
Published in Transactions on Machine Learning Research (November/2024)

Optimized Tradeoffs for Private Prediction with Majority
Ensembling

Shuli Jiang shulij@andrew.cmu.edu
Robotics Institute, Carnegie Mellon University
Qiuyi (Richard) Zhang qiuyiz@google.com
Google DeepMind
Gauri Joshi gaurij@andrew.cmu.edu
Electrical and Computer Engineering, Carnegie Mellon University

Reviewed on OpenReview: https: // openreview. net/ forum? id= dwJluAakM8

Abstract

We study a classical problem in private prediction, the problem of computing an (mϵ, δ)-
differentially private majority of K (ϵ, ∆)-differentially private algorithms for 1 ≤ m ≤ K
and 1 > δ ≥ ∆ ≥ 0. Standard methods such as subsampling or randomized response are
widely used, but do they provide optimal privacy-utility tradeoffs? To answer this, we
introduce the Data-dependent Randomized Response Majority (DaRRM) algorithm. It is
parameterized by a data-dependent noise function γ, and enables efficient utility optimization
over the class of all private algorithms, encompassing those standard methods. We show that
maximizing the utility of an (mϵ, δ)-private majority algorithm can be computed tractably
through an optimization problem for any m ≤ K by a novel structural result that reduces
the infinitely many privacy constraints into a polynomial set. In some settings, we show
that DaRRM provably enjoys a privacy gain of a factor of 2 over common baselines, with
fixed utility. Lastly, we demonstrate the strong empirical effectiveness of our first-of-its-kind
privacy-constrained utility optimization for ensembling labels for private prediction from
private teachers in image classification. Notably, our DaRRM framework with an optimized
γ exhibits substantial utility gains when compared against several baselines.

1 Introduction

Differential privacy (DP) is a widely applied framework for formally reasoning about privacy leakage when
releasing statistics on a sensitive database Erlingsson et al. (2014); Cormode et al. (2018). Differential privacy
protects data privacy by obfuscating algorithmic output, ensuring that query responses look similar on
adjacent datasets while preserving utility as much as possible Dwork et al. (2006).

Privacy in practice often requires aggregating or composing multiple private procedures that are distributed
for data or training efficiency. For example, it is common to aggregate multiple private algorithmic or model
outputs in methods such as boosting or calibration (Sagi & Rokach, 2018). In federated learning, model
training is distributed across multiple edge devices. Those devices need to send local information, such as
labels or gradients Konečnỳ et al. (2016), to an aggregating server, which is often honest but curious about
the local training data. Hence, the output from each model at an edge device needs to be privatized locally
before being sent to the server. When translating from a local privacy guarantee to a centralized one, one
needs to reason about the composition of the local privacy leakage Naseri et al. (2020). Therefore, we formally
ask the following:
Problem 1.1 (Private Majority Ensembling (Illustrated in Figure 1)). Consider K ≥ 1 (ϵ, ∆)-differentially
private mechanisms M1, . . . , MK for K odd. Given a dataset D, each mechanism outputs a binary answer —
that is, Mi : D → {0, 1}, ∀i ∈ [K]. Given a privacy allowance 1 ≤ m ≤ K, m ∈ R and a failure probability

1

https://openreview.net/forum?id=dwJluAakM8


Published in Transactions on Machine Learning Research (November/2024)

δ ≥ ∆ ≥ 0, δ, ∆ ∈ [0, 1), how can one maximize the utility of an (mϵ, δ)-differentially private mechanism A
to compute the majority function g(S1, S2, . . . , SK), where Si ∼Mi(D)?

Figure 1: An illustration of the problem setting. The inputs are the datasetD and K (ϵ, ∆)-differentially private
mechanisms M1, . . . , MK . One draws samples Si ∼Mi(D) and computes an aggregated output g(S1, . . . , SK)
based on all observed samples. Our goal is to design a randomized algorithm A that approximately computes
g and is (mϵ, δ)-differentially private for 1 ≤ m ≤ K and δ ≥ ∆ ≥ 0. We focus on g being the majority
function .

The majority function g is often used in private prediction, where one studies the privacy cost of releasing
one prediction Dwork & Feldman (2018) and exploits the fact that releasing only the aggregated output
on sharded models is significantly more private than releasing each prediction. For example, this occurs in
semi-supervised knowledge transfer with private aggregated teacher ensembles (PATE) Papernot et al. (2017;
2018), in ensemble learning algorithms Jia & Qiu (2020); Xiang et al. (2018), machine unlearning Bourtoule
et al. (2021), private distributed learning algorithms such as Stochastic Sign-SGD Xiang & Su (2023), and in
ensemble feature selection Liu et al. (2018). Private prediction is also shown to be a competitive technique in
data-adaptive settings, where the underlying dataset is changing slowly over time, to quickly adjust to online
dataset updates Zhu et al. (2023). Furthermore, to address the large privacy loss of private prediction under
the many-query regime, there has been recent works in everlasting private prediction that extends privacy
guarantees with repeated, possibly infinite, queries without suffering a linear increase in privacy loss Naor
et al. (2023); Stemmer (2024).

These works, however, rely often on the standard sensitivity analysis of g to provide a private output and
thus generally provide limited utility guarantees. This is because the maximum sensitivity of g can be too
pessimistic in practice, as observed in the problem of private hyperparameter optimization (Liu & Talwar,
2019). On the other hand, for private model ensembling, a naive way to bound privacy loss without restrictive
assumptions is to apply simple composition (Theorem 2.2) or general composition (Theorem 2.3, a tighter
version compared to advanced composition) to reason about the final privacy loss after aggregation. A
black-box application of the simple composition theorem to compute g would incur a Kϵ privacy cost in the
pure differential privacy setting, that is, δ = 0, or if one is willing to tolerate some failure probability δ, general
composition would yield a O(

√
Kϵ) privacy cost Kairouz et al. (2015). Thus, a natural baseline algorithm A

that is (mϵ, m∆)-differentially private applies privacy amplification by subsampling and randomly chooses m
of the K mechanisms to aggregate and returns the majority of the subsampled mechanisms. This technique is
reminiscent of the subsampling procedure used for the maximization function g (Liu & Talwar, 2019) or some
general techniques for privacy amplification in the federated setting via shuffling (Erlingsson et al., 2019).

However, standard composition analysis and privacy amplication techniques can be suboptimal for computing
a private majority, in terms of both utility and privacy. Observe that if there is a clear majority among
the outputs of M1(D), . . . , MK(D), one can add less noise. This is because each mechanism Mi is (ϵ, ∆)-
differentially private already, and hence, is less likely to change its output on a neighboring dataset by
definition. This implies the majority outcome is unlikely to change based on single isolated changes in D.
Furthermore, composition theorems make two pessimistic assumptions: 1) the worst-case function g and
the dataset D are considered, and 2) all intermediate mechanism outputs M1(D), . . . , MK(D) are released,

2



Published in Transactions on Machine Learning Research (November/2024)

rather than just the final aggregate. Based on these observations, is it possible then to improve the utility of
computing a private majority, under a fixed privacy loss?

1.1 Our Contributions

We give a (perhaps surprising) affirmative answer to the above question by using our novel data-dependent
randomized response framework (DaRRM), which captures all private majority algorithms, we introduce a
tractable noise optimization procedure that maximizes the privacy-utility tradeoffs. Furthermore, we can
provably achieve a constant factor improvement in utility over simple subsampling by applying data-dependent
noise injection when Mi’s are i.i.d. and δ = 0. To our knowledge, this is the first of its work of its kind that
gives a tractable utility optimization over the possibly infinite set of privacy constraints.

Data-dependent Randomized Response Majority (DaRRM). We generalize the classical Randomized
Response (RR) mechanism and the commonly used subsampling baseline for solving Problem 1.1 and propose
a general randomized response framework DaRRM (see Algorithm 1), which comes with a customizable noise
function γ. We show that DaRRM actually captures all algorithms computing the majority whose outputs
are at least as good as a random guess (see Lemma 3.3), by choosing different γ functions.

Designing γ with Provable Privacy Amplification. The choice of the γ function in DaRRM allows
us to explicitly optimize noise while trading off privacy and utility. Using structural observations, we show
privacy amplification by a factor of 2 under mild conditions over applying simple composition in the pure
differential privacy setting when the mechanisms Mi’s are i.i.d. (see Theorem 4.1).

Finding the Best γ through Dimension-Reduced Optimization. We further exploit the generality
of DaRRM by applying a novel optimization-based approach that applies constrained optimization to find
a data-dependent γ that maximizes some measure of utility. One challenge is that there are infinitely
many privacy constraints, which are necessary for DaRRM with the optimized γ to satisfy the given privacy
loss. We show that we can reformulate the privacy constraints, which are infinite dimensional, to a finite
polynomial-sized constraint set, allowing us to efficiently constrain the optimization problem to find the best
γ, even for approximate differential privacy (see Lemma 5.1). Empirically, we show that with a small m and
ϵ, the optimized γ (see γopt in Figure 2) achieves the best utility among all γ functions, even compared to
the subsampling and the data-independent baseline. To our knowledge, this is the first utility maximization
algorithm that optimizes over all private algorithms by constrained optimization with dimension reduction.

Experiments. In downstream tasks, such as semi-supervised knowledge transfer for private image classi-
fication, we compare our DaRRM with an optimized γ to compute the private label majority from private
teachers against PATE Papernot et al. (2018), which computes the private label majority from non-private
teachers. We fix the privacy loss of the output of both algorithms to be the same and find that when the
number of teachers K is small, DaRRM indeed has a higher utility than PATE, achieving 10%-15% and 30%
higher accuracy on datasets MNIST and Fashion-MNIST, respectively.

2 Background

2.1 Related Work

Private Composition. Blackbox privacy composition analysis often leads to pessimistic utility guarantees.
In the blackbox composition setting, one can do no better than the O(Kϵ) privacy analysis for pure differential
privacy Dwork et al. (2014). For approximate differential privacy, previous work has found optimal constants
for advanced composition by reducing to the binary case of hypothesis testing with randomized response; and
optimal tradeoffs between ϵ, δ for black box composition are given in Kairouz et al. (2015), where there could
be a modest improvement 20%.

Thus, for specific applications, previous work has turned to white-box composition analysis for improved
utility. This includes, for example, moment accountant for private SGD Abadi et al. (2016) and the application
of contractive maps in stochastic convex optimization Feldman et al. (2018). For the specific case of model
ensembles, Papernot et al. (2018) shows a data-dependent privacy bound that vanishes as the probability of

3



Published in Transactions on Machine Learning Research (November/2024)

disagreement goes to 0. Their method provides no utility analysis but they empirically observed less privacy
loss when there is greater ensemble agreement.

When g is the maximization function, some previous work shows that an approximately maximum value can
be outputted with high probability while incurring O(ϵ) privacy loss, independently of K. Liu & Talwar
(2019) proposed a random stopping mechanism for m = 1 that draws samples uniformly at random from
Mi(D) at each iteration. In any given iteration, the sampling halts with probability γ and the final output is
computed based on the samples collected until that time. This leads to a final privacy cost of only 3ϵ for
the maximization function g, which can be improved to 2ϵ (Papernot & Steinke, 2022). In addition to the
aforementioned works, composing top-k and exponential mechanisms also enjoy slightly improved composition
analysis via a bounded-range analysis Durfee & Rogers (2019); Dong et al. (2020).

Bypassing the Global Sensitivity. To ensure differential privacy, it is usually assumed the query function
g has bounded global sensitivity — that is, the output of g does not change much on any adjacent input
datasets differing in one entry. The noise added to the output is then proportional to the global sensitivity of
g. If the sensitivity is large, the output utility will thus be terrible due to a large amount of noises added.
However, the worst case global sensitivity can be rare in practice, and this observation has inspired a line of
works on designing private algorithms with data-dependent sensitivity bound to reduce the amount of noises
added.

Instead of using the maximum global sensitivity of g on any dataset, the classical Propose-Test-Release
framework of Dwork Dwork & Lei (2009) uses a local sensitivity value for robust queries that is tested
privately and if the sensitivity value is too large, the mechanism is halted before the query release. The
halting mechanism incurs some failure probability but deals with the worst-case sensitivity situations, while
allowing for lower noise injection in most average-case cases.

One popular way to estimate average-case sensitivity is to use the Subsample-and-Aggregate framework by
introducing the notion of perturbation stability, also known as local sensitivity of a function g on a dataset
D Thakurta & Smith (2013); Dwork et al. (2014), which represents the minimum number of entries in D
needs to be changed to change g(D). One related concept is smooth sensitivity, a measure of variability of g
in the neighborhood of each dataset instance. To apply the framework under smooth sensitivity, one needs to
privately estimate a function’s local sensitivity Ls and adapt noise injection to be order of O(Ls

ϵ ), where
Ls can often be as small as O(e−n), where n = |D|, the total dataset size Nissim et al. (2007). Generally,
the private computation of the smooth sensitivity of a blackbox function is nontrivial but is aided by the
Subsample and Aggregate approach for certain functions.

These techniques hinge on the observation that a function with higher stability on D requires less noise to
ensure worst case privacy. Such techniques are also applied to answer multiple online functions/queries in
model-agnostic learning Bassily et al. (2018). However, we highlight two key differences in our setting with a
weaker stability assumption. First, in order to estimate the perturbation stability of g on D, one needs to
downsample or split D into multiple blocks Thakurta & Smith (2013); Dwork et al. (2014); Bassily et al.
(2018), D̂1, . . . , D̂B , and estimate the perturbation stability based on the mode of g(D̂1), . . . , g(D̂B). This
essentially reduces the amount of change in the output of g due to a single entry in D, with high probability
and replaces the hard-to-estimate perturbation stability of g with an easy-to-compute perturbation stability of
the mode. Such a notion of stability has also been successfully applied, along with the sparse vector technique,
for model-agnostic private learning to handle exponentially number of queries to a model Bassily et al. (2018).
Note that in these cases, since a private stochastic test is applied, one cannot achieve pure differential privacy
Dwork et al. (2014). In practice, e.g. federated learning, however, one does not have direct access to D, and
thus it is impractical to draw samples from or to split D. Second, to ensure good utility, one relies on a key
assumption, i.e. the subsampling stability of g, which requires g(D̂) = g(D) with high probability over the
draw of subsamples D̂.

Although our intuition in designing DaRRM also relies on the stability of the mode function g, previous usage
of stability to improve privacy-utility tradeoffs, e.g., propose-test-release Vadhan (2017); Dwork et al. (2014),
requires the testing of such stability, based on which one adds a larger (constant) noise γ. This can still lead
to adding redundant noise in our case.

4



Published in Transactions on Machine Learning Research (November/2024)

Optimal Randomized Response. Holohan et al. (2017) and Kairouz et al. (2015) show that the classical
Randomized Response (RR) mechanism with a constant probability of faithfully revealing the true answer is
optimal in certain private estimation problems. Our proposed DaRRM framework and our problem setting is
a generalized version of the ones considered in both Holohan et al. (2017) and Kairouz et al. (2015), which
not only subsumes RR but also enables a data-dependent probability, or noise addition.

While RR with a constant probability can be shown optimal in problems such as private count queries or
private estimation of trait possession in a population, it is not optimal in other problems, such as private
majority ensembling, since unlike the former problems, changing one response of the underlying mechanisms
does not necessarily change the output of the majority. To explicitly compute the minimum amout of noise
required, one needs the output distributions of the underlying mechanisms but this is unknown. To resolve
this, our proposed DaRRM framework adds the amount of noise dependent on the set of observed outcomes
from the underlying private mechanisms, S, which is a random variable of the dataset and is hence a proxy.
This enables DaRRM to calibrate the amount of noise based on whether the majority output is likely to
change. The amount of noise is automatically reduced when the majority output is not likely to change.

Second, Holohan et al. (2017) and Kairouz et al. (2015) both consider a special case in our setting where all
K private mechanisms are i.i.d., while our approach focuses on the more general setting where each private
mechanism can have a different output distribution.

Learning A Good Noise Distribution. There have been limited works that attempt to derive or learn a
good noise distribution that improves the utility. For deep neural networks inference, Mireshghallah et al.
(2020) attempts to learn the best noise distribution to maximizing utility subject to an entropy Lagrangian,
but no formal privacy guarantees were derived. For queries with bounded sensitivity, Geng & Viswanath
(2015) demonstrate that the optimal noise distribution is in fact a staircase distribution that approaches the
Laplacian distribution as ϵ→ 0.

Private Prediction. Instead of releasing a privately trained model as in private learning, private prediction
hides the models and only releases private outputs. Private prediction has been shown as a practical alternative
compared to private learning, as performing private prediction is much easier compared to private learning
on a wide range of tasks Dwork & Feldman (2018); Naor et al. (2023); van der Maaten & Hannun (2020).
Although a privately trained model can make infinitely many predictions at the inference time without
incurring additional privacy loss, since differential privacy is closed under post-processing, it has been shown
recently that it is indeed possible to make infinitely many private predictions Naor et al. (2023) with a finite
privacy loss for specific problems.

2.2 Preliminaries

We first introduce the definition of differential privacy, simple composition and general composition as follows.
The general composition Kairouz et al. (2015) gives a near optimal and closed-form bound on privacy loss
under adaptive composition, which improves upon advanced composition Dwork et al. (2014).
Definition 2.1 (Differential Privacy (DP) Dwork et al. (2014)). A randomized mechanism M : D → R with
a domain D and range R satisfies (ϵ, δ)-differential privacy for ϵ, δ ≥ 0 if for any two adjacent datasets
D,D′ and for any subset of outputs S ⊆ R it holds that Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ. δ = 0 is
often called pure differential privacy; while δ > 0 is often called approximate differential privacy.
Theorem 2.2 (Simple Composition Dwork et al. (2014)). For any ϵ > 0 and δ ∈ [0, 1], the class of
(ϵ, δ)-differentially private mechanisms satisfy (kϵ, kδ)-differential privacy under k-fold adaptive composition.
Theorem 2.3 (General Composition (Theorem 3.4 of Kairouz et al. (2015))). For any ϵ > 0, δ ∈ [0, 1] and
δ′ ∈ (0, 1], the class of (ϵ, δ)-differentially private mechanisms satisfies (ϵ′, 1− (1− δ)k(1− δ′))-differential
privacy under k-fold adaptive composition for

ϵ′ = min
{

kϵ,
(eϵ − 1)ϵk

eϵ + 1 + ϵ

√
2k log(e +

√
kϵ2

δ′ ), (eϵ − 1)ϵk
eϵ + 1 + ϵ

√
2k log(1/δ′)

}
We then formalize the error and utility metric in our problem as follows:

5



Published in Transactions on Machine Learning Research (November/2024)

Definition 2.4 (Error Metric and Utility Metric). For the problem setting in Definition 1.1, let the observed
(random) outcomes set be S = {S1, .., Sk}, where Si ∼ Mi(D). For a fixed D, we define the error of an
algorithm A, i.e., E(A), in computing the majority function g as the Total Variation (TV) distance between
g(S) and A(D). Specifically,

E(A) = DT V (g(S) ∥ A(D)) = |Pr[A(D) = 1]− Pr[g(S) = 1]|

and the utility is defined as 1− E(A).

Notation. Throughout the paper, we use the same notations defined in Problem 1.1 and Definition 2.4.
Furthermore, let D and D′ to denote a pair of adjacent datasets with one entry being different. Also, let
pi = Pr[Mi(D) = 1] and p′

i = Pr[Mi(D′) = 1], ∀i ∈ [K]. We omit the subscript i when all pi’s or p′
i’s

are equal. I{·} denotes the indicator function and [K] = {1, 2, . . . , K}. For the purpose of analysis, let
L(D) =

∑K
i=1 Mi(D) ∈ {0, 1, . . . , K}, i.e. the (random) sum of all observed outcomes on dataset D. D is

omitted when the context is clear. Unless specified, we use the noise function γ : {0, 1, . . . , K} → [0, 1] as
input to our algorithms to calibrate the probabilistic noise injection. Unless specified, the privacy allowance
m ∈ R.

3 Private Majority Algorithms

The very first approach to consider when solving private majority ensembling (Problem 1.1), since the output
is binary, is the classical Randomized Response (RR) mechanism Dwork et al. (2014), where one flips a biased
coin with a constant probability pconst ∈ [0, 1]. If the coin lands on head with probability pconst, output the
true majority base on K samples; if not, then simply output a noisy random answer. However, to make the
output (mϵ, δ)-differential private, the success probability pconst can be at most O( m

K ) (or O( m√
K

)) when
δ = 0 (or δ > 0) (see Appendix A.1), which is too small for any reasonable utility.

The key observation for improved utility is that the probability of success should not be a constant, but
should depend on the unpublished set of observed outcomes from the mechanisms S. If we see many 1’s
or 0’s in S, then there should be a clear majority even on adjacent datasets. On the other hand, if we see
about half 1’s and half 0’s, this means the majority is highly volatile to data changes, which implies we need
more noise to ensure privacy. In summary, if we can calibrate the success probability based on S to smoothly
increase when there is a clear majority, we can improve the utility without affecting privacy.

Subsampling. One natural baseline is outputting the majority of m out of K randomly subsampled
mechanisms (without replacement), given a privacy allowance m ∈ [K]. Suppose δ ≥ m∆, the privacy loss of
the aggregated output can be reasoned through simple composition or general composition. Interestingly, we
show outputting the majority of m out of K subsampled mechanisms corresponds to RR with a non-constant
probability pγ = γSub(L(D)), which is set by a polynomial function γSub : {0, . . . , K} → [0, 1] based on the
sum of observed outcomes L(D) in Lemma 3.1 (see a full proof in Appendix A.2). Intuitively, subsampling may
be seen as implicitly adding noise by only outputting based on a randomly chosen subset of the mechanisms;
therefore this implicit noise is inherently data-dependent on L(D).
Lemma 3.1. Consider Problem 1.1, with the privacy allowance m ∈ [K]. Consider the data-dependent
algorithm that computes L(D) and then applies RR with probability pγ . If pγ = γSub(l), where l ∈ {0, 1, . . . , K}
is the value of L(D), i.e., the (random) sum of observed outcomes on dataset D, and γSub : {0, 1, . . . , K} →
[0, 1] is

γSub(l) = γSub(K − l) =


1− 2

∑m
j= m+1

2

(l
j)(K−l

m−j)
(K

m) if m is odd

1− 2
∑m

j= m
2 +1

(l
j)(K−l

m−j)
(K

m) −
( l

m
2

)(K−l
m
2

)
(K

m) if m is even

then the majority of m out of K subsampled mechanisms without replacement and the output of our data-
dependent RR algorithm have the same distribution.

One thing special about subsampling is that when m = 1, it indeed results in the optimal error, which we
show in Lemma 3.2 as follows. See a full proof in Appendix A.3. Note that when m = 1, subsampling outputs

6



Published in Transactions on Machine Learning Research (November/2024)

a majority of 1 with probability exactly 1
K

∑K
i=1 pi. This lower bound only applies to the case when m = 1,

since when m > 1, the probability of subsampling outputting a majority of 1 is not necessary 1
K

∑K
i=1 pi.

Lemma 3.2 (Lower Bound on Error when m = 1). Let A be an (ϵ, δ)-differentially private algorithm,
where ϵ ∈ (0, 1

2 ) and δ ∈ [0, 1
2 ), that computes the majority of K (ϵ, δ)-differentially private mechanisms

M1, . . . , MK , where Mi : D → {0, 1} on dataset D and Pr[Mi(D) = 1] = pi,∀i ∈ [K]. Then, the error
E(A) ≥ |Pr[g(S) = 1] − 1

K

∑K
i=1 pi|, where g(S) is the probability of the true majority output being 1 as

defined in Definition 1.1.

Algorithm 1 DaRRM(·): Data-dependent Randomized Response Majority
1: Input: K (ϵ, ∆)-DP mechanisms {Mi}K

i=1, noise function γ : {0, 1}K+1 → [0, 1] (in our specific setting
γ : {0, 1, . . . , K} → [0, 1]), dataset D, privacy allowance 1 ≤ m ≤ K, failure probability δ ≥ ∆ ≥ 0

2: Output: (mϵ, δ)-DP majority vote of {Mi}K
i=1

3: S = {S1, .., SK}, where Si ∼Mi(D)
4: L =

∑K
i=1 Si

5: Set probability pγ ← γ(S) (in our setting pγ ← γ(L))
6: Flip the pγ- biased coin
7: if Head (with probability pγ) then
8: Output I{ 1

KL ≥
1
2}

9: else
10: Output 0/1 with equal probability
11: end if

Data-dependent Randomized Response (DaRRM). Does subsampling give optimal utility when m > 1?
Inspired by the connection between RR and subsampling, we propose Data-dependent Randomized Response
Majority (DaRRM) in Algorithm 1, to study optimizing privacy-utility tradeoffs in private majority ensembling.
In particular, DaRRM has a non-constant success probability pγ that is set by a parameterized noise function
γ, which in turn depends on the set of observed outcomes S = {S1, . . . , SK}. In fact, we can show that
DaRRM is general: any reasonable algorithm A, name one whose output is at least as good as a random
guess, can be captured by the DaRRM framework in Lemma 3.3 (see a full proof in Appendix A.4). We
denote DaRRM instantiated with a specific noise function γ by DaRRMγ .
Lemma 3.3 (Generality of DaRRM). Let A be any randomized algorithm to compute the majority function
g on S such that for all S, Pr[A(S) = g(S)] ≥ 1/2 (i.e. A is at least as good as a random guess). Then,
there exists a a general function γ : {0, 1}K+1 → [0, 1] such that if one sets pγ by γ(S) in DaRRM, the output
distribution of DaRRMγ is the same as the output distribution of A.

Designing the γ Function. With the DaRRM framework, we ask: how to design a good γ function
that maximizes the utility? First, we introduce two characteristics of γ that do not affect the utility, while
simplifying the analysis and the empirical optimization:

(a) A function of the sum of observed samples: Since the observed samples set S is a permutation-
invariant set, a sufficient statistic that captures the full state of S is L =

∑K
i=1 Si, the sum of

observed outcomes. This allows us to reduce γ(S) = γ(L). Hence, in the rest of the paper, we focus
on γ : {0, 1, . . . , K} → [0, 1].

(b) Symmetric around K
2 : If γ is asymmetric, we can symmetrize by reflecting one region about K

2
and achieve better or equal expected utility, where the utility is summed over symmetric distributions
of pi.

Note that γSub satisfies both characteristics. Now, recall L(D) and L(D′) are the sum of observed outcomes
on adjacent datasets D and D′. Also, recall pi = Pr[Mi(D) = 1] and p′

i = Pr[Mi(D′) = 1] are the output
probabilities of the mechanism Mi on D,D′. To design a good noise function γ in DaRRM, we start by
deriving conditions for a γ function such that DaRRMγ is (mϵ, δ)-differentially private in Lemma 3.4 (see a
full proof in Appendix A.5).

7



Published in Transactions on Machine Learning Research (November/2024)

Lemma 3.4 (γ privacy condition). Consider using DaRRM (Algorithm 1) to solve Problem 1.1, let αl =
Pr[L(D) = l] and α′

l = Pr[L(D′) = l], where D and D′ are adjacent datasets and l ∈ {0, . . . , K}. For a noise
function γ : {0, 1, . . . , K} → [0, 1] such that γ(l) = γ(K − l),∀l, DaRRMγ is (mϵ, δ)-differentially private if
and only if for all αl, α′

l, the following holds,

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ) ≤ emϵ − 1 + 2δ (1)

where f is called the privacy cost objective and

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ) :=
K−1

2∑
l=0

(emϵα′
l − αl) · γ(l) +

K∑
l= K+1

2

(αl − emϵα′
l) · γ(l)

4 Provable Privacy Amplification

We theoretically demonstrate that privacy is provably amplified under improved design of γ in our DaRRM
framework. Specifically, we show when the mechanisms are i.i.d. and δ = 0, we gain privacy amplification by
a factor of 2 compared to the naïve subsampling baseline by carefully designing γ.
Theorem 4.1 (Provable Privacy Amplification by 2). Consider using DaRRM (Algorithm 1) to solve
Problem 1.1, with i.i.d. mechanisms {Mi}K

i=1, i.e., pi = p, p′
i = p′, ∀i ∈ [K], the privacy allowance m ∈ [K]

and δ = ∆ = 0. Let the noise function γ : {0, 1, . . . , K} → [0, 1] be that:
if m ≥ K+1

2 , γ(l) = 1 and if m ≤ K−1
2 ,

γ(l) =
{

1− 2h(l) ∀l ≤ K−1
2

2h(l)− 1 ∀l ≥ K+1
2

where h(l) =
∑2m−1

i=m
(l

i)( K−l
2m−1−i)

( K
2m−1)

, then DaRRMγ is mϵ-differentially private.

Interpretation. First, when m ≤ K−1
2 is small, the γ(l) in Theorem 4.1 corresponds to outputting the

majority based on subsampling 2m − 1 outcomes, from Lemma 3.1. However, the subsampling baseline,
whose privacy loss is reasoned through simple composition, would have indicated that one can only output
the majority based on m outcomes, therefore implying a 2x privacy gain. When m ≥ K+1

2 , the above theorem
indicates that we can set a constant γ = 1, which implies we are optimally outputting the true majority with
no noise while still surprisingly ensuring mϵ privacy.

Intuition. This 2x privacy gain is intuitively possible because the majority is only dependent on half of the
mechanisms’ outputs, therefore the privacy leakage is also halved. To see this, we start by analyzing the privacy
cost objective in Eq. 31, where with a careful analysis of its gradient, we show that the maximum indeed
occurs (p∗, p′∗) = (0, 0) when γ satisfies certain conditions. Now, when (p∗, p′∗)→ 0, note that the probability
ratio of outputting 1 with 2m− 1 outcomes is approximately emϵ, where dependence on m follows because the
probability of outputting 1 is dominated by the probability that exactly m mechanisms output 1. To rigorize
this, we derive sufficient conditions for γ functions that satisfy max(p,p′) f(p, p′; γ) = f(0, 0; γ) ≤ emϵ − 1 as
indicated by Lemma 3.4, to ensure DaRRM to be mϵ-differentially private and a more detailed overview and
the full proof can be found in Appendix B.

5 Optimizing the Noise Function γ in DaRRM

Theoretically designing γ and extending privacy amplification results to the δ > 0 case is difficult and it is
likely that our crafted γ is far from optimal. On the other hand, one can optimize for such γ∗ that maximizes
the utility but this involves solving a “Semi-infinite Programming” problem, due to the infinitely many
privacy constraints, which are the constraints in the optimization problem necessary to ensure DaRRM with
the optimized γ satisfy a given privacy loss. Solving a “Semi-infinite Programming” problem in general is
non-tractable, but we show that in our specific setting this is in fact tractable, proposing a novel learning

8



Published in Transactions on Machine Learning Research (November/2024)

approach based on DaRRM that can optimize the noise function to maximize the utility. To the best of our
knowledge, such optimization, presented as follows, is the first of its kind:

min
γ∈[0,1]K+1

Ep1,p2,...,pK∼T [E(DaRRMγ)] (2)

s.t. max
{(pi,p′

i
)∈Fi}K

i=1

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ) ≤ emϵ − 1 + 2δ (3)

γ(l) = γ(K − l),∀l ∈ {0, 1, . . . , K}

where f is the privacy cost objective as defined in Lemma 3.4, Fi is the feasible region where (pi, p′
i) lies due

to each mechanism Mi being ϵ-differentially private. Observe that since γ is symmetric around K
2 , we only

need to optimize K+1
2 variables instead of K + 1 variables. T is the distribution from which p1, . . . , pK are

drawn. We want to stress that no prior knowledge about the dataset or the amount of consensus among
the private mechanisms is required to use our optimization framework. When there is no prior knowledge
about p1, . . . , pK , T is set to be the uniform distribution for maximizing the expected utility. Note the above
optimization problem also enables the flexibility of incorporating prior knowledge about the mechanisms by
choosing a prior distribution T to further improve the utility.

Optimizing Over All Algorithms. We want to stress that by solving the above optimization problem,
we are indeed optimizing over all algorithms for maximal utility, since we show in Lemma 3.3 DaRRM that
captures all reasonable algorithms computing a private majority.

Linear Optimization Objective. Perhaps surprisingly, it turns out that optimizing for γ∗ is a Linear
Programming (LP) problem! Indeed, after expanding the optimization objective in Eq. 2 by the utility
definition (see Definition 2.4), optimizing the above objective is essentially same as optimizing:

min
γ∈[0,1]K+1

−1
2

K∑
l= K+1

2

Ep1,p2,...,pK∼T [(αl − αK−l)] · γ(l)

where αl = Pr[L(D) = l],∀l ∈ {0, 1, . . . , K} and observe L(D) ∼ PoissonBinomial(p1, . . . , pK). The above
objective is linear in γ. See a full derivation in Appendix C.1.

Although taking the expectation over p1, . . . , pK involves integrating over K variables and this can be
computationally expensive, we discuss how to formulate a computationally efficient approximation of the
objective in Appendix C.2, which we later use in the experiments. Note that the objective only for maximizing
the utility and hence approximating the objective does not affect the privacy guarantee.

Reducing Infinitely Many Constraints to A Polynomial Set. The constraints in the optimization
problem (Eq. 3) is what makes sure the output of DaRRMγ is mϵ-differentially private. We thus call them
the privacy constraints. Note that the privacy constraints are linear in γ.

Though it appears we need to solve for infinitely many such privacy constraints since pi’s and p′
i’s are

continuous, we show that through a structural understanding of DaRRM, we can reduce the number of privacy
constraints from infinitely many to exponentially many, and further to a polynomial set. First, we observe
the privacy cost objective f is linear in each independent pair of (pi, p′

i) fixing all (pj , p′
j), ∀j ̸= i, and hence

finding the worst case probabilities in (pi, p′
i) given any γ, (p∗

i , p′∗
i ) = arg max(pi,p′

i
) f(p1, . . . , pK , p′

1, . . . , p′
K ; γ)

is a linear programming (LP) problem. Furthermore, since pi and p′
i are the probability of outputting 1 from

the i-th (ϵ, ∆)-differentially private mechanism Mi on adjacent datasets, by definition, they are close and
lie in a feasible region Fi, which we show has 8 corners if δ > 0 (and only 4 corners if δ = 0). This implies
(p∗

i , p′∗
i ) only happens at one of the corners of Fi, and hence the number of constraints reduces to K8 (and K4

if δ = 0). Second, observe that αl and α′
l in the privacy cost objective f are the pmf of two Poisson Binomial

distributions at l ∈ {0, . . . , K}. Notice that the Poisson Binomial is invariant under the permutation of its
parameters, i.e. PoissonBinomial(p1, . . . , pK) has the same distribution as PoissonBinomial(π(p1, . . . , pK)),
under some permutation π. Based on this observation, we show the number of constraints can be further
reduced to O(K7) if δ > 0 (and O(K3) if δ = 0). We formalize the two-step reduction of the number of
privacy constraints in Lemma 5.1 as follows. See a full proof in Appendix C.3. 1

1Practical Limitation. Although the number of constraints is polynomial in K and optimizing γ in DaRRM is an LP,
O(K7) can still make the number of constraints intractably large when K is large. In practice, we observe with the Gurobi

9



Published in Transactions on Machine Learning Research (November/2024)

Lemma 5.1. Consider using DaRRM (Algorithm 1) to solve Problem 1.1 and let f be the privacy cost
objective as defined in Lemma 3.4. Given an arbitrary noise function γ, let the worst case probabilities be
(p∗

1, . . . , p∗
K , p′∗

1 , . . . , p′∗
K) = arg max{(pi,p′

i
)}K

i=1
f(p1, . . . , pK , p′

1, . . . , p′
K ; γ).

(p∗
1, . . . , p∗

K , p′∗
1 , . . . , p′∗

K) = arg max
{(pi,p′

i
)}K

i=1

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ)

Then, each pair (p∗
i , p′∗

i ),∀i ∈ [K] satisfies

(p∗
i , p′∗

i ) ∈ {(0, 0), (1, 1), (0, ∆), (∆, 0), (1−∆, 1),

(1, 1−∆), (eϵ + ∆
eϵ + 1 ,

1−∆
eϵ + 1), (1−∆

eϵ + 1 ,
eϵ + ∆
eϵ + 1 )}

Furthermore, when δ > 0, there exists a finite vector set P of size O(K7) such that if β =
max{(pi,p′

i
)}K

i=1∈P f(p1, . . . , pK , p′
1, . . . , p′

K ; γ), then f(p∗
1, . . . , p∗

K , p′∗
1 , . . . , p′∗

K ; γ) ≤ β. When δ = 0, the size of
P can be reduced to O(K3).

6 Experiments

We empirically solve2 the above optimization problem (Eq. 2) using the Gurobi3 solver and first present the
shape of the optimized γ function, which we call γopt, and its utility in Section 6.1. Then, we demonstrate
the compelling effectiveness of DaRRM with an optimized γ function, i.e., DaRRMγopt

, in ensembling labels
for private prediction from private teachers through the application of semi-supervised knowledge transfer for
private image classification in Section 6.2.

6.1 Optimized γ in Simulations

0

0.5

1
m = 1 m = 3

0 5.5 110

0.5

1
m = 5

0 5.5 11

m = 7

Support l {0, 1, . . . , K}

 v
al

ue
s

Shape of  functions

0.0

0.1

0.2
m = 1

0.0

0.1

m = 3

0.00

0.05

0.10
m = 5

0.00

0.05

m = 7

 functions

Er
ro

r

(DaRRM )

Figure 2: Plots of the shape and E(DaRRMγ) of different γ functions: the optimized γopt

, and the baselines γSub (corresponding to subsampling) and γconst (corresponding to RR). Here,
K = 11, m ∈ {1, 3, 5, 7}, ϵ = 0.1, ∆ = 10−5 and δ = 1− (1−∆)m ≈ m∆.

We compare the shape and the error E(DaRRMγ) of different γ functions: an optimized γopt and the
subsampling γSub as in Lemma 3.14. We also compare against pconst in the classical baseline RR (see

optimizer, one can optimize γ for K ≤ 41 on a laptop if δ > 0. But if δ = 0, since the number of privacy constraints is O(K3),
one can optimize for K over 100.

2All code for the experiments can be found at https://anonymous.4open.science/r/OptimizedPrivateMajority-CF50
3https://www.gurobi.com/
4Note the subsampling mechanism from Section 4, which enjoys a privacy amplification by a factor of 2, only applies to pure

differential privacy settings (i.e., when ∆ = δ = 0). However, we focus on the more general approximate differential privacy

10

https://anonymous.4open.science/r/OptimizedPrivateMajority-CF50
https://www.gurobi.com/


Published in Transactions on Machine Learning Research (November/2024)

Section A.1) and E(RR). Here, pconst can be viewed as a constant noise function γconst(l) = pconst,∀l ∈
{0, 1, . . . , K}; and E(RR) is the same as E(DaRRMγconst).

We present the results with K = 11, ϵ = 0.1, ∆ = 10−5 and m ∈ {1, 3, 5, 7}. We assume there is no prior
knowledge about the mechanisms {Mi}K

i=1, and set the prior distribution from which pi’s are drawn, T , to be
the uniform distribution, in the optimization objective (Eq. 2) searching for γopt. To ensure a fair comparison
against the subsampling baseline, we set δ to be the one by m-fold general composition (see Theorem 2.3),
which in this case, is δ = 1− (1−∆)m ≈ m∆. We plot each γ functions over the support {0, 1, . . . , K} and
the corresponding error of each algorithm in Figure 2.

Discussion. In summary, at m = 1, the optimized noise function γopt overlaps with γsub which corresponds
to the subsampling baseline. This agrees with our lower bound on the error in Lemma 3.2, which implies that
at m = 1, subsampling indeed gives the optimal error. When m > 1, the optimized noise function γopt has
the highest probability of outputting the true majority over the support than the γ functions corresponding
to the baselines. This implies DaRRMγopt has the lowest error (and hence, highest utility), which is verified on
the bottom set of plots. More results on comparing the DaRRMγopt optimized under the uniform T against
the baselines by general composition (Theorem 2.3) and in pure differential privacy settings (i.e., ∆ = δ = 0)
for large K and m can be found in Appendix D.1.1 and D.1.2. Furthermore, we include results optimizing γ
using a non-uniform T prior in Appendix D.1.3.

6.2 Private Semi-Supervised Knowledge Transfer

Dataset MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.63 (0.09) 0.76 (0.09) 0.79 (0.09)
Q = 50 0.66 (0.06) 0.75 (0.06) 0.79 (0.05)
Q = 100 0.64 (0.04) 0.76 (0.04) 0.80 (0.04)

Dataset Fashion-MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.65 (0.11) 0.90 (0.07) 0.96 (0.03)
Q = 50 0.59 (0.06) 0.94 (0.03) 0.96 (0.02)
Q = 100 0.64 (0.04) 0.93 (0.02) 0.96 (0.02)

Table 1: Accuracy of the predicted labels of Q query samples on datasets MNIST (on the left) and
Fashion-MNIST (on the right). We report the mean and one std. in parentheses over 10 random draws of the
query samples from the test dataset. Note each prediction on the query sample is (ϵquery, δquery)
-differentially private. With the same per query privacy loss (and hence the same total privacy loss over Q

samples), DaRRMγopt
achieves the highest accuracy compared to the other two baselines.

Semi-supervised Knowledge Transfer. We apply our DaRRM framework in the application of semi-
supervised knowledge transfer for private image classification. We follow a similar setup as in PATE Papernot
et al. (2017; 2018), where one trains K teachers, each on a subset of a sensitive dataset, and at the inference
time, queries the teachers for the majority of their votes, i.e., the predicted labels, of a test sample. Each
time the teachers are queried, there is a privacy loss, and we focus on this private prediction subroutine in
this section. To limit the total privacy loss over all queries, the student model is also trained on a public
dataset without labels. The student model queries the labels of a small portion of the samples in this dataset
from the teachers and is then trained using semi-supervised learning algorithms on both the labeled and
unlabeled samples from the public dataset.

Baselines. We want the privacy loss per query of a test sample to the teachers to be (ϵquery, δquery). This
can be achieved via two ways: 1) Train K non-private teachers, add Gaussian noise to the number of predicted
labels from the teachers in each output class, and output the majority of the noisy votes. This is exactly the
GNMax algorithm from PATE Papernot et al. (2018). 2) Train K (ϵ, ∆)-differentially private teachers and
output the majority of the teachers’ votes by adding a smaller amount of noise. This can be computed using
DaRRM with an appropriate noise function γ. We compare the performance of GNMax and DaRRM with two
γ functions: γopt (i.e., the optimized γ), and γSub (i.e., the subsampling baseline). The overall privacy loss
over Q queries to the teachers can be computed by general composition (Theorem 2.3).
settings (with ∆ > 0) in the experiments, and hence, the subsampling baseline we consider throughout this section is the
basic version without privacy amplification. To see how the subsampling mechanism from Section 4 with privacy amplification
compares against the other algorithms, please refer to Appendix D.1.2.

11



Published in Transactions on Machine Learning Research (November/2024)

Experiment Setup. We use samples from two randomly chosen classes — class 5 and 8 — from the MNIST
and Fashion-MNIST datasets to form our training and testing datasets. Our MNIST has a total of 11272
training samples and 1866 testing samples; our Fashion-MNIST has 10000 training samples and 2000 testing
samples. We train K = 11 teachers on equally divided subsets of the training datasets. Each teacher is a
CNN model. The non-private and private teachers are trained using SGD and DP-SGD Abadi et al. (2016),
respectively, for 5 epochs. DaRRM Setup: The Gaussian noise in DP-SGD has zero mean and std. σdpsgd = 12;
the gradient norm clipping threshold is C = 1. This results in each private teacher, trained on MNIST and
Fashion-MNIST, being (ϵ, ∆) = (0.0892, 10−4) and (0.0852, 10−4)-differentially private, respectively, after
5 epochs. We set the privacy allowance m = 35 and the privacy loss per query is then computed using
general composition under m-fold, which give the same privacy loss in the high privacy regime, resulting in
(ϵquery, δquery) = (0.2676, 0.0003) on MNIST and (0.2556, 0.0003) on Fashion-MNIST. GNMax Setup: We now
compute the std. σ of the Gaussian noise used by GNMax to achieve a per-query privacy loss of (mϵ, m∆), as
in the DaRRM setup. We optimize σ according to the Renyi differential privacy loss bound of Gaussian noise.
Although Papernot et al. (2018) gives a potentially tighter data-dependent privacy loss bound for majority
ensembling non-private teachers, we found when K and the number of output classes are small as in our case,
even if all teachers agree on a single output class, the condition of the data-dependent bound is not satisfied.
Hence, we only use the privacy loss bound of Gaussian noise here to set σ in GNMax. See Appendix D.2.1 for
more details, including the σ values and other parameters. Finally, the per sample privacy loss and the total
privacy loss over Q queries, which is computed by advanced composition, are reported in Table 9.

The testing dataset is treated as the public dataset on which one trains a student model. Papernot et al.
(2018) empirically shows querying Q = 1%N samples from a public dataset of size N suffices to train a
student model with a good performance. Therefore, we pick Q ∈ {20, 50, 100}. We repeat the selection of Q
samples 10 times and report the mean test accuracy with one std. in parentheses in Table 1. The Q queries
serve as the labeled samples in training the student model. The higher the accuracy of the labels from the
queries, the better the final performance of the student model. We skip the actual training of the student
model using semi-supervised learning algorithms here.

Dataset # Queries

Privacy loss
per query

(ϵquery, δquery)

Total privacy loss
over Q queries
(ϵtotal, δtotal)

MNIST
Q = 20

(0.2676, 0.0003)
(5.352, 0.006)

Q = 50 (9.901, 0.015)
Q = 100 (15.044, 0.030)

Fashion
MNIST

Q = 20
(0.2556, 0.0003)

(5.112, 0.006)
Q = 50 (9.382, 0.015)
Q = 100 (14.219, 0.030)

Table 2: The privacy loss per query to the teachers and the total privacy loss over Q queries. Note the total
privacy loss is computed by general composition (see Theorem 2.3), where we set δ′ = 0.0001.

Discussion. Table 1 shows DaRRMγopt achieves the highest accuracy (i.e., utility) compared to the two
baselines on both datasets. First, comparing to DaRRMγSub

, we verify that subsampling does not achieve a
tight privacy-utility tradeoff, and we can optimize the noise function γ in DaRRM to maximize the utility
given a target privacy loss. Second, comparing to GNMax, the result shows there are regimes where ensembling
private teachers gives a higher utility than directly ensembling non-private teachers, assuming the outputs
in both settings have the same privacy loss. Intuitively, this is because ensembling private teachers adds
fine-grained noise during both training the teachers and aggregation of teachers’ votes, while ensembling
non-private teachers adds a coarser amount of noise only to the teachers’ outputs. This further motivates

5Here, we present results with privacy allowance m = 3 because we think this is a more interesting case. m = 1 is less
interesting, since one cannot get improvement compared to the subsampling baseline. m close to a K

2 ≈ 5 is also less interesting,
as this case seems too easy for our proposed method (the optimized γ function is very close to 1, meaning very little noise
needs to be added in this case). Hence, we pick m = 3, which is a case when improvement is possible, and is also potentially
challenging for our optimization framework. This is also realistic as most applications would only want to tolerate a constant
privacy overhead. See more results with different privacy allowance m’s in this setting in Appendix D.2.2.

12



Published in Transactions on Machine Learning Research (November/2024)

private prediction from private teachers and the practical usage of DaRRM, in addition to the need of
aggregating private teachers in federated learning settings with an honest-but-curious server.

7 Conclusion

In computing a private majority from K private mechanisms, we propose the DaRRM framework, which
is provably general, with a customizable γ function. We show a privacy amplification by a factor of 2
in the i.i.d. mechanisms and a pure differential privacy setting. For the general setting, we propose an
tractable optimization algorithm that maximizes utility while ensuring privacy guarantees. Furthermore, we
demonstrate the empirical effectiveness of DaRRM with an optimized γ. We hope that this work inspires
more research on the intersection of privacy frameworks and optimization.

13



Published in Transactions on Machine Learning Research (November/2024)

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pp. 308–318, 2016.

Raef Bassily, Om Thakkar, and Abhradeep Thakurta. Model-agnostic private learning via stability. arXiv
preprint arXiv:1803.05101, 2018.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In 2021 IEEE Symposium on Security and
Privacy (SP), pp. 141–159. IEEE, 2021.

Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao Wang. Privacy
at scale: Local differential privacy in practice. In Proceedings of the 2018 International Conference on
Management of Data, pp. 1655–1658, 2018.

Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal differential privacy composition for exponential
mechanisms. In International Conference on Machine Learning, pp. 2597–2606. PMLR, 2020.

David Durfee and Ryan M Rogers. Practical differentially private top-k selection with pay-what-you-get
composition. Advances in Neural Information Processing Systems, 32, 2019.

Cynthia Dwork and Vitaly Feldman. Privacy-preserving prediction. In Conference On Learning Theory, pp.
1693–1702. PMLR, 2018.

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of the forty-first
annual ACM symposium on Theory of computing, pp. 371–380, 2009.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3-4):211–407, 2014.

Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable privacy-preserving
ordinal response. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pp. 1054–1067, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450329576. doi: 10.1145/2660267.2660348. URL https://doi.org/10.1145/2660267.2660348.

Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Abhradeep
Thakurta. Amplification by shuffling: From local to central differential privacy via anonymity. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2468–2479. SIAM,
2019.

Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy amplification by iteration.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 521–532. IEEE,
2018.

Quan Geng and Pramod Viswanath. The optimal noise-adding mechanism in differential privacy. IEEE
Transactions on Information Theory, 62(2):925–951, 2015.

Naoise Holohan, Douglas J. Leith, and Oliver Mason. Optimal differentially private mechanisms for randomised
response. IEEE Transactions on Information Forensics and Security, 12(11):2726–2735, November 2017.
ISSN 1556-6021. doi: 10.1109/tifs.2017.2718487. URL http://dx.doi.org/10.1109/TIFS.2017.2718487.

Junjie Jia and Wanyong Qiu. Research on an ensemble classification algorithm based on differential privacy.
IEEE Access, 8:93499–93513, 2020. doi: 10.1109/ACCESS.2020.2995058.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential privacy. In
International conference on machine learning, pp. 1376–1385. PMLR, 2015.

14

https://doi.org/10.1145/2660267.2660348
http://dx.doi.org/10.1109/TIFS.2017.2718487


Published in Transactions on Machine Learning Research (November/2024)

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon.
Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

Jingcheng Liu and Kunal Talwar. Private selection from private candidates. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 298–309, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450367059. doi: 10.1145/3313276.3316377.
URL https://doi.org/10.1145/3313276.3316377.

Zhongfeng Liu, Yun Li, and Wei Ji. Differential private ensemble feature selection. In 2018 International
Joint Conference on Neural Networks (IJCNN), pp. 1–6, 2018. doi: 10.1109/IJCNN.2018.8489308.

Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Ali Jalali, Dean Tullsen, and
Hadi Esmaeilzadeh. Shredder: Learning noise distributions to protect inference privacy. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 3–18, 2020.

Moni Naor, Kobbi Nissim, Uri Stemmer, and Chao Yan. Private everlasting prediction. arXiv preprint
arXiv:2305.09579, 2023.

Mohammad Naseri, Jamie Hayes, and Emiliano De Cristofaro. Local and central differential privacy for
robustness and privacy in federated learning. arXiv preprint arXiv:2009.03561, 2020.

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in private data
analysis. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pp. 75–84,
2007.

Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differential privacy. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=-70L8lpp9DF.

Nicolas Papernot, Martin Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private training data. In Proceedings of the International
Conference on Learning Representations, 2017. URL https://arxiv.org/abs/1610.05755.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Erlingsson.
Scalable private learning with pate. arXiv preprint arXiv:1802.08908, 2018.

Omer Sagi and Lior Rokach. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 8(4):e1249, 2018.

Uri Stemmer. Private truly-everlasting robust-prediction. arXiv preprint arXiv:2401.04311, 2024.

Abhradeep Guha Thakurta and Adam Smith. Differentially private feature selection via stability arguments,
and the robustness of the lasso. In Conference on Learning Theory, pp. 819–850. PMLR, 2013.

Salil Vadhan. The Complexity of Differential Privacy, pp. 347–450. Springer International Publishing, Cham,
2017. doi: 10.1007/978-3-319-57048-8_7. URL https://doi.org/10.1007/978-3-319-57048-8_7.

Laurens van der Maaten and Awni Hannun. The trade-offs of private prediction, 2020.

Ming Xiang and Lili Su. $\beta$-stochastic sign SGD: A byzantine resilient and differentially private gradient
compressor for federated learning, 2023. URL https://openreview.net/forum?id=oVPqFCI1g7q.

Tao Xiang, Yang Li, Xiaoguo Li, Shigang Zhong, and Shui Yu. Collaborative ensemble learning under
differential privacy. Web Intelligence, 16:73–87, 03 2018. doi: 10.3233/WEB-180374.

Ying-Ying Zhang, Teng-Zhong Rong, and Man-Man Li. Expectation identity for the binomial distribution
and its application in the calculations of high-order binomial moments. Communications in Statistics
- Theory and Methods, 48(22):5467–5476, 2019. doi: 10.1080/03610926.2018.1435818. URL https:
//doi.org/10.1080/03610926.2018.1435818.

Yuqing Zhu, Xuandong Zhao, Chuan Guo, and Yu-Xiang Wang. " private prediction strikes back!”private
kernelized nearest neighbors with individual renyi filter. arXiv preprint arXiv:2306.07381, 2023.

15

https://doi.org/10.1145/3313276.3316377
https://openreview.net/forum?id=-70L8lpp9DF
https://arxiv.org/abs/1610.05755
https://doi.org/10.1007/978-3-319-57048-8_7
https://openreview.net/forum?id=oVPqFCI1g7q
https://doi.org/10.1080/03610926.2018.1435818
https://doi.org/10.1080/03610926.2018.1435818


Published in Transactions on Machine Learning Research (November/2024)

A Details of Section 3

A.1 Randomized Response with Constant Probability pconst

Algorithm 2 Randomized Response Majority (RR)
1: Input: K (ϵ, ∆)-DP mechanisms {Mi}K

i=1, noise function γ : {0, . . . , K} → [0, 1], dataset D, privacy
allowance 1 ≤ m ≤ K, failure probability δ ≥ ∆ ≥ 0

2: Output: (mϵ, δ)-DP majority vote of {Mi}K
i=1

3: Compute a constant probability pconst ∈ [0, 1]
4: Flip the pconst- biased coin
5: if Head (with probability pconst) then
6: S = {S1, .., Sk}, where Si ∼Mi(D)
7: L =

∑K
i=1 Si

8: Output I{ 1
KL ≥

1
2}

9: else
10: Output 0/1 with equal probability
11: end if

We show the magnitude of pconst in RR (Algorithm 2) to solve Problem 1.1, such that the output is (mϵ, δ)-DP,
in Lemma A.1.
Lemma A.1. Consider using RR (Algorithm 2) to solve Problem 1.1. Let the majority of K (ϵ, ∆)-
differentially private mechanisms be (τϵ, λ)-differentially private, where τ ∈ [1, K] and λ ∈ [0, 1) are computed
by simple composition (Theorem 2.2) or general composition (Theorem 2.3). If

pconst ≤
emϵ − 1 + 2δ

2(eτϵ−emϵ+(1+emϵ)λ)
eτϵ+1 + emϵ − 1

(4)

then RR is (mϵ, δ)-differentially private.

Proof of Lemma A.1. Let x ∈ {0, 1} denote the output of RR. Let qx = Pr[L(D) = x] and q′
x = Pr[L(D′) = x],

where L(D) =
∑K

i=1 Mi(D), L(D′) =
∑K

i=1 Mi(D′) and D, D′ are adjacent datasets. Recall each mechanism
Mi is (ϵ, ∆)-differentially private, and the majority of the outputs of {Mi}K

i=1 is (τϵ, λ)-differentially private.
When ∆ = 0, using simple composition, τ = K and λ = 0. When ∆ > 0, using general composition τ ≈

√
K

and λ ≈ K∆. By definition of differential privacy (Definition 2.1), all of the following four constraints on
qx, q′

x apply:

qx ≤ eτϵq′
x + λ, and 1− q′

x ≤ eτϵ(1− qx) + λ

q′
x ≤ eτϵqx + λ, and 1− qx ≤ eτϵ(1− q′

x) + λ

To ensure RR is (mϵ, δ)-differentially private, pconst needs to be such that for all possible qx, q′
x ∈ [0, 1],

Pr[RR(D) = x] ≤ emϵ Pr[RR(D′) = x] + δ (5)

pconst · qx + 1
2(1− pconst) ≤ emϵ(pconst · q′

x + 1
2(1− pconst)) + δ (6)

(qx − emϵq′
x + 1

2emϵ − 1
2) · pconst ≤

1
2emϵ − 1

2 + δ (7)

Let h(qx, q′
x) := qx − emϵq′

x + 1
2 emϵ − 1

2 . The above inequality of pconst (Eq. 7) needs to hold for worst case
output probabilities q∗

x, q′∗
x that cause the maximum privacy loss. That is, pconst needs to satisfy

pconst ·maxqx,q′
x
h(qx, q′

x) ≤ 1
2emϵ − 1

2 + δ (8)

16



Published in Transactions on Machine Learning Research (November/2024)

To find the worst case output probabilities, we solve the following Linear Programming (LP) problem:

Objective: max
qx,q′

x

h(qx, q′
x) := qx − emϵq′

x + 1
2emϵ − 1

2 (9)

Subject to: 0 ≤ qx ≤ 1, 0 ≤ q′
x ≤ 1 (10)

qx ≤ eτϵq′
x + λ, 1− q′

x ≤ eτϵ(1− qx) + λ (11)
q′

x ≤ eτϵqx + λ, 1− qx ≤ eτϵ(1− q′
x) + λ (12)

Figure 3: A visualization of the above LP problem.

The optimum of any LP problem is at the corners of the feasible region, which is bounded by the
optimization constraints. We plot the feasible region F and the objective of the above LP prob-
lem in Figure 3. Here, (q∗

x, q′∗
x ) = arg maxqx,q′

x
h(qx, q′

x) ∈ {(0, 0), (1, 1), (0, λ), (λ, 0), (1 − λ, 1), (1, 1 −
λ), ( 1−λ

eτϵ+1 , eτϵ+λ
eτϵ+1 ), ( eτϵ+λ

eτϵ+1 , 1−λ
eτϵ+1 )}. The optimum of the LP problem – that is, the worse case probabili-

ties q∗
x, q′∗

x – is,

q∗
x = eτϵ + λ

eτϵ + 1 , q′∗
x = 1− λ

eτϵ + 1 (13)

By Eq. 8,

pconst ·
(eτϵ + λ

eτϵ + 1 − emϵ 1− λ

eτϵ + 1 + 1
2emϵ − 1

2

)
≤ 1

2(emϵ − 1) + δ (14)

pconst ·
(eτϵ − emϵ + (1 + emϵ)λ

eτϵ + 1 + 1
2(emϵ − 1)

)
≤ 1

2(emϵ − 1) + δ (15)

pconst ≤
emϵ − 1 + 2δ

2(eτϵ−emϵ+(1+emϵ)λ)
eτϵ+1 + emϵ − 1

(16)

For small m, ϵ, K, using the approximation ey ≈ 1 + y and that τϵ < 2,

pconst ≈
mϵ + 2δ

2(τϵ−mϵ+(2+mϵ)λ)
τϵ+2 + mϵ

≈ mϵ + 2δ

τϵ + (2 + mϵ)λ (17)

In the pure differential privacy setting, δ = 0, λ = 0, τ = K, and so pconst ≈ m
K ; and in the approximate

differential privacy setting, λ ≈ 0, δ ≈ 0, τ ≈
√

K, and so pconst ≈ m√
K

.

17



Published in Transactions on Machine Learning Research (November/2024)

Algorithm 3 Subsampling Majority (SubMaj)
1: Input: K (ϵ, ∆)-DP mechanisms {Mi}K

i=1, noise function γ : {0, . . . , K} → [0, 1], dataset D, privacy
allowance 1 ≤ m ≤ K, failure probability δ ≥ ∆ ≥ 0

2: Output: (mϵ, δ)-DP majority vote of {Mi}K
i=1

3: S = {S1, .., Sk}, where Si ∼Mi(D)
4: Jm ← m indices chosen uniformly at random from [K] without replacement
5: L̂ =

∑
j∈J Sj

6: Output I{ 1
m L̂ ≥

1
2}

A.2 Proof of Lemma 3.1

Lemma A.2 (Restatement of Lemma 3.1). Consider Problem 1.1, with the privacy allowance m ∈ [K].
Consider the data-dependent algorithm that computes L(D) and then applies RR with probability pγ. If
pγ = γSub(l), where l ∈ {0, 1, . . . , K} is the value of L(D), i.e., the (random) sum of observed outcomes on
dataset D, and γSub : {0, 1, . . . , K} → [0, 1] is

γSub(l) = γSub(K − l)

=


1− 2

∑m
j= m+1

2

(l
j)(K−l

m−j)
(K

m) if m is odd

1− 2
∑m

j= m
2 +1

(l
j)(K−l

m−j)
(K

m) −
( l

m
2

)(K−l
m
2

)
(K

m) if m is even

then the majority of m out of K subsampled mechanisms without replacement and the output of our data-
dependent RR algorithm have the same distribution.

Proof of Lemma 3.1. Let L =
∑K

i=1 Si be the sum of observed outcomes from K mechanisms. Following
Algorithm 3, Jm denotes the m indices chosen uniformly at random from [K] without replacement. Conditioned
on L, notice the output of SubMaj follows a hypergeometric distribution. The output probability of SubMaj is

Pr[SubMaj(D) = 1] =
K∑

l=0
Pr[SubMaj(D) = 1 | L = l] · Pr[L = l] (18)

=
K∑

l=0
Pr[

∑
j∈Jm

Sj ≥
m

2 | L = l] · Pr[L = l] (19)

=


∑K

l=0(
∑m

j= m+1
2

(l
j)(K−l

m−j)
(K

m) ) · Pr[L = l] if m is odd∑K
l=0(

∑m
j= m

2 +1
(l

j)(K−l
m−j)

(K
m) + 1

2
( l

m
2

)(K−l
m
2

)
(K

m) ) · Pr[L = l] if m is even
(20)

Consider an arbitrary noise function γSub : {0, 1, . . . , K} → [0, 1]. Let RR-d(D) denote the output of the
data-dependent RR-d on dataset D, where RR-d has the non-constant probability set by γSub. The output
probability of RR is,

Pr[RR-d(D) = 1] =
K∑

l=0
Pr[RR-d(D) = 1 | L = l] · Pr[L = l] (21)

=
K∑

l=0
(γSub(l) · I{l ≥ K + 1

2 }+ 1
2(1− γSub(l))) · Pr[L = l] (22)

We want Pr[RR-d(D) = 1] = Pr[Submaj(D) = 1].

18



Published in Transactions on Machine Learning Research (November/2024)

If m is odd, for any l ≤ K−1
2 , this is

1
2(1− γSub(l)) =

m∑
j= m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

)
⇒ γSub(l) = 1− 2

m∑
j= m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

) (23)

and for any l ≥ K+1
2 , this is

1
2 + 1

2γSub(l) =
m∑

j= m+1
2

(
l
j

)(
K−l
m−j

)(
K
m

)
⇒ γSub(l) = 2

m∑
j= m+1

2

(
l
j

)(
K−l
m−j

)(
K
m

) − 1 (24)

Similarly, if m is even, for any l ≤ K−1
2 , this is

1
2(1− γSub(l)) =

m∑
j= m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) + 1
2

(
l

m
2

)(
K−l

m
2

)(
K
m

)
⇒ γSub(l) = 1− 2

m∑
j= m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) −

(
l

m
2

)(
K−l

m
2

)(
K
m

) (25)

and for any l ≥ K+1
2 , this is

1
2 + 1

2γSub(l) =
m∑

j= m
2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) + 1
2

(
l

m
2

)(
K−l

m
2

)(
K
m

)
⇒ γSub(l) = 2

m∑
j= m

2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) +

(
l

m
2

)(
K−l

m
2

)(
K
m

) − 1 (26)

Next, we show the above γSub is indeed symmetric around K
2 . For any l ≤ K−1

2 , there is K − l ≥ K+1
2 . If m

is odd,

γSub(K − l) = 2
m∑

j= m+1
2

(
K−l

j

)(
l

m−j

)(
K
m

) − 1 = 2
(

1−
m−1

2∑
j=1

(
K−l

j

)(
l

m−j

)(
K
m

) )
− 1

= 1− 2
m−1

2∑
j=1

(
K−l

j

)(
l

m−j

)(
K
m

) = 1− 2
m∑

j= m+1
2

(
l
j

)(
K−l
m−j

)(
K
m

)
= γSub(l) (27)

Similarly, if m is even,

γSub(K − l) = 2
m∑

j= m
2 +1

(
K−l

j

)(
l

m−j

)(
K
m

) +

(
l

m
2

)(
K−l

m
2

)(
K
m

) − 1 = 2
(

1−
m
2 −1∑
j=1

(
K−l

j

)(
l

m−j

)(
K
m

) − 1
2

(
l

m
2

)(
K−l

m
2

)(
K
m

) )
− 1

= 1− 2
m
2 −1∑
j=1

(
K−l

j

)(
l

m−j

)(
K
m

) −

(
l

m
2

)(
K−l

m
2

)(
K
m

) = 1− 2
m∑

j= m
2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) −

(
l

m
2

)(
K−l

m
2

)(
K
m

)
19



Published in Transactions on Machine Learning Research (November/2024)

= γSub(l) (28)

Now, combining Eq. 23, Eq. 24 and Eq. 27, if m is odd, setting γSub as

γSub(l) = γSub(K − l) = 1− 2
m∑

j= m+1
2

(
l
j

)(
K−l
m−j

)(
K
m

) (29)

makes RR-d have the same output distribution as SubMaj.

Similarly, combining Eq. 25, Eq. 26 and Eq. 28, if m is even, setting γSub as

γSub(l) = γSub(K − l) = 1− 2
m∑

j= m
2 +1

(
l
j

)(
K−l
m−j

)(
K
m

) −

(
l

m
2

)(
K−l

m
2

)(
K
m

) (30)

makes RR-d have the same output distribution as SubMaj.

A.3 Proof of Lemma 3.2

Lemma A.3 (Restatement of Lemma 3.2). Let A be an (ϵ, δ)-differentially private algorithm, where ϵ ∈ (0, 1
2 )

and δ ∈ [0, 1
2 ), that computes the majority of K (ϵ, δ)-differentially private mechanisms M1, . . . , MK , where

Mi : D → {0, 1} on dataset D and Pr[Mi(D) = 1] = pi,∀i ∈ [K]. Then, the error E(A) ≥ |Pr[g(S) =
1]− 1

K

∑K
i=1 pi|, where g(S) is the probability of the true majority output being 1 as defined in Definition 1.1.

Proof. Consider the setting where Mi’s are i.i.d., i.e., Pr[Mi(D) = 1] = p,∀i ∈ [K] for some p ∈ [0, 1] on any
dataset D. Then, it suffices to show E(A) ≥ |Pr[g(S)] = 1− p|, because a lower bound in this special case
would indicate a lower bound for the more general case, where pi’s can be different.

Construct a dataset D0 and K mechanisms {Mi}K
i=1 such that Pr[Mi(D0) = 1] = Pr[Mi(D0) = 0] = 1

2 and
without loss of generality, we may assume Pr[A(D0) = 1] ≤ 1

2 .

Next, we construct a sequence of datasets D1,D2, . . . ,DL, such that Dj and Dj+1 are neighboring datasets
tha t differ in one entry, for all j ∈ [L − 1], and Pr[Mi(Dj) = 1] = 1

2 ejϵ +
∑j−1

l=0 elϵδ, ∀i ∈ [K], ∀j ∈ [L].
Choose L ∈ N such that 1

2 eLϵ +
∑L−1

l=0 eϵlδ = p, for some 1 ≥ p > 1
2 .

Now, by definition of differential privacy,

Pr[A(D1) = 1] ≤ eϵ Pr[A(D0) = 1] + δ

Pr[A(D2) = 1] ≤ eϵ Pr[A(D1) = 1] + δ ≤ e2ϵ Pr[A(D0) = 1] + eϵδ + δ

. . .

Pr[A(DL) = 1] ≤ eLϵ Pr[A(D0) = 1] +
L−1∑
l=0

eϵlδ ≤ eLϵ 1
2 +

L−1∑
l=0

eϵlδ = p

Since the probability of true majority being 1 on dataset DL is Pr[g(S) = 1] ≥ p > 1
2 , there is

E(A) = |Pr[g(S) = 1]− Pr[A(DL) = 1]| ≥ Pr[g(S) = 1]− p

20



Published in Transactions on Machine Learning Research (November/2024)

A.4 Proof of Lemma 3.3

Lemma A.4 (Restatement of Lemma 3.3). Let A be any randomized algorithm to compute the majority
function g on S such that for all S, Pr[A(S) = g(S)] ≥ 1/2 (i.e. A is at least as good as a random guess).
Then, there exists a a general function γ : {0, 1}K+1 → [0, 1] such that if one sets pγ by γ(S) in DaRRM, the
output distribution of DaRRMγ is the same as the output distribution of A.

Proof of Lemma 3.3. For some D and conditioned on S, we see that by definition Pr[DaRRMγ(S) = g(S)] =
γ(S) + (1/2)(1− γ(S)). We want to set γ such that Pr[DaRRMγ(S) = g(S)] = Pr[A(S) = g(S)]. Therefore,
we set γ(S) = 2 Pr[A(S) = g(S)]− 1.

Lastly, we need to justify that γ ∈ [0, 1]. Clearly, γ(S) ≤ 2− 1 ≤ 1 since Pr[A(S) = g(S)] ≤ 1. Note that the
non-negativity follows from assumption.

A.5 Proof of Lemma 3.4

Lemma A.5 (Restatement of Lemma 3.4). Consider using DaRRM (Algorithm 1) to solve Problem 1.1,
let αl = Pr[L(D) = l] and α′

l = Pr[L(D′) = l], where D and D′ are adjacent datasets and l ∈ {0, . . . , K}.
For a noise function γ : {0, 1, . . . , K} → [0, 1] such that γ(l) = γ(K − l),∀l, DaRRMγ is (mϵ, δ)-differentially
private if and only if for all αl, α′

l, the following holds,

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ) ≤ emϵ − 1 + 2δ (31)

where f is called the privacy cost objective and

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ) :=
K−1

2∑
l=0

(emϵα′
l − αl) · γ(l) +

K∑
l= K+1

2

(αl − emϵα′
l) · γ(l)

Proof of Lemma 3.4. By the definition of differential privacy (Definition 2.1),

DaRRMγ is (mϵ, δ)-differentially private
⇐⇒ Pr[DaRRMγ(D) = 1] ≤ emϵ Pr[DaRRMγ(D′) = 1] + δ,

and Pr[DaRRMγ(D) = 0] ≤ emϵ Pr[DaRRMγ(D′) = 0] + δ, ∀ adjacent datasets D,D′ (32)

Let random variables L(D) =
∑K

i=1 S(D) and L(D′) =
∑K

i=1 S(D′) be the sum of observed outcomes
on adjacent datasets D and D′, based on which one sets pγ in DaRRM. Let αl = Pr[L(D) = l] and
α′

l = Pr[L(D′) = l], ∀l ∈ {0, 1, . . . , K}.

Consider the output being 1.

Pr[DaRRMγ(D) = 1] ≤ emϵ Pr[DaRRMγ(D′) = 1] + δ (33)

⇐⇒
K∑

l=0
Pr[DaRRMγ(D) = 1 | L(D) = l] · Pr[L(D) = l] (34)

≤ emϵ
( K∑

l=0
Pr[DaRRMγ(D′) = 1 | L(D′) = l] · Pr[L(D′) = l]

)
+ δ

⇐⇒
K∑

l=0

(
γ(l) · I{l ≥ K

2 }+ 1
2(1− γ(l))

)
· Pr[L(D) = l] (35)

≤ emϵ
( K∑

l=0

(
γ(l) · I{l ≥ K

2 }+ 1
2(1− γ(l))}

)
· Pr[L(D′) = l]

)
+ δ

21



Published in Transactions on Machine Learning Research (November/2024)

⇐⇒
K∑

l= K+1
2

(
γ(l) + 1

2(1− γ(l))
)
· Pr[L(D) = l] +

K−1
2∑

l=0

1
2(1− γ(l)) · Pr[L(D) = l] (36)

≤ emϵ
( K∑

l= K+1
2

(
γ(l) + 1

2(1− γ(l))
)
· Pr[L(D) = l]

)
+ emϵ

( K−1
2∑

l=0

1
2(1− γ(l)) · Pr[L(D′) = l]

)
+ δ

⇐⇒
K∑

l= K+1
2

1
2γ(l)αl −

K−1
2∑

l=0

1
2γ(l)αl + 1

2 (37)

≤ emϵ
K∑

l= K+1
2

1
2γ(l)α′

l − emϵ

K−1
2∑

l=0

1
2γ(l)α′

l + 1
2emϵ + δ

⇐⇒
K∑

l= K+1
2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0
(αl − emϵα′

l)γ(l) ≤ emϵ − 1 + 2δ (38)

Similarly, consider the output being 0.

Pr[DaRRMγ(D) = 0] ≤ emϵ Pr[DaRRMγ(D′) = 0] + δ (39)

⇐⇒
K∑

l=0
Pr[DaRRMγ(D) = 0 | L(D) = l] · Pr[L(D) = l] (40)

≤ emϵ
( K∑

l=0
Pr[DaRRMγ(D′) = 0 | L(D′) = l] · Pr[L(D′) = l]

)
+ δ

⇐⇒
K∑

l=0

(
γ(l) · I{l <

K

2 }+ 1
2(1− γ(l))

)
· Pr[L(D) = l] (41)

≤ emϵ
( K∑

l=0
γ(l) · I{l <

K

2 }+ 1
2(1− γ(l))

)
· Pr[L(D′) = l] + δ

⇐⇒

K−1
2∑

l=0

(
γ(l) + 1

2(1− γ(l))
)
· Pr[L(D) = l] +

K∑
l= K+1

2

1
2(1− γ(l)) · Pr[L(D) = l] (42)

≤ emϵ
( K−1

2∑
l=0

(
γ(l) + 1

2(1− γ(l))
)
· Pr[L(D′) = l] +

K∑
l= K+1

2

1
2(1− γ(l)) · Pr[L(D′) = l]

)
+ δ

⇐⇒

K−1
2∑

l=0

1
2γ(l)αl −

K∑
l= K+1

2

1
2γ(l)αl + 1

2 (43)

≤ emϵ

K−1
2∑

l=0

1
2γ(l)α′

l − emϵ
K∑

l= K+1
2

1
2γ(l)α′

l + 1
2emϵ + δ

⇐⇒

K−1
2∑

l=0
(αl − emϵα′

l)γ(l)−
K∑

l= K+1
2

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (44)

22



Published in Transactions on Machine Learning Research (November/2024)

Therefore, plugging Eq. 38 and Eq. 44 into Eq. 32,

DaRRMγ is (mϵ, δ)-differentially private

⇐⇒
K∑

l= K+1
2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0
(αl − emϵα′

l)γ(l) ≤ emϵ − 1 + 2δ (45)

and
K−1

2∑
l=0

(αl − emϵα′
l)γ(l)−

K∑
l= K+1

2

(αl − emϵα′
l)γ(l) ≤ emϵ − 1 + 2δ (46)

where αl = Pr[L(D) = l] and α′
l = Pr[L(D′) = l], ∀l ∈ {0, 1, . . . , K} and D,D′ are any adjacent datasets.

Next, we show if γ is symmetric around K
2 , i.e., γ(l) = γ(K − l), satisfying either one of Eq. 45 or Eq. 46

implies satisfying the other one. Following Eq. 45,

K∑
l= K+1

2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0
(αl − emϵα′

l)γ(l) ≤ emϵ − 1 + 2δ (47)

⇐⇒

K−1
2∑

l=0
(αK−l − emϵα′

K−l) · γ(K − l)−
K∑

l= K−1
2

(αK−l − emϵα′
K−l) · γ(K − l) ≤ emϵ − 1 + 2δ (48)

⇐⇒

K−1
2∑

l=0
(αK−l − emϵα′

K−l) · γ(l)−
K∑

l= K−1
2

(αK−l − emϵα′
K−l) · γ(l) ≤ emϵ − 1 + 2δ (49)

Since γ(l) = γ(K − l)

For analysis purpose, we rewrite Eq. 46 as

K−1
2∑

l=0
(α̃l − emϵα̃′

l) · γ(l)−
K∑

l= K−1
2

(α̃l − emϵα̃′
l) · γ(l) ≤ emϵ − 1 + 2δ (50)

and proceed by showing Eq. 49 ⇐⇒ Eq. 50.

Recall pi = Pr[Mi(D) = 1] and p′
i = Pr[Mi(D′) = 1]. Observe L(D) ∼ PoissonBinomial({pi}K

i=1) and
L(D′) ∼ PoissonBinomial({p′

i}K
i=1). Let Fl = {A : |A| = l,A ⊆ [K]}, for any l ∈ {0, . . . , K}, denote the set

of all subsets of l integers that can be selected from [K]. Let Ac = [K] \ A be A’s complement set. Notice
FK−l = {Ac : A ∈ Fl}.

Since α denotes the pmf of the Poisson Binomial distribution at l, it follows that

αl = Pr[L(D) = l] =
∑

A∈Fl

Πi∈ApiΠj∈Ac(1− pj) (51)

Consider βi = 1 − pi,∀i ∈ [K] and a new random variable Lβ ∼ PoissonBinomial({βi}K
i=1), and let α̃l =

Pr[Lβ = 1]. Observe that

α̃′
l = Pr[Lβ = l] =

∑
A∈Fl

Πj∈AβiΠi∈Ac(1− βi) =
∑

A∈Fl

Πj∈A(1− pj)Πi∈Acpi

=
∑

Ac∈FK−l

Πj∈A(1− pi)Πi∈Acpi =
∑

A∈FK−l

Πi∈ApiΠj∈Ac(1− pi)

23



Published in Transactions on Machine Learning Research (November/2024)

= αK−l (52)

Similarly, consider β′
i = 1− p′

i,∀i ∈ [K] and a new random variable L′β ∼ PoissonBinomial(β′
i}L

i=1), and let
α̃′

l = Pr[L′β = 1]. Then, α̃′
l = α′

K−l.

Since Eq. 49 holds for all possible αK−l, α′
K−l, Eq. 50 then holds for all α̃l, α̃′

l in the K-simplex, and so
Eq. 50 follows by relabeling αK−l as α̃l and α′

K−l as α̃′
l.

The above implies Eq. 45 ⇐⇒ Eq. 46. Therefore,

DaRRMγ is (mϵ, δ)-differentially private

⇐⇒
K∑

l= K+1
2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0
(αl − emϵα′

l)γ(l)

︸ ︷︷ ︸
:=f(p1,...,pK ,p′

1,...,p′
K

;γ)

≤ emϵ − 1 + 2δ (53)

24



Published in Transactions on Machine Learning Research (November/2024)

B Details of Section 4: Provable Privacy Amplification

In this section, we consider Problem 1.1 in the pure differential privacy and i.i.d. mechanisms setting. That
is, δ = ∆ = 0 and p = pi = Pr[Mi(D) = 1], p′ = p′

i = Pr[Mi(D′) = 1],∀i ∈ [K]. Our goal is to search for a
good noise function γ such that: 1) DaRRMγ is mϵ-DP, and 2) DaRRMγ achieves higher utility than that of
the baselines (see Section 3) under a fixed privacy loss. Our main finding of such a γ function is presented in
Theorem 4.1, which states given a privacy allowance m ∈ [K], one can indeed output the majority of 2m− 1
subsampled mechanisms, instead of just m as indicated by simple composition. Later, we formally verify in
Lemma B.11, Section B.3 that taking the majority of more mechanisms strictly increases the utility.

To start, by Lemma 3.4, for any noise function γ, γ satisfying goal 1) is equivalent to satisfying

f(p, p′; γ) ≤ eϵ − 1 (54)

where f(p, p′; γ) =
∑ K−1

2
l=0 (emϵα′

l − αl) · γ(l) +
∑K

l= K+1
2

(αl − emϵα′
l) · γ(l) refers to the privacy cost objective

(see Lemma 3.4) in the i.i.d. mechanisms setting, and recall αl = Pr[L(D) = l] and α′
l = Pr[L(D′) = l],

∀l ∈ {0, 1, . . . , K}. Notice in this setting, L(D) ∼ Binomial(p), and L(D′) ∼ Binomial(p′).

Monotonicity Assumption. For analysis, we restrict our search for a γ function with good utility to the
class with a mild monotonicity assumption: γ(l) ≥ γ(l + 1),∀l ≤ K−1

2 and γ(l) ≤ γ(l + 1),∀l ≥ K+1
2 . This

matches our intuition that as L(D) =
∑K

i=1 Si, i.e., the number of mechanisms outputting 1, approaches 0 or
K, there is a clearer majority and so not much noise is needed to ensure privacy, which implies a larger value
of γ.

Figure 4: The feasible region F is plotted
as the blue area. The four boundaries are
implied by p, p′ satisfying ϵ-differential pri-
vacy.

Roadmap of Proof of Theorem 4.1. Since γ needs
to enable Eq. 54 to be satisfied for all p, p′ ∈ [0, 1], we
begin by showing characteristics of the worst case prob-
abilities, i.e., (p∗, p′∗) = arg max(p,p′) f(p, p′; γ), given any
γ : {0, 1, . . . , K} → [0, 1] that is symmetric around K

2 and that
satisfies the above monotonicity assumption, in Lemma B.1, Sec-
tion B.1. We call (p∗, p′∗) the worst case probabilities, since they
incur the largest privacy loss. Later in Section B.2, we present
the main proof of Theorem 4.1, where we focus on searching
for a good γ that enables f(p∗, p′∗; γ) ≤ eϵ − 1, based on the
characteristics of (p∗, p′∗) in Lemma B.1, to ensure DaRRMγ is
mϵ-differentially private.

B.1 Characterizing the Worst Case Probabilities

First, note (p, p′) are close to each other and lie in a feasi-
ble region F , due to each mechanism Mi being ϵ-differentially
private; and so does (p∗, p′∗). The feasible region, as illus-
trated in Figure 4, is bounded by (a) p′ ≤ eϵp (b) p ≤ eϵp′

(c) 1 − p′ ≤ eϵ(1 − p), and (d) 1 − p ≤ eϵ(1 − p′), where the
four boundaries are derived from the definition of differential

privacy. Therefore, we only need to search for (p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γ).

Next, we show that given γ satisfying certain conditions, (p∗, p′∗) can only be on two of the four boundaries
of F in Lemma B.1 — that is, either p∗ = eϵp′, i.e., on the blue line in Figure 4, or 1− p′∗ = eϵ(1− p∗), i.e.,
on the orange line in Figure 4.
Lemma B.1 (Characteristics of worst case probabilities). For any noise function γ : {0, 1, . . . , K} → [0, 1]
that is 1) symmetric around K

2 , 2) satisfies the monotonicity assumption, and 3) γ( K−1
2 ) > 0 and γ( K+1

2 ) > 0,
the worst case probabilities given γ, (p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γ), must satisfy one of the following
two equalities:

p∗ = eϵp′∗, ∀p∗ ∈ [0,
1

e−ϵ + 1], p′∗ ∈ [0,
1

1 + eϵ
]

25



Published in Transactions on Machine Learning Research (November/2024)

or 1− p′∗ = eϵ(1− p∗), ∀p∗ ∈ [ 1
1 + e−ϵ

, 1], p′∗ ∈ [ 1
1 + eϵ

, 1]

To show Lemma B.1, we first show in Lemma B.2 that the search of (p∗, p′∗) can be refined to one of the four
boundaries of F , via a careful gradient analysis of f(p, p′; γ) in F , and then show in Lemma B.3 that the
search of (p∗, p′∗) can be further refined to two of the four boundaries, due to symmetry of p, p′. Lemma B.1
directly follows from the two.
Lemma B.2. For any noise function γ : {0, 1, . . . , K} → [0, 1] that is 1) symmetric around K

2 , 2) satisfies
the monotonicity assumption, and 3) γ(K−1

2 ) > 0 and γ(K+1
2 ) > 0, the worst case probabilities given γ,

(p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γ), must satisfy one of the following four equalities:

p′∗ = eϵp∗, ∀p∗ ∈ [0,
1

1 + eϵ
], p′∗ ∈ [0,

1
1 + e−ϵ

]

p∗ = eϵp′∗, ∀p∗ ∈ [0,
1

e−ϵ + 1], p′∗ ∈ [0,
1

1 + eϵ
]

1− p∗ = eϵ(1− p′∗), ∀p∗ ∈ [ 1
1 + eϵ

, 1], p′∗ ∈ [ 1
1 + e−ϵ

, 1]

1− p′∗ = eϵ(1− p∗), ∀p∗ ∈ [ 1
1 + e−ϵ

, 1], p′∗ ∈ [ 1
1 + eϵ

, 1]

Proof of Lemma B.2. Recall the privacy cost objective (as defined in Lemma 3.4) is now

f(p, p′; γ) =
K−1

2∑
l=0

(emϵα′
l − αl) · γ(l) +

K∑
l= K+1

2

(αl − emϵα′
l) · γ(l)

where αl = Pr[L(D) = l] and α′
l = Pr[L(D′) = l], ∀l ∈ {0, 1, . . . , K}. Since L(D) ∼ Binomial(p) and

L(D′) ∼ Binomial(p′) in the i.i.d. mechanisms setting, and using the pmf of the Binomial distribution, f can
be written as

f(p, p′; γ) =
K−1

2∑
l=0

(emϵ

(
K

l

)
p′l(1− p′)K−l −

(
K

l

)
pl(1− p)K−l) · γ(l) +

K∑
l= K+1

2

(
(

K

l

)
pl(1− p)K−l − emϵ

(
K

l

)
p′l(1− p′)K−l)

The gradients w.r.t. p and p′ are

∇pf(p, p′; γ) =
K−1

2∑
l=0
−

(
K

l

)
γ(l) · (lpl−1(1− p)K−l − pl(K − l)(1− p)K−l−1)︸ ︷︷ ︸

:=A

(55)

+
K∑

l= K+1
2

(
K

l

)
γ(l) · (lpl−1(1− p)K−l − pl(K − l)(1− p)K−l−1)

︸ ︷︷ ︸
:=B

and

∇p′f(p, p′; γ) =
K−1

2∑
l=0

emϵ

(
K

l

)
γ(l) · (lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1) (56)

+
K∑

l= K+1
2

−emϵ

(
K

l

)
γ(l) · (lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1)

26



Published in Transactions on Machine Learning Research (November/2024)

We show in the following ∀p ∈ (0, 1), ∇pf(p, p′; γ) > 0 and ∇p′f(p, p′; γ) < 0. This implies there is no local
maximum inside F , and so (p∗, p′∗) = arg maxp,p′ f(p, p′; γ) must be on one of the four boundaries of F . Also,
if p = 0, then p′ = 0, and (0, 0) is a corner point at the intersection of two boundaries. Similarly, if p = 1,
then p′ = 1, and (1, 1) is also a corner point. This concludes ∀p ∈ [0, 1], (p∗, p′∗) = arg maxp,p′ f(p, p′; γ) must
be on one of the four boundaries of F .

To show ∇pf(p, p′; γ) > 0 for p ∈ (0, 1), we write ∇pf(p, p′; γ) = A + B as in Eq. 55, and show that A > 0
and B > 0.

To show A > 0, first note

A :=
K−1

2∑
l=0

γ(l)
(

K

l

)
· (pl(K − l)(1− p)K−l−1 − lpl−1(1− p)K−l) > 0 (57)

⇐⇒

K−1
2∑

l=0
γ(l)

(
K

l

)
· pl(K − l)(1− p)K−l−1 >

K−1
2∑

l=0
γ(l)

(
K

l

)
· lpl−1(1− p)K−l) (58)

⇐⇒

K−1
2∑

l=0
γ(l)

(
K − 1

l

)
K

K − l
· pl(K − l)(1− p)K−l−1 >

K−1
2∑

l=1
γ(l)

(
K − 1
l − 1

)
K

l
· lpl−1(1− p)K−l (59)

⇐⇒ K

K−1
2∑

l=0
γ(l)

(
K − 1

l

)
pl(1− p)K−l−1 > K

K−1
2∑

l=1
γ(l)

(
K − 1
l − 1

)
pl−1(1− p)K−l (60)

⇐⇒

K−1
2∑

l=0
γ(l)

(
K − 1

l

)
pl(1− p)K−l−1 >

K−1
2 −1∑
l=0

γ(l + 1)
(

K − 1
l

)
pl(1− p)K−l−1 (61)

Since ∀l ≤ K−1
2 , γ(l) ≥ γ(l + 1) and p ∈ (0, 1), there is for l ∈ {0, . . . , K−1

2 − 1},

γ(l)
(

K − 1
l

)
pl(1− p)K−l−1 ≥ γ(l + 1)

(
K − 1

l

)
pl(1− p)K−l−1 (62)

Furthermore, since γ( K−1
2 ) > 0 and p ∈ (0, 1),

γ(K − 1
2 )

(
K − 1

K−1
2

)
p

K−1
2 (1− p)

K−1
2 > 0 (63)

Eq. 62 and Eq. 63 combined implies

γ(K − 1
2 )

(
K − 1

K−1
2

)
p

K−1
2 (1− p)

K−1
2 +

K−1
2 −1∑
l=0

γ(l)
(

K − 1
l

)
pl(1− p)K−l−1 >

K−1
2 −1∑
l=0

γ(l + 1)
(

K − 1
l

)
pl(1− p)K−l−1

(64)

and hence, Eq. 61 holds. This further implies A > 0.

Next, to show B > 0, note that

B :=
K∑

l= K+1
2

(
K

l

)
γ(l) · (lpl−1(1− p)K−l − pl(K − l)(1− p)K−l−1) > 0 (65)

⇐⇒
K∑

l= K+1
2

(
K

l

)
γ(l) · lpl−1(1− p)K−l >

K∑
l= K+1

2

(
K

l

)
pl(K − l)(1− p)K−l−1 (66)

27



Published in Transactions on Machine Learning Research (November/2024)

⇐⇒
K∑

l= K+1
2

γ(l)
(

K − 1
l − 1

)
K

l
· lpl−1(1− p)K−l (67)

>

K−1∑
l= K+1

2

γ(l)
(

K − 1
l

)
K

K − l
· pl(K − l)(1− p)K−l−1

⇐⇒ K

K∑
l= K+1

2

γ(l)
(

K − 1
l − 1

)
· pl−1(1− p)K−l (68)

> K

K−1∑
l= K+1

2

γ(l)
(

K − 1
l

)
· pl(1− p)K−l−1

⇐⇒
K∑

l= K+1
2

γ(l)
(

K − 1
l − 1

)
· pl−1(1− p)K−l >

K∑
l= K+1

2 +1

γ(l − 1)
(

K − 1
l − 1

)
· pl−1(1− p)K−l (69)

Since ∀l ≥ K+1
2 , γ(l) ≥ γ(l − 1) and p ∈ (0, 1), there is for l ∈ {K+1

2 + 1, . . . , K},

γ(l)
(

K − 1
l − 1

)
pl−1(1− p)K−l ≥ γ(l − 1)

(
K − 1
l − 1

)
pl−1(1− p)K−l (70)

Furthermore, since γ( K+1
2 ) > 0 and p ∈ (0, 1),

γ(K + 1
2 )

(
K − 1

K−1
2

)
p

K−1
2 (1− p)

K−1
2 > 0 (71)

Eq. 70 and Eq. 71 combined implies

γ(K + 1
2 )

(
K − 1

K−1
2

)
p

K−1
2 (1− p)

K−1
2 +

K∑
l= K+1

2 +1

γ(l)
(

K − 1
l − 1

)
· pl−1(1− p)K−l >

K∑
l= K+1

2 +1

γ(l − 1)
(

K − 1
l − 1

)
· pl−1(1− p)K−l

(72)

and hence Eq. 69 holds. This further implies B > 0.

Following Eq.55, for p ∈ (0, 1) and γ satisfying the three assumptions,

∇pf(p, p′; γ) = A + B > 0 (73)

Following similar techniques, one can show for p ∈ (0, 1) and γ satisfying the three conditions,

∇p′f(p, p′; γ) < 0 (74)

This implies there is no local minima or local maxima inside the feasible region F . Also recall (p, p′) ∈
{(0, 0), (1, 1)} are two special cases where (p, p′) is at the intersection of two boundaries. Hence, we conclude
the worst case probability (p∗, p′∗) = arg maxp,p′∈F f(p, p′; γ) is on one of the four boundaries of F — that
is, (p∗, p′∗) satisfy one of the following:

p′∗ = eϵp∗, ∀p ∈ [0,
1

1 + eϵ
], p′ ∈ [0,

1
1 + e−ϵ

]

p∗ = eϵp′∗, ∀p ∈ [0,
1

e−ϵ + 1], p′ ∈ [0,
1

1 + eϵ
]

1− p∗ = eϵ(1− p′∗), ∀p ∈ [ 1
1 + eϵ

, 1], p′ ∈ [ 1
1 + e−ϵ

, 1]

1− p′∗ = eϵ(1− p∗), ∀p ∈ [ 1
1 + e−ϵ

, 1], p′ ∈ [ 1
1 + eϵ

, 1]

28



Published in Transactions on Machine Learning Research (November/2024)

Lemma B.3. For any noise function γ : {0, 1, . . . , K} → [0, 1] function that is 1) symmetric around K
2 and

2) satisfies the monotonicity assumption, the privacy cost objective f(p, p′; γ) is maximized when p ≥ p′.

Proof of Lemma B.3. Following Eq. 33 and Eq. 38 in the proof of Lemma 3.4, and that δ = 0,

Pr[DaRRMγ(D) = 1] ≤ emϵ Pr[DaRRMγ(D′) = 1] (75)

⇐⇒
K∑

l= K+1
2

(αl − emϵα′
l)γ(l)−

K−1
2∑

l=0
(αl − emϵα′

l)γ(l)

︸ ︷︷ ︸
=f(p,p′;γ)

≤ emϵ − 1 (76)

where αl = Pr[L(D) = l] and α′
l = Pr[L(D′) = l], ∀l ∈ {0, 1, . . . , K}. This implies

f(p, p′; γ) = Pr[DaRRMγ(D) = 1]
Pr[DaRRMγ(D′) = 1] − 1 (77)

Hence, f(p, p′; γ) is maximized when Pr[DaRRMγ(D) = 1] ≥ Pr[DaRRMγ(D′) = 1].

Pr[DaRRMγ(D) = 1] =
K∑

l=0
Pr[DaRRMγ(D) = 1 | L(D) = 1] · Pr[L(D) = l] (78)

=
K∑

l=0

(
γ(l) · I{l ≥ K

2 }+ 1
2(1− γ(l))

)
· Pr[L(D) = l] (79)

=
K−1

2∑
l=0

1
2(1− γ(l)) · αl +

K∑
l= K+1

2

(
γ(l) + 1

2(1− γ(l))
)
· αl (80)

= 1
2

K∑
l= K+1

2

γ(l)
(

K

l

)
pl(1− p)K−l − 1

2

K−1
2∑

l=0
γ(l)

(
K

l

)
pl(1− p)K−l−1 + 1

2 (81)

where the last line follows from the observation that in the i.i.d. mechanisms setting, L(D) ∼ Binomial(p)
and αl is hence the pmf of the Binomial distribution at l.

Similarly,

Pr[DaRRMγ(D′) = 1] = 1
2

K∑
l= K+1

2

γ(l)
(

K

l

)
p′l(1− p′)K−l − 1

2

K−1
2∑

l=0
γ(l)

(
K

l

)
p′l(1− p′)K−l−1 + 1

2 (82)

Now define the objective

h(β) = 1
2

K∑
l= K+1

2

γ(l)
(

K

l

)
βl(1− β)K−l − 1

2

K−1
2∑

l=0
γ(l)

(
K

l

)
βl(1− β)K−l−1 + 1

2 (83)

for β ∈ [0, 1] and it follows that Pr[DaRRMγ(D) = 1] = h(p) and Pr[DaRRMγ(D′) = 1] = h(p′). We now
analyze the monotonicity of h(β) in β.

For ease of presentation, define g(l) :=
{
− 1

2 γ(l) ∀l ≤ K
2

1
2 γ(l) ∀l ≥ K

2
. Since γ(l) ≥ γ(l + 1),∀l ≤ K

2 and γ(l + 1) ≥

γ(l),∀l ≥ K
2 , there is g(l + 1) ≥ g(l),∀l ∈ {0, . . . , K}. And replacing γ(l) with g(l) in Eq. 83,

h(β) =
K∑

l=0
g(l)

(
K

l

)
βl(1− β)K−l (84)

29



Published in Transactions on Machine Learning Research (November/2024)

∇βh(β) =
K∑

l=0
g(l)

(
K

l

)(
lβl−1(1− β)K−l − (K − l)βl(1− β)K−l−1

)
(85)

=
K∑

l=1
g(l)

(
K − 1
l − 1

)
K

l
lβl−1(1− β)K−l −

K−1∑
l=0

(
K − 1

l

)
K

K − l
(K − l)βl(1− β)K−l−1 (86)

= K

K∑
l=1

(
K − 1
l − 1

)
βl−1(1− β)K−l −K

K−1∑
l=0

(
K − 1

l

)
βl(1− β)K−l−1 (87)

= K

K−1∑
l=0

g(l + 1)
(

K − 1
l

)
βl(1− β)K−l−1 −K

K−1∑
l=0

g(l)
(

K − 1
l

)
βl(1− β)K−l−1 (88)

= K

K−1∑
l=0

(
g(l + 1)− g(l)

)(
K − 1

l

)
βl(1− β)K−l−1 (89)

Since g(l + 1) ≥ g(l) and
(

K−1
l

)
βl(1 − β)K−l−1 ≥ 0, ∇βh(β) ≥ 0. This implies h(β) is monotonically

non-decreasing in β and hence,

Pr[DaRRMγ(D) = 1] ≥ Pr[DaRRMγ(D′) = 1] ⇐⇒ p ≥ p′ (90)

Therefore, f(p, p′; γ) is maximzied when p ≥ p′.

B.2 Proof of Privacy Amplification (Theorem 4.1)

Theorem B.4 (Restatement of Theorem 4.1). Consider using DaRRM (Algorithm 1) to solve Problem 1.1,
with i.i.d. mechanisms {Mi}K

i=1, i.e., pi = p, p′
i = p′, ∀i ∈ [K], the privacy allowance m ∈ [K] and δ = ∆ = 0.

Let the noise function γ : {0, 1, . . . , K} → [0, 1] be that:
if m ≥ K+1

2 ,

γ(l) = 1

and if m ≤ K−1
2 ,

γ(l) =
{

1− 2h(l) ∀l ≤ K−1
2

2h(l)− 1 ∀l ≥ K+1
2

where h(l) =
∑2m−1

i=m
(l

i)( K−l
2m−1−i)

( K
2m−1)

, then DaRRMγ is mϵ-differentially private.

Roadmap. Theorem 4.1 consists of two parts: γ under a large privacy allowance m ≥ K+1
2 and γ under

a small privacy allowance m ≤ K−1
2 . We first show in Lemma B.5, Section B.2.1 that if m ≥ K+1

2 , setting
γ = 1 suffices to ensure DaRRMγ to be mϵ-differentially private, and hence one can always output the true
majority of K mechanisms. In contrast, simple composition indicates only when m = K can one output
the true majority of K mechanisms. Next, we show in Lemma B.10, Section B.2.2 that if m ≤ K−1

2 , one
can set γ to be γDSub, which corresponds to outputting the majority of 2m − 1 subsampled mechanisms
(and hence the name “Double Subsampling”, or DSub). In contrast, simple compositon indicates one can
only output the majority of m subsampled mechanisms to make sure the output is mϵ-differentially private.
Theorem 4.1 follows directly from combining Lemma B.5 and Lemma B.10.

B.2.1 Privacy Amplification Under A Large Privacy Allowance m ≥ K+1
2

The proof of Lemma B.5 is straightforward. We show that given the constant γmax(l) = 1, if m ≥ K+1
2 , the

worst case probabilities are (p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γmax) = (0, 0) and notice that f(0, 0; γmax) =
emϵ − 1, which satisfies the condition in Lemma 3.4. Hence, DaRRMγmax is mϵ-differentially private.

30



Published in Transactions on Machine Learning Research (November/2024)

Lemma B.5 (Privacy amplification, m ≥ K+1
2 ). Consider using DaRRM (Algorithm 1) to solve Problem 1.1,

with i.i.d. mechanisms {Mi}K
i=1, i.e., pi = p, p′

i = p′, ∀i ∈ [K], the privacy allowance m ≥ K+1
2 , m ∈ Z and

δ = ∆ = 0. Let the noise function be the constant γmax(l) = 1,∀l ∈ {0, 1, . . . , K}. Then, DaRRMγmax
is

mϵ-differentially private.

Proof of Lemma B.5. First, notice γmax(l) = 1,∀l ∈ {0, 1, . . . , K} is: 1) symmetric around K
2 , 2) satisfies the

monotonicity assumption, and 3) γmax( K−1
2 ) > 0 and γmax( K+1

2 ) > 0. Therefore, by Lemma B.1, the worst
case probabilities given γmax, i.e., (p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γmax), are on one of the two boundaries
of F , satisfying

p∗ = eϵp′∗, ∀p∗ ∈ [0,
1

e−ϵ + 1], p′∗ ∈ [0,
1

1 + eϵ
]

or 1− p′∗ = eϵ(1− p∗), ∀p∗ ∈ [ 1
1 + e−ϵ

, 1], p′∗ ∈ [ 1
1 + eϵ

, 1]

We now find the local maximums on the two possible boundaries, i.e.,

(p∗
local, p′∗

local) = arg max
(p,p′):p=eϵp′,p∈[0, 1

e−ϵ+1
]
f(p, p′; γmax)

and

(p∗
local, p′∗

local) = arg max
(p,p′):1−p′=eϵ(1−p),p∈[ 1

1+e−ϵ ,1]
f(p, p′; γmax)

separately.

Part I: Local worst case probabilities on the boundary p = eϵp′.

Plugging p = eϵp′ into the privacy cost objective f(p, p′; γmax), one gets

f(p′; γmax) =
K−1

2∑
l=0

(emϵ

(
K

l

)
p′l(1− p′)K−l −

(
K

l

)
(eϵp′)l(1− eϵp′)K−l) (91)

+
K∑

l= K+1
2

(
(

K

l

)
(eϵp′)l(1− eϵp′)K−l − emϵ

(
K

l

)
p′l(1− p′)K−l)

The gradient w.r.t. p′ is

∇p′f(p′; γmax) =
K−1

2∑
l=0

(
emϵ

(
K

l

)
(lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1) (92)

− eϵ

(
K

l

)
(l(eϵp′)l−1(1− eϵp′)K−l − eϵlp′l(K − l)(1− eϵp′)K−l−1)

)
+

K∑
l= K+1

2

(
eϵ

(
K

l

)
(l(eϵp′)l−1(1− eϵp′)K−l − eϵlp′l(K − l)(1− eϵp′)K−l−1)

− emϵ

(
K

l

)
(lp′l−1(1− p′)K−l − p′l(K − l)(1− p′)K−l−1)

)
= −K

K−1
2∑

l=0
emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1 + K

K−1∑
l= K+1

2

emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1 (93)

+ K

K−1
2∑

l=0
eϵ

(
K − 1

l

)
(ϵp′)ϵ(1− eϵp′)K−l−1 −K

K−1∑
l= K+1

2

eϵ

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

31



Published in Transactions on Machine Learning Research (November/2024)

+ K

K−1
2 −1∑
l=0

emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1 −K

K−1∑
l= K−1

2

emϵ

(
K − 1

l

)
p′l(1− p′)K−l−1

−K

K−1
2 −1∑
l=0

eϵ

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1 + K

K−1∑
l= K−1

2

eϵ

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

= −2K emϵ

(
K − 1

K−1
2

)
p′ K−1

2 (1− p′)
K−1

2︸ ︷︷ ︸
:=A

+2K eϵ

(
K − 1

K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2︸ ︷︷ ︸

:=B

(94)

Notice that

A

B
=

emϵ
(K−1

K−1
2

)
p′ K−1

2 (1− p′) K−1
2

eϵ
(K−1

K−1
2

)
(eϵp′) K−1

2 (1− eϵp′) K−1
2

= emϵ

e
K+1

2 ϵ
· ( 1− p′

1− eϵp′ )
K−1

2 (95)

Since 1−p′

1−eϵp′ ≥ 1 and m ≥ K+1
2 , A

B ≥ 1. This implies ∇p′f(p′; γmax) ≤ 0. Hence, f(p′; γmax) is monotonically
non-increasing on the boundary, for p′ ∈ [0, 1

1+eϵ ].

Therefore, arg maxp′:p′∈[0, 1
1+eϵ ] f(p′; γmax) = 0. Since p = eϵp′, p′ = 0 implies p = 0.

Hence,

(p∗
local, p′∗

local) = arg max
(p,p′):p=eϵp′,p∈[0, 1

e−ϵ+1
]
f(p, p′; γmax) = (0, 0)

and

max
(p,p′):p=eϵp′,p∈[0, 1

e−ϵ+1
]
f(p, p′; γmax) = f(0, 0; γmax) = emϵ − 1

Part II: Local worst case probabilities on the boundary 1− p′ = eϵ(1− p).

For simplicity, let q = 1 − p and q′ = 1 − p′. Note on this boundary p ∈ [ 1
1+e−ϵ , 1] and p′ ∈ [ 1

1+eϵ , 1], and
hence, q ∈ [0, 1

1+eϵ ] and q′ ∈ [0, 1
1+e−ϵ ].

Plugging q and q′ into the privacy cost objective f(p, p′; γmax), one gets a new objective in q, q′ as

f(q, q′; γmax) =
K−1

2∑
l=0

(
emϵ

(
K

l

)
(1− q′)lq′K−l −

(
K

l

)
(1− q)lqK−l

)
· γmax(l) (96)

+
K∑

l= K+1
2

((
K

l

)
(1− q)lqK−l − emϵ

(
K

l

)
(1− q′)lq′K−l

)
· γmax(l)

=
K−1

2∑
l=0

(
emϵ

(
K

l

)
(1− q′)lq′K−l −

(
K

l

)
(1− q)lqK−l

)
(97)

+
K∑

l= K+1
2

((
K

l

)
(1− q)lqK−l − emϵ

(
K

l

)
(1− q′)lq′K−l

)
Since on this boundary, 1− p′ = eϵ(1− p), writing this in q, q′, this becomes q′ = eϵq. Plugging q′ = eϵq into
f(q, q′; γmax), one gets

f(q; γmax) =
K−1

2∑
l=0

(
emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l −

(
K

l

)
(1− q)lqK−l

)
(98)

32



Published in Transactions on Machine Learning Research (November/2024)

+
K∑

l= K+1
2

((
K

l

)
(1− q)lqK−l − emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l

)

The gradient w.r.t. q is

∇qf(q) =
K−1

2∑
l=0

(
emϵ

(
K

l

)(
(−eϵ)l(1− eϵq)l−1(eϵq)K−l + eϵ(K − l)(1− eϵq)l(eϵq)K−l−1

)
(99)

−
(

K

l

)(
− l(1− q)l−1qK−l + (K − l)(1− q)lqK−l−1

))
+

K∑
l= K+1

2

((
K

l

)(
− l(1− q)l−1qK−l + (K − l)(1− q)lqK−l−1

)

− emϵ

(
K

l

)(
(−eϵ)l(1− eϵq)l−1(eϵq)K−l + eϵ(K − l)(1− eϵq)l(eϵq)K−l−1

))
= −

K−1
2∑

l=1
e(m+1)ϵ

(
K − 1
l − 1

)
K

l
l(1− eϵq)l−1(eϵq)K−l +

K−1
2∑

l=0
e(m+1)ϵ

(
K − 1

l

)
K

K − l
(K − l)(1− eϵq)l(eϵq)K−l−1

(100)

+
K−1

2∑
l=1

(
K − 1
l − 1

)
K

l
l(1− q)l−1qK−l −

K−1
2∑

l=0

(
K − 1

l

)
K

K − l
(K − l)(1− q)lqK−l−1

−
K∑

l= K+1
2

(
K − 1
l − 1

)
K

l
l(1− q)l−1qK−l +

K−1∑
l= K+1

2

(
K − 1

l

)
K

K − l
(K − l)(1− q)lqK−l−1

+
K∑

l= K+1
2

e(m+1)ϵ

(
K − 1
l − 1

)
K

l
l(1− eϵq)l−1(eϵq)K−l −

K−1∑
l= K+1

2

e(m+1)ϵ

(
K − 1

l

)
K

K − l
(K − l)(1− eϵq)l(eϵq)K−l−1

= −K

K−1
2∑

l=1
e(m+1)ϵ

(
K − 1
l − 1

)
(1− eϵq)l−1(eϵq)K−l + K

K−1
2∑

l=0
e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1

(101)

+ K

K−1
2∑

l=1

(
K − 1
l − 1

)
(1− q)l−1qK−l −K

K−1
2∑

l=0

(
K − 1

l

)
(1− q)lqK−l−1

−K

K∑
l= K+1

2

(
K − 1
l − 1

)
(1− q)l−1qK−l + K

K−1∑
l= K+1

2

(
K − 1

l

)
(1− q)lqK−l−1

+ K

K∑
l= K+1

2

e(m+1)ϵ

(
K − 1
l − 1

)
(1− eϵq)l−1(eϵq)K−l −K

K−1∑
l= K+1

2

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1

= 2Ke(m+1)ϵ

(
K − 1

K−1
2

)
(1− eϵq)

K−1
2 (eϵq)

K−1
2 − 2K

(
K − 1

K−1
2

)
(1− q)

K−1
2 q

K−1
2 (102)

Recall q ∈ [0, 1
1+eϵ ] and so (1 − eϵq)(eϵq) ≥ (1 − q)q. Furthermore, since e(m+1)ϵ ≥ 1, there is ∇qf(q) ≥ 0.

This implies f(q) is monotonically non-decreasing in q, and so the local maximum on this boundary is

(q∗
local, q′∗

local) = arg max
(q,q′):q′=eϵq,q∈[0, 1

1+eϵ ]
f(q, q′; γmax) = ( 1

1 + eϵ
,

1
1 + e−ϵ

) (103)

33



Published in Transactions on Machine Learning Research (November/2024)

That is,

(p∗
local, p′∗

local) = arg max
(p,p′):1−p′=eϵ(1−p),p∈[ 1

1+e−ϵ ,1]
f(p, p′; γmax) = (1− q∗

local, 1− q′∗
local) = ( 1

1 + e−ϵ
,

1
1 + eϵ

)

(104)

Part III: The global worst case probabilities.

Notice that ( 1
1+e−ϵ , 1

1+eϵ ), the maximum on the second boundary 1− p′ = eϵ(1− p),∀p ∈ [ 1
1+e−ϵ , 1], is indeed

the minimum on the first boundary p = eϵp′,∀p ∈ [0, 1
1+e−ϵ+1 ].

Therefore, the global maximum given γmax is

(p∗, p′∗) = arg max
(p,p′)∈F

f(p, p′; γmax) = arg max
(p,p′):p=eϵp′,p∈[0, 1

1+e−ϵ ]
f(p, p′; γmax) = (0, 0) (105)

and recall that f(0, 0; γmax) = emϵ − 1.

Hence, if m ≥ K+1
2 , by Lemma 3.4 DaRRMγmax

is mϵ-differentially private.

B.2.2 Privacy Amplification Under A Small Privacy Allowance m ≤ K−1
2

The proof of Lemma B.10 is slightly more involved. First, recall by Lemma 3.1, γSub, the noise function that
makes the output of DaRRMγSub

and the subsampling baseline the same, is

γSub(l) = γSub(K = l)

=


1− 2

∑m
j= m+1

2

(l
j)(K−l

m−j)
(K

m) if m is odd

1− 2
∑m

j= m
2 +1

(l
j)(K−l

m−j)
(K

m) −
( l

m
2

)(K−l
m
2

)
(K

m) if m is even

for l ∈ {0, 1, . . . , K}, suppose the privacy allowance m ∈ Z.

If we define h(l) :=


∑m

j= m+1
2

(l
j)(K−l

m−j)
(K

m) if m is odd∑m
j= m

2 +1
(l

j)(K−l
m−j)

(K
m) −

( l
m
2

)(K−l
m
2

)
(K

m) if m is even
, then γSub(l) can be written as γSub(l) =

{
1− 2h(l) if l ≤ K−1

2
2h(l)− 1 if l ≥ K+1

2
.

This can be generalized to a broader class of γ functions — which we call the “symmetric form family” — as
follows
Definition B.6. γ : {0, 1, . . . , K} → [0, 1] is a member of the “symmetric form family” if γ follows

γ(l) =
{

1− 2h(l) if l ≤ K−1
2

2h(l)− 1 if l ≥ K+1
2

(106)

where h : {0, 1, . . . , K} → [0, 1] and

h(l) + h(K − l) = 1, h(l + 1) ≥ h(l), ∀l ∈ {0, 1, . . . , K}, and γ(K − 1
2 ) > 0, γ(K + 1

2 ) > 0

It is easy to verify any γ function that belongs to the “symmetric form family” satisfies: 1) symmetric around
K
2 and 2) the monotonicity assumption. Hence, Lemma B.1 can be invoked to find the worst case probabilities

34



Published in Transactions on Machine Learning Research (November/2024)

given such γ, i.e., (p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γ), which in turn gives us the guarantee of DaRRMγ

being mϵ-differentially private.

Roadmap. In this section, we restrict our search of a good γ that maximizes the utility of DaRRMγ

to in the “symmetric form family”. To show the main privacy amplification result under a small m in
Lemma B.10, Section B.2.4, we need a few building blocks, shown in Section B.2.3. We first show in
Lemma B.7, Section B.2.3 two clean sufficient conditions that if a “symmetric form family” γ satisfies, then
DaRRMγ is mϵ-differentially private, in terms of the expectation of the γ function applied to Binomial random
variables. The Binomial random variables appear in the lemma, because recall the sum of the observed
outcomes on a dataset D, L(D), follows a Binomial distribution in the i.i.d. mechanisms setting. Next, we
show a recurrence relationship that connects the expectation of Binomial random variables to Hypergeometric
random variables in Lemma B.9. This is needed because observe that for γ functions that makes DaRRMγ

have the same output as the majority of subsampled mechanisms, the h function is now a sum of pmfs of the
Hypergeometric random variable.

Finally, the proof of the main result under a small m (Lemma B.10) is presented in Section B.2.4, based on
Lemma B.7 and Lemma B.9. We show in Lemma B.10 that γDSub, i.e., the γ function that enables the output
of DaRRMγDSub

and outputting the majority of 2m − 1 subsampled mechanisms to be the same, belongs
to the “symmetric form family” and satisfies the sufficient conditions as stated in Lemma B.7, implying
DaRRMγDSub

being mϵ-differentially private.

B.2.3 Building Blocks

Lemma B.7 (Privacy conditions of the “symmetric form family” functions). Let random variables X ∼
Binomial(K−1, p′), Y ∼ Binomial(K−1, eϵp′), X̂ ∼ Binomial(K−1, 1−eϵ(1−p)) and Ŷ ∼ Binomial(K−1, p).
For a function γ : {0, 1, . . . , K} → [0, 1] that belongs to the “symmetric form family” (Definition B.6), if γ
also satisfies both conditions as follows:

emϵEX [h(X + 1)− h(X)] ≥ eϵEY [h(Y + 1)− h(Y )], ∀p′ ∈ [0,
1

1 + eϵ
] (107)

e(m+1)ϵEX̂ [h(X̂ + 1)− h(X̂)] ≥ EŶ [h(Ŷ + 1)− h(Ŷ )], ∀p ∈ [ 1
1 + e−ϵ

, 1] (108)

then Algorithm DaRRMγ is mϵ-differentially private.

Proof of Lemma B.7. Since h(l+1) ≥ h(l) on l ∈ {0, . . . , K}, γ(l) ≥ γ(l+1),∀l ≤ K
2 and γ(l+1) ≥ γ(l),∀l ≥

K
2 . Furthermore, since h(l)+h(K−l) = 1, γ( K−1

2 ) = 1−2h( K−1
2 ) = 1−2(1−h( K+1

2 )) = 2h( K+1
2 )−1. Hence,

any γ that belongs to the “symmetric form family” satisfies: 1) symmetric around K
2 , 2) the monotonicity

assumption, and 3) γ( K−1
2 ) = γ( K+1

2 ) > 0.

Therefore, by Lemma B.1, the worst case probabilities (p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γ) are on one of the
two boundaries of F , satisfying

p∗ = eϵp′∗, ∀p∗ ∈ [0,
1

e−ϵ + 1], p′∗ ∈ [0,
1

1 + eϵ
] (109)

or 1− p′∗ = eϵ(1− p∗), ∀p∗ ∈ [ 1
1 + e−ϵ

, 1], p′∗ ∈ [ 1
1 + eϵ

, 1] (110)

We now derive the sufficient conditions that if any γ from the “symmetric form family” satisfy, then DaRRMγ

is mϵ-differentially private, from the two boundaries as in Eq. 109 and Eq. 110 separately.

Part I: Deriving a sufficient condition from Eq. 109 for “symmetric form family” γ.

Consider the boundary of F , p = eϵp′, ∀p ∈ [0, 1
1+e−ϵ ], p′ ∈ [0, 1

1+eϵ ].

35



Published in Transactions on Machine Learning Research (November/2024)

Given any γ, plugging p = eϵp′ into the privacy cost objective f(p, p′; γ), one gets

f(p′; γ) =
K−1

2∑
l=0

(emϵ

(
K

l

)
p′l(1− p′)K−l −

(
K

l

)
(eϵp′)l(1− eϵp′)K−l) · γ(l) (111)

+
K∑

l= K+1
2

(
(

K

l

)
(eϵp′)l(1− eϵp′)K−l − emϵ

(
K

l

)
p′l(1− p′)K−l) · γ(l)

The gradient w.r.t. p′ is

∇p′f(p′); γ

K
= emϵ

K−1
2 −1∑
l=0

(
K − 1

l

)
p′l(1− p′)K−l−1

(
γ(l + 1)− γ(l)

)
− 2emϵ

(
K − 1

K−1
2

)
p′ K−1

2 (1− p′)
K−1

2 γ(K − 1
2 )

(112)

+ emϵ
K−1∑

l= K+1
2

(
K − 1

l

)
p′l(1− p′)K−l−1

(
γ(l)− γ(l + 1)

)

+ eϵ

K−1
2 −1∑
l=0

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
γ(l)− γ(l + 1)

)
+ 2eϵ

(
K − 1

K−1
2

)
(eϵp′)

K−1
2 (1− eϵp′)

K−1
2 γ(K − 1

2 )

+ eϵ
K−1∑

l= K+1
2

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
γ(l + 1)− γ(l)

)

Consider l ∈ {0, 1, . . . , K} in the above Eq. 112. For any function γ that belongs to the “symmetric form
family”,

1. If l ≤ K
2 , γ(l)− γ(l + 1) = (1− 2h(l))− (1− 2h(l + 1)) = 2h(l + 1)− 2h(l)

2. If l ≥ K
2 , γ(l + 1)− γ(l) = (2h(l + 1)− 1)− (2h(l)− 1) = 2h(l + 1)− 2h(l)

3. Since γ( K−1
2 ) = γ( K+1

2 ),

2γ(K − 1
2 ) =

(
γ(K − 1

2 ) + γ(K + 1
2 )

)
(113)

=
(

1− 2h(K − 1
2 ) + 2h(K + 1

2 )− 1
)

(114)

= 2h(K + 1
2 )− 2h(K − 1

2 ) (115)

Hence, following Eq. 112, the gradient, ∇p′f(p′; γ), given a “symmetric form family” γ can be written as

∇p′f(p′; γ)
K

= −emϵ
K−1∑
l=0

(
K − 1

l

)
p′l(1− p′)K−l

(
2h(l + 1)− 2h(l)

)
(116)

+ eϵ
K−1∑
l=0

(
K − 1

l

)
(eϵp′)l(1− eϵp′)K−l−1

(
2h(l + 1)− 2h(l)

)
= −2emϵEX [h(X + 1)− h(X)] + 2eϵEY [h(Y + 1)− h(Y )] (117)

where X ∼ Binomial(K − 1, p′) and Y ∼ Binomial(K − 1, eϵp′). The above implies

∇p′f(p′; γ) ≤ 0 ⇐⇒ eϵEY [h(Y + 1)− h(Y )] ≤ emϵEX [h(X + 1)− h(X)] (118)

36



Published in Transactions on Machine Learning Research (November/2024)

If ∇p′f(p′; γ) ≤ 0, then we know the local worst case probabilities on the boundary p = eϵp′,∀p ∈ [0, 1
1+e−ϵ ]

given any γ is (p∗
local, p′∗

local) = arg max(p,p′):p=eϵp′,p∈[0, 1
1+e−ϵ ] f(p, p′; γ) = (0, 0). Furthermore, recall the

privacy cost objective given any γ is

f(p, p′; γ)

=
K−1

2∑
l=0

(emϵα′
l − αl) · γ(l) +

K∑
l= K+1

2

(αl − emϵα′
l) · γ(l)

=
K−1

2∑
l=0

(
emϵ

(
K

l

)
p′l(1− p′)K−l −

(
K

l

)
pl(1− p)K−l

)
· γ(l) +

K∑
l= K+1

2

((
K

l

)
pl(1− p)K−l − emϵ

(
K

l

)
p′l(1− p′)K−l

)
· γ(l)

and so for any γ,

f(0, 0; γ) = (emϵ − 1) · γ(0) ≤ emϵ − 1 (119)

Also, notice the local minimum on this boundary is

(pmin, p′
min) = arg min

(p,p′):p=eϵp′,p∈[0, 1
1+e−ϵ ]

f(p, p′l; γ) = ( 1
1 + e−ϵ

,
1

1 + eϵ
) (120)

Part II: Deriving a sufficient condition from Eq. 110 for “symmetric form family” γ.

Consider the boundary of F , 1− p′ = eϵ(1− p), ∀p ∈ [ 1
1+e−ϵ , 1], p′ ∈ [ 1

1+eϵ , 1]. For simplicity, let q = 1− p ∈
[0, 1

1+eϵ ] and q′ = 1− p′ ∈ [0, 1
1+e−ϵ ]. Plugging q′ = eϵq into the privacy cost objective, one gets, given any γ,

f(q; γ) =
K−1

2∑
l=0

(
emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l −

(
K

l

)
(1− q)lqK−l

)
· γ(l) (121)

+
K∑

l= K+1
2

((
K

l

)
(1− q)lqK−l − emϵ

(
K

l

)
(1− eϵq)l(eϵq)K−l

)
· γ(l)

The gradient w.r.t. q is

∇qf(q; γ)
K

=
K−1

2 −1∑
l=0

e(m+1)ϵ

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
γ(l)− γ(l + 1)

)
(122)

+
K−1∑

l= K+1
2

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
γ(l + 1)− γ(l)

)
+ 2e(m+1)ϵ

(
K − 1

K−1
2

)
(1− eϵq)

K−1
2 (eϵq)

K−1
2 · γ(K − 1

2 )

+
K−1

2 −1∑
l=0

(
K − 1

l

)
(1− q)lqK−l−1 ·

(
γ(l + 1)− γ(l)

)
+

K−1∑
l= K+1

2

(1− q)lqK−l−1 ·
(

γ(l)− γ(l + 1)
)
− 2

(
K − 1

K−1
2

)
(1− q)

K−1
2 q

K−1
2 · γ(K − 1

2 )

For any function γ that belongs to the “symmetric form family”, the gradient ∇qf(q; γ) can be written as

∇qf(q; γ)
K

= e(m+1)ϵ
K−1∑
l=0

(
K − 1

l

)
(1− eϵq)l(eϵq)K−l−1 ·

(
2h(l + 1)− 2h(l)

)
(123)

37



Published in Transactions on Machine Learning Research (November/2024)

−
K∑

l=0

(
K − 1

l

)
(1− q)lqK−l−1 ·

(
2h(l + 1)− 2h(l)

)
= 2e(m+1)ϵEX̂ [h(X̂ + 1)− h(X̂)]− 2EŶ [h(Ŷ + 1)− h(Ŷ )] (124)

where X̂ ∼ Binomial(K − 1, 1− eϵ(1− p)) and Ŷ ∼ Binomial(K − 1, p). The above implies

∇qf(q; γ) ≥ 0 ⇐⇒ e(m+1)ϵEX̂ [h(X̂ + 1)− h(X̂)] ≥ EŶ [h(Ŷ + 1)− h(Ŷ )] (125)

If ∇qf(q; γ) ≥ 0, then since q ∈ [0, 1
1+eϵ ], we know that the local maximum given any γ is (q∗

local, q′∗
local) =

arg max(q,q′):q′=eϵq,q∈[0, 1
1+eϵ ] f(q, q′; γ) = ( 1

1+eϵ , 1
1+e−ϵ ). That is,

(p∗
local, p′∗

local) = arg max
(p,p′):1−p′=eϵ(1−p),p∈[ 1

1+e−ϵ ,1]
f(p, p′; γ) = (1− q∗

local, 1− q′∗
local) = ( 1

1 + e−ϵ
,

1
1 + eϵ

)

Notice by Eq. 120, the above ( 1
1+e−ϵ , 1

1+eϵ ) is the local minimum on the first boundary p = eϵp′, ∀p ∈ [0, 1
1+e−ϵ ].

Therefore, given an arbitrary γ function, if it satisfies both of the following:

1. On the boundary p = eϵp′,∀p ∈ [0, 1
1+e−ϵ ], ∇p′f(p′; γ) ≤ 0

2. On the boundary 1− p′ = eϵ(1− p),∀p ∈ [ 1
1+e−ϵ , 1], ∇q′f(q′; γ) ≥ 0 where q′ = 1− p′

then the global worst case probabilities given this γ is (p∗, p′∗) = arg max(p,p′)∈F f(p, p′; γ) = (0, 0). Further-
more, since by Eq. 119, f(0, 0; γ) ≤ emϵ − 1 for any γ, this implies DaRRMγ is mϵ-differentially private by
Lemma 3.4.

Now, if γ belongs to the “symmetric form family”, by Eq. 118 and Eq. 125, the sufficient conditions for γ
that enables DaRRMγ to be mϵ-differentially private are hence

eϵEY [h(Y + 1)− h(Y )] ≤ emϵEX [h(X + 1)− h(X)], ∀p′ ∈ [0,
1

1 + eϵ
]

and e(m+1)ϵEX̂ [h(X̂ + 1)− h(X̂)] ≥ EŶ [h(Ŷ + 1)− h(Ŷ )], ∀p ∈ [ 1
1 + e−ϵ

, 1]

where X ∼ Binomial(K − 1, p′), Y ∼ Binomial(K − 1, eϵp′), X̂ ∼ Binomial(K − 1, 1 − eϵ(1 − p)) and
Ŷ ∼ Binomial(K − 1, p).

Lemma B.8 (Binomial Expectation Recurrence Relationship (Theorem 2.1 of Zhang et al. (2019))). Let
X(K−1) ∼ Binomial(K−1, p) and X(K) ∼ Binomial(K, p). Let g(x) be a function with −∞ < E[g(X(K−1))] <
∞ and −∞ < g(−1) <∞, then

KpEX(K−1) [g(X(K−1))] = EX(K) [X(K)g(X(K) − 1)] (126)

Lemma B.9. Given i, m, K ∈ Z, K ≥ 1, 0 ≤ i ≤ m ≤ K, let X(K) ∼ Binomial(K, p) for some p ∈ [0, 1],
there is

1(
K
m

)EX(K)

[(
X

i

)(
K −X

m− i

)]
=

(
m

i

)
pi(1− p)m−i (127)

Proof of Lemma B.9. We show the above statement in Eq. 127 by induction on K and m.

Base Case: K = 1.

1. If m = 0, then i = 0. 1
(1

0)
EX(1) [

(
X
0
)(1−X

0
)
] = EX(1) [1] = 1, and

(0
0
)
p0(1− p)0 = 1.

38



Published in Transactions on Machine Learning Research (November/2024)

2. If m = 1,

(a) i = 0, 1
(1

1)
EX(1) [

(
X
0
)(1−X

1
)
] = EX(1) [1−X] = 1− p, and

(1
0
)
p0(1− p)1 = 1− p

(b) i = 1, 1
(1

1)
EX(1) [

(
X
1
)(1−X

0
)
] = EX(1) [X] = p, and

(1
1
)
p1(1− p)0 = p.

Hence, Eq. 127 holds for the base case.

Induction Hypothesis: Suppose the statement holds for some K ≥ 1 and 0 ≤ i ≤ m ≤ K. Consider
1 ≤ i ≤ m ≤ K + 1,

1(
K+1

m

)EX(K+1)

[(
X

i

)(
K + 1−X

m− i

)]
(128)

= 1(
K+1

m

)EX(K+1) [
X!

i!(X − i)!
(K + 1−X)!

(m− i)!(K + 1−X − (m− i))! ] (129)

= 1(
K+1

m

)
i!(m− i)!

EX(K+1) [X
(X − 1)!

((X − 1)− (i− 1))!
(K − (X − 1))!

(K − (X − 1)− ((m− 1)− (i− 1)))! ] (130)

= 1(
K+1

m

)
i!(m− i)!

EX(K) [
X!

(X − (i− 1))!
(K −X)!

(K −X − ((m− 1)− (i− 1)))! ] (131)

(By Lemma B.8)

= (i− 1)!(m− i)!(
K+1

m

)
i!(m− i)!

EX(K) [
(

X

i− 1

)(
K −X

(m− 1)− (i− 1)

)
] (132)

= (i− 1)!(
K+1

m

)
i!

(K + 1)p
(

K

m− 1

)(
m− 1
i− 1

)
pi−1(1− p)m−i (133)

(By Induction Hypothesis)

= m!(K + 1−m)!
(K + 1)!i

K!
(m− 1)!(K −m + 1)!

(m− 1)!
(i− 1)!(m− i)! (K + 1)pi(1− p)m−i (134)

= m!
i!(m− i)!p

i(1− p)m−i =
(

m

i

)
pi(1− p)m−i (135)

Now we consider the edge cases when 0 = i ≤ m.

If i = 0 and m = 0,

1(
K+1

0
)EX(K+1) [

(
X

0

)(
K + 1−X

0

)
] = 1 · EX(K+1) [1] = 1 =

(
0
0

)
p0(1− p)0 (136)

If i = 0 and m > 0,

1(
K+1

m

)EX(K+1) [
(

K + 1−X

m

)
] (137)

= 1(
K+1

m

) K+1∑
x=0

(
K + 1− x

m

)(
K + 1

x

)
px(1− p)K+1−x (138)

= 1(
K+1

m

) K+1∑
x=0

(
K + 1− x

m

)((
K

x

)
+

(
K

x− 1

)
I{x ≥ 1}

)
px(1− p)K+1−x (139)

= 1(
K+1

m

) K∑
x=0

(
K + 1− x

m

)(
K

x

)
px(1− p)K+1−x + 1(

K+1
m

) K+1∑
x=1

(
K + 1− x

m

)(
K

x− 1

)
px(1− p)K+1−x (140)

(Since when x = K + 1 and m > 0,
(

K + 1− x

m

)
= 0)

39



Published in Transactions on Machine Learning Research (November/2024)

= 1(
K+1

m

)( K∑
x=0

(
K − x

m

)(
K

x

)
px(1− p)K+1−x +

K∑
x=0

(
K − x

m− 1

)(
K

x

)
px(1− p)K+1−x

)
(141)

+ 1(
K+1

m

) K∑
x=0

(
K − x

m

)(
K

x

)
px+1(1− p)K−x

(Since
(

K + 1− x

m

)
=

(
K − x

m

)
+

(
K − x

m− 1

)
)

= 1(
K+1

m

)(
(1− p)EX(K) [

(
K −X

m

)
] + (1− p)EX(k) [

(
K −X

m− 1

)
]
)

+ 1(
K+1

m

)pEX(K) [
(

K −X

m

)
] (142)

= 1(
K+1

m

)(
EX(K) [

(
K −X

m

)
] + (1− p)EX(K) [

(
K −X

m− 1

)
]
)

(143)

= 1(
K+1

m

)((
K

m

)
(1− p)m + (1− p)

(
K

m− 1

)
(1− p)m−1

)
(144)

(By Induction Hypothesis) (145)

= 1(
K+1

m

)(
K + 1

m

)
(1− p)m (146)

= (1− p)m (147)

Hence, Eq. 127 holds for all K ≥ 1 and 0 ≤ i ≤ m ≤ K.

B.2.4 Main Result: Privacy Amplification Under a Small m

Lemma B.10 (Privacy amplification, m ≤ K−1
2 ). Consider using DaRRM (Algorithm 1) to solve Problem 1.1,

with i.i.d. mechanisms {Mi}K
i=1, pi = p, p′

i = p′, ∀i ∈ [K], the privacy allowance 1 ≤ m ≤ K−1
2 , m ∈ Z and

δ = ∆ = 0. Let the noise function be that

γDSub(l) =
{

1− 2h(l) ∀l ∈ {0, 1, . . . , K−1
2 }

2h(l)− 1 ∀l ∈ {K+1
2 , . . . , K}

(148)

where h : {0, 1, . . . , K} → [0, 1] and h(l) =
∑2m−1

i=m
(l

i)( K−l
2m−1−i)

( K
2m−1)

, ∀l ∈ {0, 1, . . . , K}, then Algorithm
DaRRMγDSub

is mϵ-differentially private.

Proof of Lemma B.10. First, note γDSub belongs to the “symmetric form family”. We show γDSub satisfies
the two sufficient conditions in Lemma B.7 and hence by Lemma B.7, DaRRMγDSub

is mϵ-differentially private.
Specifically, we consider h(l) =

∑2m−1
i=m

(l
i)( K−l

2m−1−i)
( K

2m−1)
, ∀l ∈ {0, 1, . . . , K} and 1 ≤ m ≤ K.

Two show the first condition is satisfied, let X(K−1) ∼ Binomial(K−1, p) and Y(K−1) ∼ Binomial(K−1, eϵp),
and consider p ∈ [0, 1

1+eϵ ].

EX(K−1) [h(X + 1)] = 1(
K

2m−1
) 2m−1∑

i=m

EX(K−1) [
(

X + 1
i

)(
K −X − 1
2m− 1− i

)
] (149)

= 1(
K

2m−1
) 2m−1∑

i=m

EX(K−1) [
(

X

i

)(
K −X − 1
2m− 1− i

)
+

(
X

i− 1

)(
K −X − 1
2m− 1− i

)
] (150)

(Since
(

X + 1
i

)
=

(
X

i

)
+

(
X

i− 1

)
I{i ≥ 1})

40



Published in Transactions on Machine Learning Research (November/2024)

= 1(
K

2m−1
) 2m−1∑

i=m

(
EX(K−1) [

(
X

i

)(
K − 1−X

2m− 1− i

)
] + EX(K−1) [

(
X

i− 1

)(
K − 1−X

(2m− 2)− (i− 1)

)
]
)

(151)

= 1(
K

2m−1
) 2m−1∑

i=m

((
K − 1
2m− 1

)(
2m− 1

i

)
pi(1− p)2m−1−i +

(
K − 1
2m− 2

)(
2m− 2
i− 1

)
pi−1(1− p)2m−1−i

)
(152)

(By Lemma B.9)

EX(K−1) [h(X)] = 1(
K

2m−1
) 2m−1∑

i=m

EX(K−1) [
(

X

i

)(
K −X

2m− 1− i

)
] (153)

(Since
(

K −X

2m− 1− i

)
=

(
K − 1−X

2m− 1− i

)
+

(
K − 1−X

2m− 2− i

)
)

= 1(
K

2m−1
) 2m−1∑

i=m

(
EX(K−1) [

(
X

i

)(
K − 1−X

2m− 1− i

)
] + EX(K−1) [

(
X

i

)(
K − 1−X

2m− 2− i

)
]I{i ≤ 2m− 2}

)
(154)

= 1(
K

2m−1
) 2m−1∑

i=m

((
K − 1
2m− 1

)(
2m− 1

i

)
pi(1− p)2m−1−i +

(
K − 1
2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−iI{i ≤ 2m− 2}

)
(155)

(By Lemma B.9)

Hence, following Eq. 155 and Eq. 152,

EX(K−1) [h(X + 1)− h(X)] (156)

= 1(
K

2m−1
)( 2m−1∑

i=m

(
K − 1
2m− 2

)(
2m− 2
i− 1

)
pi−1(1− p)2m−1−i −

2m−2∑
i=m

(
K − 1
2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−i

)
(157)

= 1(
K

2m−1
)( 2m−2∑

i=m−1

(
K − 1
2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−i −

2m−2∑
i=m

(
K − 1
2m− 2

)(
2m− 2

i

)
pi(1− p)2m−2−i

)
(158)

= 2m− 1
K

(
2m− 2
m− 1

)
pm−1(1− p)m−1 (159)

Similarly,

EY(K−1) [h(Y + 1)− h(Y )] = 2m− 1
K

(
2m− 2
m− 1

)
(eϵp)m−1(1− eϵp)m−1 (160)

Since p ∈ [0, 1
1+eϵ ], there is p(1− p) ≥ e−ϵeϵp(1− eϵp). Hence,

e(m−1)ϵEX(K−1) [h(X + 1)− h(X)] = 2m− 1
K

(
2m− 2
m− 1

)
e(m−1)ϵpm−1(1− p)m−1 (161)

≥ 2m− 1
K

(
2m− 2
m− 1

)
e(m−1)ϵ(e−ϵeϵp(1− eϵp))m−1 (162)

= 2m− 1
K

(
2m− 2
m− 1

)
(eϵp)m−1(1− eϵp)m−1 (163)

41



Published in Transactions on Machine Learning Research (November/2024)

= EY(K−1) [h(Y + 1)− h(Y )] (164)

implying

emϵEX(K−1) [h(X + 1)− h(X)] ≥ eϵEY(K−1) [h(Y + 1)− h(Y )] (165)

and the first condition is satisfied.

To show the second condition is satisfied, let X̂(K−1) ∼ Binom(K−1, 1−eϵ(1−p)) and Ŷ(K−1) ∼ Binom(K−
1, p), and consider p ∈ [ 1

1+e−ϵ , 1].

EX̂(K−1)
[h(X̂ + 1)] = 1(

K
2m−1

) 2m−1∑
i=m

(
EX̂(K−1)

[
(

X̂

i

)(
K − 1− X̂

2m− 1− i

)
] + EX̂(K−1)

[
(

X̂

i− 1

)(
K − 1− X̂

(2m− 2)− (i− 1)

)
]
)

(166)

= 1(
K

2m−1
) 2m−1∑

i=m

((
K − 1
2m− 1

)(
2m− 1

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−1−i (167)

+
(

K − 1
2m− 2

)(
2m− 2
i− 1

)
(1− eϵ(1− p))i−1(eϵ(1− p))2m−1−i

)
By Lemma B.9

and

EX̂(K−1)
[h(X̂)] = 1(

K
2m−1

) 2m−1∑
i=m

(
EX̂(K−1)

[
(

X̂

i

)(
K − 1− X̂

2m− 1− i

)
] + EX̂(K−1)

[
(

X̂

i

)(
K − 1− X̂

2m− 2− i

)
]I{i ≤ 2m− 2}

)
(168)

= 1(
K

2m−1
) 2m−1∑

i=m

((
K − 1
2m− 1

)(
2m− 1

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−1−i (169)

+
(

K − 1
2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−iI{i ≤ 2m− 2}

)
By Lemma B.9

Hence, following Eq. 167 and Eq. 169,

EX̂(K−1)
[h(X̂ + 1)− h(X̂)] (170)

= 1(
K

2m−1
)( 2m−1∑

i=m

(
K − 1
2m− 2

)(
2m− 2
i− 1

)
(1− eϵ(1− p))i−1(eϵ(1− p))2m−1−i (171)

−
2m−2∑
i=m

(
K − 1
2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−i

)
= 1(

K
2m−1

)( 2m−2∑
i=m−1

(
K − 1
2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−i (172)

−
2m−2∑
i=m

(
K − 1
2m− 2

)(
2m− 2

i

)
(1− eϵ(1− p))i(eϵ(1− p))2m−2−i

)
= 2m− 1

K

(
2m− 2
m− 1

)
(1− eϵ(1− p))m−1(eϵ(1− p))m−1 (173)

Similarly,

EŶ(K−1)
[h(Ŷ + 1)− h(Ŷ )] = 2m− 1

K

(
2m− 2
m− 1

)
pm−1(1− p)m−1 (174)

42



Published in Transactions on Machine Learning Research (November/2024)

Hence,

e(m+1)ϵEX̂(K−1)
[h(X̂ + 1)− h(X̂)] = e(m+1)ϵ 2m− 1

K

(
2m− 2
m− 1

)
(1− eϵ(1− p))m−1(eϵ(1− p))m−1 (175)

≥ 2m− 1
K

(
2m− 2
m− 1

)
(1− eϵ(1− p))m−1e(m−1)ϵ(1− p)m−1 (176)

= 2m− 1
K

(
2m− 2
m− 1

)
(eϵ − e2ϵ(1− p))m−1(1− p)m−1 (177)

Note that

eϵ − e2ϵ(1− p) = eϵ − e2ϵ + e2ϵp ≥ p (178)
⇐⇒ (eϵ + 1)(eϵ − 1)p ≥ eϵ(eϵ − 1) (179)

⇐⇒ p ≥ eϵ

eϵ + 1 = 1
1 + e−ϵ

(180)

and the condition needs to hold for p ∈ [ 1
1+e−ϵ , 1].

Therefore, following Eq. 177,

e(m+1)ϵEX̂(K−1)
[h(X̂ + 1)− h(X̂)] ≥ 2m− 1

K

(
2m− 2
m− 1

)
pm−1(1− p)m−1 (181)

= EŶ(K−1)
[h(Ŷ + 1)− h(Ŷ )] (182)

implying the second condition is satisfied.

Therefore, by Lemma B.7, DaRRMγDSub
is mϵ-differentially private.

B.3 Comparing the Utility of Subsampling Approaches

Intuitively, if we subsample 2m − 1 mechanisms, the utility is higher than that of the naïve subsampling
approach which outputs the majority based on only m mechanisms. To complete the story, we formally
compare the utility of outputting the majority of 2m−1 subsampled mechanisms (Theorem 4.1) and outputting
the majority of m subsampled mechanisms (simple composition, Theorem 2.2) in the i.i.d. mechanisms and
pure differential privacy setting, fixing the output privacy loss to be mϵ.
Lemma B.11. Consider Problem 1.1 with i.i.d. mechanisms {Mi}K

i=1, i.e., p = pi = Pr[Mi(D) = 1], p′ =
p′

i = Pr[Mi(D′) = 1],∀i ∈ [K]. Let γ1 : {0, 1, . . . , K} → [0, 1], γ2 : {0, 1, . . . , K} → [0, 1] be two functions that
are both symmetric around K

2 . If 1 ≥ γ1(l) ≥ γ2(l) ≥ 0,∀l ∈ {0, . . . , K}, then E(DaRRMγ1) ≤ E(DaRRMγ2).

Proof. Recall S = {S1, . . . , SK}, where Si ∼Mi(D), is the set of observed outcomes from the mechanisms
{Mi}K

i=1. By Definition 2.4, for any γ that is symmetric around K
2 , the error of DaRRMγ is

E(DaRRMγ) =
∣∣∣ Pr[DaRRMγ(D) = 1]− Pr[g(S) = 1]

∣∣∣ (183)

=
∣∣∣ K∑

l= K+1
2

(
γ(l) + 1

2(1− γ(l))
)
· αl +

K−1
2∑

l=0

1
2(1− γ(l)) · αl −

K∑
l= K+1

2

αl

∣∣∣ (184)

=
∣∣∣ K∑

l= K+1
2

(1
2γ(l)− 1

2

)
· αl +

K−1
2∑

l=0

(1
2 −

1
2γ(l)

)
· αl

∣∣∣ (185)

=
∣∣∣1
2

K∑
l= K+1

2

(1− γ(l)) · (αl − αK−l)
∣∣∣ (186)

43



Published in Transactions on Machine Learning Research (November/2024)

where αl =
(

K
l

)
pl(1− p)K−l, ∀l ∈ {0, 1, . . . , K} and recall p = Pr[Mi(D) = 1], ∀i ∈ [K].

For any l ≥ K+1
2 ,

1. If p = 0 or p = 1, αl = αK−l.

2. Otherwise, for p ∈ (0, 1),

(a) If p ≥ 1
2 ,

αl

αK−l
= pl(1− p)K−l

pK−l(1− p)l
= p2l−K(1− p)K−2l = ( p

1− p︸ ︷︷ ︸
≥1

)
2l −K︸ ︷︷ ︸

≥0 ≥ 1, ⇒ αl ≥ αK−l (187)

(b) If p < 1
2 ,

αl

αK−l
= ( p

1− p︸ ︷︷ ︸
≤1

)
2l −K︸ ︷︷ ︸

≥0 ≤ 1, ⇒ αl ≤ αK−l (188)

Hence, if p ≥ 1
2 , then αl ≥ αK−l,∀l ≥ K+1

2 . Since γ1(l) ≥ γ2(l),∀l ∈ {0, . . . , K}, 1− γ1(l) ≤ 1− γ2(l), and so

E(DaRRMγ1) =
K∑

l= K+1
2

1
2(1− γ1(l)) · (αl − αK−l) ≤

K∑
l= K+1

2

1
2(1− γ2(l)) · (αl − αK−l) = E(DaRRMγ2) (189)

Similarly, if p < 1
2 , then αl ≤ αK−l,∀l ≥ K+1

2 and

E(DaRRMγ1) =
K∑

l= K+1
2

1
2(1− γ1(l)) · (αK−l − αl) ≤

K∑
l= K+1

2

1
2(1− γ2(l)) · (αK−l − αl) = E(DaRRMγ2)) (190)

Therefore,

E(DaRRMγ1) ≤ E(DaRRMγ2) (191)

Since γDSub(l) ≥ γSub(l), ∀l ∈ {0, 1, . . . , K}, by Lemma B.11, E(DaRRMγDSub
) ≤ E(DaRRMγSub

) — that is,
outputting 2m− 1 mechanisms has a higher utility than outputting m mechanisms.

44



Published in Transactions on Machine Learning Research (November/2024)

C Details of Section 5: Optimizing the Noise Function γ in DaRRM

C.1 Deriving the Optimization Objective

For any γ function that is symmetric around K
2 , we can write the optimization objective as

Ep1,p2,...,pK∼T [E(DaRRMγ)] (192)
= Ep1,p2,...,pK ∼T [|Pr[DaRRMγ(D) = 1]− Pr[g(S) = 1]|] (193)

= Ep1,p2,...,pK ∼T

∣∣∣ K∑
l= K+1

2

(
αl · (γ(l) + 1

2(1− γ(l)))− αl

)
+

K−1
2∑

l=0
αl ·

1
2(1− γ(l))

∣∣∣
 (194)

= Ep1,p2,...,pK ∼T

∣∣∣ K−1
2∑

l=0
αl(

1
2γ(l)− 1

2) +
K∑

l= K+1
2

αl(
1
2 −

1
2γ(l))

∣∣∣
 (195)

The above follows by conditioning on L = l ∈ {0, 1, . . . , K}, i.e. the sum of observed outcomes in S

= Ep1,p2,...,pK ∼T

∣∣∣1
2

K∑
l= K+1

2

(αl − αK−l) (1− γ(l))
∣∣∣
 (196)

The above follows by symmetry of γ

Furthermore, notice the objective is symmetric around 0, and can be written as

Ep1,p2,...,pK∼T

1
2

K∑
l= K+1

2

(αl − αK−l) (1− γ(l))

 (197)

= 1
2Ep1,p2,...,pK ∼T

 K∑
l= K+1

2

(
(αl − αK−l)− (αl − αK−l)γ(l)

) (198)

= 1
2Ep1,p2,...,pK ∼T

 K∑
l= K+1

2

(αl − αK−l)


︸ ︷︷ ︸

:=A

−1
2Ep1,p2,...,pK ∼T

 K∑
l= K+1

2

(αl − αK−l)γ(l)


︸ ︷︷ ︸

:=B

(199)

Since expression A in Eq. 199 does not involve γ, we only need to optimize expression B in Eq. 199. That is,

− 1
2Ep1,p2,...,pK ∼T

 K∑
l= K+1

2

(αl − αK−l)γ(l)

 (200)

= −1
2

K∑
l= K+1

2

Ep1,p2,...,pK ∼T [(αl − αK−l)] · γ(l) (201)

Eq. 201 is the optimization objective we use in the experiments. We see the optimization objective is linear
in γ.

Note in the general setting, L(D) ∼ PoissonBinomial(p1, p2, . . . , pK), where recall L(D) is the sum of observed
outcomes on dataset D, and hence, αl = Pr[L(D) = l] is the pmf of the Poisson Binomial distribution at
l ∈ {0, 1, . . . , K}.

C.2 Practical Approximation of the Objective

Since the optimization objective in Eq. 200 requires taking an expectation over p1, . . . , pK , and this invovles
integrating over K variables, which can be slow in practice, we propose the following approximation to

45



Published in Transactions on Machine Learning Research (November/2024)

efficiently compute the objective. We start with a simple idea to compute the objective, by sampling pi’s
from [0, 1] and take an empirical average of the objective value over all subsampled sets of p1, . . . , pK as the
approximation of the expectation in Section C.2.1. However, we found this approach is less numerically stable.
We then propose the second approach to approximate the objective in Section C.2.2, which approximates the
integration over pi’s using the rectangular rule instead of directly approximating the objective value. We use
the second approximation approach in our experiments and empirically demonstrates its effectiveness. Note
approximating the optimization objective does not affect the privacy guarantee.

C.2.1 Approximation via Direct Sampling of pi’s

One straightforward way of efficiently computing an approximation to the optimization objective is as follows:

Algorithm 4 Straightforward Approximation of the Optimization Objective
1: Input: # mechanisms K ∈ N, # iterations T ∈ N, noise function γ : {0, 1, . . . , K} → [0, 1]
2: for t = 1, 2, . . . , T do
3: Sample p̂1, p̂2, . . . , p̂K ∼ T
4: L̂ ← PoissonBinomail(p̂1, . . . , p̂K)
5: α̂l ← Pr[L̂ = l],∀l{0, . . . , K}
6: gt ← − 1

2
∑K

l= K+1
2

(α̂l − α̂K−l) · γ(l)
7: end for
8: Return 1

T

∑T
t=1 gt

However, we found this approximation is not very numerically stable even for T = 10000 in the experiments
and so we propose to adopt the second approximation as follows.

C.2.2 Approximating the Integration Over pi’s

Consider the following surrogate objective:

−1
2

K∑
l= K+1

2

∫ 1

0.5

∫ 1

0.5
· · ·

∫ 1

0.5
(αl − αK−l)dp1dp2 . . . dpK · γ(l) (202)

where we approximate the integration instead of directly approximating the objective value. The approximation
of the integration is based on the rectangular rule and that the Poisson Binomial distribution is invariant to
the order of its probability parameters.

First, we discretize the integration over pi’s: pick τ = 50 points representing probabilities between [0.5, 1)
with equal distance θ = 0.5

τ . Denote this set of points as W. We pick only τ = 50 samples to ensure the
distance between each sample, i.e., θ, is not too small; or this can cause numerical instability. For each
l ∈ {K+1

2 , K+1
2 + 1, . . . , K}, we want to compute an approximated coefficient for γ(l) as follows:∫ 1

0.5

∫ 1

0.5
· · ·

∫ 1

0.5
(αl − αK−l)dp1dp2 . . . dpK ≈

∑
p1∈W

∑
p2∈W

· · ·
∑

pK∈W
(αl − αK−l) (203)

which approximates integration over a K-dimensional grid WK .

The idea is then to sample points from this K-dimensional grid WK and compute an empirical mean of the
integration based on the sample probabilities for p1, . . . , pK from WK as the approximation of the integration
in the objective.

Let (s1, s2, . . . , sK) be randomly sampled probability values from WK and we want to compute (αl − αK−l)
for all l based on (p1, . . . , pK) = (s1, . . . , sK). To apply the rectangular rule, since the grid of probabilities
is K-dimensional, the weight of (αl − αK−l) in the approximate integration is θK . Furthermore, observe

46



Published in Transactions on Machine Learning Research (November/2024)

that αl is the pmf at l from a Poison Binomial distribution in our case, and PoissonBinomial(p1, . . . , pK) dist.∼
PoissonBinomial(π(p1, . . . , pK)), where π denotes a permutation of p1, . . . , pK and dist.∼ denotes “the same
distribution”. Hence, with a single probability sample (s1, . . . , sK), we can indeed compute αl−αK−l for each
l at K! points from the grid WK , since they all have the same value. Therefore, we should set the weight of
αl − αK−l in the approximate integration as w = θK ·K!. Furthermore, since the order of (p1, . . . , pK) does
not affect the objective value, there is a total of (τ choose K with replacement) =

(
τ+K−1

K

)
:= P different

points in the grid WK .

In summary, the integration based approximation of the objective proceeds as follows:

Algorithm 5 Integration Based Approximation of the Optimization Objective
1: Input: # mechanisms K ∈ N, # iterations T = 10000 ∈ N, noise function γ : {0, 1, . . . , K} → [0, 1],

τ = 50: # samples between [0.5, 1) to form the set W
2: θ ← 0.5/τ distance between samples
3: w ← θK ·K!
4: P ←

(
τ+K−1

K

)
5: for t = 1, 2, . . . , T do
6: Sample probabilities (s1, s2, . . . , sK) ∼ WK

7: L̂ ∼ PoissonBinomial(s1, s2, . . . , sK)
8: α̂l ← Pr[L̂ = l],∀l ∈ {0, 1, . . . , K}
9: gt ← − 1

2
∑K

l= K+1
2

w · (α̂l − α̂K−l) · γ(l)
10: end for
11: Return P

N

∑T
t=1 gt

C.3 Reducing # Constraints from ∞ to a Polynomial Set

Lemma C.1 (Restatement of Lemma 5.1). Consider using DaRRM (Algorithm 1) to solve Problem 1.1 and
let f be the privacy cost objective as defined in Lemma 3.4. Given an arbitrary noise function γ, let the worst
case probabilities be

(p∗
1, . . . , p∗

K , p′∗
1 , . . . , p′∗

K) = arg max
{(pi,p′

i
)}K

i=1

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ)

Then, each pair (p∗
i , p′∗

i ),∀i ∈ [K] satisfies

(p∗
i , p′∗

i ) ∈ {(0, 0), (1, 1), (0, ∆), (∆, 0), (1−∆, 1),

(1, 1−∆), (eϵ + ∆
eϵ + 1 ,

1−∆
eϵ + 1), (1−∆

eϵ + 1 ,
eϵ + ∆
eϵ + 1 )}

Furthermore, when δ > 0, there exists a finite vector set P of size O(K7) such that if β =
max{(pi,p′

i
)}K

i=1∈P f(p1, . . . , pK , p′
1, . . . , p′

K ; γ), then f(p∗
1, . . . , p∗

K , p′∗
1 , . . . , p′∗

K ; γ) ≤ β. When δ = 0, the size of
P can be reduced to O(K3).

47



Published in Transactions on Machine Learning Research (November/2024)

Figure 5: An illustration of the feasible region Fi.

Proof. Part I: Reducing # privacy constraints from ∞ to exponentially many.

Consider (pi, p′
i) for an arbitrary i ∈ [K] and fixing (pj , p′

j),∀j ≠ i. Given any noise function γ, recall the
privacy cost objective f(p1, . . . , pK , p′

1, . . . , p′
K ; γ) (see Lemma 3.4), is

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ) =
K−1

2∑
l=0

(emϵα′
l − αl) · γ(l) +

K∑
l= K+1

2

(αl − emϵα′
l) · γ(l)

and the privacy constraints are of the form

f(p1, . . . , pK , p′
1, . . . , p′

K ; γ) ≤ emϵ − 1 + 2δ

where recall that αl = Pr[L(D) = l] is a function of {pi}K
i=1 and α′

l = Pr[L(D′) = l] is a func-
tion of {p′

i}K
i=1, ∀l ∈ {0, 1, . . . , K} and L(D), L(D′) are the sum of observed outcomes on neighboring

datasets D and D′. By Lemma 3.4, γ needs to make the above privacy constraint hold for all possible
{(pi, p′

i)}K
i=1 to make DaRRMγ (mϵ, δ)-differentially private. This is equivalent to saying, γ needs to ensure

max{(pi,p′
i
}K

i=1
f(p1, . . . , pK , p′

1, . . . , p′
K ; γ) ≤ emϵ − 1 + 2δ.

Notice that the sum of observed outcomes follows a Poisson Binomial distribution, i.e., L(D) ∼
PoissonBinomial(p1, . . . , pK) and L(D′) ∼ PoissonBinomial(p′

1, . . . , p′
K). Hence, by the pmf of the Pois-

son Binomial distribution6, the privacy cost objective f is linear in each pi and p′
i, fixing all (pj , p′

j), ∀j ̸= i.
Since each mechanism Mi is (ϵ, ∆)-differentially private, by definition, (pi, p′

i) satisfies all of the following:

pi ≤ eϵp′
i + ∆, p′

i ≤ eϵp + ∆
1− pi ≤ eϵ(1− p′

i) + ∆, 1− p′
i ≤ eϵ(1− pi) + ∆

That is, (pi, p′
i) lies in a feasible region Fi (see Figure 5). Note the constraints on (pi, p′

i), that
is, the boundaries of Fi, are linear in pi and p′

i. And so the optimization problem (p∗
i , p′∗

i ) =
arg max(pi,p′

i
) f(p1, . . . , pK , p′

1, . . . , p′
K ; γ), which finds the worst case probabilities in (pi, p′

i), is a Linear
Programming (LP) problem in (pi, p′

i) for i ∈ [K]. This implies (p∗
i , p′∗

i ) has to be on one of the eight corners
of Fi — that is (p∗

i , p′∗
i ) ∈ {(0, 0), (1, 1), (0, ∆), (∆, 0), (1−∆, 1), (1, 1−∆), ( eϵ+∆

eϵ+1 , 1−∆
eϵ+1 ), ( 1−∆

eϵ+1 , eϵ+∆
eϵ+1 )} := C.

Since all (pi, p′
i) and (pj , p′

j), for i ̸= j, are independent, we can search for the worst case probabilities by
searching for (p∗

i , p′∗
i ) ∈ C, instead of searching for (pi, p′

i) ∈ Fi,∀i ∈ [K]. Therefore, the infinitely many
privacy constraints are now reduced to only 8K to optimize for the best γ function that maximizes the utility
of DaRRMγ , while ensuring the output is mϵ-differentially private.

Part II: Reducing # privacy constraints from exponentially many to a polynomial set.

To further reduce the number of privacy constraints in optimization, observe that the Poisson Binomial
distribution is invariant under the permutation of its parameters. That is, PoissonBinomial(p1, . . . , pK) dist.∼

6See, e.g. https://en.wikipedia.org/wiki/Poisson_binomial_distribution, for the pmf of Poisson Binomial distribution.

48

https://en.wikipedia.org/wiki/Poisson_binomial_distribution


Published in Transactions on Machine Learning Research (November/2024)

PoissonBinomial(π(p1, . . . , pK)), for some permutation π and dist.∼ means “follows the same distribution”.
Similarly, PoissonBinomial(p′

1, . . . , p′
K) dist.∼ PoissonBinomial(π(p′

1, . . . , p′
K)).

The above observation implies if we have one privacy constraint f(p1 = v1, . . . , pK = vK , p′
1 = v′

1, . . . , p′
K =

v′
K ; γ) ≤ emϵ − 1 + 2δ, for some {(vi, v′

i)}K
i=1 ∈ CK , then any privacy constraint f(p1 = s1, . . . , pK = sK , p′

1 =
s′

1, . . . , p′
K = s′

K ; γ) ≤ emϵ − 1 + 2δ, where (s1, . . . , sK) = π1(v1, . . . , vK), (s′
1, . . . , s′

K) = π(v′
1, . . . , v′

K), for
permutations π1 and π2, is redundant.

Therefore, there is a vector set P , where each probability vector (p1, . . . , pK , p′
1, . . . , p′

K) in P is constructed by
setting (p1, p′

1), (p2, p′
2), . . . , (pK , p′

K) = (v1, v2, . . . , vK), where vi ∈ C,∀i ∈ [K], such that vectors constructed
by (p1, p′

1), (p2, p′
2), . . . , (pK , p′

K) = π(v1, v2, . . . , vK) is not in P. Note |P| = (8 chooses K with replacement)
=

(
K+8−1

K

)
= O(K7). If we can restrict our search for the worst case probabilities to this set P — that

is, solving for β := max{(pi,p′
i
)}K

i=1∈P f(p1, . . . , pK , p′
1, . . . , p′

K ; γ), then f(p∗
1, . . . , p∗

K , p′∗
1 , . . . , p′∗

K ; γ) ≤ β. This
implies we only need O(K7) privacy constraints to optimize for the best noise function γ in DaRRM, while
making sure DaRRMγ is mϵ-differentially private.

Note if ∆ = 0, i.e., the mechanism Mi’s are pure differentially private, the feasible region Fi in which (pi, p′
i)

lies has only 4 corners instead of 8. This implies (p∗
i , p′∗

i ) ∈ C = {(0, 0), (1, 1), ( eϵ

eϵ+1 , 1
eϵ+1 ), ( 1

eϵ+1 , eϵ

eϵ+1 )}.
Hence, in this case, |P| = (4 choose K with replacement) =

(
K+4−1

K

)
= O(K3), which implies we only need

O(K3) privacy constraints to optimize for the best noise function γ in DaRRM.

49



Published in Transactions on Machine Learning Research (November/2024)

D Full Experiment Results

D.1 Optimized γ in Simulations

D.1.1 Comparison Using General Composition

The general composition (Theorem 2.3) indicates less total privacy loss than simple composition (Theorem 2.2)
when the number of folds, m, is large, or when the failure probability δ is large. To enable meaningful
comparison against general composition, we consider a larger K and a larger failure probability δ.

Consider K = 35, ϵ = 0.1, ∆ = 10−5. By general composition, if one outputs the majority of M subsampled
mechanisms for some M < K, the majority output is (ϵopt, δopt)-differentially private, where

ϵopt = min
{

Mϵ,
(eϵ − 1)ϵM

eϵ + 1 + ϵ

√
2M log(e +

√
Mϵ2

δ′ ), (eϵ − 1)ϵM
eϵ + 1 + ϵ

√
2M log( 1

δ′ )
}

, δopt = 1− (1− δ)M (1− δ′)

for some δ′ ≥ 0. We set this as the privacy guarantee of all majority ensembling algorithms. That is, if we
want the majority output to be (mϵ, δ)-differentially private, we set

m = ϵopt

ϵ
= min

{
M,

(eϵ − 1)M
eϵ + 1 +

√
2M log(e +

√
Mϵ2

δ′ ), (eϵ − 1)M
eϵ + 1 +

√
2M log( 1

δ′ )
}

and δ = 1− (1− δ)M (1− δ′) accordingly. The parameters τ and λ to compute pconst in RR (see Section A.1)
are set to be

τ = min
{

K,
(eϵ − 1)K

eϵ + 1 +

√
2K log(e +

√
Kϵ2

δ′ ), (eϵ − 1)K
eϵ + 1 +

√
2K log( 1

δ′ )
}

and λ = 1− (1− δ)K(1− δ′).

In the experiments, we consider M = {10, 13, 15, 20} and δ′ = 0.1; and γopt is computed using a uniform prior
T .

All values of the parameters of the private ensembling algorithms we use in the experiment are listed in the
table:

# Subsampled mechanisms M 10 13 15 20
Privacy allowance m 6.4521 7.5742 8.2708 9.8823

Parameter of constant γ τ 14.0328 14.0328 14.0328 14.0328
Parameter of constant γ λ 0.1003 0.1003 0.1003 0.1003

Overall privacy loss mϵ 0.6452 0.7574 0.8271 0.9882
Overall failure probability δ 0.1001 0.1001 0.1001 0.1002

Table 3: All parameter values. Note that all the private ensembling algorithms we compare in the experiment
is required to be (mϵ, δ)-differentially private. Here, K = 35, ϵ = 0.1, ∆ = 10−5 and δ′ = 0.1.

50



Published in Transactions on Machine Learning Research (November/2024)

0

0.5

1
M = 10 M = 13

0 17.5 350

0.5

1
M = 15

0 17.5 35

M = 20

Support l {0, 1, . . . , K}

 v
al

ue
s

Shape of  functions

0.00

0.05

0.10
M = 10

0.00

0.05

M = 13

0.00

0.05

M = 15

0.00

0.02

0.04

M = 20

 functions

Er
ro

r

(DaRRM )

Figure 6: Plots of the shape and E(DaRRMγ) of different γ functions: the optimized γSub, and the baselines
γSub (corresponding to subsampling) and γconst (corresponding to RR). Here, K = 35, M ∈ {10, 13, 15, 20},
∆ = 10−5, ϵ = 0.1, δ′ = 0.1.

D.1.2 Comparison in Pure Differential Privacy Settings

Consider the pure differential privacy setting, where ∆ = δ = 0. Note in this setting, it is known that simple
composition is tight.

To compute an optimized γopt in DaRRM, since we have shown the number of constraints is O(K3) if
∆ = δ = 0 (see Lemma 5.1), we can set K to be larger. Here, we present results for K ∈ {11, 101} and
ϵ = 0.1.

Again, we compare the shape of different γ and the corresponding E(DaRRMγ) under those γ functions, fixing
the total privacy loss to be mϵ. γopt is computed using a uniform prior T .

Since the subsampling mechanism from Section 4 with privacy amplification applies to this setting, we
compare four different γ noise functions here:

1. γopt (Ours): optimized γ function using our optimization framework

2. γSub (Baseline): the γ function that corresponds to outputting the majority of m out K subsampled
mechanisms

3. γDSub (Baseline): the γ function that corresponds to outputting 2m− 1 subsampled mechanisms
from Theorem 4.1, aka., Double Subsampling (DSub)

4. γconst (Baseline): the constant γ function that corresponds to the classical Randomized Response
(RR) algorithm

Setting 1. K = 11, m ∈ {1, 3, 5, 7, 9, 11}.

51



Published in Transactions on Machine Learning Research (November/2024)

0

0.5

1
m = 1 m = 3

0

0.5

1
m = 5 m = 7

0 5.5 110

0.5

1
m = 9

0 5.5 11

m = 11

Support l {0, 1, . . . , K}

 v
al

ue
s

Shape of  functions

0.0

0.1

0.2
m = 1

0.0

0.1

m = 3

0.00

0.05

0.10
m = 5

0.00

0.05

m = 7

0.00

0.02

m = 9

0.05

0.00

0.05
m = 11

 functions
Er

ro
r

(DaRRM )

Figure 7: Plots of shape and E(DaRRMγ) of different γ functions: the optimized γOpt, the baselines γSub and
γDSub (Theorem 4.1), and the constant γconst (corresponding to RR). Here, K = 11, m ∈ {1, 3, 5, 7, 9, 11},
ϵ = 0.1 and δ = ∆ = 0. Note when m ∈ {7, 9}, the cyan line (γDSub) and the red line (γopt) overlap. When
m = 11, all lines overlap. Observe that when m ≥ K+1

2 , that is, m ∈ {7, 9, 11} in this case, the above plots
suggest both γopt and γDSub achieve the minimum error at 0. This is consistent with our theory.

Setting 2. K = 101, m ∈ {10, 20, 30, 40, 60, 80}.

0

0.5

1
m = 10 m = 20

0

0.5

1
m = 30 m = 40

0 50.5 1010

0.5

1
m = 60

0 50.5 101

m = 80

Support l {0, 1, . . . , K}

 v
al

ue
s

Shape of  functions

0.00

0.05

0.10

m = 10

0.00

0.05

0.10
m = 20

0.00

0.05

0.10 m = 30

0.00

0.05

m = 40

0.00

0.02

0.04

m = 60

0.00

0.01

0.02

m = 80

 functions

Er
ro

r

(DaRRM )

Figure 8: Plots of shape and E(DaRRMγ) of different γ functions: the optimized γOpt, the baselines
γSub and γDSub (Theorem 4.1), and the constant γconst (corresponding to RR). Here, K = 101, m ∈
{10, 20, 30, 40, 60, 80}, ϵ = 0.1 and δ = ∆ = 0.

52



Published in Transactions on Machine Learning Research (November/2024)

D.1.3 Comparison Using Different Prior Distributions

When optimizing γ that maximizes the utility in DaRRM, recall that the objective takes an expectation
over pi’s for pi ∼ T , where T is some distribution and pi = Pr[Mi(D) = 1]. The previous experiments
assume we do not have access to any prior knowledge about pi’s and hence T is the uniform distribution, i.e.,
Uniform([0, 1]). However, when one has knowledge about the mechanisms, one can set a proper prior T to
further maximize the utility of DaRRM.

In this section, let TU denote Uniform([0, 1]) and we present results considering a different prior distribution,
which we call TP , as follows. Suppose our prior belief is that each mechanism Mi has a clear tendency towards
voting 0 or 1, i.e., pi is far from 0.5. Let TP be Uniform([0, 0.3] ∪ [0.7, 1]).

To optimize γ under TP , we change the approximate optimization objective in Eq. 202, which optimizes γ
under TU , to be the following,

−1
2

K∑
l= K+1

2

∫ 1

0.7

∫ 1

0.7
· · ·

∫ 1

0.7
(αl − αK−l)dp1dp2 . . . dpK · γ(l) (204)

Setting. K = 11, m ∈ {3, 5}, ϵ = 0.1, δ = ∆ = 0.

We compare the shape and E(DaRRMγ) of different γ functions:

1. γopt−U denote the γ function optimized under pi ∼ TU

2. γopt−P denote the γ function optimized under pi ∼ TP

3. γSub, corresponding to the subsampling baseline

4. γconst, corresponding to the RR baseline

Note when we compute the error, we take the expectation w.r.t. the actual pi distributions, regardless of the
prior used to optimize γ. In the experiments, we consider three different actual pi distributions:"

1. “Actual: Uniform([0, 1])”: pi ∼ TU ,∀i ∈ [K]

2. “Actual: pi = 0.5”: pi = 0.5,∀i ∈ [K]
This setting implies the mechanisms do not have a clear majority

3. “Actual: Uniform([0, 0.1])”: pi ∼ Uniform([0, 0.1]),∀i ∈ [K]
This setting implies the mechanisms have a clear majority (i.e., 0)

Since our prior TP is closer to Uniform([0, 0.1]) (i.e., there is a clear majority), we would expect
E(DaRRMγopt−P

) to be the lowest when pi ∼ Uniform[0, 0.1], but to be higher than E(DaRRMγopt−U
) when

pi ∼ Uniform([0, 1]) or pi = 0.5. The results are presented in Figure 9.

D.2 Private Semi-Supervised Knowledge Transfer

D.2.1 More Details about the Baseline GNMax Papernot et al. (2018)

The GNMax aggregation mechanism for majority ensembling of non-private teachers proceeds as follows
(Section 4.1 of Papernot et al. (2018)): on input x,

Mσ(x) = arg max
i
{ni(x) +N (0, σ2)} (205)

where ni(x) is # teachers who vote for class i.

How to set σ in GNMax?

53



Published in Transactions on Machine Learning Research (November/2024)

0 5 10
Support l {0, 1, . . . , K}

0.25

0.50

0.75

1.00

 v
al

ue
s

Shape of  functions

 functions0.00

0.05

0.10

0.15

Er
ro

r

Actual: pi  Uniform([0, 1])

 functions0.000

0.025

0.050

0.075

Er
ro

r

Actual: pi = 0.5

 functions0.0

0.1

0.2

0.3

Er
ro

r

Actual: pi  Uniform([0, 0.1])
K=11, m=3, =0.1

0 5 10
Support l {0, 1, . . . , K}

0.25

0.50

0.75

1.00

 v
al

ue
s

Shape of  functions

 functions0.00

0.05

0.10

Er
ro

r

Actual: pi  Uniform([0, 1])

 functions0.00

0.02

0.04

0.06

Er
ro

r

Actual: pi = 0.5

 functions0.0

0.1

0.2

Er
ro

r

Actual: pi  Uniform([0, 0.1])
K=11, m=5, =0.1

Figure 9: Comparison of the shape and E(DaRRMγ) of different γ functions: 1) γ optimized under prior TU , 2)
γ optimized under prior TP , 3) γSub (corresponding to the subsampling baseline) and 4) γconst (corresponding
to the RR baseline). Here, K = 11, m ∈ {3, 5}, ϵ = 0.1. Observe that if the prior TP used in optimizing γ is
closer to the actual distribution of pi’s, there is additional utility gain (i.e., decreased error); otherwise, we
slightly suffer a utility loss (i.e., increased error), compared to optimize γ under the TU prior. Furthermore,
regardless of the choice of the prior distribution T in optimizing γ, DaRRMγ with an optimized γ achieves a
lower error compared to the the baselines.

54



Published in Transactions on Machine Learning Research (November/2024)

Section 4.1 of Papernot et al. (2018) states the GNMax mechanism is (λ, λ/σ2)-Renyi differentially private
(RDP), for all λ ≥ 1. RDP bounds can be converted to DP bounds as follows:
Theorem D.1 (RDP to DP (Theorem 5 of Papernot et al. (2018))). If a mechanism M guarantees (λ, ϵ)-RDP,
then M guarantees (ϵ + log 1/δ

λ−1 , δ)-differential privacy for δ ∈ (0, 1).

Therefore, GNMax with parameter σ2 guarantees ( λ
σ2 + log 1/δ

λ−1 , δ)-differential privacy, ∀λ ≥ 1. Given m, ϵ, ∆,
we want to choose λ and σ2 here so that the output of GNMax is (mϵ, m∆)-differentially private. Here,
δ = m∆.

We first obtain a valid range of λ. Since mϵ ≥ 0, λ
σ2 + log 1/δ

λ−1 ≥ 0 and so λ ≥ log 1/δ
mϵ + 1 := λmin. And

σ2 = λ

mϵ− log 1/δ
λ−1

. Since the smaller σ2 is, the higher the utility, we perform a grid search over λ ∈ [λmin, 500],

with discretized λ values of equal distance 0.5, to find the minimum σ2
min. For the (mϵ, m∆) values used in

the experiments, we observe σ2 decreases first and then increases as λ increases, as shown in Figure 10. The
λ and σmin values in the RDP bound of Gaussian noise to compute the privacy loss of GNMax’s output we
use in the experiments are presented in Table 4.

100 200 300 400 500
400
600
800

1000
1200
1400
1600
1800
2000

2

Dataset: MNIST

100 200 300 400 500
600
800

1000
1200
1400
1600
1800
2000

2

Dataset: Fashion-MNIST

Figure 10: Plots of λ vs. σ2 in the Gaussian RDP privacy bound. The goal is to choose a λ value that
minimizes σ2. It is not hard to see the value of σ2 decreases at first and then increases as λ increases.

Privacy Loss Per Query
(mϵ, m∆) λ σmin

MNIST (0.2676, 0.0003) 34.31 21.46
Fashion-MNIST (0.2556, 0.0003) 35.74 22.46

Table 4: Parameters of the RDP bound of Gaussian noise to compute the privacy loss of GNMax’s output.

A Note on the Data-dependent Privacy Loss Bound

Papernot et al. (2018) gives a potentially tighter data-dependent bound on the privacy loss using GNMax
to output the majority of non-private teacherss votes. We give a clean pseudo-code on computing the
data-dependent privacy loss bound in Algorithm 6, based on the lemmas and theorems in Papernot et al.
(2018). Given privacy parameters σ, λ and the teacher votes per class {ni}C

i=1 for C classes, the data-dependent
bound can be empirically evaluated and compared against the Gaussian privacy loss bound. The smaller
one is the final privacy loss. We empirically find that the condition of the data-dependent bound (line 8
in Algorithm 6) is not satisfied when K and the number of classes C are small, e.g., K = 11, C = 2 as in
our case, even if all teachers agree on the same output. And so in the experiments, we can only apply the
Gaussian privacy loss bound (line 14).

D.2.2 Additional Results for Private Semi-Supervised Knowledge Transfer

m = 1.

55



Published in Transactions on Machine Learning Research (November/2024)

Algorithm 6 Compute Tighter Privacy Loss
1: Input: Std. of Gaussian noise σ, Privacy parameter λ, # teachers K, # classes C, # votes per class
{ni}C

i=1
2: B ← {} bound candidates
3: for i = 1, 2, . . . , K do
4: q(i) ← 1

2
∑

i ̸=i∗ erfc( ni∗ −ni

2σ )
5: µ

(i)
2 ← σ ·

√
log 1/q(i), µ

(i)
1 ← µ

(i)
2 + 1

6: ϵ
(i)
1 ←

µ
(i)
1

σ2 , ϵ
(i)
2 ←

µ
(i)
2

σ2

7: q
(i)
ub ← exp((µ(i)

2 − 1)ϵ
(i)
2 )/( µ

(i)
1

µ
(i)
1 −1

· µ
(i)
2

µ
(i)
2 −1

)µ
(i)
2

8: if q(i) < 1 and µ
(i)
1 ≥ λ and µ2 > 1 and q(i) ≤ q

(i)
ub then

9: A(i) ← (1− q(i))/(1− q(i) · exp(ϵ(i)
2 )

µ
(i)
2 −1

µ
(i)
2 )

10: B(i) ← exp(ϵ(i)
1 )/(q(i))

1
µ

(i)
1 −1

11: DataDependentBound← 1
λ−1 ·

(
(1− q(i)) · (A(i))λ−1 + q(i) · (B(i))λ−1

)
12: B ← B ∪DataDependentBound
13: else
14: GaussianBound← λ

σ2

15: B ← B ∪GaussianBound
16: end if
17: end for
18: Return minB

Dataset # Queries

Privacy loss
per query

(ϵquery, δquery)

Total privacy loss
over Q queries
(ϵtotal, δtotal)

MNIST
Q = 20

(0.0892, 0.0001)
(1.704, 0.002)

Q = 50 (2.837, 0.005)
Q = 100 (4.202, 0.010)

Fashion
MNIST

Q = 20
(0.0852, 0.0001)

(1.620, 0.002)
Q = 50 (2.695, 0.005)
Q = 100 (3.988, 0.010)

Table 5: The privacy loss per query to the teachers and the total privacy loss over Q queries. Note the total
privacy loss is computed by general composition, where we set δ′ = 0.0001.

Dataset MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.54 (0.11) 0.68 (0.07) 0.74 (0.08)
Q = 50 0.51 (0.07) 0.67 (0.05) 0.66 (0.05)
Q = 100 0.57 (0.03) 0.71 (0.03) 0.69 (0.04)

Dataset Fashion-MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.56 (0.10) 0.92 (0.05) 0.89 (0.06)
Q = 50 0.52 (0.05) 0.89 (0.04) 0.92 (0.03)
Q = 100 0.56 (0.04) 0.89 (0.04) 0.91 (0.04)

Table 6: Accuracy of the predicted labels of Q query samples on datasets MNIST (on the left) and
Fashion-MNIST (on the right). We report the mean and one std. in parentheses over 10 random draws of the
query samples from the test dataset. Note each prediction on the query sample is (ϵtotal, δtotal)-differentially
private. Note in this case where m = 1, by Lemma 3.2, subsampling achieves the optimal error/utility. Hence,
there is not much difference in terms of accuracy between DaRRMγSub

and DaRRMγopt as expected.

m = 5.

56



Published in Transactions on Machine Learning Research (November/2024)

Dataset # Queries

Privacy loss
per query

(ϵquery, δquery)

Total privacy loss
over Q queries
(ϵtotal, δtotal)

MNIST
Q = 20

(0.4460, 0.0005)
(8.920, 0.010)

Q = 50 (18.428, 0.025)
Q = 100 (28.926, 0.049)

Fashion
MNIST

Q = 20
(0.4260, 0.0005)

(8.520, 0.010)
Q = 50 (17.398, 0.025)
Q = 100 (27.223, 0.049)

Table 7: The privacy loss per query to the teachers and the total privacy loss over Q queries. Note the total
privacy loss is computed by general composition, where we set δ′ = 0.0001.

Dataset MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.73 (0.11) 0.76 (0.09) 0.84 (0.07)
Q = 50 0.75 (0.07) 0.82 (0.04) 0.83 (0.04)
Q = 100 0.72 (0.04) 0.79 (0.05) 0.83 (0.03)

Dataset Fashion-MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.72 (0.10) 0.96 (0.04) 0.97 (0.04)
Q = 50 0.72 (0.08) 0.96 (0.02) 0.97 (0.02)
Q = 100 0.72 (0.06) 0.97 (0.01) 0.97 (0.01)

Table 8: Accuracy of the predicted labels of Q query samples on datasets MNIST (on the left) and
Fashion-MNIST (on the right). We report the mean and one std. in parentheses over 10 random draws of the
query samples from the test dataset. Note each prediction on the query sample is (ϵtotal, δtotal)-differentially
private. With the same per query privacy loss (and hence the same total privacy loss over Q samples),
DaRRMγopt achieves the highest accuracy compared to the other two baselines.

m = 7.

Dataset # Queries

Privacy loss
per query

(ϵquery, δquery)

Total privacy loss
over Q queries
(ϵtotal, δtotal)

MNIST
Q = 20

(0.6244, 0.0007)
(12.488, 0.014)

Q = 50 (28.392, 0.035)
Q = 100 (45.683, 0.068)

Fashion
MNIST

Q = 20
(0.5964, 0.0007)

(11.928, 0.014)
Q = 50 (26.738, 0.035)
Q = 100 (42.873, 0.068)

Table 9: The privacy loss per query to the teachers and the total privacy loss over Q queries. Note the total
privacy loss is computed by general composition, where we set δ′ = 0.0001.

Dataset MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.79 (0.07) 0.80 (0.09) 0.85 (0.08)
Q = 50 0.80 (0.05) 0.82 (0.05) 0.85 (0.04)
Q = 100 0.80 (0.04) 0.80 (0.04) 0.83 (0.03)

Dataset Fashion-MNIST

# Queries
GNMax

(Baseline)
DaRRMγSub

(Baseline)
DaRRMγopt

(Ours)
Q = 20 0.79 (0.07) 0.95 (0.04) 0.96 (0.04)
Q = 50 0.79 (0.05) 0.96 (0.03) 0.97 (0.03)
Q = 100 0.79 (0.03) 0.96 (0.02) 0.96 (0.02)

Table 10: Accuracy of the predicted labels of Q query samples on datasets MNIST (on the left) and
Fashion-MNIST (on the right). We report the mean and one std. in parentheses over 10 random draws of the
query samples from the test dataset. Note each prediction on the query sample is (ϵtotal, δtotal)-differentially
private. With the same per query privacy loss (and hence the same total privacy loss over Q samples),
DaRRMγopt

achieves the highest accuracy compared to the other two baselines.

57


	Introduction
	Our Contributions

	Background
	Related Work
	Preliminaries

	Private Majority Algorithms
	Provable Privacy Amplification
	Optimizing the Noise Function  in DaRRM
	Experiments
	Optimized  in Simulations
	Private Semi-Supervised Knowledge Transfer

	Conclusion
	Details of Section 3
	Randomized Response with Constant Probability pconst
	Proof of Lemma 3.1
	 Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4

	Details of Section 4: Provable Privacy Amplification
	Characterizing the Worst Case Probabilities
	Proof of Privacy Amplification (Theorem 4.1)
	Privacy Amplification Under A Large Privacy Allowance m K+12
	Privacy Amplification Under A Small Privacy Allowance m K-12
	Building Blocks
	Main Result: Privacy Amplification Under a Small m

	Comparing the Utility of Subsampling Approaches

	Details of Section 5: Optimizing the Noise Function  in DaRRM
	Deriving the Optimization Objective
	Practical Approximation of the Objective
	Approximation via Direct Sampling of pi's
	Approximating the Integration Over pi's

	Reducing # Constraints from  to a Polynomial Set

	Full Experiment Results
	Optimized  in Simulations
	Comparison Using General Composition
	Comparison in Pure Differential Privacy Settings
	Comparison Using Different Prior Distributions

	Private Semi-Supervised Knowledge Transfer
	More Details about the Baseline GNMax papernot2018patefollowup
	Additional Results for Private Semi-Supervised Knowledge Transfer



