denote out-of-memory and out-of-time,

respectively.
Data ANN KNN log-model 12-model emp-Covar. large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex | Van. GFlex | Van. GFlex
Cora 335 100 8.4 36.1 869 81.6 424 55 8.6 30 2115 18.4
Citeseer 1535 454 21.9 75 1113 64.5 977 54.0 14.7 59.2 8319 43.9
DBLP 2731 988 OOM 270 77000 919 00T 1470 359 343 OO0T 299
CS 22000 = 12000 | OOM 789 OO0T 838 32000 809 813 718 OO0T 1469
PubMed 770 227 OOM 164 O0T 176 Oo0T 165 488 299 ooT 262
Phy. 61000 = 21000 | OOM 903 OO0T 959 OO0T 908 2152 1182 OO0T 2414
Syn 3 95 37 OOM 30 58000 346 859 53 88 59 5416 42
Syn 4 482 71 OOM 73 OO0T 555 00T 145 2072 1043 OO0T 392

Table 4: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla (Van.) methods. The
experimental setup involves treating 70% of the data as static, while the remaining 30% of nodes are treated as new nodes coming
in 25 different timestamps. The best and the second-best accuracies in each row are highlighted by dark and lighter shades of R
respectively. GraphFLEX’s structure beats all of the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and

out-of-time respectively.

Data Model ANN KNN log-model 12-model COVA large-model | Base Struct.
Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex | Van. GFlex
GAT | 34.23 67.37 | OOM 69.83 | OOT | 69.83 | OOT 6898 | 50.48 68.56 | OOT 66.38 70.84
SAGE | 34.23 69.58 | OOM 70.28 | OOT 70.28 | OOT | 70.68 | 51.47 70.51 | OOT 69.32 72.57
DBLP GcN | 34.12 69.41 | OOM 73.39 | OOT | 73.39 | OOT 73.05 | 51.50 71.75 | OOT 68.55 74.43
GIN | 34.01 69.69 | OOM 68.19 | OOT 68.19 | OOT | 73.08 | 52.77 72.03 | OOT 71.18 73.92
GAT | 12.47 60.89 | OOM 61.09 | OOT 6095 | 18.64 61.06 | 58.96 @ 88.06 | OOT 86.22 60.75
SAGE | 12.70 78.81 | OOM 79.43 | OOT 79.06 | 19.24 78.94 | 56.97 93.30 | OOT 92.79 80.33
CS GCN | 12,59 63.81 | OOM 67.94 | OOT 69.33 | 19.21 66.01 | 58.35 © 91.07 | OOT 84.85 67.43
GIN | 13.07 77.62 | OOM 7841 | OOT 78.55 | 19.24 77.61 | 58.26 92.07 | OOT 86.03 55.65
GAT | 49.49 83.71 | OOM 84.60 | OOT 84.60 | OOT 84.04 | 72.63 83.97 | OOT 81.15 84.04
SAGE | 50.43 87.27 | OOM 87.34 | OOT 87.34 | OOT @ 87.42 | 73.57 86.68 | OOT 87.34 88.88
Pub. GCN | 50.45 82.06 | OOM 83.56 | OOT 83.56 | OOT @ 83.74 | 73.14 82.39 | OOT 78.03 85.54
GIN | 51.82 83.13 | OOM ' 84.31 | OOT 84.07 | OOT 82.93 | 73.15 83.51 | OOT 82.85 86.50
GAT | 29.18 88.06 | OOM 88.47 | OOT 88.47 | OOT @ 88.68 | 58.96 88.06 | OOT 86.22 88.58
SAGE | 29.57 93.47 | OOM 93.47 | OOT 93.47 | OOT @ 93.78 | 56.97 93.60 | OOT 92.79 94.19
Phy. GCN | 27.84 91.27 | OOM 91.08 | OOT 91.08 | OOT @ 91.78 | 58.35 91.07 | OOT 84.85 91.48
GIN | 28.38 92.69 | OOM 92.04 | OOT 92.04 | OOT 92.27 | 58.26 92.07 | OOT 86.03 88.89

GNN Models. Graph neural networks (GNNs) such as
GCN (Kipf & Welling, 2016), GraphSage (Hamilton
et al., 2017), GIN (Xu et al., 2018), and GAT (Velick-
ovic et al., 2017) rely on accurate message passing, dictated
by the graph structure, for effective embedding. We use
these models to evaluate the above-mentioned learned struc-
tures. Table 4 reports node classification performance across
all methods. Notably, GraphFLEx outperforms vanilla struc-
tures by a significant margin across all datasets, achieving
accuracies close to those obtained with the original struc-
ture. Figure 9 in Appendix F illustrates GraphSage classi-
fication results, highlighting GraphFLEX’s superior perfor-
mance. For the C'S dataset, GraphFLEx (large-model) and
GraphFLEx (empCovar.-model) even surpass the original

structure, demonstrating its ability to preserve key struc-
tural properties while denoising edges, leading to improved
accuracy.

4.2. Clustering Quality

We measure three metrics to evaluate the resulting clusters
or community assignments: a) Normalized Mutual Infor-
mation (NMI) (Tsitsulin et al., 2023) between the cluster
assignments and original labels; b) Conductance (C) (Jerrum
& Sinclair, 1988) which measures the fraction of total edge
volume that points outside the cluster; and ¢) Modularity (Q)
(Newman, 2006) which measures the divergence between
the intra-community edges and the expected one. Table 5

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

(a) 10 incoming nodes

(b) 20 incoming nodes (c) 30 incoming nodes

(d) ANN as M g; (e) Emp. Covr. as M g;

(f) kNN as M g,

Figure 4: Figures (a), (b), and (c) illustrate the growing structure learned using GraphFLEx for HE synthetic dataset. Figures (d), (e), and
(f) illustrate the learned structure on Zachary’s karate dataset when existing methods are employed with GraphFLEx. New nodes are

denoted using black color.

illustrates these metrics for single-cell RNA and MNIST
dataset (where the whole structure is missing), and Figure 5
shows the PHATE (Moon et al., 2019) visualization of clus-
ters learned using GraphFLEX’s clustering module M.y, q¢.
We also train the aforementioned GNN models for the node
classification task in order to illustrate the efficacy of the
learned structures; the accuracies values presented in Table
5, clearly highlight the significance of the learned structures,
as reflected by the high accuracy values.

Table 5: Clustering results and node classification accuracies. Left:
Clustering metrics - NMI, graph conductance C, and Modularity
Q. Right: Node classification accuracy for GCN, GraphSAGE,
GIN, GAT.

Data | NMIt| Cl | Q1 || GCN | SAGE | GIN | GAT

Bar. M. | 0.716 [0.057 | 0.741 || 91.2 | 96.2 | 95.1 | 94.9
Seger. 0.678 |0.102 | 0.694 || 91.0 | 939 [942|923
Mura. 0.843 | 0.046 | 0.706 || 96.9 | 974 | 97.5 | 96.4
Bar. H. | 0.674 [0.078 | 0.749 || 95.3 | 96.4 | 97.2 | 95.8
Xin 0.741 |0.045|0.544 || 98.6 | 99.3 |98.9 | 99.8
MNIST | 0.677 |0.082]0.712 || 92.9 | 94.5 | 949 | 82.6
a / a
. @ O
/ \ S
£ : '."'"‘:.: i
T / : .:.x/
'm\"‘.~ . S
(a) Muraro (b) Baron Mouse (c) Segerstolpe

Figure 5: PHATE visualization of clusters learned using Graph-
FLEX clustering module for scRNA-seq datasets.

4.3. Structure Visualization

We evaluate the structures generated by GraphFLEx through
visualizations on four small datasets: (i) MNIST (LeCun
et al., 2010), consisting of handwritten digit images, where
Figure 6(a) shows that images of the same digit are mostly
connected; (ii) Pre-trained GloVe embeddings (Pennington
et al., 2014) of English words, with Figure 6(b) revealing
that frequently used words are closely connected; (iii) A syn-
thetic H.E dataset (see Appendix D), demonstrating Graph-
FLEX’s ability to handle expanding networks without requir-

ing full relearning. Figure 4(a-c) shows the graph structure
evolving as 30 new nodes are added over three timestamps;
and (iv) Zachary’s karate club network (Zachary, 1977),
which highlights GraphFLEx’s multi-framework capabil-
ity. Figure 4(d-f) shows three distinct graph structures after
altering the learning module.

N =1

}? \\\ﬂ by ACES ﬂE"'v/
Vi =g < -

-
S8
\

(a) MNIST

(b) Glove

Figure 6: Figures demonstrate the effectiveness of our framework
in learning meaningful structure between similar MNIST digit
images and pre-trained GloVe embeddings.

5. Conclusion

Large or expanding graphs challenge the best of graph
learning approaches. GraphFLEX, introduced in this paper,
seamlessly adds new nodes into an existing graph struc-
ture. It offers diverse methods for acquiring the graph’s
structure. GraphFLEX consists of three key modules: Clus-
tering, Coarsening, and Learning which empowers Graph-
FLEX to serves as a comprehensive framework applicable
individually for clustering, coarsening, and learning tasks.
GraphFLEX is typically 3X faster than other state of the
art methods and scales well with large graphs. It achieves
accuracies close to training on the original graph, in most
instances. The performance across multiple real and syn-
thetic datasets affirms the utility and efficacy of GraphFLEx
for graph structure learning.

Limitations and Future Work. GraphFLEx is designed as-
suming minimal inter-community connectivity, which aligns
well with many real-world scenarios. However, its applica-
bility to heterophilic graphs may require further adaptation.
Future work will focus on extending the framework to su-
pervised GSL methods and heterophilic graphs, broadening
its scalability and versatility.

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Allen, J. D., Xie, Y., Chen, M., Girard, L., and Xiao, G.
Comparing statistical methods for constructing large scale
gene networks. PloS one, 7(1):¢29348, 2012. (Cited at

p-1.)

Banerjee, O., El Ghaoui, L., and d’ Aspremont, A. Model
selection through sparse maximum likelihood estimation
for multivariate gaussian or binary data. The Journal of
Machine Learning Research, 9:485-516, 2008. (Cited at

p- 3.)

Belkin, M., Niyogi, P., and Sindhwani, V. Manifold regular-
ization: A geometric framework for learning from labeled
and unlabeled examples. Journal of machine learning
research, 7(11), 2006. (Cited at p. 3.)

Bianchi, F. M. Simplifying clustering with graph neural
networks. arXiv preprint arXiv:2207.08779, 2022. (Cited
atp. 4.)

Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral
clustering with graph neural networks for graph pooling.
In International conference on machine learning, pp. 874—
883. PMLR, 2020. (Cited at p. 4.)

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and deep locally connected networks on graphs.
arxiv. arXiv preprint arXiv:1312.6203, 2014. (Cited at
p-3.)

Chen, Y. and Wu, L. Graph neural networks: Graph struc-
ture learning. Graph Neural Networks: Foundations,
Frontiers, and Applications, pp. 297-321, 2022. (Cited
atp. 1.)

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the twentieth annual sym-
posium on Computational geometry, pp. 253-262, 2004.
(Cited at p. 13.)

Defferrard, M., Martin, L., Pena, R., and Perraudin, N.
Pygsp: Graph signal processing in python. URL https:
//github.com/epfl-1ts2/pygsp/. (Cited at
p- 14.)

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29, 2016. (Cited at p. 3.)

Dempster, A. P. Covariance selection. Biometrics, pp. 157-
175, 1972. (Cited at p. 3.)

Dong, W., Moses, C., and Li, K. Efficient k-nearest neigh-
bor graph construction for generic similarity measures.
In Proceedings of the 20th international conference on
World wide web, pp. 577-586, 2011. (Cited at p. 1.)

Dong, X., Thanou, D., Frossard, P., and Vandergheynst,
P. Learning laplacian matrix in smooth graph signal
representations. IEEFE Transactions on Signal Processing,
64(23):6160-6173, 2016. (Cited at pp. 1 and 3.)

Fatemi, B., El Asri, L., and Kazemi, S. M. Slaps: Self-
supervision improves structure learning for graph neural
networks. Advances in Neural Information Processing
Systems, 34:22667-22681, 2021. (Cited at p. 1.)

Fortunato, S. Community detection in graphs. Physics
reports, 486(3-5):75-174, 2010. (Cited at p. 3.)

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Protein
interface prediction using graph convolutional networks.
Advances in neural information processing systems, 30,
2017. (Cited at p. 1.)

Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse
covariance estimation with the graphical lasso. Biostatis-
tics, 9(3):432-441, 2008. (Cited at pp. 1 and 3.)

Fu, X., Zhang, J., Meng, Z., and King, I. Magnn: Metapath
aggregated graph neural network for heterogeneous graph
embedding. In Proceedings of The Web Conference 2020,
pp. 23312341, 2020. (Cited at p. 14.)

Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., and Ling, M. Scene
graph generation with external knowledge and image
reconstruction. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
1969-1978, 2019. (Cited at p. 1.)

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017. (Cited at p. 7.)

Hashemi, M., Gong, S., Ni, J., Fan, W., Prakash, B. A.,
and Jin, W. A comprehensive survey on graph reduc-
tion: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024. (Cited at p. 3.)

Holme, P. and Saramiki, J. Temporal networks. Physics
reports, 519(3):97-125, 2012. (Cited at p. 2.)

Hsieh, C.-J., Dhillon, I., Ravikumar, P.,, and Sustik,
M. Sparse inverse covariance matrix estimation using
quadratic approximation. Advances in neural information
processing systems, 24, 2011. (Cited at p. 1.)

https://github.com/epfl-lts2/pygsp/
https://github.com/epfl-lts2/pygsp/

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Hu, C., Cheng, L., Sepulcre, J., El Fakhri, G., Lu, Y. M.,
and Li, Q. A graph theoretical regression model for
brain connectivity learning of alzheimer’s disease. In
2013 IEEE 10th International Symposium on Biomedical
Imaging, pp. 616-619. IEEE, 2013. (Cited at p. 3.)

Jerrum, M. and Sinclair, A. Conductance and the rapid
mixing property for markov chains: the approximation
of permanent resolved. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pp.
235-244, 1988. (Cited at p. 7.)

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J.
Graph structure learning for robust graph neural networks.
In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp.

66-74, 2020. (Cited at p. 1.)

Kalofolias, V. How to learn a graph from smooth signals. In
Artificial intelligence and statistics, pp. 920-929. PMLR,
2016. (Cited at pp. 1 and 3.)

Kamvar, S. D., Klein, D., and Manning, C. D. Spectral
learning. In IJCAI, volume 3, pp. 561-566, 2003. (Cited
atp. 3.)

Kataria, M., Khandelwal, A., Das, R., Kumar, S., and
Jayadeva, J. Linear complexity framework for feature-
aware graph coarsening via hashing. In NeurIPS
2023 Workshop: New Frontiers in Graph Learning,
2023. URL https://openreview.net/forum?
id=HKdsrm5nCW. (Cited at p. 3.)

Kataria, M., Kumar, S., and Jayadeva, J. UGC: Uni-
versal graph coarsening. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
1d=nN6NSd1Qds. (Cited at pp. 3, 5, and 13.)

Khazane, A., Rider, J., Serpe, M., Gogoglou, A., Hines,
K., Bruss, C. B., and Serpe, R. Deeptrax: Embedding
graphs of financial transactions. In 2019 18th IEEE In-
ternational Conference On Machine Learning And Appli-
cations (ICMLA), pp. 126-133. IEEE, 2019. (Cited at
p- 2.)

Kim, S., Yun, S., and Kang, J. Dygrain: An incremental
learning framework for dynamic graphs. In IJCAI, pp.
3157-3163, 2022. (Cited at pp. 3 and 14.)

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. (Cited at pp. 7 and 14.)

Koller, D. and Friedman, N. Probabilistic graphical models:
principles and techniques. MIT press, 2009. (Cited at
p-3.)

10

Kumar, M., Sharma, A., and Kumar, S. A unified
framework for optimization-based graph coarsening.
Journal of Machine Learning Research, 24(118):1—
50,2023. URL http://jmlr.org/papers/v24/
22-1085.html. (Cited at p. 3.)

Lao, D., Yang, X., Wu, Q., and Yan, J. Variational inference
for training graph neural networks in low-data regime
through joint structure-label estimation. In Proceedings
of the 28th ACM SIGKDD conference on knowledge dis-
covery and data mining, pp. 824-834, 2022. (Cited at
p-1.)

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http.//yann.lecun.com/exdb/mnist, 2, 2010. (Cited at
pp- 8 and 15.)

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., and Pan,
S. Towards unsupervised deep graph structure learning.
In Proceedings of the ACM Web Conference 2022, pp.
1392-1403, 2022. (Cited at p. 1.)

Loukas, A. Graph reduction with spectral and cut guarantees.
J. Mach. Learn. Res., 20(116):1-42, 2019. (Cited at p. 3.)

Li, L. and Zhou, T. Link prediction in complex networks:
A survey. Physica A: statistical mechanics and its appli-
cations, 390(6):1150-1170, 2011. (Cited at p. 14.)

MacQueen, J. et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pp. 281-297. Oakland, CA,
USA, 1967. (Cited at pp. 1 and 3.)

Moon, K. R., Van Dijk, D., Wang, Z., Gigante, S., Burkhardt,
D. B., Chen, W. S., Yim, K., Elzen, A. v. d., Hirn, M. J.,
Coifman, R. R., et al. Visualizing structure and transitions
in high-dimensional biological data. Nature biotechnol-
0gy, 37(12):1482-1492, 2019. (Cited at pp. 8 and 19.)

Muja, M. and Lowe, D. G. Scalable nearest neighbor al-
gorithms for high dimensional data. IEEE transactions

on pattern analysis and machine intelligence, 36(11):
2227-2240, 2014. (Cited at p. 1.)

Newman, M. E. Modularity and community structure in net-

works. Proceedings of the national academy of sciences,
103(23):8577-8582, 2006. (Cited at pp. 4 and 7.)

Parisi, G. L., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural networks, 113:54-71, 2019. (Cited at
pp- 3 and 14.)

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings

https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=nN6NSd1Qds
https://openreview.net/forum?id=nN6NSd1Qds
http://jmlr.org/papers/v24/22-1085.html
http://jmlr.org/papers/v24/22-1085.html

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532—-1543, 2014.
(Cited at pp. 8 and 15.)

Shchur, O., Mumme, M., Bojchevski, A., and Giinnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018. (Cited at p. 14.)

Tsitsulin, A., Palowitch, J., Perozzi, B., and Miiller, E.
Graph clustering with graph neural networks. Journal of
Machine Learning Research, 24(127):1-21, 2023. (Cited
at pp. 3,4,and 7.)

Van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019. (Cited at pp. 3 and 14.)

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P, Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10-48550, 2017. (Cited at p. 7.)

Vogelstein, J. T., Roncal, W. G., Vogelstein, R. J., and Priebe,
C. E. Graph classification using signal-subgraphs: Appli-
cations in statistical connectomics. IEEE transactions on

pattern analysis and machine intelligence, 35(7):1539—
1551, 2012. (Cited at p. 14.)

Wagstaff, K., Cardie, C., Rogers, S., Schrodl, S., et al. Con-
strained k-means clustering with background knowledge.
In Icml, volume 1, pp. 577-584, 2001. (Cited at p. 3.)

Wang, F. and Zhang, C. Label propagation through lin-
ear neighborhoods. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 985-992,
2006. (Cited at pp. 1 and 3.)

Wang, K., Shen, Z., Huang, C., Wu, C., Dong, Y., and
Kanakia, A. Microsoft academic graph: When experts
are not enough. quantitative science studies, 1 (1), 396—
413, 2020. (Cited at p. 4.)

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440-442,
1998. (Cited at p. 15.)

Wu, Q., Zhao, W., Li, Z., Wipf, D. P,, and Yan, J. Node-
former: A scalable graph structure learning transformer
for node classification. Advances in Neural Information
Processing Systems, 35:27387-27401, 2022. (Cited at
p-1.)

Wu, T., Liu, Q., Cao, Y., Huang, Y., Wu, X.-M., and Ding, J.
Continual graph convolutional network for text classifica-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 13754-13762, 2023. (Cited
at pp. 3 and 14.)

11

Wu, Y., Lian, D., Xu, Y., Wu, L., and Chen, E. Graph
convolutional networks with markov random field reason-
ing for social spammer detection. In Proceedings of the

AAAI conference on artificial intelligence, volume 34, pp.
1054-1061, 2020. (Cited at p. 1.)

Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang,
Q., and Sun, J. Temporal recommendation on graphs
via long-and short-term preference fusion. In Proceed-
ings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 723-732,
2010. (Cited at p. 4.)

Xu, K., Hu, W.; Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018. (Cited at p. 7.)

Yang, F., Wang, W., Wang, F.,, Fang, Y., Tang, D., Huang, J.,
Lu, H., and Yao, J. scbert as a large-scale pretrained deep
language model for cell type annotation of single-cell rna-
seq data. Nature Machine Intelligence, 4(10):852-866,
2022. (Cited at p. 14.)

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40-48.

PMLR, 2016. (Cited at p. 14.)

You, J., Du, T., and Leskovec, J. Roland: graph learning
framework for dynamic graphs. In Proceedings of the
28th ACM SIGKDD conference on knowledge discovery
and data mining, pp. 2358-2366, 2022. (Cited at pp. 3
and 14.)

Zachary, W. W. An information flow model for conflict
and fission in small groups. Journal of anthropological
research, 33(4):452-473, 1977. (Cited at pp. 8, 15,
and 19.)

Zhang, X., Song, D., and Tao, D. Cglb: Benchmark tasks for
continual graph learning. Advances in Neural Information
Processing Systems, 35:13006-13021, 2022. (Cited at
pp- 3 and 14.)

Zhao, Y., Levina, E., and Zhu, J. Consistency of community
detection in networks under degree-corrected stochastic
block models. 2012. (Cited at pp. 4 and 13.)

Zhou, J., Cui, G, Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. Al open, 1:57-81, 2020.
(Cited at p. 1.)

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International con-
ference on Machine learning (ICML-03), pp. 912-919,
2003. (Cited at p. 3.)

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Zhu, Y., Xu, W.,, Zhang, J., Du, Y., Zhang, J., Liu, Q.,
Yang, C., and Wu, S. A survey on graph structure
learning: Progress and opportunities. arXiv preprint
arXiv:2103.03036, 2021. (Cited at p. 1.)

12

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Appendix

A. Degree-Corrected Stochastic Block Model(DC-SBM)

The DC-SBM is one of the most commonly used models for networks with communities and postulates that, given node
labels ¢ = ¢y, ...cy, the edge variables A ;s are generated via the formula

E[A,’j] = Hiejpci ch

, where 0; is a "degree parameter” associated with node ¢, reflecting its individual propernsity to form ties, and Pisa K x K
symmetric matrix containing the between/withincommunity edge probabilities and P, P, denotes the edge probabilities
between community ¢; and c;.

For DC-SBM model (Zhao et al., 2012) assumed P,, on n nodes with k classes, each node v; is given a label/degree
pair(c;, 8;), drawn from a discrete joint distribution Iy «,, which is fixed and does not depend on n. This implies that each
0; is one of a fixed set of values 0 < z; < < z,,. To facilitate analysis of asymptotic graph sparsity, we parameterize
the edge probability matrix P as P,, = p,, P where P is independent of n, and p,, = A, /n where \,, is the average degree
of the network.

B. Neighbourhood Preservation

Theorem 2. Neighborhood Preservation. Let N, (E;) denote the neighborhood of incoming nodes &; for the i™ community.

With partition matrix P; and M g (S;, X2) = GE(VE, AS) we identify the supernodes connected to incoming nodes E; and
subsequently select nodes within those supernodes; this subset of nodes is denoted by wy:. Formally,

wyy = J{ U)45 w,5) # 03}
vEE; SES;

Then, with probability I1(.c 4 p(c), it holds that Ny, (€:) C wy: where

plc) <1-— 2 c [1 — 6*7”2/(262)}

VT

and ¢ is a set containing all pairwise distance values (¢ = ||v — ul|) between every node v € £; and the nodes u € wyi. Here, ™' (s)
denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of M coar-

)

Proof: The probability that LSH random projection (Kataria et al., 2024; Datar et al., 2004) preserves the distance between
two nodes v and u i.e., d(u,v) = ¢, is given by:

o= [26() (-
where fo(z) = —2—e

Tor represents the Gaussian kernel when the projection matrix is randomly sampled from p-
stable(p = 2) distribution (Datar et al., 2004).
The probability p(c) can be decomposed into two terms:

p(c) = Si(c) — Sa2(c),

—x2/2

S1(c) and S3(c) are defined as follows:

2 T
Sl(C) = E/O e_(t/c)2/2dt § 1,

2 r 251
Sa(c) = — e~ (/722 gy
=7z), "

2 c " 2,5 &
(e = 2. C [w2l g
)= r/o ‘ e

13

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Expanding S2(c) :

92 ¢ r?/(2¢%)
Sa(c) = o ;/0 e Ydy
2 C 2 2
SQ(C): 7%; |:17€ /(2):|

Thus, the probability p(c) can be bounded as:

2 c 2 /(902
ple) <1— —- [1—6_’ /(2¢)}.
V2m T

Now, let ¢ be the set of all pairwise distances d(u,v), where v € &; and nodewy ;. The probability that all nodes in N (E;)
are preserved within wy i, requires that all distances ¢ € ¢ are also preserved. The probability is then given by:

11 »0.

ceP

[Toe =TT (1- = [7e]).

cED cEP

C. Continual Learning and Dynamic Graph Learning

In this subsection, we highlight the key distinctions between Graph Structure Learning (GSL) and related fields to justify
our specific selection of related works in Section 2.2. GSL is often confused with topics such as Continual Learning (CL)
and Dynamic Graph Learning (DGL).

CL (Van de Ven & Tolias, 2019; Zhang et al., 2022; Parisi et al., 2019) addresses the issue of catastrophic forgetting, where
a model’s performance on previously learned tasks degrades significantly after training on new tasks. In CL, the model has
access only to the current task’s data and cannot utilize data from prior tasks. Conversely, DGL (Kim et al., 2022; Wu et al.,
2023; You et al., 2022) focuses on capturing the evolving structure of graphs and maintaining updated graph representations,
with access to all prior information.

While both CL and DGL aim to enhance model adaptability to dynamic data, GSL is primarily concerned with generating
high-quality graph structures that can be leveraged for downstream tasks such as node classification (Kipf & Welling, 2016),
link prediction (Lii & Zhou, 2011), and graph classification (Vogelstein et al., 2012). Moreover, in CL and DGL, different
tasks typically involve distinct data distributions, whereas GSL assumes a consistent data distribution throughout.

D. Datasets

Datasets used in our experiments vary in size, with nodes ranging from 1k to 60k. Table 6 lists all the datasets we used in
our work. We evaluate our proposed framework GraphFlex on real-world datasets Cora ,Citeseer, Pubmed (Yang et al.,
2016), CS, Physics (Shchur et al., 2018), DBLP (Fu et al., 2020), all of which include graph structures. These datasets
allow us to compare the learned structures with the originals. Additionally, we utilize single-cell RNA pancreas datasets
(Yang et al., 2022), including Baron, Muraro, Segerstolpe, and Xin, where the graph structure is missing. The Baron
dataset was downloaded from the Gene Expression Omnibus (GEO) (accession no. GSE84133). The Muraro dataset was
downloaded from GEO (accession no. GSE85241). The Segerstolpe dataset was accessed from ArrayExpress (accession no.
E-MTAB-5061). The Xin dataset was downloaded from GEO (accession no. GSE81608). We simulate the expanding graph
scenario by splitting the original dataset across different 7 timestamps. We assumed 50% of the nodes were static, with the
remaining nodes arriving as incoming nodes at different timestamps.

Synthetic datasets: Different data generation techniques validate that our results are generalized to different settings. Please
refer to Table 6 for more details about the number of nodes, edges, features, and classes, Syn denotes the type of synthetic
datasets. Figure 7 shows graphs generated using different methods. We have employed three different ways to generate
synthetic datasets which are mentioned below:

* PyGSP(PyGsp): We used synthetic graphs created by PyGSP (Defferrard et al.) library. PyG-G and PyG-S denotes grid
and sensor graphs from PyGSP.

14

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

* Watts—Strogatz’s small world(SW): (Watts & Strogatz, 1998) proposed a generation model that produces graphs with
small-world properties, including short average path lengths and high clustering.

* Heterophily(HE): We propose a method for creating synthetic datasets to explore graph behavior across a heterophily
spectrum by manipulating heterophilic factor «, and classes. « is determined by dividing the number of edges connecting
nodes from different classes by the total number of edges in the graph.

Visulization Datasets: To evaluate, the learned graph structure, we have also included three datasets: (i) MNIST (LeCun
et al., 2010), consisting of handwritten digit images; (ii) Pre-trained GloVe embeddings (Pennington et al., 2014) of English
words; and (iii) Zachary’s karate club network (Zachary, 1977).

Category Data Nodes Edges Feat. Class Type
Cora 2,708 5,429 1,433 7 Citation network
Citeseer 3,327 9,104 3,703 6 Citation network
Original DBLP 17,716 52.8k 1,639 4 Research paper
Structure CS 18,333 163.7k 6,805 15 Co-authorship network
Known PubMed 19,717 44.3k 500 3 Citation network
Physics 34,493 2479k 8,415 5 Co-authorship network
Xin 1,449 NA 33,889 4 Human Pancreas
Original Baron Mouse 1,886 NA 14,861 13 Mouse Pancreas
Structure Muraro 2,122 NA 18,915 9 Human Pancreas
Not Known Segerstolpe 2,133 NA 22,757 13 Human Pancreas
Baron Human 8,569 NA 17,499 14 Human Pancreas
Syn 1 2,000 8,800 150 4 SW
Syn 2 5,000 22k 150 4 SW
Syn 3 10,000 44k 150 7 SW
Synthetic Syn 4 50,000 220k 150 7 SW
Syn 5 400 1,520 100 4 PyG-G
Syn 6 2,500 9,800 100 4 PyG-S
Syn 7 1,000 9,990 150 4 HE
Syn 8 2,000 40k 150 4 HE
MNIST 60,000 NA 784 10 Images
Visulization Datasets Zachary’s karate =~ 34 156 34 4 Karate club network
Glove 2,000 NA 50 NA GloVe embeddings

Table 6: Summary of the datasets.

N

/
(\/\/\/\/\/\/

(a) PyGSP-Sensor, N = 50, a=3 (b) PyGSP-Grid, N = 80, a=3 (c) SW, N =50, a=3 (d) HE, N =50, a=3

Figure 7: This figure illustrates different types of synthetic graphs generated using i1)PyGSP, ii) Watts—Strogatz’s small
world(SW), and iii) Heterophily(HE). N denotes the number of nodes, while o denotes the number of classes.

E. Algorithm

15

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Algorithm 1 GraphFlex: A Unified Structure Learning framework for expanding and Large Scale Graphs

Input: Graph G(Xo, Ag), expanding nodes set £ = {&, (V,, X))},
Parameter: GClust, GCoar, GL < Clustering, Coarsening and Learning Module
Output: Graph G (X1, Ar)

1: Train clustering module train(M .y st, GClust, Gy)

2: for each Ey(V;, X;) in] do

3: Cp = infer(Mepust, X¢), Cy € RNt denotes the communities of N; nodes at time ¢.

4: I, = unique(Cy).

5. for each I} in I; do

6: G:_, = subgraph(G;_1, I})

7 {Si_ |, Pl 1} = Meoar(Gi_}), Si_, € RF*? are features of k supernodes, P}, € R¥*N¢ is the partition matrix.
8: Gei_ 1 (Si_1, Al_}) = My (Si_,, X}), Gei_y is the learned graph on super-nodes S;_; and new node X;.

9: wi — []

10: for z € X} do

11: wi.append(x)

12: ny, = {n| Ai_,[n] > 0}

13: w.append(n,)

14: end for

15: Gi—1 = update(Gy—1, Mg (wy))
16: end for

17: G: =Gy

18: end for

19: return G (XT, AT)

F. Other GNN models

We used four GNN models, namely GCN, GraphSage, GIN, and GAT. Table 7 contains parameter details we used to train
GraphFlex. We have used these parameters across all methods.

| Logmodel | .
—— | GLasso
| L2model | =

— | Large model)
. / | KN | ’ —>
6 o

A ANN
t, @ Empirical

t, @ | Covariance |

Vanilla

GNN Models

J

Compare
Accuracy

Dynamic Nodes \9

GraphFlex

Figure 8: GNN training pipeline.
16

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

% Vanilla mSLdgSL m FullDataset

100
90
80 l
O 60 Z
5 7
S BEHE/E HEESHEE HEEH E ZEEH E HEHLHZE HEHEE
< E(ggéf’] B Be 6 I zzggg 585% 945 944
SRR R R
% 7ERH R “HEH B 7HEH %
Z 78 7 A B/ Z Z
20 Z Z Z Z Z
8 TP 770 TRER R RRR R RRR R BRR
0997777 777777 78BR7E 7BER B 7EEBR B 7ER/
. 997%%9% %77%%7 7Med78 7HEE78 7BEE7R 78877
Cora Citeseer DBLP Pubmed Physics (O]

Datasets

Figure 9: GraphSage accuracies when structure is learned or given with 3 different scenarios(Vanilla, GraphFlex, Original)
across different datasets, highlighting performance with 30% node growth over 25 timestamps.

Figure 8 illustrates the pipeline for training our GNN models. Graph structures were learned using both existing methods
and GraphFlex, and GNN models were subsequently trained on both structures. Results across all datasets are presented in
Table 8 and Table 4.

Table 7: GNN model parameters.

Model Hidden Layers L.R Decay Epoch
GCN {64, 64} 0.003 0.0005 500
GraphSage {64,064} 0.003 0.0005 500
GIN {64,064} 0.003 0.0005 500
GAT {64,64} 0.003 0.0005 500

We randomly split data in 60%, 20%, 20% for training-validation-test. The results for these models on synthetic datasets are
presented in Table 8.

Figure 8 illustrates the pipeline for training our GNN models. Graph structures were learned using both existing methods
and GraphFlex, and GNN models were subsequently trained on both structures.
G. Computational Efficiency

Table 9 illustrates the remaining computational time for learning graph structures using GraphFLEx with existing Vanilla
methods on Synthetic datasets. While traditional methods may be efficient for small graphs, GraphFLEx scales significantly
better, excelling on large datasets like Pubmed and Syn 5, where most methods fail.

17

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

Table 8: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla (Van.)
methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of nodes are treated
as new nodes coming in 25 different timestamps. The best and the second-best accuracies in each row are highlighted by
dark and lighter shades of
OOM and OOT denotes out-of-memory and out-of-time respectively.

, respectively. GraphFLEX’s structure beats all of the vanilla structures for every dataset.

Dataset Model ANN KNN log-model 12-model COVA large-model Base Struc.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex
GAT 18.73 73.84 20.96 73.65 16.14 72.36 18.74 73.10 49.72 77.55 14.28 76.43 79.77
SAGE 17.25 77.37 18.00 76.99 19.48 77.40 19.85 75.51 49.35 76.99 14.28 77.55 82.37
Cora GeN 1799 78.11 17.81 77.92 18.55 77.74 20.41 79.22 47.31 80.52 14.28 79.03 84.60
GIN 16.69 76.44 18.74 80.52 17.44 76.25 19.29 76.62 48.79 78.85 14.28 76.06 81.63
GAT 16.51 61.82 25.00 62.27 19.24 64.70 18.18 63.48 20.91 62.73 16.67 62.27 66.42
SAGE 16.66 68.48 16.67 68.64 22.12 69.39 22.42 69.85 22.88 71.52 16.67 69.39 72.57
Citeseer GCN 28.18 60.00 16.67 61.97 20.45 65.45 19.70 64.24 21.06 64.70 16.67 63.18 68.03
GIN 16.66 64.39 16.67 63.94 20.15 59.85 18.64 63.64 22.12 60.30 16.67 61.81 67.38
GAT 29.55 92.07 OOM 90.86 OOT 91.64 OOT 91.64 3579 92.52 OOT 93.74 89.49
SAGE 26.75 87.89 OOM 91.05 OOT 86.64 OOT 86.64 32.92 90.44 OOT 86.01 90.03
Syn 4 GCN 28.85 51.97 OOM 19.58 OOT 1829 OOT 18.92 33.80 26.60 OOT 36.85 21.43
GIN 28.50 65.61 OOM 31.06 OOT 26.51 OOT 26.56 34.03 46.40 OOT 47.10 29.35
GAT 44.00 86.80 43.60 86.60 30.00 78.75 55.40 92.80 36.20 93.60 31.80 92.80 97.20
SAGE 41.00 93.80 41.40 93.60 33.75 88.75 57.60 94.00 35.20 94.80 28.20 95.60 97.40
Syn 6 GCN 43.60 88.80 42.20 87.40 26.25 81.25 55.60 92.40 31.40 94.40 25.20 94.00 99.40
GIN 39.60 89.00 40.40 86.60 21.25 82.50 55.20 91.80 30.00 94.60 30.40 92.00 98.80
GAT 29.55 99.75 33.75 88.75 88.25 99.25 88.25 99.25 26.00 85.50 94.00 96.00 98.50
SAGE 26.75 100.0 32.50 100.0 88.75 99.50 88.75 99.50 26.75 100.0 92.50 100.0 100.0
Syn 8 GCN 28.85 98.75 31.75 99.75 88.75 99.00 88.75 99.00 28.50 99.25 95.00 100.0 100.0
GIN 28.50 50.00 30.50 91.00 82.25 91.50 82.25 91.50 27.25 81.75 91.75 92.25 78.25

Table 9: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods (Vanilla referred
to as Van.). The experimental setup involves treating 50% of the data as static, while the remaining 50% of nodes are treated

as incoming nodes arriving in 25 different timestamps. The best times are highlighted by color . OOM and OOT
denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model 12-model COVA large-model

Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Synl 194 9.8 2.5 10.5 2418 564 372 8.8 3.5 8.3 205 94

Syn2 473 16.9 6.6 18.3 14000 144 214 22.6 203 18.6 1259 @ 164

Syn5 @ 5.1 11.5 0.8 7.3 57.4 28 1.1 5.8 0.2 4.8 3.2 53

Syn6 16.6 9.9 2.8 11.4 1766 96.3 193 101 53 8.9 324 9.6

Syn7 10.6 7.4 1.4 8.9 704 852 103 7.9 0.9 6.4 36.5 8.2

Syn8 19.6 112 2.5 11.7 2416 457 372 170 34 10.9 204 11.7

H. Visualization of Growing graphs

This section helps us visualize the phases of our growing graphs. We have generated a synthetic graph of 60 nodes using
PyGSP-Sensor and HE methods mentioned in Appendix D. We then added 40 new nodes denoted using black color in these
existing graphs at four different timestamps. Figure 10 and Figure 11 shows the learned graph structure after each timestamp
for two different Synthetic graphs.

18

GraphFLEXx: Structure Learning Framework for Large Expanding Graphs

PyGsp

(a) Initial graph Go (b) =10, G4 (c) =20, G2 d) a=30,G3 (e) =40, Gy

Figure 10: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes are denoted
using black color, and « denotes number of new nodes. Py%vE denotes type synthetic graph.

SN

(a) Initial graph Go (b) =10, Gy () =20, G2 (d) a=30, G5 (&) =40, G4

Figure 11: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes are denoted

using black color, and « denotes the number of new node%. Hlijl denotes the type of synthetic graph.
anilla

—]

(a) ANN (b) Emp. Cov. (c) KNN

(g) Emp Cov. (h) KNN (i) L2 model (j) Log model
Figure 12: This figure compares the structures learned on Zachary’s karate dataset when existing methods are employed with
GraphFlex and when existing methods are used individually. We consider six nodes, denoted in black, as dynamic nodes.
I. Structure Comparison on Karate Dataset

This section involves a comparison of the graph structure learned from GraphFlex with existing methods. Six nodes were
randomly selected and considered as new nodes. Figure 12 visually depicts the structures learned using GraphFlex compared
to other methods. It is evident from the figure that the structure known with GraphFlex closely resembles the original graph
structure. Figure 13 shows the original structure of Zachary’s karate club network (Zachary, 1977). We assumed six random
nodes to be dynamic nodes, and the structure learned using GraphFlex compared to existing methods is shown in Figure 12.

J. Clustering Quality

Figure 14 shows the PHATE (Moon et al., 2019) visualization of clusters learned using GraphFLEX’s clustering module
M st for Xin, MNIST, and Baron — Human datasets.

19

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Original Karate Graph

Figure 13: Original Karate Graph

.
.

\\M—..\-ﬁﬁ‘

.w"“"n. /

(a) Xin (b) MNIST (c) Baron Human

Figure 14: PHATE visualization of clusters learnt using GraphFlex clustering module for scRNA-seq datasets.

20

	Introduction
	Problem Formulation and Background
	Graph Reduction
	Unsupervised Graph Structure Learning

	GraphFLEx
	Incremental Graph Learning for Large Datasets
	Detecting Communities
	Learning Graph Structure on a Coarse Graph
	Graph Learning only with Potential Nodes
	GraphFLEx Offering Multiple SGL Frameworks
	Run Time Analysis

	Experiments
	Node Classification Accuracy
	Clustering Quality
	Structure Visualization

	Conclusion
	Degree-Corrected Stochastic Block Model(DC-SBM)
	Neighbourhood Preservation
	Continual Learning and Dynamic Graph Learning
	Datasets
	Algorithm
	Other GNN models
	Computational Efficiency
	Visualization of Growing graphs
	Structure Comparison on Karate Dataset
	Clustering Quality

