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Abstract

Secure multi-party computation (MPC) allows parties to perform computations
on data while keeping that data private. This capability has great potential for
machine-learning applications: it facilitates training of machine-learning models
on private data sets owned by different parties, evaluation of one party’s private
model using another party’s private data, etc. Although a range of studies imple-
ment machine-learning models via secure MPC, such implementations are not
yet mainstream. Adoption of secure MPC is hampered by the absence of flexible
software frameworks that “speak the language” of machine-learning researchers
and engineers. To foster adoption of secure MPC in machine learning, we present
CRYPTEN: a software framework that exposes popular secure MPC primitives via
abstractions that are common in modern machine-learning frameworks, such as
tensor computations, automatic differentiation, and modular neural networks. This
paper describes the design of CRYPTEN and measure its performance on state-of-
the-art models for text classification, speech recognition, and image classification.
Our benchmarks show that CRYPTEN’s GPU support and high-performance com-
munication between (an arbitrary number of) parties allows it to perform efficient
private evaluation of modern machine-learning models under a semi-honest threat
model. For example, two parties using CRYPTEN can securely predict phonemes
in speech recordings using Wav2Letter [17] faster than real-time. We hope that
CRYPTEN will spur adoption of secure MPC in the machine-learning community.

1 Introduction

Secure multi-party computation (MPC; [301169])) allows parties to collaboratively perform computa-
tions on their combined data sets without revealing the data they possess to each other. This capability
of secure MPC has the potential to unlock a variety of machine-learning applications that are currently
infeasible because of data privacy concerns. For example, secure MPC can allow medical research
institutions to jointly train better diagnostic models without having to share their sensitive patient
data [27]] or allow social scientists to analyze gender wage gap statistics without companies having
to share sensitive salary data [42]]. The prospect of such applications of machine learning with
rigorous privacy and security guarantees has spurred a number of studies on machine learning via
secure MPC [38 141} 48,158,163l 166, 67]]. However, at present, adoption of secure MPC in machine
learning is still relatively limited considering its wide-ranging potential. One of the main obstacles to
widespread adoption is that the complexity of secure MPC techniques puts them out of reach for most
machine-learning researchers, who frequently lack in-depth knowledge of cryptographic techniques.

To foster the adoption of secure MPC techniques in machine learning, we present CRYPTEN: a
flexible software framework that aims to make modern secure MPC techniques accessible to machine-
learning researchers and developers without a background in cryptography. Specifically, CRYPTEN
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provides a comprehensive tensor-computation library in which all computations are performed via
secure MPC. CRYPTEN’s API closely follows the API of the popular PyTorch framework for machine
learning [54} [55], which makes it easy to use for machine-learning practitioners. For example,
it provides automatic differentiation and a modular neural-network package. CRYPTEN assumes
an semi-honest threat model [30, §2.3.2] and works for an arbitrary number of parties. To make
private training and inference efficient, CRYPTEN off-loads computations to the GPU and uses
high-performance communication libraries to implement interactions between parties.

The paper presents: (1) an overview of CRYPTEN’s design principles; (2) a description of the
design of CRYPTEN and of the secure MPC protocols implemented; (3) a collection of benchmark
experiments using CRYPTEN to run private versions of state-of-the-art models for text classification,
speech recognition, and image classification; and (4) a discussion of open problems and a roadmap
for the further development of CRYPTEN. Altogether, the paper demonstrates that CRYPTEN’s
flexible, PyTorch-like API makes private inference and training of modern machine-learning models
easy to implement and efficient. For example, CRYPTEN allows two parties to privately classify
an image [26} 135] in 2-3 seconds, or to securely make phoneme predictions for 16kHz speech
recordings [[17]] faster than real-time. We hope that CRYPTEN’s promising performance and ease-of-
use will foster the adoption of secure MPC by the machine-learning community, and pave the way
for a new generation of secure and private machine-learning systems.

2 Related Work

CRYPTEN is part of a large body of work that develops secure MPC protocols for machine learning;
see Appendix ??. Most closely related to our work is CryptGPU [[63], which implements an 2-out-of-3
replicated secret sharing protocol [4}137] on top of CRYPTEN. Like CRYPTEN, CryptGPU provides
security against semi-honest corruption, but it is limited to the three-party setting. CryptGPU is one
of several protocols optimized for the three-party setting. For example, Falcon [67] implements
a maliciously secure three-party MPC protocol, combining techniques from SecureNN [66] and
ABY3 [48]]. Falcon allows evaluation and training of convolutional networks such as AlexNet [40] and
VGG [62]. Other systems that work in this setting include Astra [[16]], Blaze [56], and CrypTFlow [41].

There also exists a family of two-party systems that, like CRYPTEN, assume a semi-honest threat
model. These systems include Gazelle [38]], Chameleon [58]], EzPC [15], MiniONN [45], Se-
cureML [49], PySyft [60], and Delphi [47]. XONN [59]] also works in the two-party setting but
provides malicious security. Compared to these systems, CRYPTEN provides a more flexible machine-
learning focused AP]E] that supports reverse-mode automatic differentiation, implements a rich set of
functions, and natively runs on GPUs. Moreover, CRYPTEN supports a wider range of use cases by
working with an arbitrary number of parties, and make communication between parties efficient via
communication primitives that were optimized for high-performance distributed computing.

3 Design Principles

In the development of CRYPTEN, we adopted the following two main design principles:

Machine-learning first API. CRYPTEN has a general purpose, machine-learning first API design.
Most other secure MPC frameworks [34] adopt an API that stays close to the underlying MPC
protocols. This hampers adoption of these frameworks in machine learning, for example, because
they do not natively support tensor operations (but only scalar operations) and because they lack
features that machine-learning researchers have come to expect, such as automatic differentiation.
Instead, CRYPTEN implements the tensor-computation API of the popular PyTorch machine-learning
framework [54], implements reverse-mode automatic differentiation, provides a modular neural-
network package with corresponding learning routines, and supports GPU computations. We aim to
allow developers to transition code from PyTorch to CRYPTEN by changing a single Python import.

Eager execution. CRYPTEN adopts an imperative programming model. This is different from
existing MPC frameworks, which generally implement compilers for their own domain-specific
languages [34]]. While compiler approaches have potential performance benefits, they slow down the

'CrypTFlow [41] also provides such an API by integrating deeply with TensorFlow []}, but unlike CRYPTEN,
it does not support PyTorch’s eager execution model [[55] or GPU support.
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Figure 1: High-level overview of the design of CRYPTEN. See text in Sectionfor details.

development cycle, make debugging harder, and prevent users from using arbitrary host-language
constructs [3]]. Instead, CRYPTEN follows the recent trend in machine learning away from graph
compilers [[L] to frameworks that eagerly execute computations [3}155], providing a better developer
experience. Yet, CRYPTEN is performant because it implements state-of-the-art secure MPC protocols
(for settings with arbitrary number of parties), because it uses PyTorch’s highly optimized tensor
library for most computations, because computations can be off-loaded to the GPU, and because it
uses communication libraries that were optimized for high-performance distributed computing.

4 Design Overview

Figure [T] gives an overview of CRYPTEN’s de-
sign. Parties perform computations using effi-
cient PyTorch tensor operations. Because se- # set up communication and sync random seeds:
cure MPC computations are integer computa- crypten.init()
tions that are not natively supported on GPUs,
CRYPTEN maps between integer and floating-  S°¢*6f share temsor:

N p. g X & x = torch. tensor ([1.0, 2.0, 3.01)
point computations on GPUs; see Section[5.3] x_enc = crypten.cryptensor(x, src=6)
The multi-party computations are implemented
on arithmetic and binary secret shares [22,[32]; # reveal secret shared tensor:

Section[5.1} Whereas many computations _occ = *-enc-get-plain-text(
see t y . p N assert torch.all_close(x_dec, x)
can be performed directly on arithmetic se-
cret shares, others require conversion between # add secret shared tensors:
arithmetic and binary secret shares (A2B) and Y = “’”h'te‘t‘”r([z'ﬁ’ 3'“"( 4.0 o
K . . y_enc = crypten.cryptensor(y, src=

back (B2A); see Section @ Some multi- [ °7 " "0 L) enc
party computations require interaction between xy_dec = xy_enc.get_plain_text()
parties via a communicator that employs the assert torch.all close(xy_dec, x + y)
high-performance communication primitives in
Gloo [31] and NCCL [51]. Some multi-party
computations require Beaver triples [7]], which
are supplied by a trusted third party (TTP)E|

import crypten, torch

Figure 2: Example of secret-sharing tensors, re-
vealing tensors, and private addition in CRYPTEN.

All secure computations are wrapped in a CrypTensor object that implements the PyTorch tensor
API and that provides reverse-mode automatic differentiation (autograd) to enable gradient-based
training of arbitrary (deep) learning models. Figure [2]illustrates CrypTensor creation, i.e., how
tensors are secret-shared and revealed, as well as a simple computation (addition). Note that each
party involved in the multi-party computation executes the same code. Whenever communication
between the parties is required (e.g., as part of private multiplications), the communication acts as a
synchronization point between the parties. The crypten.init () call is required once to establish
the communication channel. In the example, the input tensor for the creation of the arithmetic secret
share is provided party src=0, which indicates the rankE| of the party that supplies the data to be
secret-shared (the other parties executing this code may provide None as input).

2CRYPTEN adopts a trusted third party for generating Beaver triples for efficiency reasons, but we are
planning to add TTP-free solutions based on additive homomorphic encryption [52]] or oblivious transfer [39].
3CRYPTEN relies on MPI primitives for communication: each party knows their rank and the world size.



To enable deep-learning use cases, CRYPTEN
allows implementing neural networks following
PyTorch’s API. Figure [3] shows how to create
and encrypt neural networks and how to use # create model, criterion, and optimizer:

automatic differentiation in CRYPTEN. The ex- ™mcdel-enc = nn.Sequential( _
.. nn.Linear(sample_dim, hidden_dim),
ample assumes that some training sample and nn.ReLUC)
the associated target label are provided by the nn.Llinear (hidden_dim, num_classes),
party with rank O (note the value of src). As J.encryptO
illustrated by the example, CRYPTEN’s AP] criterion = nn.CrossEntropyloss()
.. optimizer = optimizer.SGD(

closc?ly fOHOW.S that. of PyTOI'Ch Indeed’ 11s model_enc.parameters(), lr=0.1, momentum=0.9,
possible to write a single training loop that can )
be used to train models using CRYPTEN or Py-
Torch without code changes. This makes it easy

target_enc = crypten.cryptensor(target, src=0)
FO adapt PyTOI‘Ch COde. to use secure MPC 'fOI‘ sample_enc = crypten.cryptensor(sample, src=0)
its computations, and it also makes debugging output_enc = model_enc(sample_enc)
easier. The appendix presents a table listing all
tensor functions that CrypTensor implements.

import crypten.optimizer as optimizer
import crypten.nn as nn

# perform prediction on sample:

# perform backward pass and update parameters:
model_enc.zero_grad()

To enable interoperability with existing machine- izzz—:x ;az;;igt‘)’“ (output_enc, target_enc)
learnmg platforms, neural' networks can be im- op timizer. s tepO)

ported into CRYPTEN via ONNX. Figure [

shows how a PyTorch model is imported

into CRYPTEN. The example illustrates how Figure 3: Example using neural networks and au-
CRYPTEN makes private inference with a tomatic differentiation in CRYPTEN.

ResNet-18 easy. The example in the figure also

demonstrates CRYPTEN’s GPU support. One import torchvision.datasets as datasets

caveat is that all parties must use the same type import torchvision.models as models

of device (i.e., CPU or GPU) for computations.  import torchvision.transforms as transforms

# download and set up ImageNet dataset:

transform = transforms.ToTensor ()

dataset = datasets.ImageNet(
imagenet_folder, transform=transform,

5 Secure Computations

To facilitate secure computations, CRYPTEN im-
p!ements arlthmetl,c secret Shanng [22’ 23] and # secret share pre—trained ResNet—18 on GPU:
binary secret sharing [32], as well as conver- podel = models.resnet18(pretrained=True)
sions between these two types of sharing [24]]. model_enc = crypten.nn. from_pytorch(
Arithmetic secret sharing is particularly well- model, datzset re1,
. . . . t .
suited for operations that are common in mod- - "¢FYPtO-cuda0
ern machine-learning models, such as matrix 4 perform inference on secret—shared images:
multiplications and convolutions. Binary se- for image in dataset:
cret sharing is required for evaluating certain image_enc = crypten.cryptensor(image).cudaQ
. . . output_enc = model_enc(image_enc)

other common functions, such as rectified lin- - )

. 3 A . output = output_enc.get_plain_text()
ear units. We provide a high-level overview of
CRYPTEN’s secure computation protocol here; a

detailed description is presented in the appendix. Figure 4: Private inference on secret-shared images
using a secret-shared ResNet-18 model on GPU.

5.1 Secret Sharing

Arithmetic secret sharing shares a scalar value « € Z/QZ, where Z/QZ denotes a ring with Q)
elements, across parties p € P. We denote the sharing of x by [z] = {[z],},ep, Where [z], € Z/QZ
indicates party p’s share of x. The shares are constructed such that their sum reconstructs the original
value z, thatis, x = > pEP [z], mod Q. To share a value z, the parties generate a pseudorandom
zero-share [18] with |P| random numbers that sum to 0. The party that possesses the value = adds z to
their share and discards . We use a fixed-point encoding to obtain = from a floating-point value, x .
To do so, we multiply 2 with a large scaling factor B and round to the nearest integer: © = | Bz ]|,
where B = 2~ for some precision of L bits. To decode a value, =, we compute xp =~ */B.

Binary secret sharing is a special case of arithmetic secret sharing that operates within the binary
field Z/27Z. A binary secret share, (x), of a value x is formed by arithmetic secret shares of the bits
of z, setting () =2. Each party p € P holds a share, (x),, such that z = P, p (z),, is satisfied.



Conversion from [x] to (x) is implemented by having the parties create a binary secret share of
their [z], shares, and summing the resulting binary shares. Specifically, the parties create a binary
secret share, ([z]},), of all the bits in [2],. Subsequently, the parties compute (z) = >_ p([z]p)

using a carry-lookahead adder in log, (|P|) log, (L) communication rounds [14} 21].

Conversion from () to [z] is achieved by computing [z] = 37| 2 [()(®)], where (z)®) denotes
the b-th bit of the binary share (x) and B is the total number of bits in the shared secret, (x). To
create an arithmetic share of a bit, the parties use secret shares, ([r(b)], (r®)), of random bits r(®).
The random bits are provided by the TTP, but we plan to add an implementation that generates them
off-line via oblivious transfer [39]. The parties use (r(*)) to mask (x)(*) and reveal the resulting
masked bit z(*). Subsequently, they compute [<x>(b)] = [r(b)] + 20 —2 [r(b)] 2®),

5.2 Secure Computation

Arithmetic and binary secret shares have homomorphic properties that can be used to implement
secure computations. All computations in CRYPTEN are based on private addition and multiplication.

Private addition of two arithmetically secret shared values, [z] = [z] + [y], is implemented by
having each party p sum their shares of [z] and [y]: each party p € P computes [z], = [x], + [y]p-

Private multiplication is implemented using random Beaver triples [[7]], ([a], [b], [¢]) with c=ab, that
are provided by the TTP. The parties compute [¢] = [z] — [a] and [0] = [y] — [b], and decrypt € and &
without information leakage due to the masking. They compute the result [z][y] = [¢]+€[b]+[a]d+ €6,
using trivial implementations of addition and multiplication of secret shares with public values.

Linear functions are trivially implemented as combinations of private addition and multiplication.
This allows CRYPTEN to compute dot products, outer products, matrix products, and convolutions.

Non-linear functions are implemented using standard approximations that only require private addi-
tion and multiplication. Specifically, CRYPTEN evaluates exponentials using a limit approximation,
logarithms using Householder iterations [36], and reciprocals using Newton-Rhapson iterations.
This allows CRYPTEN to implement functions that are commonly used in machine-learning models,
including the sigmoid, softmax, and logistic-loss functions, as well as their gradients.

Comparators are implemented using a function that evaluates [z < 0] by: (1) converting [z] to a
binary secret-share (z); (2) computing its sign bit, (b) = (z) >> (L — 1); and (3) converting the
resulting bit to an arithmetic sharing [b]. This function allows CRYPTEN to implement arbitrary
comparators. For example, it evaluates [z < y] by computing [z] = [z] — [y] and evaluating [z < 0].
Similarly, CRYPTEN can evaluate: (1) the sign function via sign([z]) = 2[x > 0] —1; (2) the absolute
value function via |[z]| = [z] sign([z]); and (3) rectified linear units via ReLU([z]) = [z][z > 0].
CRYPTEN also supports multiplexing; to do so, it evaluates [c ? z : y] = [c][z] + (1 — [¢])[y].

Lemma 1. The CRYPTEN secure-computation protocol is secure against information leakage against
any static passive adversary corrupting up to |P| — 1 of the | P| parties involved in the computation.

The proof of this lemma follows trivially from [9} [11, 121} 24], and is given in the appendix. We adopt
a protocol that provides security under a semi-honest threat model because it enables a wide range of
use cases of secure machine learning, whilst being more efficient than maliciously secure protocols.

5.3 Off-loading Computations to the GPU

Hardware acceleration via GPUs is a critical component for training and inference in modern machine-
learning models. Akin to frameworks such as PyTorch [55]] and TensorFlow [1], CRYPTEN can
off-load computations to the GPU. On the GPU, it uses highly-optimized implementations for a range
of functions that are provided by CUDA libraries such as cuBLAS [19] and cuDNN [20].

Unfortunately, these libraries are designed for computations on floating-point numbers and do not
support the integer types required to perform computations on L-bit fixed-point numbers. Akin
to [63], we circumvent this problem by observing that for all integers a,b € Z N [—226 226] we
can compute the product ab using 64-bit floating-point representations and still recover the correct
value over the integers. Specifically, CRYPTEN splits each 64-bit variable into four components,
a = ap + 2'%a; + 232ay + 2%8a3, where each a; represents a 16-bit integer component. We
compute a product ab of 64-bit integers by summing 10 pairwise products of their 16-bit components.
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Figure 5: Benchmarks for inference with text-sentiment classification model on GPUs in CRYPTEN
and PyTorch. Left: Average wall-clock time per sample (in seconds). Middle: Number of bytes
communicated per sample, per party (in GB). Right: Number of communication rounds per sample.

The pairwise products of the 16-bit components are computed in parallel using highly optimized
floating-point CUDA kernels. The same approach is used for matrix multiplications and convolutions.
CRYPTEN further optimizes this approach by splitting into only 3 components of 22-bits each when
possible, which reduces the number of pairwise products required to 6 (see [63, Remark II.1]).

6 Benchmarks

To measure the performance of CRYPTEN, we performed experiments on three tasks: (1) text
classification using a linear model that learns word embeddings; (2) speech recognition using
the Wav2Letter model [17]]; and (3) image classification using residual networks [35] and vision
transformers [26]]. Because of space constraints, we focus on private inference using a secret-shared
model on secret-shared data here, but our benchmark results with private training are very similar.

We performed benchmark experiments on a proprietary cluster, testing inference on both CPUs (Intel
Skylake 18-core 1.6GHz) and GPUs (nVidia P100). We set the number of OpenMP threads to 1 in all
benchmarks. All experiments were performed with the parties running in separate processes on a
single machine. For GPU experiments, each party was assigned its own GPU. Although this setup is
faster than a scenario in which each party operates its own rnachineE] we believe our benchmark results
provide a good sense of CRYPTEN’s performance. We average computation times over 30 batches,
excluding the computation on the first batch as that computation may include CuDNN benchmarking.
Code reproducing the results of our experiments is available on https://crypten.ai.

In our benchmarks, we focus on comparing (ciphertext) CRYPTEN computation with (plaintext)
PyTorch computation. We refer the reader to [33| 163]] for benchmarks that compare CRYPTEN to
other secure MPC frameworks. Specifically, [33]] finds CRYPTEN is 11-18x faster than PySyft [60]]
and approximately 3 x faster than TF-Trusted [13] in MNIST classification [43] on CPU.

6.1 Text Classification

We performed text-sentiment classification experiments on the Yelp review dataset [70] using a model
that consists of a linear layer operating on word embeddings. The embedding layer contains 32-
dimensional embeddings of 519, 820 words, and the linear layer produces a binary output indicating
the sentiment of the review. We evaluated the model on GPUs, varying the batch size and the number
of parties participating. The normalized mean squared error (Ix—¥l*/|x||2) between the output of the
CRYPTEN model and that of its PyTorch counterpart was smaller than 4 - 10~ in all experiments.

Figure [5] presents the results of our experiments. The figure shows inference time per sample (in
seconds) as a function of the number of parties involved in the computation for varying batch sizes
(left); the amount of communication required per sample, per party (in GB); and the number of
communication rounds required per sample. We include results in which the number of parties is 1:
herein, we run the CRYPTEN protocol but involve no other parties, which implies that the single party
is running the protocol on unencrypted data. One-party results allow us to bisect different sources of
computational overhead: specifically, they separate overhead due to communication from overhead
due to fixed-point encoding, function approximations, and (lack of) sparse-matrix operations.

*Communication between GPUs in two machines connected via InfiniBand has approximately 20 x lower
throughput than communication between two GPUs in the same machine via NVLink (25GB/s versus 600GB/s).
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The results in Figure 5] show that CRYPTEN is about 2.5-3 orders of magnitude slower than PyTorch
in text-sentiment classification, depending on the number of parties involved. Most computational
overhead is the word embedding layer: whereas PyTorch can evaluate this layer efficiently via a
sparse matrix multiplication, CRYPTEN cannot do sparse lookups as they would reveal information
on the encrypted input. Instead, CRYPTEN performs a full matrix multiplication between the word-
count vector and the embedding matrix. Yet, text sentiment predictions are quite fast in CRYPTEN:
inference takes only 0.03 seconds per sample in the two-party setting with a batch size of 32.

The results also show that increasing the batch size is an effective way to reduce inference time
and communication per sample. The number of communication rounds is independent of the batch
size, which means communication rounds can be amortized by using larger batch sizes. The number
of bytes communicated is partly amortized as well because the size of weight tensors (e.g., in
linear layers) does not depend on batch size. The results also show that whereas the number of
communication rounds increases when moving from two-party to three-party computation, it remains
constant afterwards. The larger number of communication rounds for three-party computation stems
from the public division protocol, which requires additional communication rounds when more than
two parties are involved to prevent wrap-around errors (see the appendix for details).

6.2 Speech Recognition

We performed speech-recognition experiments using Wav2Letter on the LibriSpeech dataset [33].
The LibriSpeech dataset contains 16 kHz audio clips represented as a waveform (16, 000 samples per
second). Because the audio clips vary in length, we clip all of them to 1 second for the benchmark.
Wav2Letter is a network with 13 convolutional layers using rectified linear unit (ReLU; [50]) activa-
tionsﬂ The network operates directly on the waveform input, predicting one of 29 labels (26 letters
plus 3 special characters). The first two layers use a filter size of 250 (with stride 160) and 48 (stride
2). The next seven layers use filter size 7, followed by two layers with filter size 32 and 1 (all with
stride 1). All layers except the last two have 250 channels. The last two layers have 2, 000 channels.

The results in Figure [6] show that CRYPTEN is about 2.5-3 orders of magnitude slower than PyTorch
depending on the number of parties involved. For Wav2Letter, the overhead is largely due to the
ReLU layers in the network: evaluating a ReL.U function requires a comparison, which involves a

SWe used the reference implementation of Wav2Letter in torchaudio.
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conversion between arithmetic and binary secret sharing and back (see the appendix). The number
of communication rounds increases when the number of parties grows beyond 4: CRYPTEN uses
a tree reduction for the summation in the comparator protocol, which implies that the number of
communication rounds grows whenever the number of parties increases from 2% to 2++1

Figure [7] also presents results comparing Wav2Letter inference time between CPUs and GPUs.
The results in the figure show that CRYPTEN is 1-2 orders of magnitude faster on GPUs than on
CPUs. In real-world settings, this speedup can make the difference between a secure MPC use case
being practical or not. Figure[§]shows how much wall-clock time is spent on communication and
computation, respectively, when performing inference with Wav2Letter (using batch size 32). The
results suggest that, whereas multi-party evaluation is compute-bound on CPU, it is communication-
bound on GPU. On GPUs, 63% of the time is spent on communication in eight-party computation.

6.3 Image Classification

We performed image-classification experiments on the ImageNet dataset using residual networks
(ResNets; [35]) and vision transformers (ViT; [26])E] We experimented with a ResNet-18 with 18
convolutional layers and with a ViT-B/16 model that has 12 multi-head self-attention layers with
12 heads each, operating on image patches of 16 x 16 pixels. Following common practice [35]], we
preprocess images by rescaling them to size 256 x 256 and taking a center crop of size 224 x 224.

Figure [0 presents the results of our image-classification benchmarks, which show that two parties
can securely evaluate a ResNet-18 model in 2.49 seconds and a ViT-B/16 model in 8.47 seconds.
A notable difference compared to the prior results is that the number of bytes communicated per
sample is no longer reduced by increasing the batch size. The reason for this is that the vast majority
of communication involves tensors that have the same size as intermediate activation functions:
activation tensors are much larger than weight tensors in image-classification models. The amount
of communication required to evaluate the ViT-B/16 model is particularly high due to the repeated
evaluation of the softmax function in the attention layer of Transformers [65]. We also observe that
in ResNet-18, the number of communication rounds grows faster than expected for larger batch
sizes. The reason for this is that the carry-lookahead adder [21]] used in the conversion from [z]
to (x) is very memory-intensive. When CRYPTEN runs out of GPU memory, it replaces the adder
by an implementation that requires O(|P|) communication rounds (compared to (log, |P|) for the
carry-lookahead adder) but that requires less memory.

SWe adopted the ResNet implementation from torchvision and the ViT implementation from https :
//github.com/rwightman/pytorch-image-models, ViT’s normalized mean squared error is larger than
for other models because our Gaussian error function approximation converges slowly; see Section 2?.


https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

7 Conclusion and Future Work

In this paper, we have introduced and benchmarked CRYPTEN. We hope that CRYPTEN’s flexible,
machine-learning first API design and performance can help foster adoption of secure MPC in
machine learning. We see the following directions for future research and development of CRYPTEN.

Numerical issues are substantially more common in CRYPTEN implementations of machine-learning
algorithms than in their PyTorch counterparts. In particular, the fixed-point representation with L bits
of precision (L =16 by default) is more prone to numerical overflow or underflow than floating-point
representations. Moreover, arithmetic secret shares are prone to wrap-around errors in which the sum
of the shares [z],, exceeds the size of the ring, Q =25%. Wrap-around errors can be difficult to debug
because they may only arise in the multi-party setting, in which no individual party can detect them.
We plan to implement tools in CRYPTEN that assist users in debugging such numerical issues.

End-to-end privacy requires seamless integration between data-processing frameworks, such as
secure SQL implementations [5], and data-modeling frameworks like CRYPTEN. In “plaintext”
software, such frameworks are developed independently and combined via “glue code” or platforms
that facilitate the construction of processing and modeling pipelines. Real-world use cases of machine
learning via secure MPC require the development of a platform that makes the integration of private
data processing and modeling seamless, both from an implementation and a security point-of-view.

Differential privacy mechanisms may be required in real-world applications of CRYPTEN in order
to provide rigorous guarantees on the information leakage that inevitably occurs when the results of a
private computation are publicly revealed [28]]. CRYPTEN implements sampling algorithms for the
Bernoulli, Laplace, and Gaussian distributions (see appendix), which allows for the implementation
of randomized response [[68]], the Laplace mechanism [29]], and the Gaussian mechanism [6} [28]]
(although care must be taken when implementing these mechanisms [12} 46]). In future work, we
aim to use these mechanisms, for example, to do a secure MPC implementation of DP-SGD [2].

Threat models may vary per use case. Specifically, some use cases may require malicious security or
may not provide a TTP. Possible extensions may include support for malicious security via message
authentication codes [22]], as well as support for Beaver triple generation via additive homomorphic
encryption [52], oblivious transfer [39], or more recent methods [[10] to eliminate the need for a TTP.

Model architecture design for secure MPC is another important direction for future research.
Following prior work in this research area, this study has focused on implementing existing machine-
learning models in a secure MPC framework. However, these models were designed based on
computational considerations in “plaintext” implementations of the models on modern GPU or
TPU hardware. The results of our benchmarks suggest that this may be suboptimal because those
considerations are very different in a secure MPC environment. For example, the evaluation of softmax
functions over large numbers of values requires a lot of communication in secure MPC, which makes
attention layers very slow. This implies that multilayer perceptron models [64] are likely much
more efficient than vision transformers [26, 65] for image classification. We hope that CRYPTEN’s
machine-learning API and ease of use will spur studies that design model architectures specifically
optimized for a secure MPC environment, for example, via neural architecture search [44} 147, [71].

8 Broader Impact

Although we believe that the adoption of secure MPC in machine learning can lead to the development
of Al systems that are substantially more private and secure, we note that there are also potential
downsides to such adoption. In particular, because the computations in secure MPC are performed on
encrypted data, it can be harder to do quality control of Al systems implemented in CRYPTEN. For
example, it is impossible to inspect the values of intermediate activations (or even model outputs)
unless all parties agree to reveal those values. This may make it harder to explain why a model
makes a certain decision [25] or to detect data-poisoning attacks [8]. Indeed, there exist fundamental
trade-offs between privacy and utility [57] and those trade-offs apply to CRYPTEN users, too.

It is also worth noting that, although the protocols implemented in CRYPTEN come with rigorous
cryptographic guarantees, practical implementations of these protocols may be broken by other means.
For example, we have no reason to assume that CRYPTEN would not be susceptible to side-channel
attacks [61]. Hence, good data stewardship remains essential even when using secure computation.
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