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Abstract

A common assumption in causal modelling is that the rela-
tions between variables are fixed mechanisms. But in reality,
these mechanisms often change over time and new data might
not fit the original model as well. But is it reasonable to regu-
larly train new models or can we update a single model con-
tinually instead? We propose utilizing the field of continual
learning to help keep causal models updated over time.

Introduction
Causal models (Pearl 2009; Peters, Janzing, and Schölkopf
2017) can be useful in a variety of applications (Koch,
Eisinger, and Gebharter 2017; Carriger and Barron 2020;
Fenton et al. 2020). Various algorithms exist for causal dis-
covery, i. e. learning the causal graph from data (Glymour,
Zhang, and Spirtes 2019). With the causal graph known, a
causal model can be trained (parameter learning), enabling
a causal perspective on the respective problem. Due to a lack
of knowledge about unobserved variables, the relations be-
tween effect(s) and cause(s) are usually not deterministic,
instead relying on probabilities for making predictions.

Continual learning is another research direction which in
recent years has attracted the attention of an increasing num-
ber of people (based on the # of publications, see the discus-
sion by Mundt et al. (2022)). While we are not aware of any
universally accepted definition, we would describe continual
learning roughly as updating a model over time, given new
information and without losing the knowledge encoded in
the original model (Mundt et al. 2022; Chen and Liu 2018).
The general idea behind this paper is that continual learning
can help causal models stay up-to-date over time.

Imagine there is a causal model trained on some data and
we assume that this is the best possible model that can be ob-
tained using known techniques and the provided data. What
if something in the problem changes or we get new data de-
scribing only some parts of the true underlying model? For
example, consider a company trying out different products
to sell. Every day, they put a different type of product (A)
up for sale and at the end of the day, they obtain information
about the amount of money earned (B). In this example, the
company is still trying to find out which products are selling
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well and which do not, so it is safe to assume that the amount
of money earned here does not causally influence the type
of product sold. On the other hand, which products are put
up for sale certainly determines the profit at the end of the
day. Therefore, we have the causal graph A→ B and, given
enough data, it can be calculated how much profit is to be ex-
pected depending on the type of product sold. Most likely,
in a real-world scenario, there would be more variables in-
cluded which have an influence on the model, for example
the number of guests entering the store or the day of the year.
We exclude most of these in our example but it is reasonable
to assume that some of those would be included and known,
while other variables which influence the model are not in-
cluded, either because the actual values are unknown (e. g.
wealth of the customers that day), they might not have been
thought of, or it was impossible to include them for other
reasons. Now, imagine one such variable suddenly becomes
available. For example, the company could sell its wares in
several places and one day the data scientists get access to
new data including the location of the store (C) which now
is another cause of the amount of money earned (new causal
graph: A → B ← C). How can the existing model be up-
dated to account for the newly acquired data without having
to retrain the entire model?

But even if the general structure of the problem (causal
graph) remains unchanged, we could benefit from continual
learning. Staying with the previous example, imagine that
the popularity of a product type changes. We would assume
that much of the relations between the causes A and C and
the effect B remains the same but certainly some relations
including that specific product type change.1 Is it possible to
retain the knowledge which still holds and at the same time
update the model to represent the new situation?

In this paper, we focus on Neural Causal Models (NCMs)
introduced by Xia et al. (2021) as a parameterized form of
general Structural Causal Models. Here, continual learning
provides tools which can help keep NCMs up-to-date.

First, we give a short introduction on causal models, fol-
lowed by a more detailed explanation of the considered
problem and an overview of general strategies to solve it.

1Arguably, this is not a change of relations but a change of un-
known variables not included in the model (lack of knowledge).
Even so, it can be useful to think of it as a change of relationships.



Before concluding, we sketch out ideas on how existing con-
tinual learning methods can help tackle the problems men-
tioned above.

Causal Models
Following the definition by Peters, Janzing, and Schölkopf,
a Structural causal model (SCM) is given by C := (S, PN)
where PN is a joint distribution over all noise (exogenous)
variables and S is defined as a set of d structural assignments

Xi := fi(PA(Xi), Ni), where i = 1, . . . , d, (1)

where PA(Xi) are the parents of Xi, i.e. those variables in
the causal graph which have an edge ending in Xi (the vari-
ables which cause Xi), Ni ∈ N is a noise variable, and d
represents the number of variables.

Neural causal models (NCMs) are a type of SCMs where
the functions fi are given by feedforward neural networks
(NNs) (Xia et al. 2021). Please refer to the original paper for
a full definition of NCMs.

Problem
The problem addressed in this position paper is concerned
with updating causal models given new information (data).
Here, it can be distinguished between two general problems:

P1 Parts of the probability distributions of the model
change (the causal graph remains unchanged).

P2 The structure of the causal graph changes (i.e. vari-
ables are added or removed or other cause-effect relations
in the causal graph change).

In mathematical terms, if f old
i is the structural assignment

for variable Xi ∈ Xold with parents PAold(Xi), and noise
distribution P old

N of the original model and f new
i , Xi ∈ Xnew,

PAnew(Xi), and P new
N are the respective variables and func-

tions in the desired new model, then P1 describes the prob-
lem of changing f old

i to f new
i given that Xold = Xnew and

PAold(Xi) = PAnew(Xi). Both of these requirements do not
have to hold for P2.

Since P2 usually includes P1, P1 can be seen as a sub-task
of P2 and the overall easier problem.

But why is this an important problem? Is it not easy to
simply add the new data to the original data or replace some
parts of the original data and retrain the model? Depending
on the application, this might be a valid possibility and, in
that case, continual learning is not needed. However, just
retraining the model has several possible downsides:

A) Time and efficiency in general. Training a new causal
model can take a lot of time and resources. Especially if
the data changes regularly, it could be unreasonable to
train a model from scratch every time.

B) Original data is unavailable. Privacy aspects, storage
constraints, and other reasons could make it impossible
to keep data stored for a prolonged time period. If the new
data is not sufficiently large and complete, a retrained
new model could end up performing significantly worse
than the original model, while an updated model could
benefit from both the information of the original model
(indirectly the original data) and the newly acquired data.

C) New data is incomplete. The new data might not be
complete and only contain some features, like a new vari-
able or only the features for one cause-effect relationship
which presumably changed. Here, retraining could sim-
ply be impossible.

Proposed Solution Strategy
First, it is worth mentioning that simply using a model such
as an NCM inherently (to a degree) opens the causal model
up to continual learning. Since the “mechanisms” (functions
determining a variable based on the parent variables) are
usually assumed to be independent of each other, they can
also be updated separately. In other words, if it is known
that only a certain subset of mechanisms changed, those can
be updated while requiring data only for the features (vari-
ables) relevant for these mechanisms (the respective child
and parent variables).

This can be very useful but is not an exciting new rev-
elation so let us get back to the two aforementioned prob-
lems and discuss solution strategies. For the second, more
complex problem, these strategies are less specific but might
serve as first steps towards tackling that problem.

In the following, some general solution strategies are in-
troduced. Examples of specific continual learning methods
and how they could be useful are discussed afterwards.

Problem 1: Change of Probabilities
Retraining. Training a new model is a valid strategy in
general but this approach also has various problems (refer to
the previous parts of this paper).

Continue Training. One can continue training as before
but using the new data. If what is trained on now consists of
data representative for the full data distribution, this should
work out well. However, if the new data is very specific and
does not capture the full range of the data, catastrophic for-
getting (Robins 1995; Kirkpatrick et al. 2017) could become
a problem, where predictions for data points not represented
by the new data are incorrect, although they were correct for
the original model.

Continual Learning. Continual learning can help a lot,
depending on the specific problem formulation. Assume that
we have discrete variables2 and therefore, given a specific
model, there is only a finite amount of probabilities this
variable can obtain (one for each parent configuration). If
an NCM is used and the new data only covers some of
these parent configurations, continual learning methods can
be used to avoid (or at least reduce) catastrophic forgetting
of the other parent configurations.

Problem 2: Change of Structure
Continual learning could also be a helpful tool towards up-
dating the structure of a causal model. If a variable is added
as a new parent to another variable, the existing NN could

2The idea could also work for continuous variables but it re-
quires a more sophisticated approach. For this position paper, we
consider discrete variables as the simpler version of this problem.



be extended by additional neurons to increase the expres-
sivity of the NN and maybe even keep some useful connec-
tions and neurons within the NN which are still helpful (but
they should not be fixed in case the relationship changed
significantly). In general, adapting the NN architecture in-
stead of retraining might enable the new model to utilize
what the original model has learned while at the same time
being trained with new information.

Continual Learning Methods to Help NCMs
There are many ways in which continual learning methods
could help update NCMs when retraining is impossible or
too expensive. A rather straightforward approach for keep-
ing some information encoded by the original model when
training on a new dataset is given by rehearsal and pseudore-
hearsal (Robins 1995). Here, in addition to the new data,
the model is trained on specific instances either from the
original dataset (rehearsal) or artificially created ones (pseu-
dorehearsal). The idea is that those instances are especially
representative for the original model behavior. But there are
also methods for which no training on anything but the new
dataset is necessary. Sharing the goal of keeping previously
learned model behavior, elastic weight consolidation (Kirk-
patrick et al. 2017) can be used to slow down learning for
neurons responsible for specific input-output relationships to
reduce forgetting. For improving an existing model with new
information, few-shot learning methods (Wang et al. 2020)
might be of use when the amount of data to update the model
is small. Maybe the same goal can even be achieved by zero-
shot learning (Xian et al. 2018) without needing a single data
instance but how one would go about this exactly requires
further thought. Perhaps training a new model is possible
and even desired but the original data is not available any-
more. In that case, knowledge distillation (Gou et al. 2021)
could be used to distill input-output relationships (maybe
even excluding those that are deemed outdated). One could
even go one step further and not only use knowledge distilla-
tion to update the probability distributions of the model (P1)
but also create the new model in such a way that it accounts
for a changed causal structure while keeping useful informa-
tion from the previous model (P2). But there are also other
continual learning methods which could be useful when the
causal graph changes.

Looking at a relatively simple aspect of that problem,
transfer learning (Pan and Yang 2010) might be useful when
a new variable is added to a NN with the same inputs
(causes) as another NN because the way these causes im-
pact the effect variables (outputs) might be somewhat sim-
ilar. In the event of adding an additional effect instead of
another cause, if a relationship between some variables is
presumably complex but has two or more effects (i.e. child
variables), maybe those could benefit from sharing parts of
the NN architecture at the beginning, while having different
child variables represented by different output (task) specific
layers at the end of the NN (Li and Hoiem 2017). In other
words, adding a new effect would keep the previous layers
unchanged and only require one to add and train the new
output specific layers. More generally, if a NN in an NCM
does not have enough capacity to cover the old and new data

or if new variables are added to the model, expanding the
NN architecture (Rusu et al. 2016; Yoon et al. 2018) can be
a promising alternative to training an entirely new model.
Expanding instead of retraining allows this approach to also
benefit from what the previous model had learned.

Let us consider an high-level example inspired by the in-
troduction to illustrate how updating NCMs could look like.3

1. A dataset DA,B,C contains a lot of data points over the
features A (type of product) and B (money earned). An
NCM M0 is trained given the causal graph A→ B.

2. Due to some reason (e.g. privacy), D is deleted.
3. A new, small dataset DA,B,C becomes available, also

containing information about C (location of store).
4. By adding neurons to the structural equation, the infor-

mation in the previously learned NCM M0 can be uti-
lized to train M1 (for example using progressive neural
networks (Rusu et al. 2016)).

5. Store owners report that a specific product ai ∈ A lost
much of its popularity (maybe some kind of scandal) and
a new dataset is created Dai,B,C only for product ai.

6. With the help of continual learning, the NCM M1 can be
updated in such a way that mostly the neurons responsi-
ble for the input A = ai change (for example using elas-
tic weight consolidation (Kirkpatrick et al. 2017)), while
other neurons stay relatively unchanged.

Conclusion and Outlook
One might ask why causal model would even need to be
changed over time. Do true cause-effect relationships ever
really change? In order to be useful, causal models usu-
ally follow certain assumptions and are only abstractions.
It is unreasonable to try to go into the “most detailed cause”
on an atomic level. Therefore, the continual aspects come
into play when either the available information changes (the
“true laws of our universe” stay the same, but those are not
modeled explicitly, only a certain abstraction is) or a part of
the problem itself changes. Again, in this second case, no
atomic cause-effect relations change but our chosen abstrac-
tion does not fit the current scenario anymore. For example,
this applies if the i.i.d. assumption is violated.

Continual learning and causality (NCMs in particular)
have several goals in common, including but not limited to
model adaptation given new information, invariance of un-
changed knowledge, and efficient use of data. We postulate
that causal models can benefit from continual learning meth-
ods which are designed to update new or changed parts of a
model while keeping other parts functional.

One can also think of further areas in which a continual
perspective on causality could help. For example, one might
even try to create some kind of “meta model” which operates
on top of a causal model but, given the previous changes in
that causal model, is tasked to predict how the causal model
is expected to change in the future.

3Of course, this example containing only 2 to 3 variables is very
simple but it should make clear what kinds of problems could be
solved using continual learning and how one could go about it.
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