
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Anonymous Authors1

Abstract
Graph structure learning is a fundamental prob-
lem critical for interpretability and uncovering
relationships in data. While graphical data is cen-
tral to information representation, inferring graph
structures remains challenging. Existing methods
falter with expanding graphs, requiring costly re-
learning of the entire structure for new nodes, and
face severe computational and memory demands
on large graphs. To overcome these challenges,
we propose GraphFLEx: a unified framework
for structure learning in Large and Expanding
Graphs. GraphFLEx efficiently limits potential
connections to relevant nodes by leveraging clus-
tering and coarsening techniques, significantly re-
ducing computational costs and enhancing scala-
bility. GraphFLEx provides 48 flexible methods
for graph structure learning by integrating diverse
learning, coarsening, and clustering approaches.
Extensive experiments with various GNN models
demonstrate its effectiveness. Our code is avail-
able here.

1. Introduction
Graph representations capture relationships between enti-
ties, vital across diverse fields like biology, finance, soci-
ology, engineering, and operations research (Zhou et al.,
2020; Fout et al., 2017; Wu et al., 2020). While some re-
lationships, such as social connections or sensor networks,
are directly observable, many, including gene regulatory
networks, scene graph generation (Gu et al., 2019), brain
networks, (Zhu et al., 2021) and drug interactions, require
inference (Allen et al., 2012). Even when available, graph
data often contains noise, requiring denoising and recalibra-
tion. Thus, inferring graph structures becomes crucial, often
surpassing the choice of graph or algorithm itself.
Graph Structure Learning (GSL) offers a solution, enabling
the construction and refinement of graph topologies. GSL
has been widely studied in both supervised and unsupervised

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

contexts (Liu et al., 2022; Chen & Wu, 2022). In supervised
GSL (s-SGL), the adjacency matrix and Graph Neural Net-
works (GNNs) are jointly optimized for a downstream task,
such as node classification. Notable examples of s-GSL
include NodeFormer (Wu et al., 2022), Pro−GNN (Jin
et al., 2020), WSGNN (Lao et al., 2022), and SLAPS
(Fatemi et al., 2021). Unsupervised GSL (u-SGL), on the
other hand, focuses solely on learning the underlying graph
structure, typically through adjacency or Laplacian matrices.
Methods in this category include approximate nearest neigh-
bours (A−NN) (Dong et al., 2011; Muja & Lowe, 2014), k-
nearest neighbours (k−NN) (MacQueen et al., 1967; Wang
& Zhang, 2006), covariance estimation (emp.Cov.) (Hsieh
et al., 2011), graphical lasso (GLasso) (Friedman et al.,
2008), and signal processing techniques like l2-model,log-
model, and large-model (Dong et al., 2016; Kalofolias,
2016).

While s-SGL methods offer promising results, they have lim-
itations: (1) they rely on label information, restricting their
applicability in settings without annotations; (2) they are
often task-specific, optimizing for node classification rather
than general graph topology (Liu et al., 2022). These issues
are avoided in u-SGL approaches, which are the focus of
this work. However, both s-SGL and u-SGL face challenges
when applied to large-scale or expanding datasets.

10000 20000 30000 40000 50000
Number of Nodes

0

150

300

450

600

750

900

1050

1200

Tim
e in

 Se
co

nd
s

Time in Seconds vs Number of Nodes (Each Line Represents an Experiment)
GraphFlex ANN
GraphFlex KNN
GraphFlex Log model
GraphFlex L2 model
GraphFlex Emp. Covar.
GraphFlex Large model

(a) GraphFLEx

10000 20000 30000 40000 50000
Number of Nodes

0

150

300

450

600

750

900

1050

1200

Tim
e in

 Se
co

nd
s

Time in Seconds vs Number of Nodes (Each Line Represents an Experiment)
ANN
KNN
Log model
L2 model
Emp. Covar.
Large model

(b) Vanilla

Figure 1: High computational time required to learn graph struc-
tures using existing methods, whereas GraphFLEx effectively con-
trols computational growth, achieving near-linear scalability. No-
tably, Vanilla KNN failed to construct graph structures with fewer
than 10k nodes due to memory limitations.

As contemporary datasets grow in size, scalability becomes
a critical challenge, with existing methods proving too com-
putationally expensive for large-scale graphs. In such cases,
Approximate Nearest Neighbours (A−NN), with time com-

1

https://anonymous.4open.science/r/Scaling_Graph_Learning-5644

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

9
8719

20
21

1

11

2

12

14

15

Incoming Nodes

GNN Clustering Graph Communities

C1 C1

C3

C2

C3

G
ra

ph
 L

ea
rn

in
g

G
ra

ph
 L

ea
rn

in
g

9

11
12 13

15
16

17

14
18

1

19

2

21

3

20

87
54

23

22

24

6

10
9

11
12 13

54

17

18

16

6

10

Graph Coarsening

Super-nodes

formationMost relevant nodes

Most relevant
communities

9
9

9

9

11 11
12

12
13

14
14

14

13

13

10 10

10

1 1
2 23

15

3

15

1515

15

3

3

8 8

8
88

7 7

7
77

t1

t6

t4

t3
t2

t5

1

19
1919

19

20

20

21
21

1
11

12

13

14

12

2
2

22

11

10

11

Projection back to

original space

1
2

87

3
19 19

20 20

21 2124

23

22

7
8921

20

11
12 13

15

16

17 14

18

1

2
19

3

8754

6
10

9

20

2121 12
11

9

20 21

11 12

Figure 2: General pipeline of GraphFLEx, it processes a graph (Gt−1) and incoming nodes (Et) at time t, comprising three main
components: a) Clustering, which infers Et nodes to existing communities using a pre-trained model Mclust(G0); b) Coarsening, reduces
the size of the desired community; and c) Learning, where the structure associated with Et nodes are learned using the coarsened graph,
followed by projecting this structure onto the original graph to create graph Gt at time t.

plexity O(N log(N)), is often the only feasible solution. In
contrast, methods like k-NN, log-model, and l2-model are
significantly more costly, with time complexities exceeding
O(N2).
The aforementioned techniques are ineffective for learning
large-scale graphs because they consider the entire collec-
tion of nodes to determine connections for every individual
node. All nodes, however, only have connections to a very
small set of nodes. Therefore, we need to devise a method
that can refine the entire graph’s node set to a smaller subset
of potential node sets, with the aim of identifying feasible
connections. Additionally, expanding graphs where new
nodes continuously arrive further complicates the issue, as
existing methods require re-learning the entire graph struc-
ture with each new node (Khazane et al., 2019; Holme &
Saramäki, 2012). This makes them inefficient for expanding
data. To address these challenges, we propose GraphFLEx,
a comprehensive framework that tackles both scalability for
large datasets and adaptability for growing graphs.
As shown in Figure 2, GraphFLEx comprises three key
modules: (i) Graph Clustering, (ii) Graph Coarsening, and
(iii) Graph Learning. By leveraging clustering and coarsen-
ing, GraphFLEx significantly reduces computational over-
head by restricting possible connections to only relevant
nodes. Figure 1 compares the graph structure learning time,
highlighting GraphFLEx’s efficiency over existing methods.
Key contributions of GraphFLEx include:

Key Contributions and Novelty.

• We provide strong theoretical guarantees that the struc-
ture learned from a small subset of nodes is equivalent
to that learned from the full set. This is supported by
empirical results using real-world and synthetic datasets,
demonstrating the effectiveness of GraphFLEx across di-
verse graph structures.

• GraphFLEx is composed of independently operating mod-
ules, allowing the creation of new learning frameworks by
modifying any of its three modules. It currently supports
48 distinct methods for learning graph structure, offering
flexibility across various domains.

• GraphFLEx efficiently handles large-scale and expanding
graphs, enhancing scalability for graph learning tasks.

• GraphFLEx serves as a comprehensive framework appli-
cable individually for clustering, coarsening, and learning
tasks.

2. Problem Formulation and Background
A graph G is represented using G(V,A,X) where V =
{v1, v2...vN} is the set of N nodes, each node vi has
a d−dimensional feature vector xi in X ∈ RN×d and
A ∈ RN×N is adjacency matrix representing connection
between ith and jth nodes when entry Aij > 0. An ex-
panding graph EG can be considered a variant of graph G
where nodes v now have an associated timestamp τv. We
can represent a expanding graph as a sequence of graphs,
i.e., EG = {G0,G1, ...GT } where {G0 ⊆ G1.... ⊆ GT } at

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

τ ∈ {0, ...T} timestamps. New nodes arriving at different
timestamps are seamlessly integrating into initial graph G0.

Problem statement. Given a partially known or missing
graph structure, our goal is to incrementally learn the whole
graph, i.e., learn adjacency or laplacian matrix. Specifically,
we consider two unsupervised GSL tasks:

Goal 1. Large Datasets with Missing Graph Structure:
In this setting, the graph structure is entirely unavailable,
and existing methods are computationally infeasible for
learning the whole graph in a single step. To address this
issue, we first randomly partition the dataset into exclusive
subsets. We then learn the initial graph G0(V0, X0) over
a small subset of nodes and incrementally expand it by
integrating additional partitions, ultimately reconstructing
the full graph GT .

Goal 2. Partially Available Graph: In this case, we only
have access to the graph Gt at timestamp t, with new nodes
arriving over time. The goal is to update the graph incre-
mentally to obtain GT , without re-learning it from scratch
at each timestamp.

GraphFlex addresses these challenges with a unified frame-
work, outlined in Section 3. Before delving into the frame-
work, we review some key concepts.

2.1. Graph Reduction

Graph reduction encompasses sparsification, clustering,
coarsening, and condensation (Hashemi et al., 2024). Graph-
Flex employs clustering and coarsening to refine the set of
relevant nodes for potential connections.
Graph Clustering. Graphs often exhibit global heterogene-
ity with localized homogeneity, making them well-suited for
clustering (Fortunato, 2010). Clusters capture higher-order
structures, aiding graph learning. Methods like DMoN (Tsit-
sulin et al., 2023) use GNNs for soft cluster assignments,
while Spectral Clustering (SC) (Kamvar et al., 2003) and
K-means (Wagstaff et al., 2001; MacQueen et al., 1967)
efficiently detect communities. DiffPool (Bruna et al., 2014;
Defferrard et al., 2016) applies SC for pooling in GNNs.
Graph Coarsening. Graph Coarsening (GC) reduces a
graph G(V,E,X) with N nodes and features X ∈ RN×d

into a smaller graph Gc(Ṽ , Ẽ, X̃) with n ≪ N nodes and
X̃ ∈ Rn×d. This is achieved via learning a coarsening ma-
trix P ∈ Rn×N , mapping similar nodes in G to super-nodes
in Gc, ensuring X̃ = PX while preserving key properties
(Loukas, 2019; Kataria et al., 2023; Kumar et al., 2023;
Kataria et al., 2024).

2.2. Unsupervised Graph Structure Learning

Unsupervised graph learning spans from simple k-NN
weighting (Wang & Zhang, 2006; Zhu et al., 2003) to ad-
vanced statistical and graph signal processing (GSP) tech-

Table 1: Unsupervised Graph Structure Learning Methods

Method Time Complexity Formulation

GLasso O(N3) maxΘ log detΘ

−tr(Σ̂Θ)− ρ∥Θ∥1
log-model O(N2) minW∈W ∥W ◦ Z∥1,1

−α1T log(W1) + β
2
∥W∥2F

l2-model O(N2) minW∈W ∥W ◦ Z∥1,1
+α∥W1∥2 + α∥W∥2F
+1{∥W∥1,1 = n}

large-model O(N log(N)) minW∈W̃ ∥W ◦ Z∥1,1
−α1T log(W1) + β

2
∥W∥2F

niques. Statistical methods, also known as probabilistic
graphical models, assume an underlying graph G governs
the joint distribution of data X ∈ RN×d (Koller & Fried-
man, 2009; Banerjee et al., 2008; Friedman et al., 2008).
Some approaches (Dempster, 1972) prune elements in the in-
verse sample covariance matrix Σ̂ = 1

d−1XXT and sparse
inverse covariance estimators, such as Graphical Lasso
(GLasso) (Friedman et al., 2008): maximizeΘ log detΘ−
tr(Σ̂Θ)−ρ∥Θ∥1, where Θ is the inverse covariance matrix.
However, these methods struggle with small sample sizes.
Graph Signal Processing (GSP) techniques analyze signals
on known graphs, ensuring properties like smoothness and
sparsity. Signal smoothness on a graph G is quantified by
the Laplacian quadratic form:

Q(L) = xTLx =
1

2

∑
i,j

wij(x(i)− x(j))2.

For a set of vectors X , smoothness is measured using the
Dirichlet energy (Belkin et al., 2006): tr(XTLX). State-
of-the-art methods (Dong et al., 2016; Kalofolias, 2016;
Hu et al., 2013) optimize Dirichlet energy while enforcing
sparsity or specific structural constraints. Table 1 compares
various graph learning methods based on their formulations
and time complexities.
Remark 1. Graph Structure Learning (GSL) differs signifi-
cantly from Continual Learning (CL) (Van de Ven & Tolias,
2019; Zhang et al., 2022; Parisi et al., 2019) and Dynamic
Graph Learning (DGL) (Kim et al., 2022; Wu et al., 2023;
You et al., 2022), as discussed in Appendix C.

3. GraphFLEx
In this section, we introduce GraphFLEx, which has three
main modules:

• Graph Clustering. Identifies communities and extracts
higher-order structural information,

• Graph Coarsening. Is used to coarsen down the desired
community, if the community itself is large,

• Graph Learning. Learns the graph’s structure using a

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

limited subset of nodes from the clustering and coarsening
modules, enabling scalability.

For more details, see Algorithm 1 in Appendix E.

3.1. Incremental Graph Learning for Large Datasets

Real-world graph data is continuously expanding. For in-
stance, e-commerce networks accumulate new clicks and
purchases daily (Xiang et al., 2010), while academic net-
works grow with new researchers and publications (Wang
et al., 2020). This expanding behaviour suggests that large
graphs can be efficiently processed by learning them incre-
mentally in smaller segments.
Given a large dataset L(VL, XL), where VL is the node set
and XL represents node features, we define an expanding
dataset setting LE = {ETτ=0}. Initially, L is split into: (i)
a static dataset E0(V0, X0) and (ii) an expanding dataset
E = {Eτ (Vτ , Xτ)}Tτ=1. Both Goal 1 (large datasets with
missing graph structure) and Goal 2 (partially available
graphs with incremental updates), discussed in Section 2,
share the common objective of incrementally learning and
updating the graph structure as new data arrives. Graph-
FLEx handles these by decomposing the problem into two
key components:

• Initial Graph G0(V0, A0, X0): For Goal 1, where the
graph structure is entirely missing, E0(V0, X0) is used
to construct G0 from scratch using structure learning
methods (see Section 2.2). For Goal 2, the initial graph
G0(V0, A0, X0) is already available and serves as the start-
ing point for incremental updates.

• Expanding Dataset E = {Eτ (Vτ , Xτ)}Tτ=1: In both
cases, E consists of incoming nodes and features arriv-
ing over T timestamps. These nodes are progressively
integrated into the existing graph, enabling continuous
adaptation and growth.

The partition is controlled by a parameter r, which deter-
mines the proportion of static nodes: r = ∥V0∥

∥VL∥ . For exam-
ple, r = 0.2 implies that 20% of VL is treated as static, while
the remaining 80% arrives incrementally over T timestamps.
In our experiments, we set r = 0.5 and T = 25.

Remark 2. We can learn Gτ (Vτ , Aτ , Xτ) by aggregating Eτ
nodes in Gτ−1 graph. Our goal is to learn GT (VT , AT , XT)
after T th-timestamp.

3.2. Detecting Communities

From the static graph G0, our goal is to learn higher-order
structural information, identifying potential communities
to which incoming nodes (V ∈ V τ) may belong. We train
the community detection/clustering model Mclust once
using G0, allowing subsequent inference of clusters for all
incoming nodes. While our framework supports spectral
and k-means clustering, our primary focus has been on

Graph Neural Network (GNN)-based clustering methods.
Specifically, we use DMoN (Tsitsulin et al., 2023; Bianchi
et al., 2020; Bianchi, 2022), which maximizes spectral
modularity. Modularity (Newman, 2006) measures the
divergence between intra-cluster edges and the expected
number. These methods use a GNN layer to compute the
partition matrix C = softmax(MLP(X̃, θMLP)) ∈ RN×K ,
where K is the number of clusters and X̃ is the updated fea-
ture embedding generated by one or more message-passing
layers. To optimize the C matrix, we minimize the loss
function ∆(C;A) = − 1

2mTr(CTBC) +
√
k

n |ΣiC
T
i |F − 1,

which combines spectral modularity maximization with
regularization to prevent trivial solutions, where B is the
modularity matrix (Tsitsulin et al., 2023). Our static graph
G0 and incoming nodes E follow Assumption 1.

Assumption 1. We assume that the generated graphs ad-
here to the Degree-Corrected Stochastic Block Model (DC-
SBM) (Zhao et al., 2012), where intra-class (or intra-
community) links are more likely than inter-class links.

For more details on DC-SBM, see Appendix A.
Lemma 1. Mclust Consistency. We adopt the theoretical
framework of (Zhao et al., 2012) for a DC-SBM with N
nodes and k classes. The edge probability matrix is parame-
terized as PN = ρNP , where P ∈ Rk×k is a symmetric ma-
trix containing the between/within community edge probabil-
ities and it is independent of N , ρN = λN/N , and λN is the
average degree of the network. Let ŷN = [ŷ1, ŷ2, . . . , ŷN]
denote the predicted class labels, and let ĈN be the corre-
sponding N × k one-hot matrix. Let the true class label
matrix is CN , and µ is any k × k permutation matrix. Un-
der the adjacency matrix A(N), the global maximum of the
objective ∆(·;A(N)) is denoted as Ĉ∗

N . The consistency of
class predictions is defined as:

1. Strong Consistency.
PN

[
min
µ

∥Ĉ∗
Nµ− CN∥2F = 0

]
→ 1 as N → ∞,

2. Weak Consistency.

∀ε > 0, PN

[
min
µ

1

N
∥Ĉ∗

Nµ− CN∥2F < ε

]
→ 1 as N → ∞.

where ∥ · ∥F is the Frobenius norm. Under the conditions
of Theorem 3.1 from (Zhao et al., 2012):

• The Mclust objective is strongly consistent if
λN/ log(N)→∞, and

• It is weakly consistent when λN →∞.

Remark 3. Structure Learning within Communities. In
GraphFLEx, we focus on learning the structure within
each community rather than the structure of the entire
dataset at once. Strong consistency ensures perfect com-
munity recovery, meaning no inter-community edges exist

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

representing the ideal case. Weak consistency, however,
allows for a small fraction (ϵ) of inter-community edges,
where ϵ is controlled by ρn in Pn = ρnP , influencing graph
sparsity.

By Lemma 1 and Assumption 1, stronger consistency leads
to more precise structure learning, whereas weaker consis-
tency permits a limited number of inter-community edges.

3.3. Learning Graph Structure on a Coarse Graph

After trainingMclust, we identify communities for incoming
nodes, starting with τ = 1. Once assigned, we determine
significant communities those with at least one incoming
node and learn their connections to the respective commu-
nity subgraphs. For large datasets, substantial community
sizes may again introduce scalability issues. To mitigate this,
we first coarsen the large community graph into a smaller
graph and use it to identify potential connections for incom-
ing nodes. This process constitutes the second module of
GraphFLEx, denoted asMcoar, which employs LSH-based
hashing for graph coarsening. The supernode index for ith

node is given as:

Hi = maxOccurance

{⌊
1

r
· (W ·Xi + b)

⌋}
(1)

where r (bin width) controls the coarsened graph size,
W represents random projection matrix, X is the feature
matrix, and b is the bias term. For further details, refer
to UGC (Kataria et al., 2024). After coarsening the ith

community (Ci),Mcoar(Ci) = {Pi, Si} yields a partition
matrix Pi ∈ R∥Si∥×∥Ci∥ and a set of coarsened supernodes
(Si), as discussed in Section 2.

Definition 1. The neighborhood of a set of nodes Ei is
defined as the union of the top k most similar nodes in Ci
for each node v ∈ Ei, where similarity is measured by the
distance function d(v, u). A node u ∈ Ci is considered part
of the neighborhood if its distance d(v, u) is among the k
smallest distances for all u′ ∈ Ci.

Nk(Ei) =
⋃
v∈Ei

{u ∈ Ci | d(v, u) ≤ top-k[d(v, u′) : u′ ∈ Ci]}

Goal 3. The neighborhood of incoming nodesNk(Ei) repre-
sents the ideal set of nodes where the incoming nodes Ei are
likely to establish connections when the entire community is
provided to a structure learning framework.. A robust coars-
ening framework must reduce the number of nodes within
each community Ci while ensuring that the neighborhood
of the incoming nodes is preserved.

3.4. Graph Learning only with Potential Nodes

As we now have a smaller representation of the community,
we can employ any graph learning algorithms discussed in

Section 2.2 to learn a graph between coarsened supernodes
Si and incoming nodes (V i

τ ∈ Vτ). This is the third module
of GraphFLEx, i.e., graph learning; we denote it asMgl.
The number of supernodes in Si is much smaller compared
to the original size of the community, i.e., ∥Si∥ ≪ ∥Ci∥;
scalability is not an issue now. We learn a small graph first
using Mgl(Si, X

i
τ) = G̃iτ (V c

τ , A
c
τ) where Xi

τ represents
features of new nodes belonging to ith community at time
τ , G̃iτ (V c

τ , A
c
τ) representing the graph between supernodes

and incoming nodes. Utilizing the partition matrix Pi

obtained from Mcoar, we can precisely determine the set
of nodes associated with each supernode. For every new
node V ∈ V i

τ , we identify the connected supernodes and
subsequently select nodes within those supernodes. This
subset of nodes is denoted by ωV i

τ
, the sub-graph associated

with ωV i
τ

represented by Giτ−1(ωV i
τ
) then undergoes an

additional round of graph learningMgl(Giτ−1(ωV i
τ
), Xi

τ),
ultimately providing a clear and accurate connection of new
nodes V i

τ with nodes of Gτ−1, ultimately updating it to
Gτ . This multi-step approach, characterized by coarsening,
learning on coarsened graphs, and translation to the original
graph, ensures scalability.

Theorem 1. Neighborhood Preservation. Let Nk(Ei) de-
note the neighborhood of incoming nodes Ei for the ith

community. With partition matrix Pi andMgl(Si, X
i
τ) =

Gcτ (V c
τ , A

c
τ) we identify the supernodes connected to incom-

ing nodes Ei and subsequently select nodes within those
supernodes; this subset of nodes is denoted by ωV i

τ
. For-

mally,

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}
Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i

τ

where
p(c) ≤ 1− 2√

2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v−u∥)
between every node v ∈ Ei and the nodes u ∈ ωV i

τ
. Here, π−1(s)

denotes the set of nodes mapped to supernode s, r is the bin-width
hyperparameter of Mcoar.

Proof. The proof is deferred in Appendix B.

Remark 4. Theorem 1 establishes that, with a constant prob-
ability of success, the neighborhood of incoming nodes
Nk(Ei) can be effectively recovered using the GraphFLEx
multistep approach, which involves coarsening and learning
on the coarsened graph, i.e., Nk(Ei) ⊆ ωV i

τ
. The set ωV i

τ
,

estimated by GraphFLEx, identifies potential candidates
where incoming nodes are likely to connect. The probability
of failure can be reduced by regulating the average degree
of connectivity in Mgl(Si, X

i
τ) = Gcτ (V c

τ , A
c
τ). While a

fully connected Gcτ ensures all nodes in the community are
candidates, it significantly increases computational costs for
large communities.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Table 2: Time complexity analysis of GraphFLEx. Here, N is the number of nodes in the graph, k is the number of nodes in the static
subgraph used for clustering (k ≪ N), and c represents the number of detected communities. kτ denotes the number of nodes at
timestamp τ . Finally, α = ∥Si

τ∥+ ∥Ei
τ∥ is the sum of coarsened and incoming nodes in the relevant community at τ timestamp.

Mclust Mcoar Mgl GraphFLEx
Best (kNN-UGC-ANN) O(k2) O

(
kτ

c

)
O(α logα) O(k2 + kτ

c + α logα)

Worst (SC-FGC-GLasso) O(k3) O
((

kτ

c

)2 ∥Si
τ∥
)

O(α3) O(k3 +
(
kτ

c

)2 ∥Si
τ∥+ α3)

3.5. GraphFLEx Offering Multiple SGL Frameworks

Each module in Figure 3, controls distinct properties: clus-
tering influences community detection, coarsening governs
supernode formation to reduce graph complexity, and the
learning module enforces diverse structural properties. Al-
tering any of these modules results in a new graph learning
method. Currently, we support 48 different graph learning
configurations, and this number scales exponentially with
the addition of new methods to any module. The number
of possible frameworks is given by α× β × γ, where α, β,
and γ represent the number of clustering, coarsening, and
learning methods, respectively.

Figure 3: The versatility of GraphFlex in supporting multiple
methods for structure learning.

3.6. Run Time Analysis

We evaluate the run-time complexity of GraphFLEx in two
scenarios: (a) the worst-case scenario, where computation-
ally intensive clustering and coarsening modules are se-
lected, providing an upper bound on time complexity, and
(b) the best-case scenario, where the most efficient mod-
ules are chosen. Table 2 summarizes the analysis. The run
time of GraphFLEx is primarily determined by the learning
module (Mgl). GraphFLEx computational time is always
bounded by existing approaches, as it operates on a signifi-
cantly reduced graph space, ensuring efficient performance,
especially for larger or expanding graphs. This is also illus-
trated in Table 3.

4. Experiments
In this section, we conclude the experiments to back up our
findings.
Tasks and Datasets. The experiments focus on four key
aspects of GraphFLEx: its computational efficiency, scal-
ability in handling large graphs, the quality of the learned
graph structure, and its ability to efficiently handle expand-
ing graphs. To validate the characteristics of GraphFLEx,
we conduct extensive experiments on 22 different datasets,
including (a) datasets that already have a complete graph
structure (allowing comparison between the learned and the
original structure), (b) datasets with missing graph struc-
tures, (c) synthetic datasets, and (d) small datasets for visu-
alizing the graph structure. More details about datasets are
presented in Table 6 in Appendix D.
System Specifications: All the experiments conducted for
this work were performed on an Intel Xeon W-295 CPU and
64GB of RAM desktop using the Python environment.

Computational Efficiency. Existing methods like k-NN
and log-model struggle to learn graph structures even for
20k nodes due to out-of-memory (OOM) or out-of-time
(OOT) issues, while l2-model and large-model struggle
beyond 50k nodes. Although A-NN and emp-Covar. are
faster, GraphFLEx outperforms them on sufficiently large
graphs (Table 3). While traditional methods may be efficient
for small graphs, GraphFLEx scales significantly better,
excelling on large datasets like Pubmed and Syn 5, where
most methods fail. It accelerates structure learning, making
A-NN 3× faster and emp-Covar. 2× faster.

4.1. Node Classification Accuracy

Experimental Setup. We now evaluate the prediction per-
formance of GNN models when trained on graph structures
learned from three distinct scenarios: 1) Original Struc-
ture: GNN models trained on the original graph structure,
which we refer to as the Base Structure, 2) GraphFLEx
Structure: GNN models trained on the graph structure
learned from GraphFLEx, and 3)Vanilla Structure: GNN
models trained on the graph structure learned from other
existing methods.
For each scenario, a unique graph structure is obtained. We
trained GNN models on each of these three structure. For
more details on GNN model parameters, see Appendix F.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Table 3: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods (Vanilla referred to as Van.).
The experimental setup involves treating 50% of the data as static, while the remaining 50% of nodes are treated as incoming nodes
arriving in 25 different timestamps. The best times are highlighted by color Green. OOM and OOT denote out-of-memory and out-of-time,
respectively.

Data ANN KNN log-model l2-model emp-Covar. large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Cora 335 100 8.4 36.1 869 81.6 424 55 8.6 30 2115 18.4
Citeseer 1535 454 21.9 75 1113 64.5 977 54.0 14.7 59.2 8319 43.9
DBLP 2731 988 OOM 270 77000 919 OOT 1470 359 343 OOT 299
CS 22000 12000 OOM 789 OOT 838 32000 809 813 718 OOT 1469
PubMed 770 227 OOM 164 OOT 176 OOT 165 488 299 OOT 262
Phy. 61000 21000 OOM 903 OOT 959 OOT 908 2152 1182 OOT 2414
Syn 3 95 37 OOM 30 58000 346 859 53 88 59 5416 42
Syn 4 482 71 OOM 73 OOT 555 OOT 145 2072 1043 OOT 392

Table 4: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla (Van.) methods. The
experimental setup involves treating 70% of the data as static, while the remaining 30% of nodes are treated as new nodes coming
in 25 different timestamps. The best and the second-best accuracies in each row are highlighted by dark and lighter shades of Green,
respectively. GraphFLEx’s structure beats all of the vanilla structures for every dataset. OOM and OOT denotes out-of-memory and
out-of-time respectively.

Data Model ANN KNN log-model l2-model COVA large-model Base Struct.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 34.23 67.37 OOM 69.83 OOT 69.83 OOT 68.98 50.48 68.56 OOT 66.38 70.84
SAGE 34.23 69.58 OOM 70.28 OOT 70.28 OOT 70.68 51.47 70.51 OOT 69.32 72.57

DBLP GCN 34.12 69.41 OOM 73.39 OOT 73.39 OOT 73.05 51.50 71.75 OOT 68.55 74.43
GIN 34.01 69.69 OOM 68.19 OOT 68.19 OOT 73.08 52.77 72.03 OOT 71.18 73.92

GAT 12.47 60.89 OOM 61.09 OOT 60.95 18.64 61.06 58.96 88.06 OOT 86.22 60.75
SAGE 12.70 78.81 OOM 79.43 OOT 79.06 19.24 78.94 56.97 93.30 OOT 92.79 80.33

CS GCN 12.59 63.81 OOM 67.94 OOT 69.33 19.21 66.01 58.35 91.07 OOT 84.85 67.43
GIN 13.07 77.62 OOM 78.41 OOT 78.55 19.24 77.61 58.26 92.07 OOT 86.03 55.65

GAT 49.49 83.71 OOM 84.60 OOT 84.60 OOT 84.04 72.63 83.97 OOT 81.15 84.04
SAGE 50.43 87.27 OOM 87.34 OOT 87.34 OOT 87.42 73.57 86.68 OOT 87.34 88.88

Pub. GCN 50.45 82.06 OOM 83.56 OOT 83.56 OOT 83.74 73.14 82.39 OOT 78.03 85.54
GIN 51.82 83.13 OOM 84.31 OOT 84.07 OOT 82.93 73.15 83.51 OOT 82.85 86.50

GAT 29.18 88.06 OOM 88.47 OOT 88.47 OOT 88.68 58.96 88.06 OOT 86.22 88.58
SAGE 29.57 93.47 OOM 93.47 OOT 93.47 OOT 93.78 56.97 93.60 OOT 92.79 94.19

Phy. GCN 27.84 91.27 OOM 91.08 OOT 91.08 OOT 91.78 58.35 91.07 OOT 84.85 91.48
GIN 28.38 92.69 OOM 92.04 OOT 92.04 OOT 92.27 58.26 92.07 OOT 86.03 88.89

GNN Models. Graph neural networks (GNNs) such as
GCN (Kipf & Welling, 2016), GraphSage (Hamilton
et al., 2017), GIN (Xu et al., 2018), and GAT (Velick-
ovic et al., 2017) rely on accurate message passing, dictated
by the graph structure, for effective embedding. We use
these models to evaluate the above-mentioned learned struc-
tures. Table 4 reports node classification performance across
all methods. Notably, GraphFLEx outperforms vanilla struc-
tures by a significant margin across all datasets, achieving
accuracies close to those obtained with the original struc-
ture. Figure 9 in Appendix F illustrates GraphSage classi-
fication results, highlighting GraphFLEx’s superior perfor-
mance. For the CS dataset, GraphFLEx (large-model) and
GraphFLEx (empCovar.-model) even surpass the original

structure, demonstrating its ability to preserve key struc-
tural properties while denoising edges, leading to improved
accuracy.

4.2. Clustering Quality

We measure three metrics to evaluate the resulting clusters
or community assignments: a) Normalized Mutual Infor-
mation (NMI) (Tsitsulin et al., 2023) between the cluster
assignments and original labels; b) Conductance (C) (Jerrum
& Sinclair, 1988) which measures the fraction of total edge
volume that points outside the cluster; and c) Modularity (Q)
(Newman, 2006) which measures the divergence between
the intra-community edges and the expected one. Table 5

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

(a) 10 incoming nodes (b) 20 incoming nodes (c) 30 incoming nodes (d) ANN as Mgl (e) Emp. Covr. as Mgl (f) kNN as Mgl

Figure 4: Figures (a), (b), and (c) illustrate the growing structure learned using GraphFLEx for HE synthetic dataset. Figures (d), (e), and
(f) illustrate the learned structure on Zachary’s karate dataset when existing methods are employed with GraphFLEx. New nodes are
denoted using black color.

illustrates these metrics for single-cell RNA and MNIST
dataset (where the whole structure is missing), and Figure 5
shows the PHATE (Moon et al., 2019) visualization of clus-
ters learned using GraphFLEx’s clustering moduleMclust.
We also train the aforementioned GNN models for the node
classification task in order to illustrate the efficacy of the
learned structures; the accuracies values presented in Table
5, clearly highlight the significance of the learned structures,
as reflected by the high accuracy values.

Table 5: Clustering results and node classification accuracies. Left:
Clustering metrics - NMI, graph conductance C, and Modularity
Q. Right: Node classification accuracy for GCN, GraphSAGE,
GIN, GAT.

Data NMI ↑ C ↓ Q ↑ GCN SAGE GIN GAT

Bar. M. 0.716 0.057 0.741 91.2 96.2 95.1 94.9
Seger. 0.678 0.102 0.694 91.0 93.9 94.2 92.3
Mura. 0.843 0.046 0.706 96.9 97.4 97.5 96.4

Bar. H. 0.674 0.078 0.749 95.3 96.4 97.2 95.8
Xin 0.741 0.045 0.544 98.6 99.3 98.9 99.8

MNIST 0.677 0.082 0.712 92.9 94.5 94.9 82.6

(a) Muraro (b) Baron Mouse (c) Segerstolpe

Figure 5: PHATE visualization of clusters learned using Graph-
FLEx clustering module for scRNA-seq datasets.

4.3. Structure Visualization

We evaluate the structures generated by GraphFLEx through
visualizations on four small datasets: (i) MNIST (LeCun
et al., 2010), consisting of handwritten digit images, where
Figure 6(a) shows that images of the same digit are mostly
connected; (ii) Pre-trained GloVe embeddings (Pennington
et al., 2014) of English words, with Figure 6(b) revealing
that frequently used words are closely connected; (iii) A syn-
thetic H.E dataset (see Appendix D), demonstrating Graph-
FLEx’s ability to handle expanding networks without requir-

ing full relearning. Figure 4(a-c) shows the graph structure
evolving as 30 new nodes are added over three timestamps;
and (iv) Zachary’s karate club network (Zachary, 1977),
which highlights GraphFLEx’s multi-framework capabil-
ity. Figure 4(d-f) shows three distinct graph structures after
altering the learning module.

(a) MNIST (b) Glove

Figure 6: Figures demonstrate the effectiveness of our framework
in learning meaningful structure between similar MNIST digit
images and pre-trained GloVe embeddings.

5. Conclusion
Large or expanding graphs challenge the best of graph
learning approaches. GraphFLEx, introduced in this paper,
seamlessly adds new nodes into an existing graph struc-
ture. It offers diverse methods for acquiring the graph’s
structure. GraphFLEx consists of three key modules: Clus-
tering, Coarsening, and Learning which empowers Graph-
FLEx to serves as a comprehensive framework applicable
individually for clustering, coarsening, and learning tasks.
GraphFLEx is typically 3X faster than other state of the
art methods and scales well with large graphs. It achieves
accuracies close to training on the original graph, in most
instances. The performance across multiple real and syn-
thetic datasets affirms the utility and efficacy of GraphFLEx
for graph structure learning.
Limitations and Future Work. GraphFLEx is designed as-
suming minimal inter-community connectivity, which aligns
well with many real-world scenarios. However, its applica-
bility to heterophilic graphs may require further adaptation.
Future work will focus on extending the framework to su-
pervised GSL methods and heterophilic graphs, broadening
its scalability and versatility.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Allen, J. D., Xie, Y., Chen, M., Girard, L., and Xiao, G.

Comparing statistical methods for constructing large scale
gene networks. PloS one, 7(1):e29348, 2012. (Cited at
p. 1.)

Banerjee, O., El Ghaoui, L., and d’Aspremont, A. Model
selection through sparse maximum likelihood estimation
for multivariate gaussian or binary data. The Journal of
Machine Learning Research, 9:485–516, 2008. (Cited at
p. 3.)

Belkin, M., Niyogi, P., and Sindhwani, V. Manifold regular-
ization: A geometric framework for learning from labeled
and unlabeled examples. Journal of machine learning
research, 7(11), 2006. (Cited at p. 3.)

Bianchi, F. M. Simplifying clustering with graph neural
networks. arXiv preprint arXiv:2207.08779, 2022. (Cited
at p. 4.)

Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral
clustering with graph neural networks for graph pooling.
In International conference on machine learning, pp. 874–
883. PMLR, 2020. (Cited at p. 4.)

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral
networks and deep locally connected networks on graphs.
arxiv. arXiv preprint arXiv:1312.6203, 2014. (Cited at
p. 3.)

Chen, Y. and Wu, L. Graph neural networks: Graph struc-
ture learning. Graph Neural Networks: Foundations,
Frontiers, and Applications, pp. 297–321, 2022. (Cited
at p. 1.)

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the twentieth annual sym-
posium on Computational geometry, pp. 253–262, 2004.
(Cited at p. 13.)

Defferrard, M., Martin, L., Pena, R., and Perraudin, N.
Pygsp: Graph signal processing in python. URL https:
//github.com/epfl-lts2/pygsp/. (Cited at
p. 14.)

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-
volutional neural networks on graphs with fast localized
spectral filtering. Advances in neural information pro-
cessing systems, 29, 2016. (Cited at p. 3.)

Dempster, A. P. Covariance selection. Biometrics, pp. 157–
175, 1972. (Cited at p. 3.)

Dong, W., Moses, C., and Li, K. Efficient k-nearest neigh-
bor graph construction for generic similarity measures.
In Proceedings of the 20th international conference on
World wide web, pp. 577–586, 2011. (Cited at p. 1.)

Dong, X., Thanou, D., Frossard, P., and Vandergheynst,
P. Learning laplacian matrix in smooth graph signal
representations. IEEE Transactions on Signal Processing,
64(23):6160–6173, 2016. (Cited at pp. 1 and 3.)

Fatemi, B., El Asri, L., and Kazemi, S. M. Slaps: Self-
supervision improves structure learning for graph neural
networks. Advances in Neural Information Processing
Systems, 34:22667–22681, 2021. (Cited at p. 1.)

Fortunato, S. Community detection in graphs. Physics
reports, 486(3-5):75–174, 2010. (Cited at p. 3.)

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. Protein
interface prediction using graph convolutional networks.
Advances in neural information processing systems, 30,
2017. (Cited at p. 1.)

Friedman, J., Hastie, T., and Tibshirani, R. Sparse inverse
covariance estimation with the graphical lasso. Biostatis-
tics, 9(3):432–441, 2008. (Cited at pp. 1 and 3.)

Fu, X., Zhang, J., Meng, Z., and King, I. Magnn: Metapath
aggregated graph neural network for heterogeneous graph
embedding. In Proceedings of The Web Conference 2020,
pp. 2331–2341, 2020. (Cited at p. 14.)

Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., and Ling, M. Scene
graph generation with external knowledge and image
reconstruction. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
1969–1978, 2019. (Cited at p. 1.)

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017. (Cited at p. 7.)

Hashemi, M., Gong, S., Ni, J., Fan, W., Prakash, B. A.,
and Jin, W. A comprehensive survey on graph reduc-
tion: Sparsification, coarsening, and condensation. arXiv
preprint arXiv:2402.03358, 2024. (Cited at p. 3.)

Holme, P. and Saramäki, J. Temporal networks. Physics
reports, 519(3):97–125, 2012. (Cited at p. 2.)

Hsieh, C.-J., Dhillon, I., Ravikumar, P., and Sustik,
M. Sparse inverse covariance matrix estimation using
quadratic approximation. Advances in neural information
processing systems, 24, 2011. (Cited at p. 1.)

9

https://github.com/epfl-lts2/pygsp/
https://github.com/epfl-lts2/pygsp/

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Hu, C., Cheng, L., Sepulcre, J., El Fakhri, G., Lu, Y. M.,
and Li, Q. A graph theoretical regression model for
brain connectivity learning of alzheimer’s disease. In
2013 IEEE 10th International Symposium on Biomedical
Imaging, pp. 616–619. IEEE, 2013. (Cited at p. 3.)

Jerrum, M. and Sinclair, A. Conductance and the rapid
mixing property for markov chains: the approximation
of permanent resolved. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pp.
235–244, 1988. (Cited at p. 7.)

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J.
Graph structure learning for robust graph neural networks.
In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp.
66–74, 2020. (Cited at p. 1.)

Kalofolias, V. How to learn a graph from smooth signals. In
Artificial intelligence and statistics, pp. 920–929. PMLR,
2016. (Cited at pp. 1 and 3.)

Kamvar, S. D., Klein, D., and Manning, C. D. Spectral
learning. In IJCAI, volume 3, pp. 561–566, 2003. (Cited
at p. 3.)

Kataria, M., Khandelwal, A., Das, R., Kumar, S., and
Jayadeva, J. Linear complexity framework for feature-
aware graph coarsening via hashing. In NeurIPS
2023 Workshop: New Frontiers in Graph Learning,
2023. URL https://openreview.net/forum?
id=HKdsrm5nCW. (Cited at p. 3.)

Kataria, M., Kumar, S., and Jayadeva, J. UGC: Uni-
versal graph coarsening. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?
id=nN6NSd1Qds. (Cited at pp. 3, 5, and 13.)

Khazane, A., Rider, J., Serpe, M., Gogoglou, A., Hines,
K., Bruss, C. B., and Serpe, R. Deeptrax: Embedding
graphs of financial transactions. In 2019 18th IEEE In-
ternational Conference On Machine Learning And Appli-
cations (ICMLA), pp. 126–133. IEEE, 2019. (Cited at
p. 2.)

Kim, S., Yun, S., and Kang, J. Dygrain: An incremental
learning framework for dynamic graphs. In IJCAI, pp.
3157–3163, 2022. (Cited at pp. 3 and 14.)

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. (Cited at pp. 7 and 14.)

Koller, D. and Friedman, N. Probabilistic graphical models:
principles and techniques. MIT press, 2009. (Cited at
p. 3.)

Kumar, M., Sharma, A., and Kumar, S. A unified
framework for optimization-based graph coarsening.
Journal of Machine Learning Research, 24(118):1–
50, 2023. URL http://jmlr.org/papers/v24/
22-1085.html. (Cited at p. 3.)

Lao, D., Yang, X., Wu, Q., and Yan, J. Variational inference
for training graph neural networks in low-data regime
through joint structure-label estimation. In Proceedings
of the 28th ACM SIGKDD conference on knowledge dis-
covery and data mining, pp. 824–834, 2022. (Cited at
p. 1.)

LeCun, Y., Cortes, C., and Burges, C. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. (Cited at
pp. 8 and 15.)

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., and Pan,
S. Towards unsupervised deep graph structure learning.
In Proceedings of the ACM Web Conference 2022, pp.
1392–1403, 2022. (Cited at p. 1.)

Loukas, A. Graph reduction with spectral and cut guarantees.
J. Mach. Learn. Res., 20(116):1–42, 2019. (Cited at p. 3.)

Lü, L. and Zhou, T. Link prediction in complex networks:
A survey. Physica A: statistical mechanics and its appli-
cations, 390(6):1150–1170, 2011. (Cited at p. 14.)

MacQueen, J. et al. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pp. 281–297. Oakland, CA,
USA, 1967. (Cited at pp. 1 and 3.)

Moon, K. R., Van Dijk, D., Wang, Z., Gigante, S., Burkhardt,
D. B., Chen, W. S., Yim, K., Elzen, A. v. d., Hirn, M. J.,
Coifman, R. R., et al. Visualizing structure and transitions
in high-dimensional biological data. Nature biotechnol-
ogy, 37(12):1482–1492, 2019. (Cited at pp. 8 and 19.)

Muja, M. and Lowe, D. G. Scalable nearest neighbor al-
gorithms for high dimensional data. IEEE transactions
on pattern analysis and machine intelligence, 36(11):
2227–2240, 2014. (Cited at p. 1.)

Newman, M. E. Modularity and community structure in net-
works. Proceedings of the national academy of sciences,
103(23):8577–8582, 2006. (Cited at pp. 4 and 7.)

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural networks, 113:54–71, 2019. (Cited at
pp. 3 and 14.)

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proceedings

10

https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=HKdsrm5nCW
https://openreview.net/forum?id=nN6NSd1Qds
https://openreview.net/forum?id=nN6NSd1Qds
http://jmlr.org/papers/v24/22-1085.html
http://jmlr.org/papers/v24/22-1085.html

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.
(Cited at pp. 8 and 15.)

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
S. Pitfalls of graph neural network evaluation. arXiv
preprint arXiv:1811.05868, 2018. (Cited at p. 14.)

Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E.
Graph clustering with graph neural networks. Journal of
Machine Learning Research, 24(127):1–21, 2023. (Cited
at pp. 3, 4, and 7.)

Van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019. (Cited at pp. 3 and 14.)

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., Bengio, Y., et al. Graph attention networks. stat, 1050
(20):10–48550, 2017. (Cited at p. 7.)

Vogelstein, J. T., Roncal, W. G., Vogelstein, R. J., and Priebe,
C. E. Graph classification using signal-subgraphs: Appli-
cations in statistical connectomics. IEEE transactions on
pattern analysis and machine intelligence, 35(7):1539–
1551, 2012. (Cited at p. 14.)

Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al. Con-
strained k-means clustering with background knowledge.
In Icml, volume 1, pp. 577–584, 2001. (Cited at p. 3.)

Wang, F. and Zhang, C. Label propagation through lin-
ear neighborhoods. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 985–992,
2006. (Cited at pp. 1 and 3.)

Wang, K., Shen, Z., Huang, C., Wu, C., Dong, Y., and
Kanakia, A. Microsoft academic graph: When experts
are not enough. quantitative science studies, 1 (1), 396–
413, 2020. (Cited at p. 4.)

Watts, D. J. and Strogatz, S. H. Collective dynamics
of ‘small-world’networks. nature, 393(6684):440–442,
1998. (Cited at p. 15.)

Wu, Q., Zhao, W., Li, Z., Wipf, D. P., and Yan, J. Node-
former: A scalable graph structure learning transformer
for node classification. Advances in Neural Information
Processing Systems, 35:27387–27401, 2022. (Cited at
p. 1.)

Wu, T., Liu, Q., Cao, Y., Huang, Y., Wu, X.-M., and Ding, J.
Continual graph convolutional network for text classifica-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 13754–13762, 2023. (Cited
at pp. 3 and 14.)

Wu, Y., Lian, D., Xu, Y., Wu, L., and Chen, E. Graph
convolutional networks with markov random field reason-
ing for social spammer detection. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp.
1054–1061, 2020. (Cited at p. 1.)

Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang,
Q., and Sun, J. Temporal recommendation on graphs
via long-and short-term preference fusion. In Proceed-
ings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 723–732,
2010. (Cited at p. 4.)

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018. (Cited at p. 7.)

Yang, F., Wang, W., Wang, F., Fang, Y., Tang, D., Huang, J.,
Lu, H., and Yao, J. scbert as a large-scale pretrained deep
language model for cell type annotation of single-cell rna-
seq data. Nature Machine Intelligence, 4(10):852–866,
2022. (Cited at p. 14.)

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40–48.
PMLR, 2016. (Cited at p. 14.)

You, J., Du, T., and Leskovec, J. Roland: graph learning
framework for dynamic graphs. In Proceedings of the
28th ACM SIGKDD conference on knowledge discovery
and data mining, pp. 2358–2366, 2022. (Cited at pp. 3
and 14.)

Zachary, W. W. An information flow model for conflict
and fission in small groups. Journal of anthropological
research, 33(4):452–473, 1977. (Cited at pp. 8, 15,
and 19.)

Zhang, X., Song, D., and Tao, D. Cglb: Benchmark tasks for
continual graph learning. Advances in Neural Information
Processing Systems, 35:13006–13021, 2022. (Cited at
pp. 3 and 14.)

Zhao, Y., Levina, E., and Zhu, J. Consistency of community
detection in networks under degree-corrected stochastic
block models. 2012. (Cited at pp. 4 and 13.)

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A review
of methods and applications. AI open, 1:57–81, 2020.
(Cited at p. 1.)

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International con-
ference on Machine learning (ICML-03), pp. 912–919,
2003. (Cited at p. 3.)

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Zhu, Y., Xu, W., Zhang, J., Du, Y., Zhang, J., Liu, Q.,
Yang, C., and Wu, S. A survey on graph structure
learning: Progress and opportunities. arXiv preprint
arXiv:2103.03036, 2021. (Cited at p. 1.)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Appendix

A. Degree-Corrected Stochastic Block Model(DC-SBM)
The DC-SBM is one of the most commonly used models for networks with communities and postulates that, given node
labels c = c1, ...cn, the edge variables A′

ijs are generated via the formula

E[Aij] = θiθjPciPcj

, where θi is a ”degree parameter” associated with node i, reflecting its individual propernsity to form ties, and P is a K×K
symmetric matrix containing the between/withincommunity edge probabilities and PciPcj denotes the edge probabilities
between community ci and cj .
For DC-SBM model (Zhao et al., 2012) assumed Pn on n nodes with k classes, each node vi is given a label/degree
pair(ci, θi), drawn from a discrete joint distribution ΠK×m which is fixed and does not depend on n. This implies that each
θi is one of a fixed set of values 0 ≤ x1 ≤ ≤ xm. To facilitate analysis of asymptotic graph sparsity, we parameterize
the edge probability matrix P as Pn = ρnP where P is independent of n, and ρn = λn/n where λn is the average degree
of the network.

B. Neighbourhood Preservation
Theorem 2. Neighborhood Preservation. Let Nk(Ei) denote the neighborhood of incoming nodes Ei for the ith community.
With partition matrix Pi andMgl(Si, X

i
τ) = Gcτ (V c

τ , A
c
τ) we identify the supernodes connected to incoming nodes Ei and

subsequently select nodes within those supernodes; this subset of nodes is denoted by ωV i
τ

. Formally,

ωV i
τ
=

⋃
v∈Ei

{ ⋃
s∈Si

{π−1(s)|Ac
τ (v, s) ̸= 0}

}
Then, with probability Π{c∈ϕ}p(c), it holds that Nk(Ei) ⊆ ωV i

τ
where

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
,

and ϕ is a set containing all pairwise distance values (c = ∥v − u∥) between every node v ∈ Ei and the nodes u ∈ ωV i
τ

. Here, π−1(s)
denotes the set of nodes mapped to supernode s, r is the bin-width hyperparameter of Mcoar.

Proof: The probability that LSH random projection (Kataria et al., 2024; Datar et al., 2004) preserves the distance between
two nodes v and u i.e., d(u, v) = c, is given by:

p(c) =

∫ r

0

1

c
f2

(
t

c

)(
1− t

r

)
dt,

where f2(x) = 2√
2π

e−x2/2 represents the Gaussian kernel when the projection matrix is randomly sampled from p-
stable(p = 2) distribution (Datar et al., 2004).
The probability p(c) can be decomposed into two terms:

p(c) = S1(c)− S2(c),

S1(c) and S2(c) are defined as follows:

S1(c) =
2√
2π

∫ r

0

e−(t/c)2/2dt ≤ 1,

S2(c) =
2√
2π

∫ r

0

e−(t/c)2/2 t

r
dt.

S2(c) =
2√
2π
· c
r

∫ r

0

e−(t/c)2/2 t

c2
dt

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Expanding S2(c) :

S2(c) =
2√
2π
· c
r

∫ r2/(2c2)

0

e−ydy

S2(c) =
2√
2π
· c
r

[
1− e−r2/(2c2)

]
Thus, the probability p(c) can be bounded as:

p(c) ≤ 1− 2√
2π

c

r

[
1− e−r2/(2c2)

]
.

Now, let ϕ be the set of all pairwise distances d(u, v), where v ∈ Ei and nodeωV i
τ

. The probability that all nodes in Nk(Ei)
are preserved within ωV i

τ
, requires that all distances c ∈ ϕ are also preserved. The probability is then given by:∏

c∈ϕ

p(c).

∏
c∈ϕ

p(c) ≤
∏
c∈ϕ

(
1− 2√

2π

c

r

[
1− e−r2/(2c2)

])
.

C. Continual Learning and Dynamic Graph Learning
In this subsection, we highlight the key distinctions between Graph Structure Learning (GSL) and related fields to justify
our specific selection of related works in Section 2.2. GSL is often confused with topics such as Continual Learning (CL)
and Dynamic Graph Learning (DGL).
CL (Van de Ven & Tolias, 2019; Zhang et al., 2022; Parisi et al., 2019) addresses the issue of catastrophic forgetting, where
a model’s performance on previously learned tasks degrades significantly after training on new tasks. In CL, the model has
access only to the current task’s data and cannot utilize data from prior tasks. Conversely, DGL (Kim et al., 2022; Wu et al.,
2023; You et al., 2022) focuses on capturing the evolving structure of graphs and maintaining updated graph representations,
with access to all prior information.
While both CL and DGL aim to enhance model adaptability to dynamic data, GSL is primarily concerned with generating
high-quality graph structures that can be leveraged for downstream tasks such as node classification (Kipf & Welling, 2016),
link prediction (Lü & Zhou, 2011), and graph classification (Vogelstein et al., 2012). Moreover, in CL and DGL, different
tasks typically involve distinct data distributions, whereas GSL assumes a consistent data distribution throughout.

D. Datasets
Datasets used in our experiments vary in size, with nodes ranging from 1k to 60k. Table 6 lists all the datasets we used in
our work. We evaluate our proposed framework GraphF lex on real-world datasets Cora ,Citeseer, Pubmed (Yang et al.,
2016), CS, Physics (Shchur et al., 2018), DBLP (Fu et al., 2020), all of which include graph structures. These datasets
allow us to compare the learned structures with the originals. Additionally, we utilize single-cell RNA pancreas datasets
(Yang et al., 2022), including Baron, Muraro, Segerstolpe, and Xin, where the graph structure is missing. The Baron
dataset was downloaded from the Gene Expression Omnibus (GEO) (accession no. GSE84133). The Muraro dataset was
downloaded from GEO (accession no. GSE85241). The Segerstolpe dataset was accessed from ArrayExpress (accession no.
E-MTAB-5061). The Xin dataset was downloaded from GEO (accession no. GSE81608). We simulate the expanding graph
scenario by splitting the original dataset across different T timestamps. We assumed 50% of the nodes were static, with the
remaining nodes arriving as incoming nodes at different timestamps.
Synthetic datasets: Different data generation techniques validate that our results are generalized to different settings. Please
refer to Table 6 for more details about the number of nodes, edges, features, and classes, Syn denotes the type of synthetic
datasets. Figure 7 shows graphs generated using different methods. We have employed three different ways to generate
synthetic datasets which are mentioned below:

• PyGSP(PyGsp): We used synthetic graphs created by PyGSP (Defferrard et al.) library. PyG-G and PyG-S denotes grid
and sensor graphs from PyGSP.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

• Watts–Strogatz’s small world(SW): (Watts & Strogatz, 1998) proposed a generation model that produces graphs with
small-world properties, including short average path lengths and high clustering.

• Heterophily(HE): We propose a method for creating synthetic datasets to explore graph behavior across a heterophily
spectrum by manipulating heterophilic factor α, and classes. α is determined by dividing the number of edges connecting
nodes from different classes by the total number of edges in the graph.

Visulization Datasets: To evaluate, the learned graph structure, we have also included three datasets: (i) MNIST (LeCun
et al., 2010), consisting of handwritten digit images; (ii) Pre-trained GloVe embeddings (Pennington et al., 2014) of English
words; and (iii) Zachary’s karate club network (Zachary, 1977).

Category Data Nodes Edges Feat. Class Type

Original
Structure
Known

Cora 2,708 5,429 1,433 7 Citation network
Citeseer 3,327 9,104 3,703 6 Citation network
DBLP 17,716 52.8k 1,639 4 Research paper

CS 18,333 163.7k 6,805 15 Co-authorship network
PubMed 19,717 44.3k 500 3 Citation network
Physics 34,493 247.9k 8,415 5 Co-authorship network

Original
Structure

Not Known

Xin 1,449 NA 33,889 4 Human Pancreas
Baron Mouse 1,886 NA 14,861 13 Mouse Pancreas

Muraro 2,122 NA 18,915 9 Human Pancreas
Segerstolpe 2,133 NA 22,757 13 Human Pancreas

Baron Human 8,569 NA 17,499 14 Human Pancreas

Synthetic

Syn 1 2,000 8,800 150 4 SW
Syn 2 5,000 22k 150 4 SW
Syn 3 10,000 44k 150 7 SW
Syn 4 50,000 220k 150 7 SW
Syn 5 400 1,520 100 4 PyG-G
Syn 6 2,500 9,800 100 4 PyG-S
Syn 7 1,000 9,990 150 4 HE
Syn 8 2,000 40k 150 4 HE

Visulization Datasets
MNIST 60,000 NA 784 10 Images

Zachary’s karate 34 156 34 4 Karate club network
Glove 2,000 NA 50 NA GloVe embeddings

Table 6: Summary of the datasets.

(a) PyGSP-Sensor, N = 50, α=3 (b) PyGSP-Grid, N = 80, α=3 (c) SW, N = 50, α=3 (d) HE, N = 50, α=3

Figure 7: This figure illustrates different types of synthetic graphs generated using i)PyGSP, ii) Watts–Strogatz’s small
world(SW), and iii) Heterophily(HE). N denotes the number of nodes, while α denotes the number of classes.

E. Algorithm

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Algorithm 1 GraphFlex: A Unified Structure Learning framework for expanding and Large Scale Graphs
Input: Graph G0(X0, A0), expanding nodes set ET1 = {Eτ (Vτ ,Xτ)}Tτ=1

Parameter: GClust, GCoar, GL← Clustering, Coarsening and Learning Module
Output: Graph GT (XT , AT)

1: Train clustering module train(Mclust, GClust, G0)
2: for each Et(Vt, Xt) in ET1 do
3: Ct = infer(Mclust, Xt), Ct ∈ RNt denotes the communities of Nt nodes at time t.
4: It = unique(Ct).
5: for each Iit in It do
6: Gi

t−1 = subgraph(Gt−1, Iit)
7: {Si

t−1, P
i
t−1} =Mcoar(G

i
t−1), S

i
t−1 ∈ Rk×d are features of k supernodes, P i

t−1 ∈ Rk×Ni
t is the partition matrix.

8: Gcit−1(S
i
t−1, A

i
t−1) =Mgl(S

i
t−1, X

i
t), Gcit−1 is the learned graph on super-nodes Si

t−1 and new node Xi
t .

9: ωi
t ← []

10: for x ∈ Xi
t do

11: ωi
t.append(x)

12: np = {n | Ai
t−1[n] > 0}

13: ωi
t.append(np)

14: end for
15: Gt−1 = update(Gt−1,Mgl(ω

i
t))

16: end for
17: Gt = Gt−1

18: end for
19: return GT (XT , AT)

F. Other GNN models
We used four GNN models, namely GCN, GraphSage, GIN, and GAT. Table 7 contains parameter details we used to train
GraphFlex. We have used these parameters across all methods.

Dynamic Nodes

9

9

11

11

12

12

13

13

15 1516

16

17

17

14

14

18

18

1

1

19

2

2

21

3

3

20

8

8

7

7

5

5

4

4

23

22

24

6

6

10

10t1

t6

t4

t3
t2

t5

Log model

L2 model

KNN

Empirical

Covariance

GLasso 

Large model

ANN

Log model

L2 model

KNN

Empirical

Covariance

GLasso 

Large model

ANN

GNN FACH

Vanilla

GraphFlex

Compare

Accuracy

Random Graph

GNN Models

921

20

11
12 13

15

16

17 14

18

1

2
19

24

24
23

22

21

20

19

23

22
3

8754

6
10

Figure 8: GNN training pipeline.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

0

10

20

30

40

50

60

70

80

90

100

Cora Citeseer DBLP Pubmed Physics CS

Ac
cu
ra
ci
es

Datasets

Vanilla SLdgSL FullDataset

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N KN

N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

LO
G

 M
od

el

L2
 M

od
el

Em
p.

 C
ov

a

La
rg

e
M

od
el

AN
N

KN
N

Figure 9: GraphSage accuracies when structure is learned or given with 3 different scenarios(Vanilla, GraphFlex, Original)
across different datasets, highlighting performance with 30% node growth over 25 timestamps.

Figure 8 illustrates the pipeline for training our GNN models. Graph structures were learned using both existing methods
and GraphFlex, and GNN models were subsequently trained on both structures. Results across all datasets are presented in
Table 8 and Table 4.

Table 7: GNN model parameters.

Model Hidden Layers L.R Decay Epoch

GCN {64, 64} 0.003 0.0005 500
GraphSage {64, 64} 0.003 0.0005 500
GIN {64, 64} 0.003 0.0005 500
GAT {64, 64} 0.003 0.0005 500

We randomly split data in 60%, 20%, 20% for training-validation-test. The results for these models on synthetic datasets are
presented in Table 8.

Figure 8 illustrates the pipeline for training our GNN models. Graph structures were learned using both existing methods
and GraphFlex, and GNN models were subsequently trained on both structures.

G. Computational Efficiency
Table 9 illustrates the remaining computational time for learning graph structures using GraphFLEx with existing Vanilla
methods on Synthetic datasets. While traditional methods may be efficient for small graphs, GraphFLEx scales significantly
better, excelling on large datasets like Pubmed and Syn 5, where most methods fail.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Table 8: Node classification accuracies on different GNN models using GraphFLEx (GFlex) with existing Vanilla (Van.)
methods. The experimental setup involves treating 70% of the data as static, while the remaining 30% of nodes are treated
as new nodes coming in 25 different timestamps. The best and the second-best accuracies in each row are highlighted by
dark and lighter shades of Green, respectively. GraphFLEx’s structure beats all of the vanilla structures for every dataset.
OOM and OOT denotes out-of-memory and out-of-time respectively.

Dataset Model ANN KNN log-model l2-model COVA large-model Base Struc.
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

GAT 18.73 73.84 20.96 73.65 16.14 72.36 18.74 73.10 49.72 77.55 14.28 76.43 79.77
SAGE 17.25 77.37 18.00 76.99 19.48 77.40 19.85 75.51 49.35 76.99 14.28 77.55 82.37

Cora GCN 17.99 78.11 17.81 77.92 18.55 77.74 20.41 79.22 47.31 80.52 14.28 79.03 84.60
GIN 16.69 76.44 18.74 80.52 17.44 76.25 19.29 76.62 48.79 78.85 14.28 76.06 81.63

GAT 16.51 61.82 25.00 62.27 19.24 64.70 18.18 63.48 20.91 62.73 16.67 62.27 66.42
SAGE 16.66 68.48 16.67 68.64 22.12 69.39 22.42 69.85 22.88 71.52 16.67 69.39 72.57

Citeseer GCN 28.18 60.00 16.67 61.97 20.45 65.45 19.70 64.24 21.06 64.70 16.67 63.18 68.03
GIN 16.66 64.39 16.67 63.94 20.15 59.85 18.64 63.64 22.12 60.30 16.67 61.81 67.38

GAT 29.55 92.07 OOM 90.86 OOT 91.64 OOT 91.64 35.79 92.52 OOT 93.74 89.49
SAGE 26.75 87.89 OOM 91.05 OOT 86.64 OOT 86.64 32.92 90.44 OOT 86.01 90.03

Syn 4 GCN 28.85 51.97 OOM 19.58 OOT 18.29 OOT 18.92 33.80 26.60 OOT 36.85 21.43
GIN 28.50 65.61 OOM 31.06 OOT 26.51 OOT 26.56 34.03 46.40 OOT 47.10 29.35

GAT 44.00 86.80 43.60 86.60 30.00 78.75 55.40 92.80 36.20 93.60 31.80 92.80 97.20
SAGE 41.00 93.80 41.40 93.60 33.75 88.75 57.60 94.00 35.20 94.80 28.20 95.60 97.40

Syn 6 GCN 43.60 88.80 42.20 87.40 26.25 81.25 55.60 92.40 31.40 94.40 25.20 94.00 99.40
GIN 39.60 89.00 40.40 86.60 21.25 82.50 55.20 91.80 30.00 94.60 30.40 92.00 98.80

GAT 29.55 99.75 33.75 88.75 88.25 99.25 88.25 99.25 26.00 85.50 94.00 96.00 98.50
SAGE 26.75 100.0 32.50 100.0 88.75 99.50 88.75 99.50 26.75 100.0 92.50 100.0 100.0

Syn 8 GCN 28.85 98.75 31.75 99.75 88.75 99.00 88.75 99.00 28.50 99.25 95.00 100.0 100.0
GIN 28.50 50.00 30.50 91.00 82.25 91.50 82.25 91.50 27.25 81.75 91.75 92.25 78.25

Table 9: Computational time for learning graph structures using GraphFLEx (GFlex) with existing methods (Vanilla referred
to as Van.). The experimental setup involves treating 50% of the data as static, while the remaining 50% of nodes are treated
as incoming nodes arriving in 25 different timestamps. The best times are highlighted by color Green. OOM and OOT
denote out-of-memory and out-of-time, respectively.

Data ANN KNN log-model l2-model COVA large-model
Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex Van. GFlex

Syn 1 19.4 9.8 2.5 10.5 2418 56.4 37.2 8.8 3.5 8.3 205 9.4
Syn 2 47.3 16.9 6.6 18.3 14000 144 214 22.6 20.3 18.6 1259 16.4
Syn 5 5.1 11.5 0.8 7.3 57.4 28 1.1 5.8 0.2 4.8 3.2 5.3
Syn 6 16.6 9.9 2.8 11.4 1766 96.3 193 101 5.3 8.9 324 9.6
Syn 7 10.6 7.4 1.4 8.9 704 85.2 10.3 7.9 0.9 6.4 36.5 8.2
Syn 8 19.6 11.2 2.5 11.7 2416 457 37.2 17.0 3.4 10.9 204 11.7

H. Visualization of Growing graphs
This section helps us visualize the phases of our growing graphs. We have generated a synthetic graph of 60 nodes using
PyGSP-Sensor and HE methods mentioned in Appendix D. We then added 40 new nodes denoted using black color in these
existing graphs at four different timestamps. Figure 10 and Figure 11 shows the learned graph structure after each timestamp
for two different Synthetic graphs.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

PyGsp

(a) Initial graph G0 (b) α= 10, G1 (c) α= 20, G2 (d) α = 30, G3 (e) α = 40, G4

Figure 10: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes are denoted
using black color, and α denotes number of new nodes. PyGsp denotes type synthetic graph.

HE

(a) Initial graph G0 (b) α = 10, G1 (c) α = 20, G2 (d) α= 30, G3 (e) α = 40, G4

Figure 11: This figure illustrates the growing structure learned using GraphFlex for dynamic nodes. New nodes are denoted
using black color, and α denotes the number of new nodes. HE denotes the type of synthetic graph.

Vanilla

(a) ANN (b) Emp. Cov. (c) KNN (d) L2 model (e) Log model

GraphFlex

(f) ANN (g) Emp Cov. (h) KNN (i) L2 model (j) Log model

Figure 12: This figure compares the structures learned on Zachary’s karate dataset when existing methods are employed with
GraphFlex and when existing methods are used individually. We consider six nodes, denoted in black, as dynamic nodes.

I. Structure Comparison on Karate Dataset
This section involves a comparison of the graph structure learned from GraphFlex with existing methods. Six nodes were
randomly selected and considered as new nodes. Figure 12 visually depicts the structures learned using GraphFlex compared
to other methods. It is evident from the figure that the structure known with GraphFlex closely resembles the original graph
structure. Figure 13 shows the original structure of Zachary’s karate club network (Zachary, 1977). We assumed six random
nodes to be dynamic nodes, and the structure learned using GraphFlex compared to existing methods is shown in Figure 12.

J. Clustering Quality
Figure 14 shows the PHATE (Moon et al., 2019) visualization of clusters learned using GraphFLEx’s clustering module
Mclust for Xin, MNIST , and Baron−Human datasets.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

GraphFLEx: Structure Learning Framework for Large Expanding Graphs

Figure 13: Original Karate Graph

(a) Xin (b) MNIST (c) Baron Human

Figure 14: PHATE visualization of clusters learnt using GraphFlex clustering module for scRNA-seq datasets.

20

	Introduction
	Problem Formulation and Background
	Graph Reduction
	Unsupervised Graph Structure Learning

	GraphFLEx
	Incremental Graph Learning for Large Datasets
	Detecting Communities
	Learning Graph Structure on a Coarse Graph
	Graph Learning only with Potential Nodes
	GraphFLEx Offering Multiple SGL Frameworks
	Run Time Analysis

	Experiments
	Node Classification Accuracy
	Clustering Quality
	Structure Visualization

	Conclusion
	Degree-Corrected Stochastic Block Model(DC-SBM)
	Neighbourhood Preservation
	Continual Learning and Dynamic Graph Learning
	Datasets
	Algorithm
	Other GNN models
	Computational Efficiency
	Visualization of Growing graphs
	Structure Comparison on Karate Dataset
	Clustering Quality

