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ABSTRACT

This paper investigates the design of time and memory efficient graph convolu-
tional networks (GCNs). State-of-the-art GCNs adopt K-nearest neighbor (KNN)
searches for local feature aggregation and feature extraction operations from layer
to layer. Based on the mathematical analysis of existing graph convolution op-
erations, we articulate the following two card shuffling hypotheses. (1) Shuf-
fling the nearest neighbor selection for KNN searches in a multi-layered GCN
approximately preserves the local geometric structures of 3D representations. (2)
Shuffling the order of local feature aggregation and feature extraction leads to
equivalent or similar composite operations for GCNs. The two hypotheses shed
light on two possible directions of accelerating modern GCNs. That is, reasonable
shuffling of the “cards” (neighbor selection or local feature operations) can sig-
nificantly improve time and memory efficiency. A series of experiments show that
the network architectures designed based on the proposed card shuffling hypothe-
ses decrease both the time and memory consumption significantly (e.g., about
50% for point cloud classification and semantic segmentation), while maintain-
ing comparable accuracy, on several important tasks in 3D deep learning, i.e., 3D
classification, part segmentation, semantic segmentation, and mesh generation.

1 INTRODUCTION

Recent years have seen a surge of interest in applying graph operations directly on 3D representa-
tions (Zhao et al., 2019; Li et al., 2019b; Chen et al., 2020; Nash et al., 2020) such as point cloud (Qi
et al., 2017a;b) and triangle mesh (Deng et al., 2019; Gkioxari et al., 2019; Schult et al., 2020).
Although graph convolutional networks (GCNs) (Defferrard et al., 2016; Chami et al., 2019; Gasse
et al., 2019; Yun et al., 2019) leverage geometrical and topological properties in each layer (Xu et al.,
2018; Hanocka et al., 2019; Wang et al., 2019; Hanocka et al., 2020), it can be quite computation-
ally expensive in both runtime and memory consumption. Especially, as the number of points in a
3D point cloud grows, runtime and memory consumption increase quite fast as shown in Figure 1,
making the training process very slow or impossible with a single graphic card. Yet, most research
on GCN ignores these problems and and resorts to multiple powerful GPUs.

GCNs are composed of a stack of graph convolutions which in turn contains a KNN search step
and a multi-layer perceptron (MLP). The KNN search returns the indices of the K points closest to
the inquired point, which is used to select the appropriate local features. The MLP extracts higher
level of features gradually with a stack of graph convolutions. It is exactly the two components
that are responsible for the expensive computation in GCNs. On the one hand, KNN is frequently
called in GCN and the computation cost grows quadratically with the increase of number of points.
On the other hand, the MLP is applied to the aggregated local features of each vertex to propagate
information along the edges. For the first component, improvements have been carried out in re-
cent years either by approximating KNN through Morton encoding (Morton, 1966; Li et al., 2012;
Schertler et al., 2017; Thabet et al., 2019) or by accelerating KNN by optimizing CUDA program-
ming through template meta programming (Ravi et al., 2020b;a). Yet, for the second component,
very few research is directed, i.e., optimizing graph convolution procedure. In this paper, we argue
that both of the two computation-intensive operations can be simplified and accelerated, which could
reduce the time and memory consumption of GCNs tremendously.
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Figure 1: Comparison between DGCNN and the proposed method (Shuffle) on point cloud classi-
fication and part segmentation. (a) Overall accuracy for classification. Mean and Variance reported
for 5 runs. (b) Runtime, (c) GPU memory consumption, and (d) FLOPs are reported for comparison.
The proposed method can achieve significant reduction of computation resources without accuracy
drop.

With the mathematical analysis, we find that the distance between two points after graph convo-
lution is upper bounded by the neighborhood distance and lower bounded by the neighborhood
centroid distance between the corresponding points in the input Euclidean space. That is, the local
geometric structure is preserved after the graph convolution. Thus, the practice of repeated calling
the computation-intensive KNN search for the graph convolution in a multi-layered GCN is worth
pondering. Instead, the KNN searches except the first one could be accelerated by shuffling the near-
est neighbor selection criterion based on the search results of the first one. When retrieving local
features, instead of calculating the pairwise distances multiple times on high-dimensional feature
space, we can calculate that only once on the 3D input Euclidean space and preserve the indices
of more neighbors. For the latter usage, the indices are shuffled and randomly sampled to form the
final K-nearest neighbors. So we articulate the first hypothesis:

The Card Shuffling Hypothesis 1. Shuffling the nearest neighbor selection for KNN searches in a
multi-layered GCN approximately preserves the local geometric structures of 3D representations.

On the other hand, the computation procedure of graph convolution is also revisited in this paper. In
the previous graph convolution, the neighbor features are first gathered and then the convolution op-
eration is conducted. The feature gathering results in an expanded tensor with repeated entries which
accounts for the tremendous increased computation resources for the following convolution. Start-
ing from the basic EdgeConv, we find that a mathematically equivalent but computation-efficient
procedure could be derived. The key idea is shuffling the orders of neighbor feature gathering and
convolution operation. In this way, the convolution is conducted merely on the non-expanded feature
tensors. For the simple case in EdgeConv, this shuffling will not deteriorate performance. For the
complex cases in EdgeConv and MeshConv, we generalize the core idea by the second hypothesis:

The Card Shuffling Hypothesis 2. Shuffling the order of local feature aggregation and feature
extraction leads to equivalent or similar composite operations for GCNs. Reasonable arrangement
of the order significantly improves time and memory efficiency.

The contributions of this paper can be summarized as: I. We propose the shuffling cards hypotheses
as a new perspective on designing fast and memory efficient graph convolutional networks. II.
Guided by the shuffling cards hypotheses, we propose two directions to accelerate modern GCNs
for 3D point cloud processing. III. The GCNs with our novel design maintain comparable accuracy
while decreasing both the runtime and memory consumption significantly. All the training can be
completed on a single TITAN XP graphics card.

2 NOTATIONS AND PRELIMINARIES

In order to formally define the acceleration problem for GCNs, we begin with a formal model built
from important elements defined below in the context of this paper.

Definition 1 (Neighborhood Distance) Consider two points in a point set xi,xj ∈ S . Each of them
is equipped with a neighborhood of points derived from KNN search, i.e., Ni = Si, Nj = Sj . The
neighborhood distance between the two points is as the sum of distances between their neighbors,

DN (xi,xj) =

K∑
k=1

‖xk
i − xk

j ‖22. (1)

2



Under review as a conference paper at ICLR 2021

Figure 2: Overview of our pipeline and visualization of the feature space. The network architecture
for all tasks basically follows MLP structure. The visualization of feature space above the pipeline
is a rendering of distance color map extracted from each layer of the neural network on the shape of
raw data. The two bottom sub-figures compare the basic operation of DGCNN and our method.

The neighbors of xi and xj is sorted according to the distance to them. To some extent, the neigh-
borhood distance reflects the distance between two points. That is, two points with smaller neigh-
borhood distance are highly likely to be closer compared to those with larger neighborhood distance.

Definition 2 (Neighborhood Centroid Distance) The neighborhood centroid distance of two points
xi and xj is defined by the distance between the centroids of their K-nearest neighbors, i.e.,

DNC = ‖
1

K

K∑
k=1

xk
i −

1

K

K∑
k=1

xk
j ‖22, (2)

where 1
K

∑K
k=1 x

k
i denotes the centroid of the neighbors of xi.

Similar to neighborhood distance, neighborhood centroid distance is also a metric that reflects the
closeness of two points in the Euclidean space.

Definition 3 (Graph and Subgraph) A graph is defined by a pair G = (V, E), where V is the set of
vertices and E is the edges that defines the connectivity between vertices. A subgraph of a graph G
is defined by the pair Gi = (Vi, Ei), where Vi ⊆ V , and Ei ⊆ E .

A graph G can be defined on point clouds and meshes. The points on the point clouds and meshes
serves as the vertices V . The edges E can be either predefined as in a mesh or dynamically computed
for a point cloud by algorithms such as KNN search. A subgraph Gi captures the local connectivity
and are constructed slightly differently for point clouds and meshes.

Definition 4 (Graph Convolution) Graph convolution is a family of operations that extract higher-
level features from the lower-level ones by propagating information between vertices V or edges E
of the defined graph G. Formally, graph convolution can be defined in terms of the subgraphs, i.e.,

fi = g(Gi;Θ) = �
ek
i ∈Ei

h(eki ;Θk), (3)

where ei ∈ Rd is a vector that encodes the edge feature, eki denotes an edge of the subgraph eki ∈ Ei,
fi ∈ RM is the newly computed feature, Θk ∈ Rd×M is the trainable parameters and is the same
for all of the subgraphs Gi, Θ = {Θ1,Θ2, · · · ,ΘK} is the ensemble of the trainable parameters.

The function h(·) is the edge function that transforms a d-dimensional input feature into a M -
dimensional vector. It could have various forms in terms of the edge features. The edge function
with trainable parameters Θk is usually implemented as a MLP in existing works, which in turn
is implemented as convolution operation. The operator � is the aggregation function. It is a
symmetric function (e.g., sum or max) that does not depend on the order of the edges. A stack of
graph convolution and other operations such as pooling constitute a GCN.

In this paper, N represents the number of points, d represents the dimension of latent space features,
K represents the number of neighbors for each point, and M represents number of dimension of the
intermediate output channel. Without loss of clarity, the notations x and e are also used to denote
the vertex and edge features.
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3 SHUFFLING CARDS IN DYNAMIC GRAPH CNN

Dynamic Graph CNN (Wang et al., 2019) is commonly used for 3D point cloud processing because
its local feature descriptor compensates the insufficiency of topological information that point cloud
inherently suffers. However, as the number of points in 3D point cloud grows, training a DGCNN
is quite memory consuming and the testing time became longer as well, prohibiting it from being
applied to real world scenarios with larger scales. In this section, we assess the computational com-
plexity in DGCNN, prove theorems that shed light on GCN acceleration, and describe the rationale
of the proposed hypothesis.

EdgeConv (Wang et al., 2019) is a special form of the graph convolution in Eqn. 3 defined for point
clouds which has the following form

x′i = �
k:(i,k)∈Ek

h(xi,x
k
i ;Θ), (4)

where {xk
i } are the K-nearest neighbors of xi. The edge (i, k) connects xi and it neighbor xk

i . The
combination of the vertex features is used as the edge feature. Note that the same MLP is used for
different edge features {xi,x

k
i } since the trainable parameters Θ are the same. This constitutes a

translation-invariant edge function. Note that, for EdgeConv, KNN search is first conducted to define
the graph, which is followed by the convolution operation. In the following, the computational
complexity of the two operations are analyzed and the acceleration methods are proposed.

3.1 ANALYSIS OF COMPUTATIONAL COMPLEXITY ON LATENT SPACE

Proposition 1 The ratio of computational complexity between KNN operation and graph convolution
operation is γ = N

2KM .

Assume that the point cloud is represented by a N × d matrix X . To compute the K-nearest
neighbors of all of the points, pairwise comparison between the points is conducted, i.e., D =
XXT . Then for each point, the indices of the K-nearest neighbors are kept and used to extract
the graph feature, which results in a 3D tensor X with a dimension of 2d × N × K. Then a 3D
convolution with kernel size 1 × 1 and output channel M is conducted on the graph feature. The
pairwise comparison and the 1× 1 convolution are the computation-intensive part of EdgeConv.

The computation complexity, namely the number of multiplication of the pairwise comparison is
Cnn = dN2. And the computation complexity of the 1× 1 convolution is Cconv = 2dMKN . Thus,
the ratio between the two complexity terms is

γ =
Cnn
Cconv

=
dN2

2dMKN
=

N

2KM
(5)

Compared with the number of nearest neighbors K and the output channel M , the number of points
in a point cloud could changes dramatically. When N is small, the computation occupied by the
pairwise computation is relatively small and even negligible. But when the point cloud grows huge,
the major computation could be consumed by the pairwise comparison.

3.2 POINT ADJACENCY PROPERTY BEFORE AND AFTER GRAPH CONVOLUTION

Graph convolution layers are stacked sequentially to form a dynamic GCN. The input 3D point cloud
is transformed into the latent space by graph convolution layers. In the following, we investigate how
local geometric structures propagate within the neural network by analyzing the adjacency property
of points before and after graph convolution. This new perspective motivates us to rethink the
necessity of frequent KNN callings in GCNs. This results in a simplification and acceleration of the
adjacency assessment in GCNs. For the simplicity of analysis, two assumptions are made.

Assumption 1 Inner product and summation are selected as the edge function and the aggregation
operation in Eqn. 4. That is, the EdgeConv in Eqn. 4 has the following form

x′i = [x′i1, · · · ,x′im, · · · ,x′iM ],x′im =

K∑
k=1

< θm,x
k
i >, (6)

where Θ = {θ1,θ2, · · · ,θM} is the trainable parameters of the MLP with M output channels.

Assumption 2 The parameters θm in the network are random variables that follows independent
Gaussian distribution with 0 mean and σ2 variance.
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The EdgeConv in Assumption 1 leads to a standard convolution operation. Assumption 2 is rea-
sonable since the parameters in GCNs are often initialized with independent normal distribution.
Under the two assumptions, the following conclusion can be made.

Theorem 1 Under Assumption 1 & 2, the distance of two points in the latent space is upper bounded
by the neighborhood distance of the corresponding points in the Euclidean space up to a scaling
factor, and lower bounded by the neighborhood centroid distance of the same points up to a scaling
factor, i.e.,

σ2K2‖ 1
K

K∑
k=1

xk
i −

1

K

K∑
k=1

xk
j ‖22 ≤ E[‖x′i − x′j‖22] ≤ σ2dKM

K∑
k=1

‖xk
i − xk

j ‖22. (7)

The proof of the theorem is given in the Appendix B. Note that both the neighborhood distance and
the neighborhood centroid distance are an indicator of the closeness of two points. Thus, Theorem
1 indicates that there should be no abrupt changes of the adjacency property between points where a
an EdgeConv is applied. To a large extent, closer points in Euclidean space are also relatively closer
to each other in the latent space. In other words, EdgeConv is a adjacency preserving operation.

The above conclusion motivates the rethinking of the frequently occurred adjacency assessment of
the points via KNN in a multi-layered GCN. Instead of conducting the exact KNN search every time
it is needed, one could simplify the latter KNN search based on the adjacency property obtained by
the first one. This simplification is summarized in Algorithm 1 (Appendix C). For a GCN with n
graph convolutions, only one full-fledged KNN search with the computation of pairwise distance is
conducted, which keeps a pool of L (L = K + (n − 1)P ) neighbors more than originally needed.
Then for the first EdgeConv, the K-nearest neighbors from the pool are still selected. For the l-th
EdgeConvs, the neighbors of a point are identified by randomly sampling the first K + (l − 1)P
elements of the pool. Note that the sampling range is progressively enlarged and P is the enlarge-
ment step. The random sampling actually shuffles the neighbor selection criterion. Since the local
geometric structure is not strictly preserved by EdgeConvs, the adjacency between point might still
change with the EdgeConvs to some extent. Random sampling provides the possibility of select-
ing different neighbors for the EdgeConvs. The above operations only involves one KNN search
compared with the multiple searches in the original DGCNN. This simplification can accelerate the
inference of the network.

The simplification of the KNN procedure is based on the conclusions from Theorem 1 which in turn
is derived under two assumptions. In actual applications, the two assumptions might be violated and
the validity of the simplification remains to be tested. The stated Card Shuffling Hypothesis 1 is
the generalization of the simple case and we try to validate it with experiments.

3.3 EDGE FUNCTION IN EDGECONV

The final EdgeConv used in DGCNN has the following form

x′im = max
k
{ReLU(< [θm,φm], [xk − xi,xi] >)}, (8)

where max is used as the aggregation function and the operator [·] concatenates two vectors. It is
claimed that the term xk −xi captures the local information while xi keeps the global information.
To conduct the operation defined above, one needs to first gather the edge features [xk − xi,xi] for
all of the point, which forms a tensor with dimension 2d × N × K. Then the gathered feature is
convolved with the MLP with the trainable parameters [θm,φm]. The computation complexity of
the convolution operation is 2dKMN . In the following theorem, we prove that it is possible to have
an equivalent operation but with significantly reduced computational complexity.

Theorem 2 For the EdgeConv defined by Eqn. 8, shuffling the order of neighbor feature gathering
and the 1 × 1 convolution leads to equivalent operation for the GCN. Reasonable arrangement of
the order significantly improves time and memory efficiency.

Proof. Eqn. 8 could be written as
x′im = max

k
{ReLU(< θm,xk > + < ψm,xi >)}, (9)

where ψm = φm − θm. In Eqn. 9, the operations are rearranged such that the convolution wrt the
points and their neighbors are perfectly separated. Considering that a point could acts as a neighbor
of the other point for multiple times and the same parameters θm are used for convolution, the
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Table 1: Quantitative comparison for point cloud classification on ModelNet40.

Network Overall Acc. Balanced Acc. Time [ms] Mem. [GB] FLOPs [G] #GPU

1024 points, K=20
DGCNN 92.10 89.05 74.7 5.2 86.0 1
Shuffle H1 92.58 89.56 53.3 5.2 77.4 1
Shuffle H2 92.89 90.30 54.8 2.5 29.0 1
Shuffle 92.56 89.62 38.1 2.5 20.4 1

2048 points, K=40
DGCNN 92.56 89.90 385.8 20.5 309.2 3
Shuffle H1 92.58 89.60 212.7 20.5 274.8 3
Shuffle H2 92.63 90.16 164.7 8.7 75.4 1
Shuffle 92.63 89.82 132.0 8.8 41.0 1

convolution operation in Eqn. 9 has an equivalent procedure: 1) applying two different MLPs to
the original points, 2) gathering the neighbor features, and 3) summing up the features. Thus, the
order of neighbor feature gathering and convolution can be shuffled in the equivalent procedure. The
computational complexity is reduced to 2dMN , which is only 1/K of the original. The reduction
of computation is due to the avoidance of the redundant computation for the repeated neighbors.

The shuffling of the computation procedure is summarized in Algorithm 2 (Appendix C). An addi-
tional note is that in some implementations the edge function after the feature gathering procedure
might be a composition of multiple convolution and batch normalization layers, e.g., Conv-BN-
ReLU-Conv-BN-ReLU. In this case, there is no exact equivalence like the one in Eqn. 9 for the
complex edge functions. Thus, Theorem 2 does not absolutely hold. However, the shuffling oper-
ation could still reduce the computational complexity and memory consumption. In this case, we
conjecture that the shuffled network could achieve similar performance as the original one. So we
try to generalize the conclusion to more complex edge functions in Card Shuffling Hypothesis 2 .

4 SHUFFLING CARDS IN DEEP PRIOR NETWORK

In this section, the second card shuffling operation, is extended to the Point2Mesh network for
surface reconstruction (Hanocka et al., 2020). In order to reconstruct surface from point cloud, the
network estimates differential vertex positions. Then, a particular vertex position is calculated by
averaging the vertex prediction on edges connected to the vertex,

v′i =
1

n

∑
j∈n

e′j , e
′
j =

5∑
k=1

< Θk, e
k
j > (10)

where ej is the predicted position of the vertex vi on edge e′j . In Eqn. 10, ej is computed by Mesh-
Conv. Compared with the EdgeConv in Eqn. 4, the MLPs Θk for each edge feature are different.
This motivates us to use the same MLP Θ for different edge features, i.e.,

e′j =

5∑
k=1

< Θ, ekj >. (11)

In this pipeline, similar process of gathering edge neighbor features and carrying out convolution
on the repeated features exist. We optimize running time and GPU memory usage by shuffling
the order of feature gathering and convolution according to Card Shuffling Hypothesis 2, i.e.,
e′j =< Θ,

∑5
k=1 e

k
j >. Thus, the computation procedure of the simplified and shuffled operation

proceeds as follows: 1) gathering edge features; 2) conducting convolution with the MLP Θ.

5 EXPERIMENTS

This section evaluates the proposed method according to Shuffling Cards Hypotheses on four im-
portant tasks, i.e., point cloud classification, part segmentation, semantic segmentation, and surface
reconstruction. For classification and segmentation, we evaluate performance on the public bench-
marks ModelNet40 (Wu et al., 2015), ShapeNetPart (Chang et al., 2015), and S3DIS (Armeni et al.,
2016). For surface reconstruction, we uses the dataset released by Hanocka et al. (2020) and some
public 3D models. The aim of our experiment is to compare the accuracy, test time, maximum GPU
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Table 2: Quantitative comparison for part segmentation of point cloud on ShapeNetPart.

Network Mean IoU Runtime [ms] GPU mem. [GB] FLOPs [G] # Params. [M] #GPU

DGCNN 84.95 116.1 17.2 158.8 1.5 2
Shuffle 84.50 72.3 4.09 70.9 1.5 1

Table 3: Comparison for semantic segmentation of point cloud on S3DIS

Network Mean IoU Overall Acc. Runtime [ms] GPU mem. [GB] FLOPs [G] #GPU

DGCNN 57.5 90.28 172.7 14.6 268.1 2
Shuffle 57.0 90.10 87.0 6.0 134.3 1

Table 4: Quantitative comparison for surface reconstruction.

Network F-score Bunny F-score Bird Runtime [s] GPU mem. [GB] #Param. [k]

Point2Mesh 69.7 53.3 0.41 2.24 735.8
Shuffle 73.0 51.6 0.29 2.04 153.7

Figure 3: Qualitative result on Modelnet40. Left: (a), (b) Input space and last-layer feature space
rendered as colormap between the red point and the rest points at epoch 0. The green points are
KNN of the red point. (c), (d) follow the same layout with (a), (b) at epoch 250. Right: (e) Ablation
study of overall acc. w.r.t parameters K and P. Values calculated are the points on the grid, and the
hotmap is derived by bilinear interpolation. (f) follows the same layout with (e) for balanced acc.

memory of the proposed method with original networks. The training of our models are all done on
single TITAN XP GPU. For detailed settings of each experiment, please refer to Appendix D.

Point Cloud Classification. In Table 1, besides comparing our full method, performance with
hypothesis 1 only and hypothesis 2 only are also ablated. Detailed ablative study of how a wide
range of K and P (defined in Sec. 3.2) affects performance is carried out in Figure 3 (e), (f). The
evolving of feature space w.r.t number of epochs is shown in Figure 3 (a) - (d). The local structures
are preserved and converge to smaller and smaller regions as the network propagates. More detailed
feature space analysis can be found at Appendix E. Our method reduces the runtime and memory in
all cases by approximately 50%. The FLOPs are also reduced by about 76%. DGCNN needs three
Titan Xp GPUs for the test with 2048 points, while our method only needs one GPU.

Point Cloud Segmentation. The classifier can be adapted for part segmentation and semantic seg-
mentation tasks by classifying each point in the point cloud into predefined part category labels. The
experiments are run with the same setting as DGCNN. Besides classification accuracy, mean IoU
metric is used to quantitatively evaluate the segmentation performance. As shown in Table 2, for
part segmentation, our method greatly reduces the runtime and memory consumption by 38% and
76% respectively compared to DGCNN. As for semantic segmentation task, Table 3 shows that our
method reduces the runtime and memory consumption by 50% and 59% respectively compared to
DGCNN. Ablation study of the semantic segmentation performance w.r.t. parameters K and P in a
wide range can be found at Figure 7 in Appendix F.
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Input Point2Mesh Ours
Figure 4: Surface reconstruction results. Both surface and normal map are visualized.

Surface Reconstruction. In order to validate efficiency of our method on deep prior network, we
compare our method with Point2Mesh (Hanocka et al., 2020) for the surface reconstruction. Similar
to Point2Mesh, we use the F-score as the metric to evaluate the quality of reconstructed meshes.
The result is shown in Table 4. It can be observed that our method has similar reconstruction quality
as Point2Mesh, while speeding up by 29%. To be noted that, the memory consumption is only
reduced by 9% because the feature gathering operation still consumes the same memory in our
accelerated version of Point2Mesh. The qualitative results of different shapes are shown in Figure 4
and Figure 8 of Appendix F. It’s not difficult to notice that our accelerated method recovers the 3D
meshes of comparable quality as Point2Mesh.

6 RELATED WORK

Learning Based Methods for 3D Content. Deep neural networks have obtained success in 2D
image recognition, but its extension to 3D is relatively unclear. Some methods operate directly on
graph. In recent years, operations directly operated on graphs such as edge convolution (Wang et al.,
2019), mesh convolution (Hanocka et al., 2020), graph pooling and unpooling (Hanocka et al., 2019)
have been defined. But these networks are still based on basic network architectures such as MLP (Qi
et al., 2017a;b; Wang et al., 2019), Unet (Schult et al., 2020), or Encoder-Decoder (Hanocka et al.,
2020) and the network usually contains just a few layers instead of being very deep. Other methods
operate on voxels (Choy et al., 2019; Mescheder et al., 2019; Niemeyer et al., 2019; Peng et al.,
2020), so that 3D CNN for 2D images can be more easily adapted. From our perspective, all these
methods are trying to represent the unordered data with uncertain dimension into fixed-dimensional
features with the cost of flexibility for more efficient data structures such as octree. However, the
memory consumption grows severely as either the resolution of grid or the number of layers of the
network grows. This leads to our work, a new perspective that brings flexibility into the design of
neural network architecture so that the time and memory efficiency can be significantly improved.

Acceleration and Compression of Neural Network. The computation and parameter efficiency
of neural networks is a major concern for the deployment of them in resource-constrained require-
ments. There have been tremendous works that try to improve the efficiency of neural networks and
accelerate their inference. The major techniques can be classified into network pruning (He et al.,
2017; Liu et al., 2019c;a; Li et al., 2020), low-rank filter approximation (Zhang et al., 2015; Li et al.,
2019a), network quantization (Han et al., 2015; Zhu et al., 2016; Li et al., 2019c), and knowledge
distillation (Hinton et al., 2015). But most of the methods deal with networks for 2D images. A
couple of more related works introduce pixel-voxel convolution for efficient 3D deep learning (Liu
et al., 2019b; Tang et al., 2020). Different from those works, we try to accelerate GCNs by analyzing
the basic operations including KNN and graph convolution which are computation-intensive.

7 CONCLUSION

In this work we have presented the cards shuffling hypotheses, a novel perspective of designing
neural network architectures for 3D vision and graphics tasks which retains strong accuracy while
significantly shrinking test time and GPU memory consumption. We have demonstrated the utility
of our hypotheses into dynamic GCNN and self prior network. Experimental results show that our
method has significant performance on multiple important tasks. In the future, we plan to explore
how to give more flexibility and efficiency to the design of neural network for 3D tasks, for example,
by introducing adaptive voxel sizes.
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Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. In Advances in neural information processing systems, pp. 4868–4879, 2019.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

He Chen, Pengfei Guo, Pengfei Li, Gim Hee Lee, and Gregory Chirikjian. Multi-person 3d pose
estimation in crowded scenes based on multi-view geometry. arXiv preprint arXiv:2007.10986,
2020.

Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3075–3084, 2019.
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A ADDITIONAL DEFINITIONS

The formal definitions of some other basic concepts including KNN, point cloud and mesh are given
in this section.

Definition 5 (K-Nearest Neighbors) Given a set of points S = {x1,x2, . . . ,xN} in d-dimensional
latent space χd and a distance metric D, the K-nearest neighbors of a point xi is a subset Si =
{x1

i ,x
2
i , · · · ,xK

i } ⊆ S that contains the K points closest to xi w.r.t. the distance metric D.

Euclidean distance is usually selected as the distance metric. To conduct the KNN search, the
pairwise distance D(xi,xj) between every pair of points needs to be computed, which is quite
computation-intensive. Thus, it is beneficial to accelerate or approximate KNN search.

Definition 6 (Point Cloud and Triangular Mesh) A 3D point cloud is defined by a set of points
P = {x1,x2, . . . ,xN} in 3D Euclidean space R3. A triangular mesh is a polygonal representation
of a differentiable 2-manifoldM2, i.e., a strip of triangles that encapsulate the point cloud P .

The connectivity between points in a point cloud is not defined but can be dynamically computed
via KNN search on the fly. For a mesh, the connectivity is defined by the triplet of vertices of the
triangles. The connectivity is important for propagating information between the vertices. In this
paper, the term local geometric structure is frequently used. It can be regarded as a descriptor that
captures the local connectivity and shape of a subset of a point cloud or mesh.

B PROOFS

In this section, we provide the detailed proof of both the upper and lower bounds of Theorem 1 in
Section 3.2.

B.1 PROOF OF THE UPPER BOUND IN THEOREM 1

Proof. Upper bound. For the simplicity of analysis, inner product and summation are selected as
the edge function and the aggregation operation in Eqn. 4. Thus, the theorem is derived under the
assumption that the EdgeConv in Eqn. 4 has the following form

x′i = [x′i1, · · · ,x′im, · · · ,x′iM ], (12)

x′im =

K∑
k=1

< θm,x
k
i >, (13)

where Θ = {θ1,θ2, · · · ,θM} is the trainable parameters of the MLP with M output channels.
Then the squared distance between two points x′i and x′j after the EdgeConv is

‖x′i − x′j‖22 =

M∑
m=1

(x′im − x′jm)2 (14)

=

M∑
m=1

(

K∑
k=1

< θm,x
k
i >−

K∑
k=1

< θm,x
k
j >)

2 (15)

=

M∑
m=1

(

K∑
k=1

< θm,x
k
i − xk

j >)
2 (16)

≤
M∑

m=1

K

K∑
k=1

< θm,x
k
i − xk

j ) >
2

(17)

≤ K
M∑

m=1

K∑
k=1

‖θm‖22‖xk
i − xk

j ‖22. (18)

The inequality in Eqn. 17 follows that the arithmetic mean is not larger than the quadratic mean
while the inequality in Eqn. 24 follows Cauchy–Schwarz inequality. Assume that the parameters
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θm in the network are random variables that follows Gaussian distribution with 0 mean and σ2

variance. Then the distance ‖x′i − x′k‖22 is also a random variable and the expectation is expressed
as,

E[‖x′i − x′j‖22] ≤ E[K
M∑

m=1

K∑
k=1

‖θm‖22‖xk
i − xk

j ‖22] (19)

= K

M∑
m=1

K∑
k=1

E[‖θm‖22]‖xk
i − xk

j ‖22 (20)

= σ2dKM

K∑
k=1

‖xk
i − xk

j ‖22, (21)

where the term
∑

k ‖xk
i − xk

j ‖22 is just the neighborhood distance between xi and xj .

B.2 PROOF OF THE LOWER BOUND IN THEOREM 1

Proof. Lower bound. In Eqn. 16, let

am =

K∑
k=1

< θm,x
k
i − xk

j >. (22)

Thus, Eqn. 16 become
M∑

m=1

(

K∑
k=1

< θm,x
k
i − xk

j >)
2 =

M∑
m=1

a2
m. (23)

Using Cauchy-Schwarz inequality

M∑
m=1

ambm ≤

√√√√ M∑
m=1

a2
m

√√√√ M∑
m=1

b2m (24)

and letting b2m = 1/M , then the inequality in Eqn 24 becomes(
1√
M

M∑
m=1

am

)2

≤
M∑

m=1

a2
m. (25)

Thus, the lower bound of Eqn 16 becomes

‖x′i − x′j‖22 =

M∑
m=1

(

K∑
k=1

< θm,x
k
i − xk

j >)
2 (26)

≥ 1

M

(
M∑

m=1

K∑
k=1

< θm,x
k
i − xk

j >

)2

(27)

=
1

M
<

M∑
m=1

θm,

K∑
k=1

xk
i − xk

j >
2 . (28)

Let φ =
∑M

m=1 θm and z =
∑K

k=1 x
k
i − xk

j . Then

‖x′i − x′j‖22 ≥
1

M
< φ, z >2 (29)

=
1

M
(

d∑
l=1

φl, zl)
2 (30)

=
1

M

d∑
l=1

d∑
n=1

φlφnzlzn. (31)
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Then taking the expectation on both sides, the inequality becomes

E[‖x′i − x′j‖22] ≥ E[
1

M

d∑
l=1

d∑
n=1

φlφnzlzn] (32)

=
1

M

d∑
l=1

d∑
n=1

E[φlφn]zlzn. (33)

Note that the elements of θm follow independent Gaussian distribution with 0 mean and σ2 variance
and φ =

∑M
m=1 θm. Thus, the elements of φ follows independent Gaussian distribution with 0

mean and Mσ2 variance. Thus,

E[φlφn] =

{
0 l 6= n

Mσ2 l = n
. (34)

Thus, the lower bound becomes

E[‖x′i − x′j‖22] ≥
1

M

d∑
l=1

Mσ2z2l (35)

= σ2‖z‖22 (36)

= σ2‖
K∑

k=1

xk
i − xk

j ‖22 (37)

= σ2K2‖ 1
K

K∑
k=1

xk
i −

1

K

K∑
k=1

xk
j ‖22. (38)

Thus, the distance between two points after group convolution is lower bounded by the neighborhood
centroid distance of the corresponding points before group convolution up to a scaling factor.

C ALGORITHMS

In this section, we provide the detailed algorithms of accelerating DGCNN, which is designed based
on the proposed card shuffling theorems and hypotheses in Section 3. Algorithm 1 explains how the
KNN procedure is simplified according to Theorem 1. Instead of conducting KNN search for each
EdgeConv like DGCNN, only one full-fledged KNN search is conducted at the very beginning.

Algorithm 1: Accelerating the multiple KNN searches in the EdgeConvs.
1: Input: 3D point cloud P = {p1,p2, . . . ,pN}
2: Result: the K nearest neighbors used by all EdgeConvs.
3: Do one KNN search and keep L nearest neighbors, L > K.
4: for all i ≤ number of EdgeConvs do
5: if i == 1 then
6: Get the K nearest neighbors from the L neighbors.
7: else
8: Randomly sample K neighbors from the L neighbors.
9: end if

10: end for

Algorithm 2 explains our shuffling strategy for feature gathering and convolution operation. As
it is proved in Theorem 2, shuffling the order of neighbor feature gathering and the one by one
convolution keeps the equivalent architecture for the basic EdgeConv. As a result, we can gather the
edge features after applying two MLPs to the original points, and then add up the point and neighbor
features.
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Algorithm 2: Shuffling the order of feature gathering and convolution in EdgeConv.
1: Input: Input points P = {x1,x2, . . . ,xN}
2: Result: the K nearest neighbors used by all EdgeConvs.
3: Apply two MLPs θm and ψm to the original points.

// This leads to θm · x and ψm · x. Omitting the subscripts means that
the same operation is done for every point.

4: Do one neighbor search.
// The neighbor search could be simplified as in Algorithm 1.

5: Gather the edge features θm · xk for every point xi according to the neighbor search.
6: Adds up the neighbor feature θm · xj and the point feature ψm · xi.

D IMPLEMENTATION DETAILS

D.1 CLASSIFICATION OF POINT CLOUD

For classification task, we used ModelNet40 dataset. ModelNet40 dataset consists of 12,311 meshed
CAD models of 40 categories. We follow the experimental setting of PointNet (Qi et al., 2017a;b)
and DGCNN (Wang et al., 2019). In order to evaluate our performance, we uniformly sample points
of different numbers from the mesh faces to formulate point clouds. For the sake of fair comparison,
the results reported in Table 1 are averaged from five runs. The number of parameters of all the
networks is 1.8k. Inference runtime is measured on a single Titan Xp GPU and the batch size is
reduced to 16 for running with 2048 points.

D.2 SEGMENTATION OF POINT CLOUD

For part segmentation task, we used ShapeNetPart dataset. ShapeNetPart consists of 16 object
categories of 16,881 3D shapes, annotated with 50 parts. 2048 points are sampled from each shape.
For semantic segmentation task, we used Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS).
S3DIS consists of indoor scenes of 272 rooms in six inddor areas, annotated with 13 semantic
categories. Our experiments follow the standard training, validation, and test split of DGCNN. For
the sake of fairness comparison, the results reported in Table 2 are averaged from five runs. Part
segmentation experiments are run on two Titan Xp GPUs and the batch size is 32.

D.3 SURFACE RECONSTRUCTION OF POINT CLOUD

The visualization of meshes is done on the platform Open3D (Zhou et al., 2018).

E FEATURE VISUALIZATION

In order to validate that the neighborhood geometric feature is preserved after all the operations and
shuffles, experiments are designed by extracting and visualizing feature map as a distance colormap
rendered on the 3D point cloud. By observing Figure 2, we notice that the yellow part has a trend
of converging to a smaller region with the propagation of the network within one epoch. By ob-
serving Figure 3, we can come to the conclusion that such convergence trend grows as the iterations
moves on. At epoch 250 when the loss of the classification neural network converged, the yellowish
neighbor features also converge into a very small region, and this region is smaller than the KNN
represented by the green points. Figure 5 shows more results of feature space.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we show additional experimental results of the surface reconstruction from point
clouds. Figure 6 shows the computational resource comparison for the task of semantic segmenta-
tion. Figure 7 presents the ablation study of performance for semantic segmentation w.r.t. a wide
range of parameters. Figure 8 shows more qualitative results for surface reconstruction.
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Figure 5: Renderings of input space and feature space as colormap between the red point and the
rest of the points on ModelNet40 dataset. The green points represent KNN of the red point. (a)
represents the input space. (b) represents the feature space extracted from the second layer of the
network. (c) represents the feature space extracted from the last layer of the network. (d), (e),and (f)
respectively follows the same layout with (a), (b), and (c).
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Figure 6: Comparison between DGCNN and the proposed method (Shuffle) on point cloud semantic
segmentation. (a) Runtime, (b) GPU memory consumption, and (c) FLOPs are reported for compar-
ison.The proposed method can achieve significant reduction of computation resources.
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Figure 7: (a) Ablation study of overall acc. w.r.t parameters K and P. Values calculated are the points
on the grid, and the hotmap is derived by bilinear interpolation. (b) and (c) follows the same layout
with (e) for balanced accuracy and mean IoU.

Figure 8: Qualitative results of surface reconstruction. (a) Input point cloud. (b), (c) Surface and
normal map reconstructed by Point2Mesh. (d), (e) Surface and normal map reconstructed by our
method.
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