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Abstract
Graph structure learning is a fundamental prob-
lem critical for interpretability and uncovering
relationships in data. While graphical data is cen-
tral to information representation, inferring graph
structures remains challenging. Existing methods
falter with expanding graphs, requiring costly re-
learning of the entire structure for new nodes, and
face severe computational and memory demands
on large graphs. To overcome these challenges,
we propose GraphFLEx: a unified framework
for structure learning in Large and Expanding
Graphs. GraphFLEx efficiently limits potential
connections to relevant nodes by leveraging clus-
tering and coarsening techniques, significantly re-
ducing computational costs and enhancing scala-
bility. GraphFLEx provides 48 flexible methods
for graph structure learning by integrating diverse
learning, coarsening, and clustering approaches.
Extensive experiments with various GNN models
demonstrate its effectiveness. Our code is avail-
able here.

1. Introduction
Graph representations capture relationships between enti-
ties, vital across diverse fields like biology, finance, soci-
ology, engineering, and operations research (Zhou et al.,
2020; Fout et al., 2017; Wu et al., 2020). While some re-
lationships, such as social connections or sensor networks,
are directly observable, many, including gene regulatory
networks, scene graph generation (Gu et al., 2019), brain
networks, (Zhu et al., 2021) and drug interactions, require
inference (Allen et al., 2012). Even when available, graph
data often contains noise, requiring denoising and recalibra-
tion. Thus, inferring graph structures becomes crucial, often
surpassing the choice of graph or algorithm itself.
Graph Structure Learning (GSL) offers a solution, enabling
the construction and refinement of graph topologies. GSL
has been widely studied in both supervised and unsupervised
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contexts (Liu et al., 2022; Chen & Wu, 2022). In supervised
GSL (s-SGL), the adjacency matrix and Graph Neural Net-
works (GNNs) are jointly optimized for a downstream task,
such as node classification. Notable examples of s-GSL
include NodeFormer (Wu et al., 2022), Pro−GNN (Jin
et al., 2020), WSGNN (Lao et al., 2022), and SLAPS
(Fatemi et al., 2021). Unsupervised GSL (u-SGL), on the
other hand, focuses solely on learning the underlying graph
structure, typically through adjacency or Laplacian matrices.
Methods in this category include approximate nearest neigh-
bours (A−NN ) (Dong et al., 2011; Muja & Lowe, 2014), k-
nearest neighbours (k−NN ) (MacQueen et al., 1967; Wang
& Zhang, 2006), covariance estimation (emp.Cov.) (Hsieh
et al., 2011), graphical lasso (GLasso) (Friedman et al.,
2008), and signal processing techniques like l2-model,log-
model, and large-model (Dong et al., 2016; Kalofolias,
2016).

While s-SGL methods offer promising results, they have lim-
itations: (1) they rely on label information, restricting their
applicability in settings without annotations; (2) they are
often task-specific, optimizing for node classification rather
than general graph topology (Liu et al., 2022). These issues
are avoided in u-SGL approaches, which are the focus of
this work. However, both s-SGL and u-SGL face challenges
when applied to large-scale or expanding datasets.
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Figure 1: High computational time required to learn graph struc-
tures using existing methods, whereas GraphFLEx effectively con-
trols computational growth, achieving near-linear scalability. No-
tably, Vanilla KNN failed to construct graph structures with fewer
than 10k nodes due to memory limitations.

As contemporary datasets grow in size, scalability becomes
a critical challenge, with existing methods proving too com-
putationally expensive for large-scale graphs. In such cases,
Approximate Nearest Neighbours (A−NN ), with time com-
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Figure 2: General pipeline of GraphFLEx, it processes a graph (Gt−1) and incoming nodes (Et) at time t, comprising three main
components: a) Clustering, which infers Et nodes to existing communities using a pre-trained model Mclust(G0); b) Coarsening, reduces
the size of the desired community; and c) Learning, where the structure associated with Et nodes are learned using the coarsened graph,
followed by projecting this structure onto the original graph to create graph Gt at time t.

plexity O(N log(N)), is often the only feasible solution. In
contrast, methods like k-NN, log-model, and l2-model are
significantly more costly, with time complexities exceeding
O(N2).
The aforementioned techniques are ineffective for learning
large-scale graphs because they consider the entire collec-
tion of nodes to determine connections for every individual
node. All nodes, however, only have connections to a very
small set of nodes. Therefore, we need to devise a method
that can refine the entire graph’s node set to a smaller subset
of potential node sets, with the aim of identifying feasible
connections. Additionally, expanding graphs where new
nodes continuously arrive further complicates the issue, as
existing methods require re-learning the entire graph struc-
ture with each new node (Khazane et al., 2019; Holme &
Saramäki, 2012). This makes them inefficient for expanding
data. To address these challenges, we propose GraphFLEx,
a comprehensive framework that tackles both scalability for
large datasets and adaptability for growing graphs.
As shown in Figure 2, GraphFLEx comprises three key
modules: (i) Graph Clustering, (ii) Graph Coarsening, and
(iii) Graph Learning. By leveraging clustering and coarsen-
ing, GraphFLEx significantly reduces computational over-
head by restricting possible connections to only relevant
nodes. Figure 1 compares the graph structure learning time,
highlighting GraphFLEx’s efficiency over existing methods.
Key contributions of GraphFLEx include:

Key Contributions and Novelty.

• We provide strong theoretical guarantees that the struc-
ture learned from a small subset of nodes is equivalent
to that learned from the full set. This is supported by
empirical results using real-world and synthetic datasets,
demonstrating the effectiveness of GraphFLEx across di-
verse graph structures.

• GraphFLEx is composed of independently operating mod-
ules, allowing the creation of new learning frameworks by
modifying any of its three modules. It currently supports
48 distinct methods for learning graph structure, offering
flexibility across various domains.

• GraphFLEx efficiently handles large-scale and expanding
graphs, enhancing scalability for graph learning tasks.

• GraphFLEx serves as a comprehensive framework appli-
cable individually for clustering, coarsening, and learning
tasks.

2. Problem Formulation and Background
A graph G is represented using G(V,A,X) where V =
{v1, v2...vN} is the set of N nodes, each node vi has
a d−dimensional feature vector xi in X ∈ RN×d and
A ∈ RN×N is adjacency matrix representing connection
between ith and jth nodes when entry Aij > 0. An ex-
panding graph EG can be considered a variant of graph G
where nodes v now have an associated timestamp τv. We
can represent a expanding graph as a sequence of graphs,
i.e., EG = {G0,G1, ...GT } where {G0 ⊆ G1.... ⊆ GT } at

2
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τ ∈ {0, ...T} timestamps. New nodes arriving at different
timestamps are seamlessly integrating into initial graph G0.

Problem statement. Given a partially known or missing
graph structure, our goal is to incrementally learn the whole
graph, i.e., learn adjacency or laplacian matrix. Specifically,
we consider two unsupervised GSL tasks:

Goal 1. Large Datasets with Missing Graph Structure:
In this setting, the graph structure is entirely unavailable,
and existing methods are computationally infeasible for
learning the whole graph in a single step. To address this
issue, we first randomly partition the dataset into exclusive
subsets. We then learn the initial graph G0(V0, X0) over
a small subset of nodes and incrementally expand it by
integrating additional partitions, ultimately reconstructing
the full graph GT .

Goal 2. Partially Available Graph: In this case, we only
have access to the graph Gt at timestamp t, with new nodes
arriving over time. The goal is to update the graph incre-
mentally to obtain GT , without re-learning it from scratch
at each timestamp.

GraphFlex addresses these challenges with a unified frame-
work, outlined in Section 3. Before delving into the frame-
work, we review some key concepts.

2.1. Graph Reduction

Graph reduction encompasses sparsification, clustering,
coarsening, and condensation (Hashemi et al., 2024). Graph-
Flex employs clustering and coarsening to refine the set of
relevant nodes for potential connections.
Graph Clustering. Graphs often exhibit global heterogene-
ity with localized homogeneity, making them well-suited for
clustering (Fortunato, 2010). Clusters capture higher-order
structures, aiding graph learning. Methods like DMoN (Tsit-
sulin et al., 2023) use GNNs for soft cluster assignments,
while Spectral Clustering (SC) (Kamvar et al., 2003) and
K-means (Wagstaff et al., 2001; MacQueen et al., 1967)
efficiently detect communities. DiffPool (Bruna et al., 2014;
Defferrard et al., 2016) applies SC for pooling in GNNs.
Graph Coarsening. Graph Coarsening (GC) reduces a
graph G(V,E,X) with N nodes and features X ∈ RN×d

into a smaller graph Gc(Ṽ , Ẽ, X̃) with n ≪ N nodes and
X̃ ∈ Rn×d. This is achieved via learning a coarsening ma-
trix P ∈ Rn×N , mapping similar nodes in G to super-nodes
in Gc, ensuring X̃ = PX while preserving key properties
(Loukas, 2019; Kataria et al., 2023; Kumar et al., 2023;
Kataria et al., 2024).

2.2. Unsupervised Graph Structure Learning

Unsupervised graph learning spans from simple k-NN
weighting (Wang & Zhang, 2006; Zhu et al., 2003) to ad-
vanced statistical and graph signal processing (GSP) tech-

Table 1: Unsupervised Graph Structure Learning Methods

Method Time Complexity Formulation

GLasso O(N3) maxΘ log detΘ

−tr(Σ̂Θ)− ρ∥Θ∥1
log-model O(N2) minW∈W ∥W ◦ Z∥1,1

−α1T log(W1) + β
2
∥W∥2F

l2-model O(N2) minW∈W ∥W ◦ Z∥1,1
+α∥W1∥2 + α∥W∥2F
+1{∥W∥1,1 = n}

large-model O(N log(N)) minW∈W̃ ∥W ◦ Z∥1,1
−α1T log(W1) + β

2
∥W∥2F

niques. Statistical methods, also known as probabilistic
graphical models, assume an underlying graph G governs
the joint distribution of data X ∈ RN×d (Koller & Fried-
man, 2009; Banerjee et al., 2008; Friedman et al., 2008).
Some approaches (Dempster, 1972) prune elements in the in-
verse sample covariance matrix Σ̂ = 1

d−1XXT and sparse
inverse covariance estimators, such as Graphical Lasso
(GLasso) (Friedman et al., 2008): maximizeΘ log detΘ−
tr(Σ̂Θ)−ρ∥Θ∥1, where Θ is the inverse covariance matrix.
However, these methods struggle with small sample sizes.
Graph Signal Processing (GSP) techniques analyze signals
on known graphs, ensuring properties like smoothness and
sparsity. Signal smoothness on a graph G is quantified by
the Laplacian quadratic form:

Q(L) = xTLx =
1

2

∑
i,j

wij(x(i)− x(j))2.

For a set of vectors X , smoothness is measured using the
Dirichlet energy (Belkin et al., 2006): tr(XTLX). State-
of-the-art methods (Dong et al., 2016; Kalofolias, 2016;
Hu et al., 2013) optimize Dirichlet energy while enforcing
sparsity or specific structural constraints. Table 1 compares
various graph learning methods based on their formulations
and time complexities.
Remark 1. Graph Structure Learning (GSL) differs signifi-
cantly from Continual Learning (CL) (Van de Ven & Tolias,
2019; Zhang et al., 2022; Parisi et al., 2019) and Dynamic
Graph Learning (DGL) (Kim et al., 2022; Wu et al., 2023;
You et al., 2022), as discussed in Appendix C.

3. GraphFLEx
In this section, we introduce GraphFLEx, which has three
main modules:

• Graph Clustering. Identifies communities and extracts
higher-order structural information,

• Graph Coarsening. Is used to coarsen down the desired
community, if the community itself is large,

• Graph Learning. Learns the graph’s structure using a

3
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limited subset of nodes from the clustering and coarsening
modules, enabling scalability.

For more details, see Algorithm 1 in Appendix E.

3.1. Incremental Graph Learning for Large Datasets

Real-world graph data is continuously expanding. For in-
stance, e-commerce networks accumulate new clicks and
purchases daily (Xiang et al., 2010), while academic net-
works grow with new researchers and publications (Wang
et al., 2020). This expanding behaviour suggests that large
graphs can be efficiently processed by learning them incre-
mentally in smaller segments.
Given a large dataset L(VL, XL), where VL is the node set
and XL represents node features, we define an expanding
dataset setting LE = {ETτ=0}. Initially, L is split into: (i)
a static dataset E0(V0, X0) and (ii) an expanding dataset
E = {Eτ (Vτ , Xτ )}Tτ=1. Both Goal 1 (large datasets with
missing graph structure) and Goal 2 (partially available
graphs with incremental updates), discussed in Section 2,
share the common objective of incrementally learning and
updating the graph structure as new data arrives. Graph-
FLEx handles these by decomposing the problem into two
key components:

• Initial Graph G0(V0, A0, X0): For Goal 1, where the
graph structure is entirely missing, E0(V0, X0) is used
to construct G0 from scratch using structure learning
methods (see Section 2.2). For Goal 2, the initial graph
G0(V0, A0, X0) is already available and serves as the start-
ing point for incremental updates.

• Expanding Dataset E = {Eτ (Vτ , Xτ )}Tτ=1: In both
cases, E consists of incoming nodes and features arriv-
ing over T timestamps. These nodes are progressively
integrated into the existing graph, enabling continuous
adaptation and growth.

The partition is controlled by a parameter r, which deter-
mines the proportion of static nodes: r = ∥V0∥

∥VL∥ . For exam-
ple, r = 0.2 implies that 20% of VL is treated as static, while
the remaining 80% arrives incrementally over T timestamps.
In our experiments, we set r = 0.5 and T = 25.

Remark 2. We can learn Gτ (Vτ , Aτ , Xτ ) by aggregating Eτ
nodes in Gτ−1 graph. Our goal is to learn GT (VT , AT , XT )
after T th-timestamp.

3.2. Detecting Communities

From the static graph G0, our goal is to learn higher-order
structural information, identifying potential communities
to which incoming nodes (V ∈ V τ ) may belong. We train
the community detection/clustering model Mclust once
using G0, allowing subsequent inference of clusters for all
incoming nodes. While our framework supports spectral
and k-means clustering, our primary focus has been on

Graph Neural Network (GNN)-based clustering methods.
Specifically, we use DMoN (Tsitsulin et al., 2023; Bianchi
et al., 2020; Bianchi, 2022), which maximizes spectral
modularity. Modularity (Newman, 2006) measures the
divergence between intra-cluster edges and the expected
number. These methods use a GNN layer to compute the
partition matrix C = softmax(MLP(X̃, θMLP)) ∈ RN×K ,
where K is the number of clusters and X̃ is the updated fea-
ture embedding generated by one or more message-passing
layers. To optimize the C matrix, we minimize the loss
function ∆(C;A) = − 1

2mTr(CTBC) +
√
k

n |ΣiC
T
i |F − 1,

which combines spectral modularity maximization with
regularization to prevent trivial solutions, where B is the
modularity matrix (Tsitsulin et al., 2023). Our static graph
G0 and incoming nodes E follow Assumption 1.

Assumption 1. We assume that the generated graphs ad-
here to the Degree-Corrected Stochastic Block Model (DC-
SBM) (Zhao et al., 2012), where intra-class (or intra-
community) links are more likely than inter-class links.

For more details on DC-SBM, see Appendix A.
Lemma 1. Mclust Consistency. We adopt the theoretical
framework of (Zhao et al., 2012) for a DC-SBM with N
nodes and k classes. The edge probability matrix is parame-
terized as PN = ρNP , where P ∈ Rk×k is a symmetric ma-
trix containing the between/within community edge probabil-
ities and it is independent of N , ρN = λN/N , and λN is the
average degree of the network. Let ŷN = [ŷ1, ŷ2, . . . , ŷN ]
denote the predicted class labels, and let ĈN be the corre-
sponding N × k one-hot matrix. Let the true class label
matrix is CN , and µ is any k × k permutation matrix. Un-
der the adjacency matrix A(N), the global maximum of the
objective ∆(·;A(N)) is denoted as Ĉ∗

N . The consistency of
class predictions is defined as:

1. Strong Consistency.
PN

[
min
µ

∥Ĉ∗
Nµ− CN∥2F = 0

]
→ 1 as N → ∞,

2. Weak Consistency.

∀ε > 0, PN

[
min
µ

1

N
∥Ĉ∗

Nµ− CN∥2F < ε

]
→ 1 as N → ∞.

where ∥ · ∥F is the Frobenius norm. Under the conditions
of Theorem 3.1 from (Zhao et al., 2012):

• The Mclust objective is strongly consistent if
λN/ log(N)→∞, and

• It is weakly consistent when λN →∞.

Remark 3. Structure Learning within Communities. In
GraphFLEx, we focus on learning the structure within
each community rather than the structure of the entire
dataset at once. Strong consistency ensures perfect com-
munity recovery, meaning no inter-community edges exist
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representing the ideal case. Weak consistency, however,
allows for a small fraction (ϵ) of inter-community edges,
where ϵ is controlled by ρn in Pn = ρnP , influencing graph
sparsity.

By Lemma 1 and Assumption 1, stronger consistency leads
to more precise structure learning, whereas weaker consis-
tency permits a limited number of inter-community edges.

3.3. Learning Graph Structure on a Coarse Graph

After trainingMclust, we identify communities for incoming
nodes, starting with τ = 1. Once assigned, we determine
significant communities those with at least one incoming
node and learn their connections to the respective commu-
nity subgraphs. For large datasets, substantial community
sizes may again introduce scalability issues. To mitigate this,
we first coarsen the large community graph into a smaller
graph and use it to identify potential connections for incom-
ing nodes. This process constitutes the second module of
GraphFLEx, denoted asMcoar, which employs LSH-based
hashing for graph coarsening. The supernode index for ith

node is given as:

Hi = maxOccurance

{⌊
1

r
· (W ·Xi + b)

⌋}
(1)

where r (bin width) controls the coarsened graph size,
W represents random projection matrix, X is the feature
matrix, and b is the bias term. For further details, refer
to UGC (Kataria et al., 2024). After coarsening the ith

community (Ci),Mcoar(Ci) = {Pi, Si} yields a partition
matrix Pi ∈ R∥Si∥×∥Ci∥ and a set of coarsened supernodes
(Si), as discussed in Section 2.

Definition 1. The neighborhood of a set of nodes Ei is
defined as the union of the top k most similar nodes in Ci
for each node v ∈ Ei, where similarity is measured by the
distance function d(v, u). A node u ∈ Ci is considered part
of the neighborhood if its distance d(v, u) is among the k
smallest distances for all u′ ∈ Ci.

Nk(Ei) =
⋃
v∈Ei

{u ∈ Ci | d(v, u) ≤ top-k[d(v, u′) : u′ ∈ Ci]}

Goal 3. The neighborhood of incoming nodesNk(Ei) repre-
sents the ideal set of nodes where the incoming nodes Ei are
likely to establish connections when the entire community is
provided to a structure learning framework.. A robust coars-
ening framework must reduce the number of nodes within
each community Ci while ensuring that the neighborhood
of the incoming nodes is preserved.

3.4. Graph Learning only with Potential Nodes

As we now have a smaller representation of the community,
we can employ any graph learning algorithms discussed in

Section 2.2 to learn a graph between coarsened supernodes
Si and incoming nodes (V i

τ ∈ Vτ ). This is the third module
of GraphFLEx, i.e., graph learning; we denote it asMgl.
The number of supernodes in Si is much smaller compared
to the original size of the community, i.e., ∥Si∥ ≪ ∥Ci∥;
scalability is not an issue now. We learn a small graph first
using Mgl(Si, X

i
τ ) = G̃iτ (V c

τ , A
c
τ ) where Xi

τ represents
features of new nodes belonging to ith community at time
τ , G̃iτ (V c

τ , A
c
τ ) representing the graph between supernodes

and incoming nodes. Utilizing the partition matrix Pi

obtained from Mcoar, we can precisely determine the set
of nodes associated with each supernode. For every new
node V ∈ V i

τ , we identify the connected supernodes and
subsequently select nodes within those supernodes. This
subset of nodes is denoted by ωV i

τ
, the sub-graph associated

with ωV i
τ

represented by Giτ−1(ωV i
τ
) then undergoes an

additional round of graph learningMgl(Giτ−1(ωV i
τ
), Xi

τ ),
ultimately providing a clear and accurate connection of new
nodes V i

τ with nodes of Gτ−1, ultimately updating it to
Gτ . This multi-step approach, characterized by coarsening,
learning on coarsened graphs, and translation to the original
graph, ensures scalability.

Theorem 1. Neighborhood Preservation. Let Nk(Ei) de-
note the neighborhood of incoming nodes Ei for the ith

community. With partition matrix Pi andMgl(Si, X
i
τ ) =

Gcτ (V c
τ , A

c
τ ) we identify the supernodes connected to incom-

ing nodes Ei and subsequently select nodes within those
supernodes; this subset of nodes is denoted by ωV i

τ
. For-

mally,

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}
Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i

τ

where
p(c) ≤ 1− 2√

2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v−u∥)
between every node v ∈ Ei and the nodes u ∈ ωV i

τ
. Here, π−1(s)

denotes the set of nodes mapped to supernode s, r is the bin-width
hyperparameter of Mcoar.

Proof. The proof is deferred in Appendix B.

Remark 4. Theorem 1 establishes that, with a constant prob-
ability of success, the neighborhood of incoming nodes
Nk(Ei) can be effectively recovered using the GraphFLEx
multistep approach, which involves coarsening and learning
on the coarsened graph, i.e., Nk(Ei) ⊆ ωV i

τ
. The set ωV i

τ
,

estimated by GraphFLEx, identifies potential candidates
where incoming nodes are likely to connect. The probability
of failure can be reduced by regulating the average degree
of connectivity in Mgl(Si, X

i
τ ) = Gcτ (V c

τ , A
c
τ ). While a

fully connected Gcτ ensures all nodes in the community are
candidates, it significantly increases computational costs for
large communities.

5
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Table 2: Time complexity analysis of GraphFLEx. Here, N is the number of nodes in the graph, k is the number of nodes in the static
subgraph used for clustering (k ≪ N ), and c represents the number of detected communities. kτ denotes the number of nodes at
timestamp τ . Finally, α = ∥Si

τ∥+ ∥Ei
τ∥ is the sum of coarsened and incoming nodes in the relevant community at τ timestamp.

Mclust Mcoar Mgl GraphFLEx
Best (kNN-UGC-ANN) O(k2) O

(
kτ

c

)
O(α logα) O(k2 + kτ

c + α logα)

Worst (SC-FGC-GLasso) O(k3) O
((

kτ

c

)2 ∥Si
τ∥
)

O(α3) O(k3 +
(
kτ

c

)2 ∥Si
τ∥+ α3)

3.5. GraphFLEx Offering Multiple SGL Frameworks

Each module in Figure 3, controls distinct properties: clus-
tering influences community detection, coarsening governs
supernode formation to reduce graph complexity, and the
learning module enforces diverse structural properties. Al-
tering any of these modules results in a new graph learning
method. Currently, we support 48 different graph learning
configurations, and this number scales exponentially with
the addition of new methods to any module. The number
of possible frameworks is given by α× β × γ, where α, β,
and γ represent the number of clustering, coarsening, and
learning methods, respectively.

Figure 3: The versatility of GraphFlex in supporting multiple
methods for structure learning.

3.6. Run Time Analysis

We evaluate the run-time complexity of GraphFLEx in two
scenarios: (a) the worst-case scenario, where computation-
ally intensive clustering and coarsening modules are se-
lected, providing an upper bound on time complexity, and
(b) the best-case scenario, where the most efficient mod-
ules are chosen. Table 2 summarizes the analysis. The run
time of GraphFLEx is primarily determined by the learning
module (Mgl). GraphFLEx computational time is always
bounded by existing approaches, as it operates on a signifi-
cantly reduced graph space, ensuring efficient performance,
especially for larger or expanding graphs. This is also illus-
trated in Table 3.

4. Experiments
In this section, we conclude the experiments to back up our
findings.
Tasks and Datasets. The experiments focus on four key
aspects of GraphFLEx: its computational efficiency, scal-
ability in handling large graphs, the quality of the learned
graph structure, and its ability to efficiently handle expand-
ing graphs. To validate the characteristics of GraphFLEx,
we conduct extensive experiments on 22 different datasets,
including (a) datasets that already have a complete graph
structure (allowing comparison between the learned and the
original structure), (b) datasets with missing graph struc-
tures, (c) synthetic datasets, and (d) small datasets for visu-
alizing the graph structure. More details about datasets are
presented in Table 6 in Appendix D.
System Specifications: All the experiments conducted for
this work were performed on an Intel Xeon W-295 CPU and
64GB of RAM desktop using the Python environment.

Computational Efficiency. Existing methods like k-NN
and log-model struggle to learn graph structures even for
20k nodes due to out-of-memory (OOM) or out-of-time
(OOT) issues, while l2-model and large-model struggle
beyond 50k nodes. Although A-NN and emp-Covar. are
faster, GraphFLEx outperforms them on sufficiently large
graphs (Table 3). While traditional methods may be efficient
for small graphs, GraphFLEx scales significantly better,
excelling on large datasets like Pubmed and Syn 5, where
most methods fail. It accelerates structure learning, making
A-NN 3× faster and emp-Covar. 2× faster.

4.1. Node Classification Accuracy

Experimental Setup. We now evaluate the prediction per-
formance of GNN models when trained on graph structures
learned from three distinct scenarios: 1) Original Struc-
ture: GNN models trained on the original graph structure,
which we refer to as the Base Structure, 2) GraphFLEx
Structure: GNN models trained on the graph structure
learned from GraphFLEx, and 3)Vanilla Structure: GNN
models trained on the graph structure learned from other
existing methods.
For each scenario, a unique graph structure is obtained. We
trained GNN models on each of these three structure. For
more details on GNN model parameters, see Appendix F.
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Table 3: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods (Vanilla referred to as Van.).
The experimental setup involves treating 50% of the data as static, while the remaining 50% of nodes are treated as incoming nodes
arriving in 25 different timestamps. The best times are highlighted by color Green. OOM and OOT denote out-of-memory and out-of-time,
respectively.

Data ANN KNN log-model l2-model emp-Covar. large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Cora 335 100 8.4 36.1 869 81.6 424 55 8.6 30 2115 18.4
Citeseer 1535 454 21.9 75 1113 64.5 977 54.0 14.7 59.2 8319 43.9
DBLP 2731 988 OOM 270 77000 919 OOT 1470 359 343 OOT 299
CS 22000 12000 OOM 789 OOT 838 32000 809 813 718 OOT 1469
PubMed 770 227 OOM 164 OOT 176 OOT 165 488 299 OOT 262
Phy. 61000 21000 OOM 903 OOT 959 OOT 908 2152 1182 OOT 2414
Syn 3 95 37 OOM 30 58000 346 859 53 88 59 5416 42
Syn 4 482 71 OOM 73 OOT 555 OOT 145 2072 1043 OOT 392

Table 4: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla (Van.) methods. The
experimental setup involves treating 70% of the data as static, while the remaining 30% of nodes are treated as new nodes coming
in 25 different timestamps. The best and the second-best accuracies in each row are highlighted by dark and lighter shades of Green,
respectively. GraphFLEx’s structure beats all of the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and
out-of-time respectively.

Data Model ANN KNN log-model l2-model COVA large-model Base Struct.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 34.23 67.37 OOM 69.83 OOT 69.83 OOT 68.98 50.48 68.56 OOT 66.38 70.84
SAGE 34.23 69.58 OOM 70.28 OOT 70.28 OOT 70.68 51.47 70.51 OOT 69.32 72.57

DBLP GCN 34.12 69.41 OOM 73.39 OOT 73.39 OOT 73.05 51.50 71.75 OOT 68.55 74.43
GIN 34.01 69.69 OOM 68.19 OOT 68.19 OOT 73.08 52.77 72.03 OOT 71.18 73.92

GAT 12.47 60.89 OOM 61.09 OOT 60.95 18.64 61.06 58.96 88.06 OOT 86.22 60.75
SAGE 12.70 78.81 OOM 79.43 OOT 79.06 19.24 78.94 56.97 93.30 OOT 92.79 80.33

CS GCN 12.59 63.81 OOM 67.94 OOT 69.33 19.21 66.01 58.35 91.07 OOT 84.85 67.43
GIN 13.07 77.62 OOM 78.41 OOT 78.55 19.24 77.61 58.26 92.07 OOT 86.03 55.65

GAT 49.49 83.71 OOM 84.60 OOT 84.60 OOT 84.04 72.63 83.97 OOT 81.15 84.04
SAGE 50.43 87.27 OOM 87.34 OOT 87.34 OOT 87.42 73.57 86.68 OOT 87.34 88.88

Pub. GCN 50.45 82.06 OOM 83.56 OOT 83.56 OOT 83.74 73.14 82.39 OOT 78.03 85.54
GIN 51.82 83.13 OOM 84.31 OOT 84.07 OOT 82.93 73.15 83.51 OOT 82.85 86.50

GAT 29.18 88.06 OOM 88.47 OOT 88.47 OOT 88.68 58.96 88.06 OOT 86.22 88.58
SAGE 29.57 93.47 OOM 93.47 OOT 93.47 OOT 93.78 56.97 93.60 OOT 92.79 94.19

Phy. GCN 27.84 91.27 OOM 91.08 OOT 91.08 OOT 91.78 58.35 91.07 OOT 84.85 91.48
GIN 28.38 92.69 OOM 92.04 OOT 92.04 OOT 92.27 58.26 92.07 OOT 86.03 88.89

GNN Models. Graph neural networks (GNNs) such as
GCN (Kipf & Welling, 2016), GraphSage (Hamilton
et al., 2017), GIN (Xu et al., 2018), and GAT (Velick-
ovic et al., 2017) rely on accurate message passing, dictated
by the graph structure, for effective embedding. We use
these models to evaluate the above-mentioned learned struc-
tures. Table 4 reports node classification performance across
all methods. Notably, GraphFLEx outperforms vanilla struc-
tures by a significant margin across all datasets, achieving
accuracies close to those obtained with the original struc-
ture. Figure 9 in Appendix F illustrates GraphSage classi-
fication results, highlighting GraphFLEx’s superior perfor-
mance. For the CS dataset, GraphFLEx (large-model) and
GraphFLEx (empCovar.-model) even surpass the original

structure, demonstrating its ability to preserve key struc-
tural properties while denoising edges, leading to improved
accuracy.

4.2. Clustering Quality

We measure three metrics to evaluate the resulting clusters
or community assignments: a) Normalized Mutual Infor-
mation (NMI) (Tsitsulin et al., 2023) between the cluster
assignments and original labels; b) Conductance (C) (Jerrum
& Sinclair, 1988) which measures the fraction of total edge
volume that points outside the cluster; and c) Modularity (Q)
(Newman, 2006) which measures the divergence between
the intra-community edges and the expected one. Table 5
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(a) 10 incoming nodes (b) 20 incoming nodes (c) 30 incoming nodes (d) ANN as Mgl (e) Emp. Covr. as Mgl (f) kNN as Mgl

Figure 4: Figures (a), (b), and (c) illustrate the growing structure learned using GraphFLEx for HE synthetic dataset. Figures (d), (e), and
(f) illustrate the learned structure on Zachary’s karate dataset when existing methods are employed with GraphFLEx. New nodes are
denoted using black color.

illustrates these metrics for single-cell RNA and MNIST
dataset (where the whole structure is missing), and Figure 5
shows the PHATE (Moon et al., 2019) visualization of clus-
ters learned using GraphFLEx’s clustering moduleMclust.
We also train the aforementioned GNN models for the node
classification task in order to illustrate the efficacy of the
learned structures; the accuracies values presented in Table
5, clearly highlight the significance of the learned structures,
as reflected by the high accuracy values.

Table 5: Clustering results and node classification accuracies. Left:
Clustering metrics - NMI, graph conductance C, and Modularity
Q. Right: Node classification accuracy for GCN, GraphSAGE,
GIN, GAT.

Data NMI ↑ C ↓ Q ↑ GCN SAGE GIN GAT

Bar. M. 0.716 0.057 0.741 91.2 96.2 95.1 94.9
Seger. 0.678 0.102 0.694 91.0 93.9 94.2 92.3
Mura. 0.843 0.046 0.706 96.9 97.4 97.5 96.4

Bar. H. 0.674 0.078 0.749 95.3 96.4 97.2 95.8
Xin 0.741 0.045 0.544 98.6 99.3 98.9 99.8

MNIST 0.677 0.082 0.712 92.9 94.5 94.9 82.6

(a) Muraro (b) Baron Mouse (c) Segerstolpe

Figure 5: PHATE visualization of clusters learned using Graph-
FLEx clustering module for scRNA-seq datasets.

4.3. Structure Visualization

We evaluate the structures generated by GraphFLEx through
visualizations on four small datasets: (i) MNIST (LeCun
et al., 2010), consisting of handwritten digit images, where
Figure 6(a) shows that images of the same digit are mostly
connected; (ii) Pre-trained GloVe embeddings (Pennington
et al., 2014) of English words, with Figure 6(b) revealing
that frequently used words are closely connected; (iii) A syn-
thetic H.E dataset (see Appendix D), demonstrating Graph-
FLEx’s ability to handle expanding networks without requir-

ing full relearning. Figure 4(a-c) shows the graph structure
evolving as 30 new nodes are added over three timestamps;
and (iv) Zachary’s karate club network (Zachary, 1977),
which highlights GraphFLEx’s multi-framework capabil-
ity. Figure 4(d-f) shows three distinct graph structures after
altering the learning module.

(a) MNIST (b) Glove

Figure 6: Figures demonstrate the effectiveness of our framework
in learning meaningful structure between similar MNIST digit
images and pre-trained GloVe embeddings.

5. Conclusion
Large or expanding graphs challenge the best of graph
learning approaches. GraphFLEx, introduced in this paper,
seamlessly adds new nodes into an existing graph struc-
ture. It offers diverse methods for acquiring the graph’s
structure. GraphFLEx consists of three key modules: Clus-
tering, Coarsening, and Learning which empowers Graph-
FLEx to serves as a comprehensive framework applicable
individually for clustering, coarsening, and learning tasks.
GraphFLEx is typically 3X faster than other state of the
art methods and scales well with large graphs. It achieves
accuracies close to training on the original graph, in most
instances. The performance across multiple real and syn-
thetic datasets affirms the utility and efficacy of GraphFLEx
for graph structure learning.
Limitations and Future Work. GraphFLEx is designed as-
suming minimal inter-community connectivity, which aligns
well with many real-world scenarios. However, its applica-
bility to heterophilic graphs may require further adaptation.
Future work will focus on extending the framework to su-
pervised GSL methods and heterophilic graphs, broadening
its scalability and versatility.
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Appendix

A. Degree-Corrected Stochastic Block Model(DC-SBM)
The DC-SBM is one of the most commonly used models for networks with communities and postulates that, given node
labels c = c1, ...cn, the edge variables A′

ijs are generated via the formula

E[Aij ] = θiθjPciPcj

, where θi is a ”degree parameter” associated with node i, reflecting its individual propernsity to form ties, and P is a K×K
symmetric matrix containing the between/withincommunity edge probabilities and PciPcj denotes the edge probabilities
between community ci and cj .
For DC-SBM model (Zhao et al., 2012) assumed Pn on n nodes with k classes, each node vi is given a label/degree
pair(ci, θi), drawn from a discrete joint distribution ΠK×m which is fixed and does not depend on n. This implies that each
θi is one of a fixed set of values 0 ≤ x1 ≤ .... ≤ xm. To facilitate analysis of asymptotic graph sparsity, we parameterize
the edge probability matrix P as Pn = ρnP where P is independent of n, and ρn = λn/n where λn is the average degree
of the network.

B. Neighbourhood Preservation
Theorem 2. Neighborhood Preservation. Let Nk(Ei) denote the neighborhood of incoming nodes Ei for the ith community.
With partition matrix Pi andMgl(Si, X

i
τ ) = Gcτ (V c

τ , A
c
τ ) we identify the supernodes connected to incoming nodes Ei and

subsequently select nodes within those supernodes; this subset of nodes is denoted by ωV i
τ

. Formally,

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}
Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i

τ
where

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v − u∥) between every node v ∈ Ei and the nodes u ∈ ωV i
τ

. Here, π−1(s)
denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of Mcoar.

Proof: The probability that LSH random projection (Kataria et al., 2024; Datar et al., 2004) preserves the distance between
two nodes v and u i.e., d(u, v) = c, is given by:

p(c) =

∫ r

0

1

c
f2

(
t

c

)(
1− t

r

)
dt,

where f2(x) = 2√
2π

e−x2/2 represents the Gaussian kernel when the projection matrix is randomly sampled from p-
stable(p = 2) distribution (Datar et al., 2004).
The probability p(c) can be decomposed into two terms:

p(c) = S1(c)− S2(c),

S1(c) and S2(c) are defined as follows:

S1(c) =
2√
2π

∫ r

0

e−(t/c)2/2dt ≤ 1,

S2(c) =
2√
2π

∫ r

0

e−(t/c)2/2 t

r
dt.

S2(c) =
2√
2π
· c
r

∫ r

0

e−(t/c)2/2 t

c2
dt
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Expanding S2(c) :

S2(c) =
2√
2π
· c
r

∫ r2/(2c2)

0

e−ydy

S2(c) =
2√
2π
· c
r

[
1− e−r2/(2c2)

]
Thus, the probability p(c) can be bounded as:

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
.

Now, let ϕ be the set of all pairwise distances d(u, v), where v ∈ Ei and nodeωV i
τ

. The probability that all nodes in Nk(Ei)
are preserved within ωV i

τ
, requires that all distances c ∈ ϕ are also preserved. The probability is then given by:∏

c∈ϕ

p(c).

∏
c∈ϕ

p(c) ≤
∏
c∈ϕ

(
1− 2√

2π

c

r

[
1− e−r2/(2c2)

])
.

C. Continual Learning and Dynamic Graph Learning
In this subsection, we highlight the key distinctions between Graph Structure Learning (GSL) and related fields to justify
our specific selection of related works in Section 2.2. GSL is often confused with topics such as Continual Learning (CL)
and Dynamic Graph Learning (DGL).
CL (Van de Ven & Tolias, 2019; Zhang et al., 2022; Parisi et al., 2019) addresses the issue of catastrophic forgetting, where
a model’s performance on previously learned tasks degrades significantly after training on new tasks. In CL, the model has
access only to the current task’s data and cannot utilize data from prior tasks. Conversely, DGL (Kim et al., 2022; Wu et al.,
2023; You et al., 2022) focuses on capturing the evolving structure of graphs and maintaining updated graph representations,
with access to all prior information.
While both CL and DGL aim to enhance model adaptability to dynamic data, GSL is primarily concerned with generating
high-quality graph structures that can be leveraged for downstream tasks such as node classification (Kipf & Welling, 2016),
link prediction (Lü & Zhou, 2011), and graph classification (Vogelstein et al., 2012). Moreover, in CL and DGL, different
tasks typically involve distinct data distributions, whereas GSL assumes a consistent data distribution throughout.

D. Datasets
Datasets used in our experiments vary in size, with nodes ranging from 1k to 60k. Table 6 lists all the datasets we used in
our work. We evaluate our proposed framework GraphF lex on real-world datasets Cora ,Citeseer, Pubmed (Yang et al.,
2016), CS, Physics (Shchur et al., 2018), DBLP (Fu et al., 2020), all of which include graph structures. These datasets
allow us to compare the learned structures with the originals. Additionally, we utilize single-cell RNA pancreas datasets
(Yang et al., 2022), including Baron, Muraro, Segerstolpe, and Xin, where the graph structure is missing. The Baron
dataset was downloaded from the Gene Expression Omnibus (GEO) (accession no. GSE84133). The Muraro dataset was
downloaded from GEO (accession no. GSE85241). The Segerstolpe dataset was accessed from ArrayExpress (accession no.
E-MTAB-5061). The Xin dataset was downloaded from GEO (accession no. GSE81608). We simulate the expanding graph
scenario by splitting the original dataset across different T timestamps. We assumed 50% of the nodes were static, with the
remaining nodes arriving as incoming nodes at different timestamps.
Synthetic datasets: Different data generation techniques validate that our results are generalized to different settings. Please
refer to Table 6 for more details about the number of nodes, edges, features, and classes, Syn denotes the type of synthetic
datasets. Figure 7 shows graphs generated using different methods. We have employed three different ways to generate
synthetic datasets which are mentioned below:

• PyGSP(PyGsp): We used synthetic graphs created by PyGSP (Defferrard et al.) library. PyG-G and PyG-S denotes grid
and sensor graphs from PyGSP.
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• Watts–Strogatz’s small world(SW): (Watts & Strogatz, 1998) proposed a generation model that produces graphs with
small-world properties, including short average path lengths and high clustering.

• Heterophily(HE): We propose a method for creating synthetic datasets to explore graph behavior across a heterophily
spectrum by manipulating heterophilic factor α, and classes. α is determined by dividing the number of edges connecting
nodes from different classes by the total number of edges in the graph.

Visulization Datasets: To evaluate, the learned graph structure, we have also included three datasets: (i) MNIST (LeCun
et al., 2010), consisting of handwritten digit images; (ii) Pre-trained GloVe embeddings (Pennington et al., 2014) of English
words; and (iii) Zachary’s karate club network (Zachary, 1977).

Category Data Nodes Edges Feat. Class Type

Original
Structure
Known

Cora 2,708 5,429 1,433 7 Citation network
Citeseer 3,327 9,104 3,703 6 Citation network
DBLP 17,716 52.8k 1,639 4 Research paper

CS 18,333 163.7k 6,805 15 Co-authorship network
PubMed 19,717 44.3k 500 3 Citation network
Physics 34,493 247.9k 8,415 5 Co-authorship network

Original
Structure

Not Known

Xin 1,449 NA 33,889 4 Human Pancreas
Baron Mouse 1,886 NA 14,861 13 Mouse Pancreas

Muraro 2,122 NA 18,915 9 Human Pancreas
Segerstolpe 2,133 NA 22,757 13 Human Pancreas

Baron Human 8,569 NA 17,499 14 Human Pancreas

Synthetic

Syn 1 2,000 8,800 150 4 SW
Syn 2 5,000 22k 150 4 SW
Syn 3 10,000 44k 150 7 SW
Syn 4 50,000 220k 150 7 SW
Syn 5 400 1,520 100 4 PyG-G
Syn 6 2,500 9,800 100 4 PyG-S
Syn 7 1,000 9,990 150 4 HE
Syn 8 2,000 40k 150 4 HE

Visulization Datasets
MNIST 60,000 NA 784 10 Images

Zachary’s karate 34 156 34 4 Karate club network
Glove 2,000 NA 50 NA GloVe embeddings

Table 6: Summary of the datasets.

(a) PyGSP-Sensor, N = 50, α=3 (b) PyGSP-Grid, N = 80, α=3 (c) SW, N = 50, α=3 (d) HE, N = 50, α=3

Figure 7: This figure illustrates different types of synthetic graphs generated using i)PyGSP, ii) Watts–Strogatz’s small
world(SW), and iii) Heterophily(HE). N denotes the number of nodes, while α denotes the number of classes.

E. Algorithm
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Algorithm 1 GraphFlex: A Unified Structure Learning framework for expanding and Large Scale Graphs
Input: Graph G0(X0, A0), expanding nodes set ET1 = {Eτ (Vτ ,Xτ )}Tτ=1

Parameter: GClust, GCoar, GL← Clustering, Coarsening and Learning Module
Output: Graph GT (XT , AT )

1: Train clustering module train(Mclust, GClust, G0)
2: for each Et(Vt, Xt) in ET1 do
3: Ct = infer(Mclust, Xt), Ct ∈ RNt denotes the communities of Nt nodes at time t.
4: It = unique(Ct).
5: for each Iit in It do
6: Gi

t−1 = subgraph(Gt−1, Iit )
7: {Si

t−1, P
i
t−1} =Mcoar(G

i
t−1), S

i
t−1 ∈ Rk×d are features of k supernodes, P i

t−1 ∈ Rk×Ni
t is the partition matrix.

8: Gcit−1(S
i
t−1, A

i
t−1) =Mgl(S

i
t−1, X

i
t), Gcit−1 is the learned graph on super-nodes Si

t−1 and new node Xi
t .

9: ωi
t ← []

10: for x ∈ Xi
t do

11: ωi
t.append(x)

12: np = {n | Ai
t−1[n] > 0}

13: ωi
t.append(np)

14: end for
15: Gt−1 = update(Gt−1,Mgl(ω

i
t))

16: end for
17: Gt = Gt−1

18: end for
19: return GT (XT , AT )

F. Other GNN models
We used four GNN models, namely GCN, GraphSage, GIN, and GAT. Table 7 contains parameter details we used to train
GraphFlex. We have used these parameters across all methods.
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Figure 8: GNN training pipeline.
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Figure 9: GraphSage accuracies when structure is learned or given with 3 different scenarios(Vanilla, GraphFlex, Original)
across different datasets, highlighting performance with 30% node growth over 25 timestamps.

Figure 8 illustrates the pipeline for training our GNN models. Graph structures were learned using both existing methods
and GraphFlex, and GNN models were subsequently trained on both structures. Results across all datasets are presented in
Table 8 and Table 4.

Table 7: GNN model parameters.

Model Hidden Layers L.R Decay Epoch

GCN {64, 64} 0.003 0.0005 500
GraphSage {64, 64} 0.003 0.0005 500
GIN {64, 64} 0.003 0.0005 500
GAT {64, 64} 0.003 0.0005 500

We randomly split data in 60%, 20%, 20% for training-validation-test. The results for these models on synthetic datasets are
presented in Table 8.

Figure 8 illustrates the pipeline for training our GNN models. Graph structures were learned using both existing methods
and GraphFlex, and GNN models were subsequently trained on both structures.

G. Computational Efficiency
Table 9 illustrates the remaining computational time for learning graph structures using GraphFLEx with existing Vanilla
methods on Synthetic datasets. While traditional methods may be efficient for small graphs, GraphFLEx scales significantly
better, excelling on large datasets like Pubmed and Syn 5, where most methods fail.
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Table 8: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla (Van.)
methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of nodes are treated
as new nodes coming in 25 different timestamps. The best and the second-best accuracies in each row are highlighted by
dark and lighter shades of Green, respectively. GraphFLEx’s structure beats all of the vanilla structures for every dataset.
OOM and OOT denotes out-of-memory and out-of-time respectively.

Dataset Model ANN KNN log-model l2-model COVA large-model Base Struc.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 18.73 73.84 20.96 73.65 16.14 72.36 18.74 73.10 49.72 77.55 14.28 76.43 79.77
SAGE 17.25 77.37 18.00 76.99 19.48 77.40 19.85 75.51 49.35 76.99 14.28 77.55 82.37

Cora GCN 17.99 78.11 17.81 77.92 18.55 77.74 20.41 79.22 47.31 80.52 14.28 79.03 84.60
GIN 16.69 76.44 18.74 80.52 17.44 76.25 19.29 76.62 48.79 78.85 14.28 76.06 81.63

GAT 16.51 61.82 25.00 62.27 19.24 64.70 18.18 63.48 20.91 62.73 16.67 62.27 66.42
SAGE 16.66 68.48 16.67 68.64 22.12 69.39 22.42 69.85 22.88 71.52 16.67 69.39 72.57

Citeseer GCN 28.18 60.00 16.67 61.97 20.45 65.45 19.70 64.24 21.06 64.70 16.67 63.18 68.03
GIN 16.66 64.39 16.67 63.94 20.15 59.85 18.64 63.64 22.12 60.30 16.67 61.81 67.38

GAT 29.55 92.07 OOM 90.86 OOT 91.64 OOT 91.64 35.79 92.52 OOT 93.74 89.49
SAGE 26.75 87.89 OOM 91.05 OOT 86.64 OOT 86.64 32.92 90.44 OOT 86.01 90.03

Syn 4 GCN 28.85 51.97 OOM 19.58 OOT 18.29 OOT 18.92 33.80 26.60 OOT 36.85 21.43
GIN 28.50 65.61 OOM 31.06 OOT 26.51 OOT 26.56 34.03 46.40 OOT 47.10 29.35

GAT 44.00 86.80 43.60 86.60 30.00 78.75 55.40 92.80 36.20 93.60 31.80 92.80 97.20
SAGE 41.00 93.80 41.40 93.60 33.75 88.75 57.60 94.00 35.20 94.80 28.20 95.60 97.40

Syn 6 GCN 43.60 88.80 42.20 87.40 26.25 81.25 55.60 92.40 31.40 94.40 25.20 94.00 99.40
GIN 39.60 89.00 40.40 86.60 21.25 82.50 55.20 91.80 30.00 94.60 30.40 92.00 98.80

GAT 29.55 99.75 33.75 88.75 88.25 99.25 88.25 99.25 26.00 85.50 94.00 96.00 98.50
SAGE 26.75 100.0 32.50 100.0 88.75 99.50 88.75 99.50 26.75 100.0 92.50 100.0 100.0

Syn 8 GCN 28.85 98.75 31.75 99.75 88.75 99.00 88.75 99.00 28.50 99.25 95.00 100.0 100.0
GIN 28.50 50.00 30.50 91.00 82.25 91.50 82.25 91.50 27.25 81.75 91.75 92.25 78.25

Table 9: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods (Vanilla referred
to as Van.). The experimental setup involves treating 50% of the data as static, while the remaining 50% of nodes are treated
as incoming nodes arriving in 25 different timestamps. The best times are highlighted by color Green. OOM and OOT
denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model l2-model COVA large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Syn 1 19.4 9.8 2.5 10.5 2418 56.4 37.2 8.8 3.5 8.3 205 9.4
Syn 2 47.3 16.9 6.6 18.3 14000 144 214 22.6 20.3 18.6 1259 16.4
Syn 5 5.1 11.5 0.8 7.3 57.4 28 1.1 5.8 0.2 4.8 3.2 5.3
Syn 6 16.6 9.9 2.8 11.4 1766 96.3 193 101 5.3 8.9 324 9.6
Syn 7 10.6 7.4 1.4 8.9 704 85.2 10.3 7.9 0.9 6.4 36.5 8.2
Syn 8 19.6 11.2 2.5 11.7 2416 457 37.2 17.0 3.4 10.9 204 11.7

H. Visualization of Growing graphs
This section helps us visualize the phases of our growing graphs. We have generated a synthetic graph of 60 nodes using
PyGSP-Sensor and HE methods mentioned in Appendix D. We then added 40 new nodes denoted using black color in these
existing graphs at four different timestamps. Figure 10 and Figure 11 shows the learned graph structure after each timestamp
for two different Synthetic graphs.
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PyGsp

(a) Initial graph G0 (b) α= 10, G1 (c) α= 20, G2 (d) α = 30, G3 (e) α = 40, G4

Figure 10: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes are denoted
using black color, and α denotes number of new nodes. PyGsp denotes type synthetic graph.

HE

(a) Initial graph G0 (b) α = 10, G1 (c) α = 20, G2 (d) α= 30, G3 (e) α = 40, G4

Figure 11: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes are denoted
using black color, and α denotes the number of new nodes. HE denotes the type of synthetic graph.

Vanilla

(a) ANN (b) Emp. Cov. (c) KNN (d) L2 model (e) Log model

GraphFlex

(f) ANN (g) Emp Cov. (h) KNN (i) L2 model (j) Log model

Figure 12: This figure compares the structures learned on Zachary’s karate dataset when existing methods are employed with
GraphFlex and when existing methods are used individually. We consider six nodes, denoted in black, as dynamic nodes.

I. Structure Comparison on Karate Dataset
This section involves a comparison of the graph structure learned from GraphFlex with existing methods. Six nodes were
randomly selected and considered as new nodes. Figure 12 visually depicts the structures learned using GraphFlex compared
to other methods. It is evident from the figure that the structure known with GraphFlex closely resembles the original graph
structure. Figure 13 shows the original structure of Zachary’s karate club network (Zachary, 1977). We assumed six random
nodes to be dynamic nodes, and the structure learned using GraphFlex compared to existing methods is shown in Figure 12.

J. Clustering Quality
Figure 14 shows the PHATE (Moon et al., 2019) visualization of clusters learned using GraphFLEx’s clustering module
Mclust for Xin, MNIST , and Baron−Human datasets.
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Figure 13: Original Karate Graph

(a) Xin (b) MNIST (c) Baron Human

Figure 14: PHATE visualization of clusters learnt using GraphFlex clustering module for scRNA-seq datasets.
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