Diff-DAgger: Uncertainty Estimation with Diffusion
Policy for Robotic Manipulation

Anonymous authors

Abstract: Diffusion policy has shown impressive results in handling multi-modal
tasks in robotic manipulation. However, it has fundamental limitations in out-of-
distribution failures that persist due to compounding errors and its limited capa-
bility to extrapolate. One way to address these limitations is robot-gated DAgger,
an interactive imitation learning with a robot query system to actively seek ex-
pert help during policy rollout. While robot-gated DAgger has high potential for
learning at scale, existing methods like Ensemble-DAgger struggle with highly
expressive policies: They often misinterpret policy disagreements as uncertainty
at multi-modal decision points. To address this, we introduce Diff-DAgger, an ef-
ficient robot-gated DAgger algorithm that leverages the training objective of dif-
fusion policy. We evaluate Diff-DAgger across different robot tasks and show that
Diff-DAgger overall achieves 81.5% accuracy on the task failure prediction and
improves task completion rate by 13.8%. We hope that this work opens up a path
for efficiently incorporating expressive policies into interactive robot learning.

Keywords: Robot-gated DAgger, Diffusion Policy

1 Introduction

Recently, significant advances have been made in offline imitation learning by adopting genera-
tive models for action sequence prediction. These models mitigate the compounding error issue by
reducing the number of action inferences [1] and addressing multi-modality through generative ca-
pabilities [2]. In particular, diffusion policy [3] trains the model to predict the gradient of the action
score function, and it has achieved state-of-the-art results for learning different robotic tasks.

While diffusion policy effectively handles highly multi-modal demonstrations, it still faces a core
issue of behavior cloning: the out-of-distribution (OOD) failure, where the policy compounds er-
rors in action prediction and cannot extrapolate in unseen states. A common strategy to address
OOD failure is DAgger [4], an interactive learning method which iteratively refines the policy by
incorporating expert interventions. In particular, robot-gated DAgger lets robots decide when to
seek expert help, removing the need for constant human supervision and enabling large-scale learn-
ing across multiple robots [5]. The effectiveness of this approach, therefore, relies heavily on the
robot’s ability to accurately estimate its own uncertainty.

However, none of the existing robot-gated DAgger approaches fully addresses the multi-modality
present in demonstration data. For example, the most widely adopted Ensemble-DAgger ap-
proaches use the action variance among an ensemble of policies to estimate uncertainty [6, 7, 8].
When we categorize demonstration data into in-distribution uni-modal data (single solution), in-
distribution multi-modal data (multiple solutions), and out-of-distribution data, existing Ensemble-
DAgger methods effectively distinguish between in-distribution uni-modal and out-of-distribution
cases using action variance. However, they struggle with in-distribution multi-modal data, where
multiple valid solutions cause policy disagreement and can mistakenly indicate high uncertainty.

Incorporating an expressive policy class that handles multi-modal data into the DAgger framework
is a promising but under-explored direction. In light of this, we propose Diff-DAgger, an efficient
robot-gated DAgger algorithm that addresses multi-modality in demonstration data. Diff-DAgger

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

(a) Diffusion Policy (b) Diff-DAgger [1. Get Action -
1 K o,
State ',
Chrvbased | O — i Bl .
Diffusion Policy 52 Inference T
5 a — Denoised Iferen Ropt
. Acten Actir 2. Calculate Loss
fen Policy a L L(fe(or, ar), €) ar
| ———
,,,,,, Rollout r P Nosed
Robot Diffusion g 2
Oe 1. Calculate Loss — - Roion loss
~ rainin -
= | L), © aning Sl yr==n | €
de — @ o / .
s o |2 Minimize Loss | ¢ - Decision Ralr‘ &
€ 6 = argmin L, |_ 1 ——— N Ao e
Noise V\ >
Store Expert Takeover
Expert Data [EperiDemel

Figure 1: Overview of Diff-DAgger. (a) Diffusion Policy and Training: In our study, we use
the diffusion policy with a U-net architecture, a CNN-based model. During the training phase,
diffusion policy is trained on static expert data. (b) Diff-DAgger during Deployment: At each
timestep during the online learning phase, the robot performs two steps—inference and decision.
In the inference step, the policy makes action inference by iteratively denoising a random noise,
conditioned on the current observation. Then the training loss function is used to compute the loss
associated with the generated action. In the decision step, the robot proceeds with the action if the
loss is low, otherwise it asks the expert to intervene. The arrows indicate the flow of steps.

uses a query system based on the loss function of the diffusion model, referred to as diffusion loss,
which significantly improves the effectiveness of robot queries across various evaluation metrics.

We make the following contributions: First, we develop a novel robot-gated query system based on
diffusion loss to handle multi-modality in expert demonstration. Second, we quantitatively evaluate
Diff-DAgger’s efficiency in terms of task failure prediction and task completion during interactive
learning to demonstrate its superiority over baseline methods.

2 Method

2.1 Problem Statement

The goal of imitation learning is to collect a dataset and train a robot policy to complete a set of
tasks with expert demonstrations. In the robot-gated DAgger scenario, the robot autonomously
queries for expert intervention. We assume the expert is skilled in completing the task, which is
considered successful if the goal is reached within the time limit. We assume access to success
information. Our objective is to design an efficient robot query system that accurately predicts task
failures, requesting expert intervention only when necessary.

2.2 Diffusion Policy

In diffusion policy, robot behavior is generated through an iterative denoising process based on
Langevin dynamics, formally modeled as a Denoising Diffusion Probabilistic Model (DDPM) [2].
This denoising process begins with a Gaussian prior, N'(0,), and iteratively removes noise to
reconstruct the original data. Diffusion policy conditions on observation sequences and generates
an action sequence, achieving state-of-the-art performance across various robotic tasks [3].

During training, diffusion policy samples a denoising timestep and a Gaussian noise vector to corrupt
the action sequence. It then predicts the target objective given the corrupted action sequence and the
observation sequence, and performs optimization by minimizing the following loss function:

Lr(0,a,6,t) = [|f(e,a) — fo(o, v/ara + V1 — e, 1) (1

where o is the observation sequence, a is the action sequence, and ¢ is a noise vector from Gaussian
distribution A'(0, I'). The parameter o is a time-dependent factor that modulates the influence of
the original data and the added noise during the diffusion process, and ¢ is the denoising timestep.

The loss function L(o, a, €, t) calculates the mean squared error (MSE) between the target variable
f(e,a), which is a function of noise and ground truth action depending on the choice of target
prediction, and the noise predicted by the model fy, given the noised data at time ¢ [9].

2.3 Diff-DAgger

During robot rollout, the uncertainty of the current action plan is estimated using the diffusion
policy’s loss value for the given observation and the generated action. To establish a baseline, we
calculate the expected diffusion loss . for each data point in the training dataset using equation 2.

Z(Ovavﬂ-) = EGNN(O,I),twu(l,T)LTr(Oaaveat) (2

For practical implementation, we select a batch size IV, to sample both the noise and diffusion
timesteps and compute the average loss over the batch. Given a quantile threshold «, we assume
OOD if the diffusion loss of the generated action using Eq. 2 exceeds the a-quantile of the expected
diffusion losses from the training data. Additionally, expert supervision takes place only if K past
states consecutively violate the qauntile threshold «. It helps distinguish brief fluctuations from
persistent out-of-distribution cases, significantly reducing the rate of false positives.

We now summarize the data aggregation and policy update procedures. Diff-DAgger first initializes
the policy 7, by training it on N; initial expert demonstrations. After training the policy, the robot
continues rolling out the action in the environment until high diffusion loss is detected. When the
robot query is made, experts intervene from the current scene and complete the task.

3 Experimental Results

We address the following three research questions to understand the effectiveness of Diff-DAgger.

RQ1 Can diffusion loss predict task failure (Section 3.3)?
RQ2 Given the same number of demonstrations, can Diff-DAgger outperform other methods in
task completion (Section 3.4)?

3.1 Baselines

We compare Diff-DAgger to the following algorithms: Behavior Cloning, which uses the offline
human demonstration data as the training data; Ensemble-DAgger, which uses five policies to calcu-
late action variance for uncertainty estimation; and ThriftyDAgger [7], a SOTA robot-gated DAgger
algorithm which incorporates risk measure into the decision rule using an offline RL algorithm. All
methods use the diffusion policy with the same model architecture for consistency.

3.2 Tasks and Experts Setup

We include three tasks in simulation—stacking, pushing, and plugging—using the ManiSkill envi-
ronment [10]. We design experts as either multi-modal or long-horizon planners to evaluate different
expert types. Specifically, we use RL agents and motion planners as the experts: the motion planner,
is a long-horizon planner that generates actions based on future goals, whereas multiple RL agents
with different reward functions provide different modes for task completion. For stacking and plug-
ging tasks, we use a rule-based RRT motion planner to simulate the expert [11]. For pushing, two
experts are trained using PPO algorithm [12] with varying rewards: in addition to task-related re-
ward, one agent is additionally rewarded for rotating the object clockwise direction, whereas other
agent is rewarded for rotating counter-clockwise (2 Experts). We additionally compare learning
from the counter-clockwise agent only (1 Expert).

3.3 Predictability of Robot Query on Task Failure

A robot query system’s effectiveness depends on accurately predicting the need for expert inter-
vention, ensuring queries are made only when necessary. To quantitatively evaluate this, we use a

confusion matrix between robot query decision and task outcome. For each task, we train the robot
policy on a fixed number of expert demonstrations and rollout from 100 different initial configura-
tions. We record task completion without expert intervention and whether the policy estimates high
uncertainty during each episode, as described in Section 2.3. The results show that Diff-DAgger
achieves a significant improvement over the baseline methods in terms of its ability to predict task
failure: Compared to Ensemble-DAgger, Diff-DAgger achieves 47% higher F1 and 45% greater ac-
curacy scores on average across the visuomotor tasks. Compared to Thrifty-DAgger, Diff-DAgger
improves F1 scores by 37% and accuracy by 43%. The results are summarized in Table 1.

Task Np Method TP TN FP EN FTI ATCC Task Np Method TP TN FP FN FTI ATCC
Ours 29 59 10 2 0.84 0.88 Ours 29 51 9 11 0.74 0.80

Stacking 20 Ensemble-DAgger 27 33 37 6 0.55 0.60 (f‘gggrgl) 50 Ensemble-DAgger 38 10 52 0 0.59 0.48
Thrifty-DAgger 33 30 34 3 049 0.63 Thrifty-DAgger 37 6 57 0 057 043

Ours 27 51 8 14 071078 Ours 31 49 13 7 0.76 0.80

(ngilsé‘ri) 25/25 Ensemble-DAgger 15 45 5 35 043 060 Plugging 100 Ensemble-DAgger 22 37 18 23 0.52 0.59
Thrifty-DAgger 25 38 15 22 0.57 0.63 Thrifty-DAgger 30 34 25 11 0.62 0.64

Table 1: Confusion matrix comparing the binary robot query decisions (query or no query) with
the binary task outcomes (success or failure) in 100 policy rollouts for visuomotor tasks. Here,
True Positive (TP) is a query made to a failing episode. True Negative (TN) is a successful episode
without query. False Positive (FP) is an unnecessary query made to a successful episode, and False
Negative (FN) is a failure episode without query. Np is the number of expert demonstrations.

3.4 Task Performance

We evaluate the policy performance for both state-based and image-based observations. Diff-
DAgger method consistently outperforms the baselines in task completion rate across tasks given the
same number of expert demonstrations. On average, Diff-DAgger achieves a 12.6% improvement
over the second-best method in state-based tasks. For visuomotor tasks, Diff-DAgger on average
achieves a 15.0% improvement over the other methods. The results are summerized in Table 2.

Pushing Pushing

Stacking (| Eypert) (2 Experts) T1u8ging

State Image State Image State Image State Image

Behavior Cloning 0.83 0.85 0.92 0.87 091 091 0.73 0.68
Ensemble-DAgger 0.90 0.87 0.90 0.80 0.66 0.58 0.57 0.53
Thrifty-DAgger 0.88 0.87 0.85 0.78 0.77 0.73 0.69 0.60
Ours 098 1.00 0.97 0.99 0.98 0.97 0.87 0.83

Table 2: Performance comparison across different tasks with state-based and image-based observa-
tions. We report the success rates using 100 environment configurations after the final iteration of
DAgger. For each task, the number of expert demonstrations is fixed (detailed in Table 4) across
methods. Our results show that Diff-DAgger consistently outperforms the other DAgger baseline
methods given the same number of demonstrations from the expert.

4 Conclusion

In this work, we present Diff-DAgger, an efficient robot-gated DAgger method with diffusion policy.
Our work requires no additional training or data collection steps for failure prediction, making it an
efficient algorithm in comparison to other methods like Ensemble DAgger. Our future work includes
learning from real human expert for challenging real-world tasks. We hope that this work paves
a way to open up more discussion for incorporating expressive policies into interactive learning
frameworks in anticipation that computing will become faster over time.

References

[1] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[2] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[3] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems, July 2023.

[4] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627-635. IMLR Workshop and Conference Pro-
ceedings, 2011.

[5] R. Hoque, L. Y. Chen, S. Sharma, K. Dharmarajan, B. Thananjeyan, P. Abbeel, and K. Gold-
berg. Fleet-dagger: Interactive robot fleet learning with scalable human supervision. In Con-
ference on Robot Learning, pages 368-380, 2023.

[6] K. Menda, K. Driggs-Campbell, and M. J. Kochenderfer. Ensembledagger: A bayesian ap-
proach to safe imitation learning. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5041-5048. IEEE, 2019.

[7] R. Hoque, A. Balakrishna, E. Novoseller, A. Wilcox, D. S. Brown, and K. Goldberg.
ThriftyDAgger: Budget-aware novelty and risk gating for interactive imitation learning. In
Conference on Robot Learning, 2021.

[8] S. Dass, K. Pertsch, H. Zhang, Y. Lee, J. J. Lim, and S. Nikolaidis. Pato: Policy assisted
teleoperation for scalable robot data collection. In Proceedings of Robotics: Science and
Systems, 2023.

[9] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

[10] T. Mu, Z. Ling, F. Xiang, D. Yang, X. Li, S. Tao, Z. Huang, Z. Jia, and H. Su. Maniskill:
Generalizable manipulation skill benchmark with large-scale demonstrations. arXiv preprint
arXiv:2107.14483, 2021.

[11] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In IEEE International Conference on Robotics and Automation, pages 995-1001.
IEEE, 2000.

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

A Implementation Details

Here we describe the details of the implementation not included in the main text.

Stacking Pushing Plugging

Figure 2: Tasks (Bottom) and Camera Views (Top). For pushing, a single camera is used. For
stacking and plugging, three cameras are used to account for occlusion and gripper motion.

Contact High- Task Succ
Obj Rich Fidel - EBxpertType po o pote

Stacking 2 False False 250 Motion Planner 60.3 1.00
Pushing 1 True False 250 RL Agent 65.7 0.93
Plugging || 2 False True 500 Motion Planner 147 0.98

Task ‘ ‘

Table 3: Task and Expert Summary. # Obj: number of objects, Contact-rich: contact-richness
between robot and objects, High-Fidel: High-fidelity task, Ty : time limit in simulation steps at 20
Hz, Expert Type: type of expert, Task Dur: average expert task duration in simulation steps, Exp
SR: expert success rate during intervention.

Task Action T, T, T, No RNI8 PredTg Ty Ni Ny Ny a K| Ny

Stacking EEF 1 24 8 3 PT V-obj 8 20 52 4 0.99 2256
Pushing Joint 1 24 2 1 FT Epsilon 8 40 92 4 0.98 1256
Plugging EEF 1 4816 3 FT V-obj 6420100 8 0.99 3|256

Table 4: Hyperparameters for Diffusion Policy and DAgger. Action: action space, T,: observation
horizon, Tp: prediction horizon, T,: rollout horizon, N.: number of cameras, RN18: training strat-
egy for vision encoder where PT means pre-trained and FT means fine-tuned, PredTg: prediction
target when training diffusion policy, Tq: number of diffusion timesteps for training and inference,
N;: number of initial expert demonstrations, N¢: final number of expert demonstrations, Ng: number
of expert intervention after each training session, K: patience for consecutive violation of threshold,
Ny: Diff-DAgger specific batch size for calculating the expected diffusion loss.

	Introduction
	Method
	Problem Statement
	Diffusion Policy
	Diff-DAgger

	Experimental Results
	Baselines
	Tasks and Experts Setup
	Predictability of Robot Query on Task Failure
	Task Performance

	Conclusion
	Implementation Details

