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ABSTRACT

Kolmogorov—Arnold Networks (KANs) are a recently introduced neural architec-
ture that replace fixed nonlinearities with trainable activation functions, offering
enhanced flexibility and interpretability. While KANs have been applied suc-
cessfully across scientific and machine learning tasks, their initialization strate-
gies remain largely unexplored. In this work, we study initialization schemes for
spline-based KANs, proposing two theory-driven approaches inspired by LeCun
and Glorot, as well as an empirical power-law family with tunable exponents.
Our evaluation combines large-scale grid searches on function fitting and forward
PDE benchmarks, an analysis of training dynamics through the lens of the Neu-
ral Tangent Kernel, and evaluations on a subset of the Feynman dataset. Our
findings indicate that the Glorot-inspired initialization significantly outperforms
the baseline in parameter-rich models, while power-law initialization achieves the
strongest performance overall, both across tasks and for architectures of varying
size. This work underscores initialization as a key factor in KAN performance and
introduces practical strategies to improve it.

1 INTRODUCTION

Kolmogorov—Arnold Networks (KANs) (Liu et al) [2025) have recently emerged as an alter-
native backbone architecture to Multilayer Perceptrons (MLPs), drawing inspiration from the
Kolmogorov—Arnold representation theorem (Kolmogorov, [1957) in a manner analogous to how
the learning of MLPs relies on universal approximation theorems. Unlike MLPs, which use fixed
nonlinear activation functions and trainable synaptic weights, KANs comprise grid-dependent train-
able activation functions. This provides them with flexibility in modeling complex nonlinear re-
lationships, while requiring fewer and smaller layers. Since their introduction, KANs have found
numerous applications, often surpassing the performance of their MLP-based counterparts (Yu et al.,
2024} Poeta et al., [2024)). There have been many notable results in scientific problem-solving do-
mains, including function fitting and symbolic regression (Liu et al.l 2024} |Shukla et al., |2024),
partial differential equations (PDEs) (Shukla et al} 2024} Rigas et al.l 2024} [Wang et al., |2025b)
and operator learning (Abueidda et al.l 2025} |Shukla et al., [2024} [Lee et al., 2025)), among other
applications (Howard et al., 2024; Kundu et al.| 2024; [Kashefi} 2025).

Beyond these benchmarks, there has also been significant progress in the theoretical understanding
of KANSs (Zhang & Zhou, 2025} |Alter et al., 2025; Wang et al.| [2025a). However, one important
theoretical and practical aspect that remains understudied pertains to their initialization strategies.
Current literature mainly relies on the standard initialization method proposed in the introductory
KAN paper (Liu et al., [2025), or explores alternative KAN variants such as Chebyshev-based for-
mulations (Anonymous Authors} [2025). This highlights a clear gap and motivates an investigation
into more effective initialization approaches for the standard spline-based architecture. Effective
initialization is crucial, as a good “initial guess” for the network weights can significantly accelerate
training (Mishkin & Matas| 20165 Skorski et al.l 2021) and prevent early saturation of hidden layers
(Glorot & Bengio, [2010). However, despite extensive research into initialization methods for MLP-
based architectures, these results cannot be directly applied to KANs. Furthermore, even within
MLP-based architectures, initialization methods often require separate consideration depending on
the specific architecture design (Huang et al., 2020)), activation function (He et al.| [2015)), or even on
a complete case-by-case basis (Skorski et al., [2021]).
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In response to this research gap, this work explores initialization strategies for the standard, spline-
based KAN architecture. Drawing parallels with MLPs, we propose variance-preserving schemes
inspired by LeCun (LeCun et al.l [1998) and Glorot (Glorot & Bengiol |2010) initializations, includ-
ing a variant that employs normalized spline basis functions. In addition, recognizing that theoretical
frameworks may not always align with empirical performance (Mishkin & Matas,[2016), we further
propose an empirical family of power-law initializations parameterized by two exponents. We per-
form grid searches to identify suitable exponent choices for the power-law method on function fitting
and forward PDE benchmarks and then evaluate all initialization schemes on these tasks. We sub-
sequently fix the exponents to values that lie within the identified well-performing range and select
two representative architectures (in terms of parameter count) to analyze training dynamics through
the evolution of training loss curves and the Neural Tangent Kernel (NTK) spectrum (Jacot et al.
2018;|Wang et al.|[2022). Finally, we evaluate said architectures on a subset of the Feynman dataset
(Udrescu & Tegmarkl [2020), which, although widely used for symbolic regression, is formulated
here as a function fitting benchmark as inLiu et al.|(2025).

2 BACKGROUND

2.1 KOLMOGOROV-ARNOLD NETWORKS

Within the standard formalism, the output, y € R, of a KAN layer is related to its input, x € R™n,
via:

Tin G+k
vi=y (TjiR(xi) +¢ji Y bjim Bm (fﬂz)) v J=1 nou, (1
i=1 m=1

where 7j;, ¢;; and bj;,,, are the layer’s trainable parameters, R(x) corresponds to a residual function,

typically chosen as the SiLU, i.e., R(z) = = (1 + e‘x)_l, and B, (z) denotes a univariate spline
basis function of order k, defined on a grid with G intervals. For each of the layer’s trainable
parameters, the original KAN formulation initializes the scaling weights as c;; = 1, the residual
weights r;; using Glorot initialization (Glorot & Bengiol 2010), and the basis weights b;;,, from a
normal distribution with zero mean and small standard deviation, typically set to o = 0.1. We will
henceforth refer to this configuration as the “baseline initialization”.

2.2 RELATED WORK

In the existing KAN literature, initialization strategies have only been explored in certain KAN
variants (see, e.g., (Guilhoto & Perdikaris| (2025))), while the standard spline-based architecture has
not yet received dedicated attention in this regard. A natural starting point for studying initializa-
tion is to follow the historical developments in MLP-based architectures, beginning with variance-
preserving schemes such as those proposed by LeCun (LeCun et al., [1998) and Glorot (Glorot &
Bengiol 2010), which stabilize activation variance across layers and mitigate progressive vanishing
or explosion. Within the KAN family, Glorot-inspired initialization has been applied successfully
to Chebyshev-based variants (Anonymous Authors, [2025), though this setting differs substantially
from the spline-based case studied here, since it removes the residual term of Eq. and employs
a completely different basis function. Consequently, it remains unclear whether such strategies di-
rectly transfer to the standard KAN formulation, motivating the investigation presented in this work.
To the best of our knowledge, the present work provides the first systematic study of initialization
strategies for spline-based KANs.

3 METHODOLOGY

3.1 PROPOSED INITIALIZATIONS

Since the three weight types in a KAN layer are independent, we may initialize the scaling weights
cji to 1 and focus exclusively on the initialization of the residual weights r;; and basis weights by, .
We assume that these weights are drawn from zero-mean distributions with standard deviations o,
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and oy, respectively. To determine suitable values for o, and o}, we follow the principle of variance
preservation proposed by LeCun (LeCun et al.l [1998)), which stipulates that the variance of the
outputs of each layer should match that of its inputs, thereby avoiding amplification or attenuation of
the signal across layers. Assuming statistical independence among terms and an equal contribution
to the variance from each of the (G+ k:—i— 1) terms in the summand of Eq. . we derive the following
expressions for the standard dev1at1on

o Var(z;) oy — Var(z;) )
nin(G + &+ 1) 5 nin(G 4k + 1) 5
where
Wy =E[R@)|,  uf =E[Bn @), 3)

with ug) denoting the expectation over both the input distribution and all spline basis indices, m,

and ,ugg) denoting the expectation over the input distribution alone.
If we further assume that each component of x is drawn from a given distribution (e.g., the uniform

distribution U (—1,1), as is often the case in tasks like function fitting or PDE solving), then all

statistical quantities in Eq. can be evaluated directly, except for ,ug). Due to the dependence of

the spline-basis functions on the underlying grid, no general analytic expression exists for 0. This

leads to two practical alternatives: one may either estimate u( ) numerically by sampling a large
number of input points from the assumed distribution at initialization, or set the expectation value
to unity by modifying the architecture of the KAN layer to use normalized spline basis functions,
defined as

5 i E Bm %
B (0) — B () “E[Bn @)
0
Vi) — B2 (B (1)
where the expectation values are computed over the layer inputs during the forward pass. We will

refer to the former alternative as “LeCun—numerical” initialization, while the latter is referred to as
“LeCun—normalized” initialization.

“4)

While these LeCun-inspired schemes focus on preserving the variance of forward activations, they
do not explicitly account for the propagation of gradients. To address this, we also consider a Glorot-
inspired initialization, which aims to balance forward- and backward-pass variance by maintaining
stable variance for both activations and gradients across layers. Under the same assumptions as
before, we derive the following expressions for the standard deviationsE]:

1 2 1 2
r = 5 = s 5
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where

u =E[R @], i) =E[B, @), ©)

with the expectations defined analogously to u%) and u( ) in Eq. In practice, u( ) can be

computed using automatic differentiation of the spline basis functions, together with the numerical

sampling strategy discussed for the LeCun—numerical case, while ug) can be evaluated analytically

for standard choices of R(x) such as the SiLU.

'See Appendix |Afor detailed derivations.
2See Appendix [B|for detailed derivations.
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In addition to these theory-driven initialization strategies, we also investigate an empirical approach
based on a power-law scaling of the KAN layer’s architectural parameters. Specifically, we initialize
the weights such that their standard deviations follow the form

B 1 @ B 1 ? ;
Ur—(nin(G+k+1)> ’ Ub_(nin(G+k+1)> ’ )

where « and 3 are tunable exponents selected from the set {0.0,0.25, ..., 1.75,2.0}. The motivation
behind this empirical scheme is to perform a grid search over («, 8) configurations in order to
identify trends or specific exponent pairs that consistently improve training speed and convergence.
Such searches can be carried out on a per-domain basis (e.g., function fitting, forward PDEs), after
which the resulting well-performing ranges may serve as reusable heuristics for future problems of
the same type.

3.2 EXPERIMENTAL SETUP

We evaluate initialization strategies on two benchmark families: function fitting tasks and forward
PDE problems. For function fitting, we use five two-dimensional target functions and train for 2,000
iterations (epochs), while for PDEs we consider the Allen—Cahn equation, Burgers’ equation, and the
two-dimensional Helmholtz equation, using KANs trained for 5,000 iterations within the Physics-
Informed Machine Learning (PIML) framework (Raissi et al.l 2019). Across both benchmarks,
performance is measured using the final training loss and the relative L? error with respect to the
reference solution. For the purposes of the initial grid search, we test architectures with 1-4 hidden
layers, widths equal to 2¢ for i = 1,...,6, and grid sizes G € {5, 10, 20,40} for function fitting,
while for PDEs we restrict to G € {5,10,20}. All experiments presented herein are repeated
with five random seeds, except in the power-law grid search where we use three seeds to reduce
computational cost, and we report the median outcome across runs. Further implementation details,
including the explicit formulas of the target functions and the PDE setups, are provided in Appendix
All experiments are implemented in JAX (Bradbury et al [2018), with KANs trained using the
jaxKAN framework (Rigas & Papachristou, [2025). Training is performed on a single NVIDIA
GeForce RTX 4090 GPU.

4 EXPERIMENTS & DISCUSSION

4.1 GRID-SEARCH RESULTS

The grid search over («, 3) configurations and the architectural variations described in Section
resulted in 126,240 trained KAN model instances for function fitting. After aggregating the repeated
runs by their median outcome, this number reduces to 40,800 representative results. From these, we
retain only the best-performing (v, 8) configuration per setting, yielding 2,400 final entries. Table

Table 1: Percentage of runs that outperform the baseline initialization on function fitting bench-
marks. Columns correspond to target functions, while rows correspond to initialization schemes and
evaluation metrics. Best results per function are shown in bold.

Initialization Metic | f1(z,y) fa(z,y) fs(zmy) fa(z,y) fs5(z,9)
Loss 18.75% 14.58% 12.50% 25.00% 26.04%
LeCun-numerical L? 6.25% 4.17% 5.21% 14.58% 2.08%
Both 1.04% 0.00% 0.00% 8.33% 0.00%
Loss 19.79% 28.13% 19.79% 41.67% 31.25%
LeCun—-normalized L? 11.46% 9.38% 11.46% 26.04% 6.25%
Both 2.08% 5.21% 5.21% 16.67% 1.04%
Loss 78.13% 76.04% 78.13% 63.54% 72.92%
Glorot L? 78.13% 75.00% 78.13% 64.58% 72.92%
Both 78.13% 75.00% 78.13% 60.41% 64.59%
Loss 100.00 % 100.00 % 100.00 % 100.00 % 98.96 %
Power-Law L? 100.00 % 100.00 % 100.00 % 94.79 % 96.88 %
Both 100.00% 100.00% 100.00 % 94.79 % 95.83%
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reports, for each target function and initialization scheme, the percentage of runs that outperform the
baseline initialization described in Section 2.1} Results are compared with respect to final training
loss and relative L? error, and we additionally report the percentage of runs where both metrics
improve simultaneously.

The LeCun-inspired schemes rarely outperform the baseline on the smaller architectures, but their
effectiveness increases with depth, width and grid size. In some of the larger settings, the nor-
malized variant in particular achieves improvements exceeding two orders of magnitude relative to
the baseline. However, in terms of absolute frequency, Table |I| clearly shows that the baseline still
outperforms both LeCun-based variants: for more than 70% of configurations, the resulting rela-
tive L2 error under LeCun initialization is higher than under the baseline scheme. Between the
two LeCun variants, the normalized version consistently performs better than the numerical one,
which is consistent with its design, as variance preservation is enforced by construction. On the
other hand, the Glorot-inspired initialization performs more robustly. Across all five functions, it
yields success rates of approximately 60-75% for both loss and relative L? error, indicating that
simultaneously balancing forward- and backward-pass variances is considerably more effective than
forward-variance preservation alone. The few cases where the baseline performs better occur pre-
dominantly for the smaller architectures.

As far as the power-law initialization is concerned, it exhibits the strongest overall performance.
Table |I| shows that, for nearly every architecture and target function, there exists at least one (a, 3)
pair that outperforms the baseline, often by a substantial margin. The most favorable region is
concentrated around small residual exponents, i.e., « € {0.25,0.5}, combined with larger basis-
function exponents, namely 5 > 1.0. Full grid-search results illustrating these trends are provided
in Appendix |D|and the supplementary material. Notably, even when fixing a single configuration
within this region, the method remains highly robust. For example, with (o, 5) = (0.25,1.0),
the initialization yields simultaneous improvements in both loss and L? error over the baseline in
96.88% of runs for fi(x,y), 95.83% for fo(x,y), 97.92% for f5(x,y), 87.50% for f4(x,y), and
89.58% for f5(x,y). This indicates that once a suitable exponent range is identified for a given
problem type, a fixed choice within that region can systematically outperform both the baseline and
the Glorot initialization.

Following the same procedure for the PDE benchmarks, we trained 56,882 models, a number which
reduced to 18,360 representative results after aggregation and 1,080 final entries after selecting the
best («, [3) per setting. Table summarizes the outcomes in terms of final training loss, relative L?
error, and their joint improvement over the baseline initialization.

Table 2: Percentage of runs that outperform the baseline initialization on forward PDE benchmarks.
Columns correspond to the three PDEs considered, while rows correspond to initialization schemes
and evaluation metrics. Best results per PDE are shown in bold.

Initialization Metric | Allen—Cahn Burgers Helmbholtz
Loss 11.11% 11.11% 8.33%
LeCun—numerical L? 16.67% 22.22% 15.28%
Both 8.33% 6.94% 2.78%
Loss 2.78% 0.00% 0.00%
LeCun—normalized L? 0.00% 0.00% 0.00%
Both 0.00% 0.00% 0.00%
Loss 55.56% 50.00% 76.39%
Glorot L? 51.39% 54.17% 72.22%
Both 41.67% 36.11% 62.50%
Loss 98.61% 100.00 % 98.61%
Power-Law L? 94.44% 73.61% 87.50%
Both 94.44% 73.61% 87.50%

When comparing the two LeCun-based schemes to each other, the observed behavior is essentially
the inverse of what we observed in function fitting. The normalized variant, which performed better
than the numerical one for function fitting, fails almost entirely in PDE problems: in nearly all
configurations, it produces no improvement over the baseline, with success rates effectively equal
to zero. This discrepancy can be attributed to the fact that PDE losses involve not only the network
output but also its derivatives and nonlinear combinations thereof. Normalizing the spline basis
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propagates all multiplicative constants (the standard deviation in the denominator of Eq. (@) in this
case) into all derivatives, altering the stiffness of the residuals. While the numerical variant avoids
this issue, the results are still poor: although it occasionally outperforms the baseline on larger
architectures, it remains generally ineffective. The Glorot-inspired initialization again shows more
consistent improvements. As in function fitting, it performs significantly better than the baseline on
parameter-rich architectures and the cases where it underperforms correspond to smaller models.

The power-law initialization remains the strongest of all approaches, though the advantage is less
pronounced in the PDE case. For more than 70% of configurations (up to 94.44% in the Allen—
Cahn equation) there exists at least one (v, 3) pair that outperforms the baseline simultaneously
in both loss and relative L? error. The preferred exponent region differs slightly from the function
fitting case: while small residual exponents o remain strongly favored, in this case lower values of
B (typically 0.75 < B < 1.25) yield the best results. The complete grid-search results supporting
these observations are provided in Appendix [D|and the supplementary material. For the previously
discussed configuration («, 8) = (0.25, 1.0), the power-law initialization outperforms the baseline
on both metrics in 83.33% of runs for Allen—Cahn, 54.93% for Burgers’ and 59.72% for Helmholtz,
with even higher success rates when each metric is considered individually.

4.2 TRAINING DYNAMICS ANALYSIS

The previous experiments established that the Glorot- and power-law-based schemes provide strong
alternatives to the baseline initialization, with the latter yielding the most consistent improvements
overall. In contrast, the LeCun-based variants exhibited substantially weaker performance. To better
understand the mechanisms behind these trends, we next examine training dynamics in greater detail
for each initialization scheme, excluding only the LeCun-normalized variant due to its complete
breakdown in PDE problems for the aforementioned reasons. We begin with the function fitting
benchmarks: Figure [T] shows the evolution of the training loss for two representative settings, a
“small” architecture (G = 5, two hidden layers with 8 neurons each) and a “large” architecture
(G = 20, three hidden layers with 32 neurons each). For consistency across experiments, we fix the
power-law parameters to & = 0.25 and 8 = 1.75, which lie within the range identified as favorable
in the grid search for function fitting. The curves are averaged over five seeds, with shaded regions
indicating the standard error.
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Figure 1: Training loss curves for function fitting benchmarks under baseline, LeCun-numerical,
Glorot and power-law (a« = 0.25, 8 = 1.75) initializations. Results are averaged over five seeds,
with shaded regions indicating the standard error. Top row: “small” architecture (G = 5, two hidden
layers with 8 neurons each). Bottom row: “large” architecture (G = 20, three hidden layers with 32
neurons each).

Across all settings, the loss curves in Figure [T] reinforce the conclusions drawn from the previous
experiments: the power-law initialization consistently outperforms all other schemes, converging
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both faster and to lower final losses. For the small architecture, the baseline and Glorot initial-
izations behave similarly, whereas for the larger architecture Glorot has a clear advantage over the
baseline. The LeCun initialization, while stable and not prone to divergence, persistently underper-
forms the remaining schemes in both architectures. The oscillatory behavior observed for Glorot and
power-law in the large-architecture setting is a consequence of using a fixed learning rate throughout
training. We intentionally avoided learning-rate scheduling because initialization and learning-rate
adaptability are known to interact in subtle ways (e.g., (Yang et all, [2021)), and our goal was to
isolate the effect of initialization alone. In Appendix [E|we provide results for the same experiments
using a learning-rate scheduler; the resulting curves are significantly smoother, however the relative
performance ranking of the initialization schemes remains unchanged.

The corresponding analysis for the PDE benchmarks is shown in Figure 2] where again we use the
power-law parameters v = 0.25 and 3 = 1.75, despite the grid search identifying a different optimal
region for 3, in order to demonstrate that the method remains robust even when not tuned specifically
for PDEs. For the small architecture, all initialization schemes ultimately perform comparably, al-
beit at different rates. Notably, the power-law initialization exhibits markedly lower variance across
seeds and, in the Allen—Cahn case in particular, reaches a minimum significantly faster than the alter-
natives. In the larger architecture, however, the trends closely mirror those observed in the function
fitting experiments: the LeCun initialization lags behind by several orders of magnitude, the base-
line also underperforms, and both Glorot and power-law provide substantial improvements. These
two consistently achieve the lowest losses, with the power-law scheme displaying an advantage in
the Allen—Cahn and Burgers equations. As with the function fitting results, the oscillatory behavior
observed for Glorot and power-law arises from the fixed learning rate used during training. The
corresponding smoothed curves obtained with learning-rate scheduling are provided in Appendix [E}
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Figure 2: Training loss curves for forward PDE benchmarks under baseline, LeCun-numerical,
Glorot, and power-law (o = 0.25, 3 = 1.75) initializations. Results are averaged over five seeds,
with shaded regions indicating the standard error. Top row: “small” architecture (G = 5, two hidden
layers with 8 neurons each). Bottom row: “large” architecture (G = 20, three hidden layers with 32
neurons each).

To gain further insight into why the baseline and LeCun initializations underperform while Glorot
and power-law consistently succeed, we complement the loss-curve analysis with a study of NTK
dynamics. Since the discrepancies between initialization strategies are most pronounced in larger
models, we focus here on the “large” architecture. For the power-law method we keep o = 0.25
and 8 = 1.75, however we also provide the spectra for other configurations in Appendix [F-2] Fig-
ure [3] shows the NTK eigenvalue spectra at initialization, at intermediate training iterations, and at
convergence, for the task of fitting f3(z,y) (results for other targets are provided in Appendix .

The spectra reveal several notable differences. The baseline initialization exhibits a spectrum dom-
inated by very large leading eigenvalues and a steep decay, which collapses further during training,
indicating poor conditioning and a low effective rank. LeCun behaves similarly but with even more
extreme magnitudes. In contrast, the Glorot initialization produces a well-spread spectrum with
stable leading and trailing eigenvalues throughout optimization. The power-law scheme yields an
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Figure 3: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f3(z,y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses o = 0.25, 3 = 1.75.

even better spectrum, closely following a power-law decay at initialization and remaining perfectly
stable during training, suggesting balanced sensitivity across modes. These observations align with
the performance trends reported so far: Glorot and power-law initializations induce stable, well-
conditioned NTK spectra and therefore correspond to faster optimization and lower final error, while

the baseline and LeCun produce highly skewed or collapsing spectra and thus consistently under-
perform during training.

We also extend the NTK analysis to PDE benchmarks, focusing on the Allen—Cahn equation as a
representative case (results for Burgers and Helmholtz are provided in Appendix [F3). To this end,
we adopt the NTK formalism developed for PIML (Wang et al., 2022)) and adapt it to account for
Residual-Based Attention (RBA) weights (Anagnostopoulos et al., [2024), which are applied in the
loss functions studied herein (see Appendix [C.2|for details). The resulting kernel is identical to the
standard PINN NTK, except that it incorporates the corresponding RBA weights (see Appendix [F]
for the full derivation). Figure ] shows the NTK eigenvalue spectra separately for the PDE residual
term (top row) and the boundary/initial conditions (bottom row).
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Figure 4: NTK eigenvalue spectra for the Allen—-Cahn PDE benchmark under baseline, LeCun-
numerical, Glorot, and power-law (o« = 0.25, 5 = 1.75) initializations. Top row: spectra corre-
sponding to the PDE residual term. Bottom row: spectra for the boundary/initial condition terms.
Solid blue lines show the initialization, dashed teal lines show intermediate iterations, and dashed

green lines show the final iteration. Results correspond to the “large” architecture (G = 20, three
hidden layers with 32 neurons each).

The PDE residual spectra largely mirror the function fitting case: baseline and LeCun initializations
yield poorly conditioned eigenvalues that collapse over training, while both Glorot and power-law
maintain stability. The key difference lies in the boundary/initial condition terms, where Glorot
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shows some irregularities, though far less severe than the baseline and LeCun. The power-law
scheme stands out as the most consistent, providing stable and well-structured spectra across both
PDE residual- and boundary/initial-term.

4.3 FEYNMAN DATASET BENCHMARKS

As a final benchmark, we turn to a subset of the Feynman dataset, restricted to dimensionless equa-
tions. The explicit formulas of the target functions and implementation details are provided in Ap-
pendix Having already established via empirical evidence and NTK analysis that the LeCun-
based schemes are consistently underperforming, we benchmark here only the two competitive ini-
tializations (Glorot and power-law) alongside the baseline. We again fix the power-law exponents
to (a, 8) = (0.25,1.75) and evaluate all methods using the same “small” and “large” architectures
defined in Section Tables andreport the results in terms of final training loss and relative L?
error with respect to the reference solutions, for the small and large settings, respectively.

Table 3: Results on the Feynman benchmark for the “small” architecture (G = 5, two hidden layers
with 8 neurons each). Reported values correspond to median final training loss and relative L? error
with respect to the reference solution. Best results per equation are shown in bold. The power-law
initialization uses o = 0.25, 8 = 1.75.

Baseline Glorot Power-Law

Function Loss L? Loss L? Loss L?
1.6.2 5.17-10" 405-107T [ 986-1073 422-107 T | 1.18-107%  4.14.107 T
1.6.2b 358-1072  428-1071' | 869-107% 501-107' | 1.97-1073 437.107¢
L1211 140-107°  367-107% | 130-107° 375-107% | 1.12-107% 1.07-10"3
L13.12 224 -10% 1.86 - 10° 3.51-10% 7.65-10"1 | 175103 236 - 10°
L16.6 262-107%  355-1072 | 294.107% 363-1072 | 1.19-107% 292.10"2
1184 139 -10% 1.00 - 10° 2.31-10% 1.00 - 10° 1.04 - 103 1.00 - 10°
1.26.2 500-107%  721-107% | 140-107° 1.19-1072 | 9.99.10"7 3.13.10"3
1.27.6 1.87-1072  1.00 - 10° 124-107%  1.00 - 10° 177-107Y  1.00-10°
1.29.16 1.05-107%  1.14-1072 | 1.22-107% 124-1072 | 3.14-107% 6.83.10"3
1.30.3 400-107%  462-1072 | 9.00-107¢ 6.84-107% | 488-10"7 1.73.1073
1.40.1 130-107%  476-107% | 390-107° 8.11-107% | 1.74-10-¢ 1.81-10"3
1.50.26 1.40-107°  4.07-1072 | 1.00-107° 347.-107% | 1.17-107¢ 1.20.10"3
11.2.42 152-107%  446-1072 | 250-107° 774-107% | 849-1077 144-10"3
IL.6.15a 6.00-107% 735.1072 | 1.80-107° 1.16-10"' | 497-10"7 1.89.10"2
I.11.7 270-107°  1.03-1072 | 6.10-107° 144-1072 | 358-107°% 4.08-10"2

I.11.27 400-107%  620-107% | 1.50-107° 121-1072 | 7.17-10"7 272.1073
11.35.18 3.00-107¢  761-1072 | 1.10-107° 138-1072 | 1.84-1077 148.10"3
11.36.38 350-107°  1.17-1072 | 650-107° 1.57-1072 | 2.71-10"¢ 343.10"3
ML.10.19 | 1.40-107° 3141073 | 1.50- 10~ 290-1072 | 826-10"¢ 224.1072
1.17.37 | 260-107°  1.05-1072 | 530-10~ 141-1072 | 435-107% 437.10°2

The results confirm the same overall trends observed in the earlier benchmarks. In both settings,
power-law initialization achieves the best performance on the majority of equations, often by large
margins in terms of both final training loss and relative L? error. Glorot initialization also provides
substantial improvements over the baseline, particularly in the large architecture, where it consis-
tently narrows the gap to power-law. A comparison between Tables [3| and |4| further highlights the
role of initialization: with Glorot and power-law, the richer architecture is able to drive the loss down
by several orders of magnitude and simultaneously reduce the L? error, whereas under the baseline
initialization, performance often degrades when moving from the small to the large setting.

5 CONCLUSION

In this work, we proposed and systematically evaluated new initialization strategies for spline-based
KANSs. Specifically, we introduced two theory-driven schemes inspired by LeCun and Glorot, in-
cluding a variant with normalized basis functions, as well as an empirical family of power-law
initializations. Through large-scale grid searches, we identified favorable exponent ranges for the
power-law method for both function fitting and forward PDE problems. Across all evaluations, in-
cluding loss curve analysis and NTK dynamics, we showed that initialization plays a critical role
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Table 4: Results on the Feynman benchmark for the “large” architecture (G = 20, three hidden
layers with 32 neurons each). Reported values correspond to median final training loss and relative
L? error with respect to the reference solution. Best results per equation are shown in bold. The
power-law initialization uses a = 0.25, § = 1.75.

Baseline Glorot Power-Law

Function Loss L? Loss L? Loss L?
162 1.09-10~2  1.51-10° 480-107° 419-10"T [ 520-10-% 385-10" 1
1.6.2b 136-1072  1.64-10° 7.60-107° 5801071 | 218-107¢ 459.1071
L12.11 164-107%  377-107' | 3.00-107¢ 147-107% | 216-107% 1.66-10"%
1.13.12 270 - 103 3.08 - 10° 2.81-10% 1.11 - 10° 253-107Y  549.10°
1.16.6 163-107%  631-107Y | 600-107¢ 163-1072 | 1.09-10"° 148.10"2
1.18.4 2.67 - 102 1.00 - 10° 1.53-10% 1.00 - 10° 415-1072  1.00-10°
1.26.2 1.01-107%  1.10-10° 7.00-107%  898-107% | 1721077 1.25.1072
1.27.6 3331072 1.00 - 10° 185-107%  1.00 - 10° 893-1075  1.00-10°
1.29.16 201-107%  445.107% | 1.20-107°  628-107° | 2.06-107 257-10"3
1.30.3 118-107%  7.72-107* | 1.00-107¢ 292.107% | 217-107% 417-10"%
1.40.1 226-107*  670-107' | 500-107% 339.107° | 141-107 6.17-10"%
1.50.26 203-107*  438-107% | 200-107¢ 150-107% | 3.70-1078 2.25.107%
11.2.42 152-107%  6.86-10"' | 400-107% 262-1073 | 854-10"8 498.10"%
11.6.15a 6.60-107°  7.60 - 10° 200-107%  547-.1072 | 813-107°  4.40-10"2
1.11.7 1.75-107%  978-10"' | 1.10-107% 1.01-1072 | 1.80-10~7 3.00-10"2
L.11.27 8.80-107°  1.04-10° 1.00-107¢  376-107% | 1.54.1077 1.95.10"3
11.35.18 7.40-107%  1.19-10° 6.00-107¢ 1.18-1072 | 295.-10"8 7.77-1074
11.36.38 193-107%  948-107' | 8.00-107% 1.11-1072 | 3.05-10~7 4.92.10"2
1.10.19 | 1.81-10"% 274-107% | 1.00-107% 989-10"* | 9.87-10"° 8.70-10"°
L1737 | 145-107%  910-107' | 490-107° 131-1072 | 645-107% 514.10"2

in KAN performance. In particular, our results demonstrate that while LeCun-inspired schemes of-
fer limited benefits, Glorot-inspired initialization emerges as a strong candidate for parameter-rich
architectures, and the empirical power-law family provides the most robust improvements overall,
achieving faster convergence and lower errors across benchmarks. These findings highlight ini-
tialization as a key component of training KANs and identify effective practical strategies for the
process.

5.1 LIMITATIONS AND FUTURE WORK

While our study establishes the importance of initialization in spline-based KANs, it also comes
with limitations. Our power-law scheme, although empirically effective, currently lacks a rigor-
ous theoretical foundation, and understanding why specific exponent ranges perform well remains
an open question. Moreover, although we considered both supervised function fitting and physics-
informed PDE benchmarks, further exploration in other domains such as reinforcement learning or
generative modeling could provide additional insights. Addressing these limitations offers natural
directions for future work, including deriving principled theory for power-law initialization, inves-
tigating transferability across KAN variants (e.g., Chebyshev-based or residual-free forms), and
exploring initialization strategies in conjunction with adaptive optimization techniques.

LLM USAGE

Large Language Models (LLMs) were used during peer review for grammar and syntax refinement
only; all ideas, technical content, analyses and conclusions remain the authors’ work.

REPRODUCIBILITY STATEMENT

We include the full code (including selected seeds for each experiment) and the processed data from
the grid-search experiments as supplementary material, all anonymized for review. Upon accep-
tance, we will publicly release the complete code and datasets in a public GitHub repository.
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A DERIVATION OF LECUN-INSPIRED INITIALIZATION SCHEME

In this appendix, we provide a derivation of Egs. from the main text. Assuming statistical
independence between each term in the outer sum of Eq. (I)) and requiring the output variance to
match the input variance, one finds

G+k
Var (z;) = ninVar |rj; R (2;) + ¢;i Z bjim B (i) | , (®)

m=1
where the right-hand side contains the variance of a sum of G + k + 1 terms: one residual term and
G+ k spline basis terms. We adopt a simplifying assumption that the total variance is approximately

equipartitioned across all components allowing us to bypass pairwise covariance terms. This leads
to the following expressions for the residual and spline basis terms, respectively:

Var (z;)
G+k+1

Var (z;)

= ninVar [le R (xl)] 5 m

= anar [bjim Bm (l‘l)] . (9)

Since the trainable weights r;; are independent of the residual function R (z;), the variance of their
product becomes

Var [’I‘ji R (l‘z)] = IE2 (Tji) Var [R (JJZ)] + E2 [R (.’L‘z)] Var (’I“ji) + Var (Tji) Var [R (Jfl)]
=0
= Var (r;;) { Var [R (z;)] + E* [R (2;)]} = 07 E [R* (z;)] (10)

and, in a completely analogous manner, we find

Var [bjim Bm (2;)] = o E B2, (2;)] - (11)

Substitution of the expressions of Eqs. (10}, into Eqs. (9) yields Eq. (2) from Section 3.1}

3This assumption does not necessarily hold in general. For example, one could consider a 50%—50% split
between the residual and basis function terms. We experimented with this alternative and found that it yielded
poorer results compared to the variance partitioning that leads to Eqs. @
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B DERIVATION OF GLOROT-INSPIRED INITIALIZATION SCHEME

In this appendix, we derive Eqs. (5) from the main text. Unlike the LeCun-inspired scheme, which
focuses solely on variance preservation in the forward pass, the Glorot principle (Glorot & Bengio
2010) requires that the variance of both activations and backpropagated gradients remain constant
across layers. For analytical tractability, and following the standard assumption in this setting, we
further approximate these constant values by unity,

Var(z;) = Var(y;) ~ 1, Var(dx;) = Var(dy;) ~ 1, (12)

where dz; = 0L/0x; and dy; = OL/0y;, with £ denoting the loss function. This approximation
is consistent with the common assumption of i.i.d. inputs with zero mean and unit variance. In
practice, when this assumption does not hold, an additional gain factor can be introduced to rescale
the initialization, as is standard in frameworks such as PyTorch.

Using the result from Appendix [A] together with the first condition of Eq. (I2), the constraints for
variance preservation in the forward pass can be written as

1=(G+k+Dnno?pyl?,  1=(G+k+1)nyo} ', (13)

where 11\ = E[R(;)?] and p\Y = E[B,,(x;)?) as defined in Eq. .
For the backward pass, differentiating Eq. (I) with respect to z; gives

G+k

0y,
37;1 = ri R'(z:) + ¢ n; bjim B (i), (14)
Setting c;j; = 1, the chain rule yields
Tout Tout GHE nou
Z o Zrﬂ (@) 0y; + D> bjim B (1) 0y (15)
m=1 j=1
residual contribution m-th spline contribution
and applying the second condition of Eq. gives
G+k
1 = nouVar |7j; R'(2;) + Y bjim B () | , (16)
m=1

where we have adopted the standard Glorot assumptions: the dy; are zero-mean, mutually inde-
pendent, and independent of weights and inputs. At this point we may again equipartition the total
variance across the (G+k-+1) components (one residual term and G+k spline terms), exactly mir-
roring the forward-pass treatment. This leads to

1 =(G+k+1)ney Var[rj; R (z;)], 1= (G +k+ 1) new Var bjim B, (x;)],  (17)
and, following the same arguments as in Appendix [A]l we find
1= (G4 k+Dnuwa?pnl),  1=(G+k+1)nworpuy, (18)
where p( ) = E[R/(x;)?] and ug) = E[B],(z;)?] as defined in Eq. @)

Equations (T3) and are the forward- and backward-pass constraints, respectively. Balancing
them in the Glorot manner (i.e., by harmonic averaging) yields the standard deviations in Eq. (5) of
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the main text. As a sanity check, consider an MLP: the residual term is absent, and the linear layer

followed by a nonlinearity can be viewed as a single basis function. For the common hyperbolic

0) @
B

tangent activation, pz° ~ pup’ ~ 1 (Glorot & Bengio, [2010), so our scheme reduces to

1 2 2
op = . = , (19)
GHE+1 py 0 (1) \/n +n,
in M =+ Nou i in out
T n B’1 out B1

which recovers the classical Glorot initialization.
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C IMPLEMENTATION DETAILS

This appendix provides the full specifications of the benchmarks used in our experiments, including
the functional forms of the target problems, training setups, and data generation procedures. We
separate the discussion into three parts: function fitting, forward PDE problems and the Feynman
dataset.

C.1 FUNCTION FITTING

For the function fitting experiments of Section [4.1and Section .2} we study five two-dimensional
functions ranging from simple expressions to more complex, nonlinear, or piecewise-defined forms.
Specifically, we consider the following functions in the [—1, 1] x [—1, 1] domain:

s filz,y) =

o fo(z,y) =exp (51n(7ra:) +y )

« f3(x,y) = I () + exp [exp (—|y]) [ (y) ] + sin (zy)

* fi(ey) =S fs(ey) + et (1) | x C[f (,9) +erf ()]

s fs(z,y) =y -sgn(0.5 — z) + erf(z) - min (my, z—1y>

where I; (x) is the modified Bessel function of first order, sgn () is the sign function, erf (x) is the
error function and S (), C (z) are the Fresnel integral functions defined as

T 2 T 2
S(x)= / sin <i) dt, C(x)= / cos <i> dt. (20)
0 2 0 2

The reference surfaces for these functions are shown in Figure 5]

fi(x,y) f2(x,y)

1.0 1.0

0.0
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Figure 5: Reference surfaces for the five two-dimensional target functions f; through f5 used in the
function fitting experiments.

The KAN models used to fit these functions utilize spline basis functions of order k£ = 3, defined

over an augmented, uniform grid within the [—1, 1] domain (Liu et al.| 2025). Training is performed
using the Adam optimizer with a fixed learning rate of 10~ with the objective of minimizing the

mean squared error between the predicted and reference function values. For each target function
fi(x,y), withi =1,...,5, we generate 4,000 random input samples uniformly distributed over the
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Figure 6: Reference solutions for the three PDE problems considered.

domain [—1,1] x [—1, 1], and calculate the corresponding outputs to serve as ground truth during
training. To compute the relative L? error between the model predictions and reference solutions,
we evaluate all trained models on a uniform 200 x 200 grid covering the same domain.

C.2 FORWARD PDE PROBLEMS

In addition to function fitting, we consider three representative forward PDEs commonly used as
PIML benchmarks. For each case, we specify the governing equation, domain and boundary/initial
conditions.

Allen—-Cahn equation. We solve the Allen—Cahn equation on (¢,z) € [0,1] x [-1,1]:
ue(t, ) — Dugy(t,x) — c(u(t,x) — u(t, x)3) =0, 21)

with diffusion coefficient D = 10~ and reaction strength ¢ = 5. The initial and boundary condi-
tions are

u(0,z) = 22 cos(mz), xz € [-1,1], (22)

u(t,—1) = u(t,1) = -1,  teo,1]. (23)

Since the Allen—Cahn equation has no analytic closed-form solution, we use the reference solution
used in[Wang et al[ (2024), which is depicted in the left plot of Fig. [

Burgers’ equation. We solve the viscous Burgers’ equation on (¢, x) € [0,1] x [—1,1]:

ur(t, ) +ult, ) ug(t,x) — vug(t,z) = 0, (24)

for v = 0.01/7, with initial and boundary conditions

u(0,2) = —sin(mx), z € [-1,1], (25)

u(t,—1) = u(t,1) =0, te[0,1]. (26)

Similar to the Allen—Cahn equation, Burger’s equation has no analytic closed-form solution, there-
fore we use the reference solution used in[Wang et al.| (2024)), which is depicted in the middle plot

of Fig.[6
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Helmholtz equation. We solve a two-dimensional Helmholtz problem on (z,y) € [—1, 1]* with
unit wavenumber and a separable sinusoidal source:

where

flz,y) = (1—7%(a} +a3)) sin(raiz) sin(rasy), (28)
and a; = 1 and as = 4. We consider homogeneous Dirichlet boundary conditions:

u(z,y) = 0 for (x,y) € d(-1,1]?). (29)

The analytic solution to this PDE problem is

Uref (.13, y) = sin (71'.7;) sin (47Ty) ) (30)
and is depicted in the right plot of Fig. [f|for z, y sampled on a uniform 512x512 grid.

The PDE problems are solved using the Residual-Based Attention (RBA) weighting scheme (Anag-
nostopoulos et al.,2024) within the PIML framework (Raissi et al.,[2019), where the training objec-
tive is defined as a sum of weighted residuals associated with the PDE differential operator and the
boundary/initial condition operators. Specifically, we minimize

1 & (pde) | (pde) ? e (be) , (bc) ?
L£(0) = E S e (7 ‘ + E R S 31
( ) A 7pde P aZ T‘l ( ) Nbc P aZ ,'/‘Z ( ) ) ( )

where ||-|| denotes the L2 norm. Here, 7"
(bc)

9

represents the residual of the governing PDE evaluated

at the ¢-th collocation point, while r denotes the residual of the boundary or initial condition (both

Eg) (¢ € {pde,bc}) are initialized to 1 and

are included in the second summation). The weights «
updated after each training iteration according to

‘T(ﬁ)
: ; (32)

max; {|T§€)|}j.v:§1

al(ﬁ),(neW) _ a§€)7(old)

+n

with hyperparameters v = 0.999 and n = 0.01. This formulation ensures that collocation points
with larger relative residuals are assigned greater importance during optimizatio

We minimize the loss function in Eq. (3I)) using the Adam optimizer with a fixed learning rate
of 1073, operating in full-batch mode. For each PDE, we sample Npge = 212 collocation points
uniformly from a 26 x 25 grid, while for boundary and initial conditions we use 2° collocation
points per condition, sampled uniformly along the corresponding axis. The spline basis functions
are defined as in the function fitting case (see Appendix [C.I).

C.3 FEYNMAN DATASET

As a third benchmark, we consider the subset of the Feynman dataset used in Section The
implementation details are identical to those of the function fitting benchmarks in Appendix
with the exception of sampling. In this case, we generate 4,000 random input samples uniformly
distributed over the domain (—1,0) U (0, 1), explicitly excluding the points —1, 0, and 1 to avoid
singularities in certain formulas.

To compute the relative L? error between model predictions and reference solutions, we evaluate all
trained models on a uniform 200 x 200 grid for two-dimensional functions and a uniform 30 x 30 x

“Without RBA, the models trained to solve the Allen—Cahn equation would yield highly inaccurate solu-
tions, preventing a meaningful comparison of initialization schemes.
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30 grid for three-dimensional functions. Table [3]lists the indices of the functions included in this
benchmark, together with their explicit expressions for reference.

Table 5: Dimensionless formulas from the Feynman dataset used in the benchmark. Each entry
shows the dataset index and the corresponding explicit expression.

Index Formula
2 —
1.6.2 fi(z1,z2) =exp (_21712) ’ (27”5%) v
2
1.6.2b fa(z1, 2, 23) = exp (7(117@) ) (2 m2) e

L12.11 fa(z1,z2) = 1 + x1 sin(x2)
L1312 | f4

L184 | fo
1.26.2 f7
1.27.6 fg T1,x2) = 1/(1 4 :Elwg)

(
(
(
(
1166 | fs(x1,22) = (21 + 22)/(1 + z122)
(
(
(
(

1.29.16 fo(z1,x2,23) = \/1 + 22 — 2x1 cos(xa — x3)

1.30.3 fro(z1, x2) = sin®(z122/2)/ sin®(x2/2)
1.40.1 f11(z1, z2) = z1 exp(—x2)

1.50.26 fiz(z1,x2) = cos(z1) + 2 0052(921)
11.2.42 fi13(z1,22) =

.6.15a | fia(z1,x2,23) = Z—fr\/m
1.11.7 fis(z1, 2, x3) = z1(1 4 22 cos(z3))
IL11.27 | fie(z1, 22) = (z122)/(1 — 572)

I.35.18 | fi7(w1,22) = =1/ (exp(x2) + exp(—x2))

(.'121 — 1):1)2

(
11.36.38 | fig(w1,®2,23) = T1 + Taws
ML10.19 | fig(zr,x2) = /1 + a2 + 22

(

11737 | fao(x1,x2,23) = x2 (1 + x1 cos(z3))
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D INDICATIVE RESULTS FOR POWER-LAW GRID-SEARCH

To illustrate the performance landscape of the power-law initialization, we present heatmaps over
(a, B) configurations for representative cases. Specifically, Figures show results for the func-
tion f3(z,y) across the four grid sizes, while Figures show the corresponding results for the
Allen—Cahn PDE. In each heatmap, the horizontal axis corresponds to a and the vertical axis to /3,
with rows and columns indicating different network widths and depths, respectively. These visu-
alizations highlight the regions where power-law initialization provides the greatest improvements,
and help motivate the choice of («, ) = (0.25, 1.75) used for the architectures studied in Sections
@.2)and[4.3] Complete heatmaps for all benchmarks are included in the supplementary material (see
Reproducibility Statement).
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Figure 8: Grid search for the power-law initialization applied to fit function f3 (x,y) for G = 10.
Each heatmap corresponds to an architecture, with the horizontal and vertical axis representing
and f3, respectively, and color denoting final training loss.
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Figure 9: Grid search for the power-law initialization applied to fit function f3 (x,y) for G = 20.
Each heatmap corresponds to an architecture, with the horizontal and vertical axis representing
and f3, respectively, and color denoting final training loss.
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Figure 10: Grid search for the power-law initialization applied to fit function f3 (z,y) for G = 40.
Each heatmap corresponds to an architecture, with the horizontal and vertical axis representing
and f3, respectively, and color denoting final training loss.
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Figure 13: Grid search for the power-law initialization applied for the solution of the Allen—Cahn
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axis representing «v and 3, respectively, and color denoting final training loss.
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E TRAINING CURVES WITH LEARNING RATE SCHEDULING

In Section [4.2] of the main text, the training curves shown in Figures [T] and 2] were obtained using
a fixed learning rate in order to isolate the effect of initialization, as initialization and learning-
rate adaptability are known to interact (e.g., 2021))). However, the fixed learning rate
induces oscillations in the loss curves, particularly for the Glorot and power-law schemes in the
larger architectures. To verify that these oscillations are purely an artifact of the constant learning
rate, we repeat the same training experiments using a learning-rate scheduler.

Figure [T4] shows the results for the function fitting benchmarks, where all settings are identical to
those in the main text except for the use of a learning-rate scheduler: training begins with a learning
rate of 1073, followed by exponential decay with decay factor 0.9 every 50 iterations. Similarly,
Figure [T3] shows the results for the PDE benchmarks, again using all the same hyperparameters as
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Figure 14: Training loss curves for function fitting benchmarks under baseline, LeCun-numerical,
Glorot and power-law (o« = 0.25, 8 = 1.75) initializations when using a learning-rate scheduler.
Results are averaged over five seeds, with shaded regions indicating the standard error. Top row:
“small” architecture (G = 5, two hidden layers with 8 neurons each). Bottom row: “large” archi-
tecture (G = 20, three hidden layers with 32 neurons each).
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Figure 15: Training loss curves for forward PDE benchmarks under baseline, LeCun-numerical,
Glorot and power-law (o« = 0.25, 3 = 1.75) initializations when using a learning-rate scheduler.
Results are averaged over five seeds, with shaded regions indicating the standard error. Top row:
“small” architecture (G = 5, two hidden layers with 8 neurons each). Bottom row: “large” archi-
tecture (G = 20, three hidden layers with 32 neurons each).
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in the main text except for the scheduler: training begins with a learning rate of 10~3, followed by
exponential decay with decay factor 0.85 every 100 iterations.

Across both sets of benchmarks, the learning-rate schedulers eliminate the oscillatory behavior ob-
served under a fixed learning rate, yielding smoother training curves. Quantitatively, the final losses
are slightly higher than those reported in the main text, due to the learning rate decaying even in re-
gions where a larger step size would allow for further progress. Nonetheless, this influences only the
numerical values: the qualitative picture remains unchanged, and the relative performance ordering
of the initialization schemes is consistent with the fixed learning rate setting.
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F NEURAL TANGENT KERNEL ANALYSIS

In this work, we use NTK analysis (Jacot et al.,|2018]) to better understand the effect of initialization
schemes on function fitting and PDE benchmarks, both in terms of stability and conditioning.

F.1 NTK FOrR PIML wWITH RBA WEIGHTS

In this subsection, we derive the NTK formalism used in our PDE experiments. Specifically, we
extend the standard NTK framework for PIML (Wang et al., 2022) to cover the RBA-weighted loss
function of Eq. (31).

We denote the PDE and boundary/initial condition residuals at the ¢-th collocation point by p(Pde)

and rl(bc), respectively, as in Appendix We may re-weight the loss function of Eq. 1| to
follow Wang et al.| (2022)) and subsequently write it in vector form as

1

£(6) = %Hf(pd@(g)H? + 3 Hf-(bc)(g)H;’ 76 = A©Op©) (33)

2

where r(©) stacks the residuals of type £ € {pde,bc}, a® = (ai¥,... ,ag\i))T are the RBA

weights and A©) = diag(a(®)). Throughout a single gradient step we treat a(¢) as constants, as
they are updated only between steps by Eq. (32), outside of the gradient descent scheme.

Let J(©)(8) € RN<*P be the Jacobian of the residuals with respect to the parameters, i.e., its i-th

row is Jz(-g) 0) = 87“1(5) (0)/007 . For a parameter update A@ = —n Vo L(), a first-order expansion
around @ yields,

AFO(9) = AOArO(9) =~ A©IO(9) A6. (34)

Using Eq. and the chain rule, the full-batch gradient is

pde

VG»C Z ~(pdc) pdc) + Z ~(bc bc) (0) (35)
Since fE&) = agf) TEE) and a®) is held fixed within the step,
Vo) (0) = affVer?(0) = ol (117(9)) . (36)

Substituting A@ = —n Vo L(6) into Eq. and grouping terms gives the linear dynamics

AFO(0) ~ —n| (AOIO(g)) (AP J(Pde)(g))Tf(Pde)(g)

K (& pde)

+ (A3 (6)) (ACIIC) () " 50 (9) | (37

)

As mentioned in the main text, Eq. shows that the weighted residual vectors #&) evolve under
a weighted NTK with blocks

KEO — (A(E)J(E))(A(C)J(C))T7 ¢,¢ € {pde, bc}. (38)
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F.2 NTK SPECTRA FOR VARYING POWER-LAW EXPONENTS

To complement the heatmaps of Appendix[D]and to further illustrate the robustness of the power-law
initialization, we examine in this Appendix how the NTK spectrum varies across different (c, )
configurations. The goal of this analysis is twofold. First, it provides an NTK-based view of the
“good regions” identified in the grid search, showing how favorable exponent choices correspond
to well-conditioned and stable kernels. Second, it demonstrates that the power-law scheme is not
sensitive to a single finely tuned pair of exponents: more than one («, 3) combinations within the
identified range yield well-behaved spectra. This supports the idea that one may tune the exponents
once per problem domain and thereafter select any configuration from the favorable region.

Figure [16]displays the NTK eigenvalue spectra for all exponent pairs considered in the grid search,
using the “large” architecture (G = 20, three hidden layers with 32 neurons each) and the function
fitting target f5(x,y). Figure shows the corresponding results for the PDE residual term of
Burgers’ equation. In both cases, well-conditioned spectra concentrate in the same regions suggested
by the grid-search results.
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Figure 16: NTK eigenvalue spectra for the large architecture (G = 20, three hidden layers with 32
neurons each) on the function fitting target f3(x, y), shown for all («, 3) configurations considered
in the grid search. Each panel corresponds to one exponent pair and displays spectra at initialization,
mid-training, and convergence.
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Figure 17: NTK eigenvalue spectra for the large architecture (G = 20, three hidden layers with 32
neurons each) on the PDE residual term of Burgers’ equation, shown for all («, 3) configurations
considered in the grid search. Each panel corresponds to one exponent pair and displays spectra at

initialization, mid-training, and convergence.
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F.3 ADDITIONAL NTK SPECTRA

For completeness, we report additional NTK spectra not included in the main text. Figures [T8}-
show the results for the remaining function fitting benchmarks (f1, f2, f1, f5), while Figures
22] 23] correspond to the Burgers’ and Helmholtz PDEs. All results are obtained using the “large”
architecture (G = 20, three hidden layers with 32 neurons each) and values o« = 0.25, 8 = 1.75 for
the power-law initialization, consistent with the setting analyzed in Section 4.2}
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Figure 18: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f;(x,y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses o = 0.25, 8 = 1.75.
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Figure 19: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f>(z,y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses o = 0.25, 3 = 1.75.
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Figure 20: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f4(x,y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses o = 0.25, 8 = 1.75.
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Figure 21: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f5(x,y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses o = 0.25, 8 = 1.75.
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Figure 22: NTK eigenvalue spectra for the Burgers’ PDE benchmark under baseline, LeCun-
numerical, Glorot, and power-law (o« = 0.25, 5 = 1.75) initializations. Top row: spectra corre-
sponding to the PDE residual term. Bottom row: spectra for the boundary/initial condition terms.
Solid blue lines show the initialization, dashed teal lines show intermediate iterations, and dashed
green lines show the final iteration.

35



Under review as a conference paper at ICLR 2026

Baseline Glorot Power-Law
. 10%7 { 1022 4 1074 =5 108 | FETEREme -
w RS 1T ey *
g 1004 107 4 108 4 2 Ny
~ -- 5 4
$ 10 4 10720 5 107 4 0
S =
= 10% 4 \ 2]
E 10 S 1019 4 ) 1054 10°
@ 10" § 1 ] i
k=l 10 - 105 4 10714
W 102 4 107
10° 10t 102 10° 10t 102 10° 10t 10%
105 So=m=smma =
g 0 - 100 ] 104
2 1024 1]
g 1054 10
3 107" 4 1 -2
=2 \ 1072 4
T || 1044 }
GE) 10744 ' S 10754
> | 10% 4
W 10774 1021 10-8
10° 10! 10° 10t 10° 10t 10° 10t
ndices ndices ndices ndices
Ind Ind Ind Ind
— Initialization —=- Intermediate Iterations Final Iteration

Figure 23: NTK eigenvalue spectra for the Helmholtz PDE benchmark under baseline, LeCun-
numerical, Glorot, and power-law (o« = 0.25, 8 = 1.75) initializations. Top row: spectra corre-
sponding to the PDE residual term. Bottom row: spectra for the boundary/initial condition terms.
Solid blue lines show the initialization, dashed teal lines show intermediate iterations, and dashed

green lines show the final iteration.
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