
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INITIALIZATION SCHEMES FOR KOLMOGOROV–
ARNOLD NETWORKS: AN EMPIRICAL STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

Kolmogorov–Arnold Networks (KANs) are a recently introduced neural architec-
ture that replace fixed nonlinearities with trainable activation functions, offering
enhanced flexibility and interpretability. While KANs have been applied suc-
cessfully across scientific and machine learning tasks, their initialization strate-
gies remain largely unexplored. In this work, we study initialization schemes for
spline-based KANs, proposing two theory-driven approaches inspired by LeCun
and Glorot, as well as an empirical power-law family with tunable exponents.
Our evaluation combines large-scale grid searches on function fitting and forward
PDE benchmarks, an analysis of training dynamics through the lens of the Neu-
ral Tangent Kernel, and evaluations on a subset of the Feynman dataset. Our
findings indicate that the Glorot-inspired initialization significantly outperforms
the baseline in parameter-rich models, while power-law initialization achieves the
strongest performance overall, both across tasks and for architectures of varying
size. This work underscores initialization as a key factor in KAN performance and
introduces practical strategies to improve it.

1 INTRODUCTION

Kolmogorov–Arnold Networks (KANs) (Liu et al., 2025) have recently emerged as an alter-
native backbone architecture to Multilayer Perceptrons (MLPs), drawing inspiration from the
Kolmogorov–Arnold representation theorem (Kolmogorov, 1957) in a manner analogous to how
the learning of MLPs relies on universal approximation theorems. Unlike MLPs, which use fixed
nonlinear activation functions and trainable synaptic weights, KANs comprise grid-dependent train-
able activation functions. This provides them with flexibility in modeling complex nonlinear re-
lationships, while requiring fewer and smaller layers. Since their introduction, KANs have found
numerous applications, often surpassing the performance of their MLP-based counterparts (Yu et al.,
2024; Poeta et al., 2024). There have been many notable results in scientific problem-solving do-
mains, including function fitting and symbolic regression (Liu et al., 2024; Shukla et al., 2024),
partial differential equations (PDEs) (Shukla et al., 2024; Rigas et al., 2024; Wang et al., 2025b)
and operator learning (Abueidda et al., 2025; Shukla et al., 2024; Lee et al., 2025), among other
applications (Howard et al., 2024; Kundu et al., 2024; Kashefi, 2025).

Beyond these benchmarks, there has also been significant progress in the theoretical understanding
of KANs (Zhang & Zhou, 2025; Alter et al., 2025; Wang et al., 2025a). However, one important
theoretical and practical aspect that remains understudied pertains to their initialization strategies.
Current literature mainly relies on the standard initialization method proposed in the introductory
KAN paper (Liu et al., 2025), or explores alternative KAN variants such as Chebyshev-based for-
mulations (Anonymous Authors, 2025). This highlights a clear gap and motivates an investigation
into more effective initialization approaches for the standard spline-based architecture. Effective
initialization is crucial, as a good “initial guess” for the network weights can significantly accelerate
training (Mishkin & Matas, 2016; Skorski et al., 2021) and prevent early saturation of hidden layers
(Glorot & Bengio, 2010). However, despite extensive research into initialization methods for MLP-
based architectures, these results cannot be directly applied to KANs. Furthermore, even within
MLP-based architectures, initialization methods often require separate consideration depending on
the specific architecture design (Huang et al., 2020), activation function (He et al., 2015), or even on
a complete case-by-case basis (Skorski et al., 2021).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In response to this research gap, this work explores initialization strategies for the standard, spline-
based KAN architecture. Drawing parallels with MLPs, we propose variance-preserving schemes
inspired by LeCun (LeCun et al., 1998) and Glorot (Glorot & Bengio, 2010) initializations, includ-
ing a variant that employs normalized spline basis functions. In addition, recognizing that theoretical
frameworks may not always align with empirical performance (Mishkin & Matas, 2016), we further
propose an empirical family of power-law initializations parameterized by two exponents. We per-
form grid searches to identify suitable exponent choices for the power-law method on function fitting
and forward PDE benchmarks and then evaluate all initialization schemes on these tasks. We sub-
sequently fix the exponents to values that lie within the identified well-performing range and select
two representative architectures (in terms of parameter count) to analyze training dynamics through
the evolution of training loss curves and the Neural Tangent Kernel (NTK) spectrum (Jacot et al.,
2018; Wang et al., 2022). Finally, we evaluate said architectures on a subset of the Feynman dataset
(Udrescu & Tegmark, 2020), which, although widely used for symbolic regression, is formulated
here as a function fitting benchmark as in Liu et al. (2025).

2 BACKGROUND

2.1 KOLMOGOROV–ARNOLD NETWORKS

Within the standard formalism, the output, y ∈ Rnout , of a KAN layer is related to its input, x ∈ Rnin ,
via:

yj =

nin∑
i=1

(
rji R (xi) + cji

G+k∑
m=1

bjim Bm (xi)

)
, j = 1, . . . , nout, (1)

where rji, cji and bjim are the layer’s trainable parameters, R(x) corresponds to a residual function,
typically chosen as the SiLU, i.e., R(x) = x (1 + e−x)

−1, and Bm (x) denotes a univariate spline
basis function of order k, defined on a grid with G intervals. For each of the layer’s trainable
parameters, the original KAN formulation initializes the scaling weights as cji = 1, the residual
weights rji using Glorot initialization (Glorot & Bengio, 2010), and the basis weights bjim from a
normal distribution with zero mean and small standard deviation, typically set to σ = 0.1. We will
henceforth refer to this configuration as the “baseline initialization”.

2.2 RELATED WORK

In the existing KAN literature, initialization strategies have only been explored in certain KAN
variants (see, e.g., Guilhoto & Perdikaris (2025)), while the standard spline-based architecture has
not yet received dedicated attention in this regard. A natural starting point for studying initializa-
tion is to follow the historical developments in MLP-based architectures, beginning with variance-
preserving schemes such as those proposed by LeCun (LeCun et al., 1998) and Glorot (Glorot &
Bengio, 2010), which stabilize activation variance across layers and mitigate progressive vanishing
or explosion. Within the KAN family, Glorot-inspired initialization has been applied successfully
to Chebyshev-based variants (Anonymous Authors, 2025), though this setting differs substantially
from the spline-based case studied here, since it removes the residual term of Eq. (1) and employs
a completely different basis function. Consequently, it remains unclear whether such strategies di-
rectly transfer to the standard KAN formulation, motivating the investigation presented in this work.
To the best of our knowledge, the present work provides the first systematic study of initialization
strategies for spline-based KANs.

3 METHODOLOGY

3.1 PROPOSED INITIALIZATIONS

Since the three weight types in a KAN layer are independent, we may initialize the scaling weights
cji to 1 and focus exclusively on the initialization of the residual weights rji and basis weights bjim.
We assume that these weights are drawn from zero-mean distributions with standard deviations σr

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and σb, respectively. To determine suitable values for σr and σb, we follow the principle of variance
preservation proposed by LeCun (LeCun et al., 1998), which stipulates that the variance of the
outputs of each layer should match that of its inputs, thereby avoiding amplification or attenuation of
the signal across layers. Assuming statistical independence among terms and an equal contribution
to the variance from each of the (G+k+1) terms in the summand of Eq. (1), we derive the following
expressions for the standard deviations1:

σr =

√
Var(xi)

nin(G+ k + 1)µ
(0)
R

, σb =

√
Var(xi)

nin(G+ k + 1)µ
(0)
B

, (2)

where

µ
(0)
R = E

[
R (xi)

2
]
, µ

(0)
B = E

[
Bm (xi)

2
]
, (3)

with µ
(0)
B denoting the expectation over both the input distribution and all spline basis indices, m,

and µ
(0)
R denoting the expectation over the input distribution alone.

If we further assume that each component of x is drawn from a given distribution (e.g., the uniform
distribution U (−1, 1), as is often the case in tasks like function fitting or PDE solving), then all
statistical quantities in Eq. (2) can be evaluated directly, except for µ(0)

B . Due to the dependence of
the spline-basis functions on the underlying grid, no general analytic expression exists for σb. This
leads to two practical alternatives: one may either estimate µ

(0)
B numerically by sampling a large

number of input points from the assumed distribution at initialization, or set the expectation value
to unity by modifying the architecture of the KAN layer to use normalized spline basis functions,
defined as

B̃m (xi) =
Bm (xi)− E [Bm (xi)]√

µ
(0)
B − E2 [Bm (xi)]

, (4)

where the expectation values are computed over the layer inputs during the forward pass. We will
refer to the former alternative as “LeCun–numerical” initialization, while the latter is referred to as
“LeCun–normalized” initialization.

While these LeCun-inspired schemes focus on preserving the variance of forward activations, they
do not explicitly account for the propagation of gradients. To address this, we also consider a Glorot-
inspired initialization, which aims to balance forward- and backward-pass variance by maintaining
stable variance for both activations and gradients across layers. Under the same assumptions as
before, we derive the following expressions for the standard deviations2:

σr =

√
1

G+ k + 1
· 2

nin µ
(0)
R + nout µ

(1)
R

, σb =

√
1

G+ k + 1
· 2

nin µ
(0)
B + nout µ

(1)
B

, (5)

where

µ
(1)
R = E

[
R′ (xi)

2
]
, µ

(1)
B = E

[
B′

m (xi)
2
]
, (6)

with the expectations defined analogously to µ
(0)
R and µ

(0)
B in Eq. (3). In practice, µ(1)

B can be
computed using automatic differentiation of the spline basis functions, together with the numerical
sampling strategy discussed for the LeCun–numerical case, while µ(1)

R can be evaluated analytically
for standard choices of R(x) such as the SiLU.

1See Appendix A for detailed derivations.
2See Appendix B for detailed derivations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In addition to these theory-driven initialization strategies, we also investigate an empirical approach
based on a power-law scaling of the KAN layer’s architectural parameters. Specifically, we initialize
the weights such that their standard deviations follow the form

σr =

(
1

nin (G+ k + 1)

)α

, σb =

(
1

nin (G+ k + 1)

)β

, (7)

where α and β are tunable exponents selected from the set {0.0, 0.25, . . . , 1.75, 2.0}. The motivation
behind this empirical scheme is to perform a grid search over (α, β) configurations in order to
identify trends or specific exponent pairs that consistently improve training speed and convergence.
Such searches can be carried out on a per-domain basis (e.g., function fitting, forward PDEs), after
which the resulting well-performing ranges may serve as reusable heuristics for future problems of
the same type.

3.2 EXPERIMENTAL SETUP

We evaluate initialization strategies on two benchmark families: function fitting tasks and forward
PDE problems. For function fitting, we use five two-dimensional target functions and train for 2,000
iterations (epochs), while for PDEs we consider the Allen–Cahn equation, Burgers’ equation, and the
two-dimensional Helmholtz equation, using KANs trained for 5,000 iterations within the Physics-
Informed Machine Learning (PIML) framework (Raissi et al., 2019). Across both benchmarks,
performance is measured using the final training loss and the relative L2 error with respect to the
reference solution. For the purposes of the initial grid search, we test architectures with 1–4 hidden
layers, widths equal to 2i for i = 1, . . . , 6, and grid sizes G ∈ {5, 10, 20, 40} for function fitting,
while for PDEs we restrict to G ∈ {5, 10, 20}. All experiments presented herein are repeated
with five random seeds, except in the power-law grid search where we use three seeds to reduce
computational cost, and we report the median outcome across runs. Further implementation details,
including the explicit formulas of the target functions and the PDE setups, are provided in Appendix
C. All experiments are implemented in JAX (Bradbury et al., 2018), with KANs trained using the
jaxKAN framework (Rigas & Papachristou, 2025). Training is performed on a single NVIDIA
GeForce RTX 4090 GPU.

4 EXPERIMENTS & DISCUSSION

4.1 GRID-SEARCH RESULTS

The grid search over (α, β) configurations and the architectural variations described in Section 3.2
resulted in 126,240 trained KAN model instances for function fitting. After aggregating the repeated
runs by their median outcome, this number reduces to 40,800 representative results. From these, we
retain only the best-performing (α, β) configuration per setting, yielding 2,400 final entries. Table 1

Table 1: Percentage of runs that outperform the baseline initialization on function fitting bench-
marks. Columns correspond to target functions, while rows correspond to initialization schemes and
evaluation metrics. Best results per function are shown in bold.

Initialization Metric f1 (x, y) f2 (x, y) f3 (x, y) f4 (x, y) f5 (x, y)

Loss 18.75% 14.58% 12.50% 25.00% 26.04%
LeCun–numerical L2 6.25% 4.17% 5.21% 14.58% 2.08%

Both 1.04% 0.00% 0.00% 8.33% 0.00%
Loss 19.79% 28.13% 19.79% 41.67% 31.25%

LeCun–normalized L2 11.46% 9.38% 11.46% 26.04% 6.25%
Both 2.08% 5.21% 5.21% 16.67% 1.04%
Loss 78.13% 76.04% 78.13% 63.54% 72.92%

Glorot L2 78.13% 75.00% 78.13% 64.58% 72.92%
Both 78.13% 75.00% 78.13% 60.41% 64.59%
Loss 100.00% 100.00% 100.00% 100.00% 98.96%

Power-Law L2 100.00% 100.00% 100.00% 94.79% 96.88%
Both 100.00% 100.00% 100.00% 94.79% 95.83%

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

reports, for each target function and initialization scheme, the percentage of runs that outperform the
baseline initialization described in Section 2.1. Results are compared with respect to final training
loss and relative L2 error, and we additionally report the percentage of runs where both metrics
improve simultaneously.

The LeCun-inspired schemes rarely outperform the baseline on the smaller architectures, but their
effectiveness increases with depth, width and grid size. In some of the larger settings, the nor-
malized variant in particular achieves improvements exceeding two orders of magnitude relative to
the baseline. However, in terms of absolute frequency, Table 1 clearly shows that the baseline still
outperforms both LeCun-based variants: for more than 70% of configurations, the resulting rela-
tive L2 error under LeCun initialization is higher than under the baseline scheme. Between the
two LeCun variants, the normalized version consistently performs better than the numerical one,
which is consistent with its design, as variance preservation is enforced by construction. On the
other hand, the Glorot-inspired initialization performs more robustly. Across all five functions, it
yields success rates of approximately 60–75% for both loss and relative L2 error, indicating that
simultaneously balancing forward- and backward-pass variances is considerably more effective than
forward-variance preservation alone. The few cases where the baseline performs better occur pre-
dominantly for the smaller architectures.

As far as the power-law initialization is concerned, it exhibits the strongest overall performance.
Table 1 shows that, for nearly every architecture and target function, there exists at least one (α, β)
pair that outperforms the baseline, often by a substantial margin. The most favorable region is
concentrated around small residual exponents, i.e., α ∈ {0.25, 0.5}, combined with larger basis-
function exponents, namely β ≥ 1.0. Full grid-search results illustrating these trends are provided
in Appendix D and the supplementary material. Notably, even when fixing a single configuration
within this region, the method remains highly robust. For example, with (α, β) = (0.25, 1.0),
the initialization yields simultaneous improvements in both loss and L2 error over the baseline in
96.88% of runs for f1(x, y), 95.83% for f2(x, y), 97.92% for f3(x, y), 87.50% for f4(x, y), and
89.58% for f5(x, y). This indicates that once a suitable exponent range is identified for a given
problem type, a fixed choice within that region can systematically outperform both the baseline and
the Glorot initialization.

Following the same procedure for the PDE benchmarks, we trained 56,882 models, a number which
reduced to 18,360 representative results after aggregation and 1,080 final entries after selecting the
best (α, β) per setting. Table 2 summarizes the outcomes in terms of final training loss, relative L2

error, and their joint improvement over the baseline initialization.

Table 2: Percentage of runs that outperform the baseline initialization on forward PDE benchmarks.
Columns correspond to the three PDEs considered, while rows correspond to initialization schemes
and evaluation metrics. Best results per PDE are shown in bold.

Initialization Metric Allen–Cahn Burgers Helmholtz
Loss 11.11% 11.11% 8.33%

LeCun–numerical L2 16.67% 22.22% 15.28%
Both 8.33% 6.94% 2.78%
Loss 2.78% 0.00% 0.00%

LeCun–normalized L2 0.00% 0.00% 0.00%
Both 0.00% 0.00% 0.00%
Loss 55.56% 50.00% 76.39%

Glorot L2 51.39% 54.17% 72.22%
Both 41.67% 36.11% 62.50%
Loss 98.61% 100.00% 98.61%

Power-Law L2 94.44% 73.61% 87.50%
Both 94.44% 73.61% 87.50%

When comparing the two LeCun-based schemes to each other, the observed behavior is essentially
the inverse of what we observed in function fitting. The normalized variant, which performed better
than the numerical one for function fitting, fails almost entirely in PDE problems: in nearly all
configurations, it produces no improvement over the baseline, with success rates effectively equal
to zero. This discrepancy can be attributed to the fact that PDE losses involve not only the network
output but also its derivatives and nonlinear combinations thereof. Normalizing the spline basis

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

propagates all multiplicative constants (the standard deviation in the denominator of Eq. (4) in this
case) into all derivatives, altering the stiffness of the residuals. While the numerical variant avoids
this issue, the results are still poor: although it occasionally outperforms the baseline on larger
architectures, it remains generally ineffective. The Glorot-inspired initialization again shows more
consistent improvements. As in function fitting, it performs significantly better than the baseline on
parameter-rich architectures and the cases where it underperforms correspond to smaller models.

The power-law initialization remains the strongest of all approaches, though the advantage is less
pronounced in the PDE case. For more than 70% of configurations (up to 94.44% in the Allen–
Cahn equation) there exists at least one (α, β) pair that outperforms the baseline simultaneously
in both loss and relative L2 error. The preferred exponent region differs slightly from the function
fitting case: while small residual exponents α remain strongly favored, in this case lower values of
β (typically 0.75 ≤ β ≤ 1.25) yield the best results. The complete grid-search results supporting
these observations are provided in Appendix D and the supplementary material. For the previously
discussed configuration (α, β) = (0.25, 1.0), the power-law initialization outperforms the baseline
on both metrics in 83.33% of runs for Allen–Cahn, 54.93% for Burgers’ and 59.72% for Helmholtz,
with even higher success rates when each metric is considered individually.

4.2 TRAINING DYNAMICS ANALYSIS

The previous experiments established that the Glorot- and power-law-based schemes provide strong
alternatives to the baseline initialization, with the latter yielding the most consistent improvements
overall. In contrast, the LeCun-based variants exhibited substantially weaker performance. To better
understand the mechanisms behind these trends, we next examine training dynamics in greater detail
for each initialization scheme, excluding only the LeCun-normalized variant due to its complete
breakdown in PDE problems for the aforementioned reasons. We begin with the function fitting
benchmarks: Figure 1 shows the evolution of the training loss for two representative settings, a
“small” architecture (G = 5, two hidden layers with 8 neurons each) and a “large” architecture
(G = 20, three hidden layers with 32 neurons each). For consistency across experiments, we fix the
power-law parameters to α = 0.25 and β = 1.75, which lie within the range identified as favorable
in the grid search for function fitting. The curves are averaged over five seeds, with shaded regions
indicating the standard error.

0 1000 2000

10 5

10 3

10 1

Tr
ai

ni
ng

 L
os

s

f1(x, y)

0 1000 2000
10 4

10 3

10 2

10 1

100

101 f2(x, y)

0 1000 2000

10 5

10 4

10 3

10 2

10 1

100
f3(x, y)

0 1000 2000
10 4

10 3

10 2

10 1

f4(x, y)

0 1000 2000

10 3

10 2

10 1

100

G
=

5, depth = 2, width = 8

f5(x, y)

0 1000 2000
Training Iteration

10 6

10 4

10 2

100

Tr
ai

ni
ng

 L
os

s

0 1000 2000
Training Iteration

10 5

10 3

10 1

101

0 1000 2000
Training Iteration

10 6

10 4

10 2

100

0 1000 2000
Training Iteration

10 6

10 4

10 2

0 1000 2000
Training Iteration

10 5

10 3

10 1

G
=

20, depth = 3, width = 32

Baseline LeCun Glorot Power-Law

Figure 1: Training loss curves for function fitting benchmarks under baseline, LeCun-numerical,
Glorot and power-law (α = 0.25, β = 1.75) initializations. Results are averaged over five seeds,
with shaded regions indicating the standard error. Top row: “small” architecture (G = 5, two hidden
layers with 8 neurons each). Bottom row: “large” architecture (G = 20, three hidden layers with 32
neurons each).

Across all settings, the loss curves in Figure 1 reinforce the conclusions drawn from the previous
experiments: the power-law initialization consistently outperforms all other schemes, converging

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

both faster and to lower final losses. For the small architecture, the baseline and Glorot initial-
izations behave similarly, whereas for the larger architecture Glorot has a clear advantage over the
baseline. The LeCun initialization, while stable and not prone to divergence, persistently underper-
forms the remaining schemes in both architectures. The oscillatory behavior observed for Glorot and
power-law in the large-architecture setting is a consequence of using a fixed learning rate throughout
training. We intentionally avoided learning-rate scheduling because initialization and learning-rate
adaptability are known to interact in subtle ways (e.g., (Yang et al., 2021)), and our goal was to
isolate the effect of initialization alone. In Appendix E we provide results for the same experiments
using a learning-rate scheduler; the resulting curves are significantly smoother, however the relative
performance ranking of the initialization schemes remains unchanged.

The corresponding analysis for the PDE benchmarks is shown in Figure 2, where again we use the
power-law parameters α = 0.25 and β = 1.75, despite the grid search identifying a different optimal
region for β, in order to demonstrate that the method remains robust even when not tuned specifically
for PDEs. For the small architecture, all initialization schemes ultimately perform comparably, al-
beit at different rates. Notably, the power-law initialization exhibits markedly lower variance across
seeds and, in the Allen–Cahn case in particular, reaches a minimum significantly faster than the alter-
natives. In the larger architecture, however, the trends closely mirror those observed in the function
fitting experiments: the LeCun initialization lags behind by several orders of magnitude, the base-
line also underperforms, and both Glorot and power-law provide substantial improvements. These
two consistently achieve the lowest losses, with the power-law scheme displaying an advantage in
the Allen–Cahn and Burgers equations. As with the function fitting results, the oscillatory behavior
observed for Glorot and power-law arises from the fixed learning rate used during training. The
corresponding smoothed curves obtained with learning-rate scheduling are provided in Appendix E.

0 1000 2000 3000 4000 5000
10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s

Allen-Cahn

0 1000 2000 3000 4000 5000

10 1

100

101
Burgers

0 1000 2000 3000 4000 5000

102

103

104

 G = 5
depth = 2, width = 8

Helmholtz

0 1000 2000 3000 4000 5000
Training Iteration

10 2

100

102

104

106

Tr
ai

ni
ng

 L
os

s

0 1000 2000 3000 4000 5000
Training Iteration

10 2

101

104

107

0 1000 2000 3000 4000 5000
Training Iteration

101

104

107

1010

1013

 G = 20
depth = 3, width = 32

Baseline LeCun Glorot Power-Law

Figure 2: Training loss curves for forward PDE benchmarks under baseline, LeCun-numerical,
Glorot, and power-law (α = 0.25, β = 1.75) initializations. Results are averaged over five seeds,
with shaded regions indicating the standard error. Top row: “small” architecture (G = 5, two hidden
layers with 8 neurons each). Bottom row: “large” architecture (G = 20, three hidden layers with 32
neurons each).

To gain further insight into why the baseline and LeCun initializations underperform while Glorot
and power-law consistently succeed, we complement the loss-curve analysis with a study of NTK
dynamics. Since the discrepancies between initialization strategies are most pronounced in larger
models, we focus here on the “large” architecture. For the power-law method we keep α = 0.25
and β = 1.75, however we also provide the spectra for other configurations in Appendix F.2. Fig-
ure 3 shows the NTK eigenvalue spectra at initialization, at intermediate training iterations, and at
convergence, for the task of fitting f3(x, y) (results for other targets are provided in Appendix F.3).

The spectra reveal several notable differences. The baseline initialization exhibits a spectrum dom-
inated by very large leading eigenvalues and a steep decay, which collapses further during training,
indicating poor conditioning and a low effective rank. LeCun behaves similarly but with even more
extreme magnitudes. In contrast, the Glorot initialization produces a well-spread spectrum with
stable leading and trailing eigenvalues throughout optimization. The power-law scheme yields an

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

100 101 102

Indices

104

105

Ei
ge

nv
al

ue
s

Baseline

100 101 102

Indices

105

106

LeCun

100 101 102

Indices

10 2

100

102

104

Glorot

100 101 102

Indices

10 8

10 5

10 2

101

104
Power-Law

Initialization Intermediate Iterations Final Iteration

Figure 3: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f3(x, y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses α = 0.25, β = 1.75.

even better spectrum, closely following a power-law decay at initialization and remaining perfectly
stable during training, suggesting balanced sensitivity across modes. These observations align with
the performance trends reported so far: Glorot and power-law initializations induce stable, well-
conditioned NTK spectra and therefore correspond to faster optimization and lower final error, while
the baseline and LeCun produce highly skewed or collapsing spectra and thus consistently under-
perform during training.

We also extend the NTK analysis to PDE benchmarks, focusing on the Allen–Cahn equation as a
representative case (results for Burgers and Helmholtz are provided in Appendix F.3). To this end,
we adopt the NTK formalism developed for PIML (Wang et al., 2022) and adapt it to account for
Residual-Based Attention (RBA) weights (Anagnostopoulos et al., 2024), which are applied in the
loss functions studied herein (see Appendix C.2 for details). The resulting kernel is identical to the
standard PINN NTK, except that it incorporates the corresponding RBA weights (see Appendix F.1
for the full derivation). Figure 4 shows the NTK eigenvalue spectra separately for the PDE residual
term (top row) and the boundary/initial conditions (bottom row).

100 101 102

107

108

109

1010

Ei
ge

nv
al

ue
s (

PD
E)

Baseline

100 101 102

1010

1011

1012

1013

1014

LeCun

100 101 102

10 1

101

103

105

Glorot

100 101 102

10 5

10 2

101

104

Power-Law

100 101

Indices

104

105

Ei
ge

nv
al

ue
s (

BC
)

100 101

Indices

103

104

105

106

100 101

Indices

10 5

10 3

10 1

101

103

100 101

Indices

10 7

10 4

10 1

102

Initialization Intermediate Iterations Final Iteration

Figure 4: NTK eigenvalue spectra for the Allen–Cahn PDE benchmark under baseline, LeCun-
numerical, Glorot, and power-law (α = 0.25, β = 1.75) initializations. Top row: spectra corre-
sponding to the PDE residual term. Bottom row: spectra for the boundary/initial condition terms.
Solid blue lines show the initialization, dashed teal lines show intermediate iterations, and dashed
green lines show the final iteration. Results correspond to the “large” architecture (G = 20, three
hidden layers with 32 neurons each).

The PDE residual spectra largely mirror the function fitting case: baseline and LeCun initializations
yield poorly conditioned eigenvalues that collapse over training, while both Glorot and power-law
maintain stability. The key difference lies in the boundary/initial condition terms, where Glorot

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

shows some irregularities, though far less severe than the baseline and LeCun. The power-law
scheme stands out as the most consistent, providing stable and well-structured spectra across both
PDE residual- and boundary/initial-term.

4.3 FEYNMAN DATASET BENCHMARKS

As a final benchmark, we turn to a subset of the Feynman dataset, restricted to dimensionless equa-
tions. The explicit formulas of the target functions and implementation details are provided in Ap-
pendix C.3. Having already established via empirical evidence and NTK analysis that the LeCun-
based schemes are consistently underperforming, we benchmark here only the two competitive ini-
tializations (Glorot and power-law) alongside the baseline. We again fix the power-law exponents
to (α, β) = (0.25, 1.75) and evaluate all methods using the same “small” and “large” architectures
defined in Section 4.2. Tables 3 and 4 report the results in terms of final training loss and relative L2

error with respect to the reference solutions, for the small and large settings, respectively.

Table 3: Results on the Feynman benchmark for the “small” architecture (G = 5, two hidden layers
with 8 neurons each). Reported values correspond to median final training loss and relative L2 error
with respect to the reference solution. Best results per equation are shown in bold. The power-law
initialization uses α = 0.25, β = 1.75.

Baseline Glorot Power-Law
Function Loss L2 Loss L2 Loss L2

I.6.2 5.17 · 10−3 4.05 · 10−1 9.86 · 10−3 4.22 · 10−1 1.18 · 10−3 4.14 · 10−1

I.6.2b 3.58 · 10−3 4.28 · 10−1 8.69 · 10−3 5.01 · 10−1 1.97 · 10−3 4.37 · 10−1

I.12.11 1.40 · 10−5 3.67 · 10−3 1.30 · 10−5 3.75 · 10−3 1.12 · 10−6 1.07 · 10−3

I.13.12 2.24 · 103 1.86 · 100 3.51 · 103 7.65 · 10−1 1.75 · 103 2.36 · 100

I.16.6 2.62 · 10−4 3.55 · 10−2 2.94 · 10−4 3.63 · 10−2 1.19 · 10−4 2.92 · 10−2

I.18.4 1.39 · 103 1.00 · 100 2.31 · 103 1.00 · 100 1.04 · 103 1.00 · 100

I.26.2 5.00 · 10−6 7.21 · 10−3 1.40 · 10−5 1.19 · 10−2 9.99 · 10−7 3.13 · 10−3

I.27.6 1.87 · 10−3 1.00 · 100 1.24 · 10−1 1.00 · 100 1.77 · 10−1 1.00 · 100

I.29.16 1.05 · 10−4 1.14 · 10−2 1.22 · 10−4 1.24 · 10−2 3.14 · 10−5 6.83 · 10−3

I.30.3 4.00 · 10−6 4.62 · 10−3 9.00 · 10−6 6.84 · 10−3 4.88 · 10−7 1.73 · 10−3

I.40.1 1.30 · 10−5 4.76 · 10−3 3.90 · 10−5 8.11 · 10−3 1.74 · 10−6 1.81 · 10−3

I.50.26 1.40 · 10−5 4.07 · 10−3 1.00 · 10−5 3.47 · 10−3 1.17 · 10−6 1.20 · 10−3

II.2.42 1.52 · 10−4 4.46 · 10−3 2.50 · 10−5 7.74 · 10−3 8.49 · 10−7 1.44 · 10−3

II.6.15a 6.00 · 10−6 7.35 · 10−2 1.80 · 10−5 1.16 · 10−1 4.97 · 10−7 1.89 · 10−2

II.11.7 2.70 · 10−5 1.03 · 10−2 6.10 · 10−5 1.44 · 10−2 3.58 · 10−6 4.08 · 10−3

II.11.27 4.00 · 10−6 6.20 · 10−3 1.50 · 10−5 1.21 · 10−2 7.17 · 10−7 2.72 · 10−3

II.35.18 3.00 · 10−6 7.61 · 10−3 1.10 · 10−5 1.38 · 10−2 1.84 · 10−7 1.48 · 10−3

II.36.38 3.50 · 10−5 1.17 · 10−2 6.50 · 10−5 1.57 · 10−2 2.71 · 10−6 3.43 · 10−3

III.10.19 1.40 · 10−5 3.14 · 10−3 1.50 · 10−5 2.90 · 10−3 8.26 · 10−6 2.24 · 10−3

III.17.37 2.60 · 10−5 1.05 · 10−2 5.30 · 10−5 1.41 · 10−2 4.35 · 10−6 4.37 · 10−3

The results confirm the same overall trends observed in the earlier benchmarks. In both settings,
power-law initialization achieves the best performance on the majority of equations, often by large
margins in terms of both final training loss and relative L2 error. Glorot initialization also provides
substantial improvements over the baseline, particularly in the large architecture, where it consis-
tently narrows the gap to power-law. A comparison between Tables 3 and 4 further highlights the
role of initialization: with Glorot and power-law, the richer architecture is able to drive the loss down
by several orders of magnitude and simultaneously reduce the L2 error, whereas under the baseline
initialization, performance often degrades when moving from the small to the large setting.

5 CONCLUSION

In this work, we proposed and systematically evaluated new initialization strategies for spline-based
KANs. Specifically, we introduced two theory-driven schemes inspired by LeCun and Glorot, in-
cluding a variant with normalized basis functions, as well as an empirical family of power-law
initializations. Through large-scale grid searches, we identified favorable exponent ranges for the
power-law method for both function fitting and forward PDE problems. Across all evaluations, in-
cluding loss curve analysis and NTK dynamics, we showed that initialization plays a critical role

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 4: Results on the Feynman benchmark for the “large” architecture (G = 20, three hidden
layers with 32 neurons each). Reported values correspond to median final training loss and relative
L2 error with respect to the reference solution. Best results per equation are shown in bold. The
power-law initialization uses α = 0.25, β = 1.75.

Baseline Glorot Power-Law
Function Loss L2 Loss L2 Loss L2

I.6.2 1.09 · 10−3 1.51 · 100 4.80 · 10−5 4.19 · 10−1 5.20 · 10−6 3.85 · 10−1

I.6.2b 1.36 · 10−3 1.64 · 100 7.60 · 10−5 5.80 · 10−1 2.18 · 10−6 4.59 · 10−1

I.12.11 1.64 · 10−4 3.77 · 10−1 3.00 · 10−6 1.47 · 10−3 2.16 · 10−8 1.66 · 10−4

I.13.12 2.70 · 103 3.08 · 100 2.81 · 103 1.11 · 100 2.53 · 10−1 5.49 · 100

I.16.6 1.63 · 10−4 6.31 · 10−1 6.00 · 10−6 1.63 · 10−2 1.09 · 10−6 1.48 · 10−2

I.18.4 2.67 · 102 1.00 · 100 1.53 · 103 1.00 · 100 4.15 · 10−2 1.00 · 100

I.26.2 1.01 · 10−4 1.10 · 100 7.00 · 10−6 8.98 · 10−3 1.72 · 10−7 1.25 · 10−3

I.27.6 3.33 · 10−3 1.00 · 100 1.85 · 10−4 1.00 · 100 8.93 · 10−5 1.00 · 100

I.29.16 2.01 · 10−4 4.45 · 10−1 1.20 · 10−5 6.28 · 10−3 2.06 · 10−7 2.57 · 10−3

I.30.3 1.18 · 10−4 7.72 · 10−1 1.00 · 10−6 2.92 · 10−3 2.17 · 10−8 4.17 · 10−4

I.40.1 2.26 · 10−4 6.70 · 10−1 5.00 · 10−6 3.39 · 10−3 1.41 · 10−7 6.17 · 10−4

I.50.26 2.03 · 10−4 4.38 · 10−1 2.00 · 10−6 1.50 · 10−3 3.70 · 10−8 2.25 · 10−4

II.2.42 1.52 · 10−4 6.86 · 10−1 4.00 · 10−6 2.62 · 10−3 8.54 · 10−8 4.98 · 10−4

II.6.15a 6.60 · 10−5 7.60 · 100 2.00 · 10−6 5.47 · 10−2 8.13 · 10−9 4.40 · 10−3

II.11.7 1.75 · 10−4 9.78 · 10−1 1.10 · 10−5 1.01 · 10−2 1.80 · 10−7 3.00 · 10−3

II.11.27 8.80 · 10−5 1.04 · 100 1.00 · 10−6 3.76 · 10−3 1.54 · 10−7 1.95 · 10−3

II.35.18 7.40 · 10−5 1.19 · 100 6.00 · 10−6 1.18 · 10−2 2.95 · 10−8 7.77 · 10−4

II.36.38 1.93 · 10−4 9.48 · 10−1 8.00 · 10−6 1.11 · 10−2 3.05 · 10−7 4.92 · 10−3

III.10.19 1.81 · 10−4 2.74 · 10−1 1.00 · 10−6 9.89 · 10−4 9.87 · 10−9 8.70 · 10−5

III.17.37 1.45 · 10−4 9.10 · 10−1 4.90 · 10−5 1.31 · 10−2 6.45 · 10−6 5.14 · 10−3

in KAN performance. In particular, our results demonstrate that while LeCun-inspired schemes of-
fer limited benefits, Glorot-inspired initialization emerges as a strong candidate for parameter-rich
architectures, and the empirical power-law family provides the most robust improvements overall,
achieving faster convergence and lower errors across benchmarks. These findings highlight ini-
tialization as a key component of training KANs and identify effective practical strategies for the
process.

5.1 LIMITATIONS AND FUTURE WORK

While our study establishes the importance of initialization in spline-based KANs, it also comes
with limitations. Our power-law scheme, although empirically effective, currently lacks a rigor-
ous theoretical foundation, and understanding why specific exponent ranges perform well remains
an open question. Moreover, although we considered both supervised function fitting and physics-
informed PDE benchmarks, further exploration in other domains such as reinforcement learning or
generative modeling could provide additional insights. Addressing these limitations offers natural
directions for future work, including deriving principled theory for power-law initialization, inves-
tigating transferability across KAN variants (e.g., Chebyshev-based or residual-free forms), and
exploring initialization strategies in conjunction with adaptive optimization techniques.

LLM USAGE

Large Language Models (LLMs) were used during peer review for grammar and syntax refinement
only; all ideas, technical content, analyses and conclusions remain the authors’ work.

REPRODUCIBILITY STATEMENT

We include the full code (including selected seeds for each experiment) and the processed data from
the grid-search experiments as supplementary material, all anonymized for review. Upon accep-
tance, we will publicly release the complete code and datasets in a public GitHub repository.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Diab W. Abueidda, Panos Pantidis, and Mostafa E. Mobasher. DeepOKAN: Deep operator net-
work based on Kolmogorov Arnold networks for mechanics problems. Comput. Methods Appl.
Mech. Eng., 436:117699, 2025. doi: https://doi.org/10.1016/j.cma.2024.117699. URL https:
//www.sciencedirect.com/science/article/pii/S0045782524009538.

Tal Alter, Raz Lapid, and Moshe Sipper. On the robustness of Kolmogorov–Arnold networks:
An adversarial perspective. Transactions on Machine Learning Research, 2025. URL https:
//openreview.net/forum?id=uafxqhImPM.

Sokratis J. Anagnostopoulos, Juan Diego Toscano, Nikolaos Stergiopulos, and George Em Karni-
adakis. Residual-based attention in physics-informed neural networks. Computer Methods in
Applied Mechanics and Engineering, 421:116805, 2024. doi: 10.1016/j.cma.2024.116805.

Anonymous Authors. Towards deep physics-informed Kolmogorov–Arnold networks. Under re-
view, 2025.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/jax-ml/jax.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9, pp. 249–256, 2010. URL https://proceedings.mlr.press/
v9/glorot10a.html.

Leonardo Ferreira Guilhoto and Paris Perdikaris. Deep learning alternatives of the Kolmogorov
superposition theorem. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=SyVPiehSbg.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015. doi: 10.1109/ICCV.2015.123.

Amanda A. Howard, Bruno Jacob, Sarah H. Murphy, Alexander Heinlein, and Panos Stinis. Fi-
nite basis Kolmogorov–Arnold networks: domain decomposition for data-driven and physics-
informed problems, 2024. URL https://arxiv.org/abs/2406.19662.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer optimiza-
tion through better initialization. In Proceedings of the 37th International Conference on Machine
Learning, volume 119, pp. 4475–4483, 2020. URL https://proceedings.mlr.press/
v119/huang20f.html.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems, vol-
ume 31, 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf.

Ali Kashefi. Kolmogorov–Arnold PointNet: Deep learning for prediction of fluid fields on irregular
geometries. Comput. Methods Appl. Mech. Eng., 439:117888, 2025. doi: https://doi.org/10.1016/
j.cma.2025.117888. URL https://www.sciencedirect.com/science/article/
pii/S0045782525001604.

A. K. Kolmogorov. On the representation of continuous functions of several variables by superpo-
sition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR, 114:
369–373, 1957.

Akash Kundu, Aritra Sarkar, and Abhishek Sadhu. KANQAS: Kolmogorov–Arnold network for
quantum architecture search. EPJ Quantum Technol., 11:76, 2024. doi: https://doi.org/10.1140/
epjqt/s40507-024-00289-z.

11

https://www.sciencedirect.com/science/article/pii/S0045782524009538
https://www.sciencedirect.com/science/article/pii/S0045782524009538
https://openreview.net/forum?id=uafxqhImPM
https://openreview.net/forum?id=uafxqhImPM
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://openreview.net/forum?id=SyVPiehSbg
https://arxiv.org/abs/2406.19662
https://proceedings.mlr.press/v119/huang20f.html
https://proceedings.mlr.press/v119/huang20f.html
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5a4be1fa34e62bb8a6ec6b91d2462f5a-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0045782525001604
https://www.sciencedirect.com/science/article/pii/S0045782525001604

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient backprop. In
Genevieve B. Orr and Klaus-Robert Müller (eds.), Neural Networks: Tricks of the Trade, pp.
9–50. Springer, 1998. ISBN 978-3-540-49430-0. doi: 10.1007/3-540-49430-8 2.

Jin Lee, Ziming Liu, Xinling Yu, Yixuan Wang, Haewon Jeong, Murphy Yuezhen Niu, and Zheng
Zhang. Kano: Kolmogorov-arnold neural operator, 2025. URL https://arxiv.org/abs/
2509.16825.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov–Arnold networks meet science, 2024. URL https://arxiv.org/abs/
2408.10205.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–Arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Ozo7qJ5vZi.

Dmytro Mishkin and Jiri Matas. All you need is a good init. In 4th International Conference
on Learning Representations, ICLR 2016, 2016. URL https://arxiv.org/abs/1511.
06422.

Eleonora Poeta, Flavio Giobergia, Eliana Pastor, Tania Cerquitelli, and Elena Baralis. A bench-
marking study of Kolmogorov–Arnold networks on tabular data. In 2024 IEEE 18th Interna-
tional Conference on Application of Information and Communication Technologies (AICT), pp.
1–6, 2024. doi: 10.1109/AICT61888.2024.10740444.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations. J. Comput. Phys., 378:686–707, 2019. doi: https://doi.org/10.1016/j.jcp.
2018.10.045. URL https://www.sciencedirect.com/science/article/pii/
S0021999118307125.

Spyros Rigas and Michalis Papachristou. jaxKAN: A unified JAX framework for Kolmogorov–
Arnold networks. Journal of Open Source Software, 10(108):7830, 2025. doi: 10.21105/joss.
07830. URL https://doi.org/10.21105/joss.07830.

Spyros Rigas, Michalis Papachristou, Theofilos Papadopoulos, Fotios Anagnostopoulos, and Geor-
gios Alexandridis. Adaptive training of grid-dependent physics-informed Kolmogorov–Arnold
networks. IEEE Access, 12:176982–176998, 2024. doi: 10.1109/ACCESS.2024.3504962.

Khemraj Shukla, Juan Diego Toscano, Zhicheng Wang, Zongren Zou, and George Em Karniadakis.
A comprehensive and FAIR comparison between MLP and KAN representations for differential
equations and operator networks. Comput. Methods Appl. Mech. Eng., 431:117290, 2024. doi:
https://doi.org/10.1016/j.cma.2024.117290. URL https://www.sciencedirect.com/
science/article/pii/S0045782524005462.

Maciej Skorski, Alessandro Temperoni, and Martin Theobald. Revisiting weight initialization of
deep neural networks. In Proceedings of The 13th Asian Conference on Machine Learning,
volume 157, pp. 1192–1207, 2021. URL https://proceedings.mlr.press/v157/
skorski21a.html.

Silviu-Marian Udrescu and Max Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020. doi: 10.1126/sciadv.aay2631.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022. doi: 10.1016/j.jcp.
2021.110768.

Sifan Wang, Bowen Li, Yuhan Chen, and Paris Perdikaris. Piratenets: Physics-informed deep learn-
ing with residual adaptive networks. Journal of Machine Learning Research, 25(402):1–51, 2024.

Yixuan Wang, Jonathan W. Siegel, Ziming Liu, and Thomas Y. Hou. On the expressiveness and
spectral bias of KANs. In The Thirteenth International Conference on Learning Representations,
2025a. URL https://openreview.net/forum?id=ydlDRUuGm9.

12

https://arxiv.org/abs/2509.16825
https://arxiv.org/abs/2509.16825
https://arxiv.org/abs/2408.10205
https://arxiv.org/abs/2408.10205
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=Ozo7qJ5vZi
https://arxiv.org/abs/1511.06422
https://arxiv.org/abs/1511.06422
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.21105/joss.07830
https://www.sciencedirect.com/science/article/pii/S0045782524005462
https://www.sciencedirect.com/science/article/pii/S0045782524005462
https://proceedings.mlr.press/v157/skorski21a.html
https://proceedings.mlr.press/v157/skorski21a.html
https://openreview.net/forum?id=ydlDRUuGm9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yizheng Wang, Jia Sun, Jinshuai Bai, Cosmin Anitescu, Mohammad Sadegh Eshaghi, Xiaoying
Zhuang, Timon Rabczuk, and Yinghua Liu. Kolmogorov–Arnold-informed neural network: A
physics-informed deep learning framework for solving forward and inverse problems based on
Kolmogorov–Arnold networks. Comput. Methods Appl. Mech. Eng., 433:117518, 2025b. doi:
https://doi.org/10.1016/j.cma.2024.117518. URL https://www.sciencedirect.com/
science/article/pii/S0045782524007722.

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-
shot hyperparameter transfer. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 17084–17097, 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf.

Runpeng Yu, Weihao Yu, and Xinchao Wang. KAN or MLP: A fairer comparison, 2024. URL
https://arxiv.org/abs/2407.16674.

Xianyang Zhang and Huijuan Zhou. Generalization bounds and model complexity for Kolmogorov–
Arnold networks. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=q5zMyAUhGx.

13

https://www.sciencedirect.com/science/article/pii/S0045782524007722
https://www.sciencedirect.com/science/article/pii/S0045782524007722
https://proceedings.neurips.cc/paper_files/paper/2021/file/8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/8df7c2e3c3c3be098ef7b382bd2c37ba-Paper.pdf
https://arxiv.org/abs/2407.16674
https://openreview.net/forum?id=q5zMyAUhGx

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DERIVATION OF LECUN-INSPIRED INITIALIZATION SCHEME

In this appendix, we provide a derivation of Eqs. (2) from the main text. Assuming statistical
independence between each term in the outer sum of Eq. (1) and requiring the output variance to
match the input variance, one finds

Var (xi) = ninVar

[
rji R (xi) + cji

G+k∑
m=1

bjim Bm (xi)

]
, (8)

where the right-hand side contains the variance of a sum of G+ k + 1 terms: one residual term and
G+k spline basis terms. We adopt a simplifying assumption that the total variance is approximately
equipartitioned across all components,3 allowing us to bypass pairwise covariance terms. This leads
to the following expressions for the residual and spline basis terms, respectively:

Var (xi)

G+ k + 1
= ninVar [rji R (xi)] ,

Var (xi)

G+ k + 1
= ninVar [bjim Bm (xi)] . (9)

Since the trainable weights rji are independent of the residual function R (xi), the variance of their
product becomes

Var [rji R (xi)] = E2 (rji)︸ ︷︷ ︸
=0

Var [R (xi)] + E2 [R (xi)]Var (rji) + Var (rji)Var [R (xi)]

= Var (rji)
{

Var [R (xi)] + E2 [R (xi)]
}
= σ2

r E
[
R2 (xi)

]
(10)

and, in a completely analogous manner, we find

Var [bjim Bm (xi)] = σ2
b E
[
B2

m (xi)
]
. (11)

Substitution of the expressions of Eqs. (10), (11) into Eqs. (9) yields Eq. (2) from Section 3.1.

3This assumption does not necessarily hold in general. For example, one could consider a 50%–50% split
between the residual and basis function terms. We experimented with this alternative and found that it yielded
poorer results compared to the variance partitioning that leads to Eqs. (2).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DERIVATION OF GLOROT-INSPIRED INITIALIZATION SCHEME

In this appendix, we derive Eqs. (5) from the main text. Unlike the LeCun-inspired scheme, which
focuses solely on variance preservation in the forward pass, the Glorot principle (Glorot & Bengio,
2010) requires that the variance of both activations and backpropagated gradients remain constant
across layers. For analytical tractability, and following the standard assumption in this setting, we
further approximate these constant values by unity,

Var(xi) = Var(yi) ≈ 1, Var(δxi) = Var(δyi) ≈ 1, (12)

where δxi = ∂L/∂xi and δyj = ∂L/∂yj , with L denoting the loss function. This approximation
is consistent with the common assumption of i.i.d. inputs with zero mean and unit variance. In
practice, when this assumption does not hold, an additional gain factor can be introduced to rescale
the initialization, as is standard in frameworks such as PyTorch.

Using the result from Appendix A together with the first condition of Eq. (12), the constraints for
variance preservation in the forward pass can be written as

1 = (G+ k + 1)nin σ
2
r µ

(0)
R , 1 = (G+ k + 1)nin σ

2
b µ

(0)
B , (13)

where µ
(0)
R = E[R(xi)

2] and µ
(0)
B = E[Bm(xi)

2] as defined in Eq. (3).

For the backward pass, differentiating Eq. (1) with respect to xi gives

∂yj
∂xi

= rji R
′(xi) + cji

G+k∑
m=1

bjim B′
m(xi), (14)

Setting cji = 1, the chain rule yields

δxi =

nout∑
j=1

∂yj
∂xi

δyj =

nout∑
j=1

rji R
′(xi) δyj︸ ︷︷ ︸

residual contribution

+

G+k∑
m=1

nout∑
j=1

bjim B′
m(xi) δyj︸ ︷︷ ︸

m-th spline contribution

, (15)

and applying the second condition of Eq. (12) gives

1 = noutVar

[
rji R

′(xi) +

G+k∑
m=1

bjim B′
m(xi)

]
, (16)

where we have adopted the standard Glorot assumptions: the δyj are zero-mean, mutually inde-
pendent, and independent of weights and inputs. At this point we may again equipartition the total
variance across the (G+k+1) components (one residual term and G+k spline terms), exactly mir-
roring the forward-pass treatment. This leads to

1 = (G+ k + 1)nout Var [rji R′ (xi)] , 1 = (G+ k + 1)nout Var [bjim B′
m (xi)] , (17)

and, following the same arguments as in Appendix A, we find

1 = (G+ k + 1)nout σ
2
r µ

(1)
R , 1 = (G+ k + 1)nout σ

2
b µ

(1)
B , (18)

where µ
(1)
R = E[R′(xi)

2] and µ
(1)
B = E[B′

m(xi)
2] as defined in Eq. (6).

Equations (13) and (17) are the forward- and backward-pass constraints, respectively. Balancing
them in the Glorot manner (i.e., by harmonic averaging) yields the standard deviations in Eq. (5) of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the main text. As a sanity check, consider an MLP: the residual term is absent, and the linear layer
followed by a nonlinearity can be viewed as a single basis function. For the common hyperbolic
tangent activation, µ(0)

B ≈ µ
(1)
B ≈ 1 (Glorot & Bengio, 2010), so our scheme reduces to

σb =

√√√√√ 1

G+ k + 1︸ ︷︷ ︸
=1

· 2

nin µ
(0)
B︸︷︷︸
≈1

+nout µ
(1)
B︸︷︷︸
≈1

=

√
2

nin + nout
, (19)

which recovers the classical Glorot initialization.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

This appendix provides the full specifications of the benchmarks used in our experiments, including
the functional forms of the target problems, training setups, and data generation procedures. We
separate the discussion into three parts: function fitting, forward PDE problems and the Feynman
dataset.

C.1 FUNCTION FITTING

For the function fitting experiments of Section 4.1 and Section 4.2, we study five two-dimensional
functions ranging from simple expressions to more complex, nonlinear, or piecewise-defined forms.
Specifically, we consider the following functions in the [−1, 1]× [−1, 1] domain:

• f1 (x, y) = xy

• f2 (x, y) = exp
(
sin(πx) + y2

)
• f3 (x, y) = I1 (x) + exp

[
exp (−|y|) I1 (y)

]
+ sin (xy)

• f4 (x, y) = S
[
f3 (x, y) + erf−1 (y)

]
× C

[
f3 (x, y) + erf−1 (y)

]
• f5 (x, y) = y · sgn(0.5− x) + erf(x) ·min

(
xy, 1

xy

)
where I1 (x) is the modified Bessel function of first order, sgn (x) is the sign function, erf (x) is the
error function and S (x), C (x) are the Fresnel integral functions defined as

S (x) =

∫ x

0

sin

(
πt2

2

)
dt, C (x) =

∫ x

0

cos

(
πt2

2

)
dt. (20)

The reference surfaces for these functions are shown in Figure 5.

Figure 5: Reference surfaces for the five two-dimensional target functions f1 through f5 used in the
function fitting experiments.

The KAN models used to fit these functions utilize spline basis functions of order k = 3, defined
over an augmented, uniform grid within the [−1, 1] domain (Liu et al., 2025). Training is performed
using the Adam optimizer with a fixed learning rate of 10−3, with the objective of minimizing the
mean squared error between the predicted and reference function values. For each target function
fi (x, y), with i = 1, . . . , 5, we generate 4,000 random input samples uniformly distributed over the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Reference solutions for the three PDE problems considered.

domain [−1, 1] × [−1, 1], and calculate the corresponding outputs to serve as ground truth during
training. To compute the relative L2 error between the model predictions and reference solutions,
we evaluate all trained models on a uniform 200× 200 grid covering the same domain.

C.2 FORWARD PDE PROBLEMS

In addition to function fitting, we consider three representative forward PDEs commonly used as
PIML benchmarks. For each case, we specify the governing equation, domain and boundary/initial
conditions.

Allen–Cahn equation. We solve the Allen–Cahn equation on (t, x) ∈ [0, 1]× [−1, 1]:

ut(t, x)−Duxx(t, x)− c
(
u(t, x)− u(t, x)3

)
= 0, (21)

with diffusion coefficient D = 10−4 and reaction strength c = 5. The initial and boundary condi-
tions are

u(0, x) = x2 cos(πx), x ∈ [−1, 1], (22)

u(t,−1) = u(t, 1) = −1, t ∈ [0, 1]. (23)

Since the Allen–Cahn equation has no analytic closed-form solution, we use the reference solution
used in Wang et al. (2024), which is depicted in the left plot of Fig. 6.

Burgers’ equation. We solve the viscous Burgers’ equation on (t, x) ∈ [0, 1]× [−1, 1]:

ut(t, x) + u(t, x)ux(t, x)− ν uxx(t, x) = 0, (24)

for ν = 0.01/π, with initial and boundary conditions

u(0, x) = − sin(πx), x ∈ [−1, 1], (25)

u(t,−1) = u(t, 1) = 0, t ∈ [0, 1]. (26)

Similar to the Allen–Cahn equation, Burger’s equation has no analytic closed-form solution, there-
fore we use the reference solution used in Wang et al. (2024), which is depicted in the middle plot
of Fig. 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Helmholtz equation. We solve a two-dimensional Helmholtz problem on (x, y) ∈ [−1, 1]2 with
unit wavenumber and a separable sinusoidal source:

uxx(x, y) + uyy(x, y) + u(x, y) = f(x, y), (27)

where

f(x, y) =
(
1− π2(a21 + a22)

)
sin(πa1x) sin(πa2y), (28)

and a1 = 1 and a2 = 4. We consider homogeneous Dirichlet boundary conditions:

u(x, y) = 0 for (x, y) ∈ ∂([−1, 1]2). (29)

The analytic solution to this PDE problem is

uref (x, y) = sin (πx) sin (4πy) , (30)

and is depicted in the right plot of Fig. 6 for x, y sampled on a uniform 512×512 grid.

The PDE problems are solved using the Residual-Based Attention (RBA) weighting scheme (Anag-
nostopoulos et al., 2024) within the PIML framework (Raissi et al., 2019), where the training objec-
tive is defined as a sum of weighted residuals associated with the PDE differential operator and the
boundary/initial condition operators. Specifically, we minimize

L (θ) =
1

Npde

Npde∑
i=1

∣∣∣α(pde)
i r

(pde)
i (θ)

∣∣∣2 + 1

Nbc

Nbc∑
i=1

∣∣∣α(bc)
i r

(bc)
i (θ)

∣∣∣2 , (31)

where ∥·∥2 denotes the L2 norm. Here, r(pde)i represents the residual of the governing PDE evaluated
at the i-th collocation point, while r(bc)i denotes the residual of the boundary or initial condition (both
are included in the second summation). The weights α

(ξ)
i (ξ ∈ {pde, bc}) are initialized to 1 and

updated after each training iteration according to

α
(ξ), (new)
i = γ α

(ξ), (old)
i + η

∣∣r(ξ)i

∣∣
maxj

{
|r(ξ)j |

}Nξ

j=1

, (32)

with hyperparameters γ = 0.999 and η = 0.01. This formulation ensures that collocation points
with larger relative residuals are assigned greater importance during optimization4.

We minimize the loss function in Eq. (31) using the Adam optimizer with a fixed learning rate
of 10−3, operating in full-batch mode. For each PDE, we sample Npde = 212 collocation points
uniformly from a 26 × 26 grid, while for boundary and initial conditions we use 26 collocation
points per condition, sampled uniformly along the corresponding axis. The spline basis functions
are defined as in the function fitting case (see Appendix C.1).

C.3 FEYNMAN DATASET

As a third benchmark, we consider the subset of the Feynman dataset used in Section 4.3. The
implementation details are identical to those of the function fitting benchmarks in Appendix C.1,
with the exception of sampling. In this case, we generate 4,000 random input samples uniformly
distributed over the domain (−1, 0) ∪ (0, 1), explicitly excluding the points −1, 0, and 1 to avoid
singularities in certain formulas.

To compute the relative L2 error between model predictions and reference solutions, we evaluate all
trained models on a uniform 200× 200 grid for two-dimensional functions and a uniform 30× 30×

4Without RBA, the models trained to solve the Allen–Cahn equation would yield highly inaccurate solu-
tions, preventing a meaningful comparison of initialization schemes.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

30 grid for three-dimensional functions. Table 5 lists the indices of the functions included in this
benchmark, together with their explicit expressions for reference.

Table 5: Dimensionless formulas from the Feynman dataset used in the benchmark. Each entry
shows the dataset index and the corresponding explicit expression.

Index Formula

I.6.2 f1(x1, x2) = exp
(
− x2

1

2x2
2

)
·
(
2πx2

2

)−1/2

I.6.2b f2(x1, x2, x3) = exp
(
− (x1−x2)

2

2x2
3

)
·
(
2πx2

3

)−1/2

I.12.11 f3(x1, x2) = 1 + x1 sin(x2)

I.13.12 f4(x1, x2) = x1(1/x2 − 1)

I.16.6 f5(x1, x2) = (x1 + x2)/(1 + x1x2)

I.18.4 f6(x1, x2) = (1 + x1x2)/(1 + x1)

I.26.2 f7(x1, x2) = arcsin(x1 sin(x2))

I.27.6 f8(x1, x2) = 1/(1 + x1x2)

I.29.16 f9(x1, x2, x3) =
√

1 + x2
1 − 2x1 cos(x2 − x3)

I.30.3 f10(x1, x2) = sin2(x1x2/2)/ sin
2(x2/2)

I.40.1 f11(x1, x2) = x1 exp(−x2)

I.50.26 f12(x1, x2) = cos(x1) + x2 cos
2(x1)

II.2.42 f13(x1, x2) = (x1 − 1)x2

II.6.15a f14(x1, x2, x3) =
x3
4π

√
x2
1 + x2

2

II.11.7 f15(x1, x2, x3) = x1(1 + x2 cos(x3))

II.11.27 f16(x1, x2) = (x1x2)/(1− x1x2
3

)

II.35.18 f17(x1, x2) = x1/(exp(x2) + exp(−x2))

II.36.38 f18(x1, x2, x3) = x1 + x2x3

III.10.19 f19(x1, x2) =
√

1 + x2
1 + x2

2

III.17.37 f20(x1, x2, x3) = x2 (1 + x1 cos(x3))

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D INDICATIVE RESULTS FOR POWER-LAW GRID-SEARCH

To illustrate the performance landscape of the power-law initialization, we present heatmaps over
(α, β) configurations for representative cases. Specifically, Figures 7–10 show results for the func-
tion f3(x, y) across the four grid sizes, while Figures 11–13 show the corresponding results for the
Allen–Cahn PDE. In each heatmap, the horizontal axis corresponds to α and the vertical axis to β,
with rows and columns indicating different network widths and depths, respectively. These visu-
alizations highlight the regions where power-law initialization provides the greatest improvements,
and help motivate the choice of (α, β) = (0.25, 1.75) used for the architectures studied in Sections
4.2 and 4.3. Complete heatmaps for all benchmarks are included in the supplementary material (see
Reproducibility Statement).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

2.
0

1.
5

1.
0

0.
5

0.
0

Depth = 1 Depth = 2 Depth = 3 Depth = 4

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

10 3

10 2

10 4

10 3

10 2

10 1

10 4

10 3

10 2

10 1

10 4

10 3

10 2

10 1

W
idth = 2

10 4

10 3

10 2

10 5

10 4

10 3

10 2

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

W
idth = 4

10 5

10 4

10 3

10 2

10 5

10 4

10 3

10 2

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

W
idth = 8

10 5

10 4

10 3

10 2

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

100

W
idth = 16

10 5

10 4

10 3

10 2

10 6

10 5

10 4

10 3

10 2

10 6

10 5

10 4

10 3

10 2

10 1

100

10 5

10 3

10 1

101

W
idth = 32

10 5

10 4

10 3

10 2

10 6

10 5

10 4

10 3

10 2

10 6

10 5

10 4

10 3

10 2

10 1

10 5

10 3

10 1

101

W
idth = 64

Figure 7: Grid search for the power-law initialization applied to fit function f3 (x, y) for G = 5.
Each heatmap corresponds to an architecture, with the horizontal and vertical axis representing α
and β, respectively, and color denoting final training loss.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2.
0

1.
5

1.
0

0.
5

0.
0

Depth = 1 Depth = 2 Depth = 3 Depth = 4

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

W
idth = 2

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

W
idth = 4

10 5

10 4

10 3

10 2

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

W
idth = 8

10 6

10 5

10 4

10 3

10 2

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

100

W
idth = 16

10 6

10 5

10 4

10 3

10 2

10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 6

10 5

10 4

10 3

10 2

10 1

100

10 5

10 3

10 1

101

W
idth = 32

10 6

10 5

10 4

10 3

10 2

10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 7

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 4

10 2

100

W
idth = 64

Figure 8: Grid search for the power-law initialization applied to fit function f3 (x, y) for G = 10.
Each heatmap corresponds to an architecture, with the horizontal and vertical axis representing α
and β, respectively, and color denoting final training loss.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

2.
0

1.
5

1.
0

0.
5

0.
0

Depth = 1 Depth = 2 Depth = 3 Depth = 4

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

W
idth = 2

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

W
idth = 4

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

W
idth = 8

10 6

10 5

10 4

10 3

10 2

10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 4

10 2

100

10 6

10 4

10 2

100

W
idth = 16

10 7

10 6

10 5

10 4

10 3

10 2

10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 6

10 4

10 2

100

10 6

10 4

10 2

100

102

W
idth = 32

10 7

10 6

10 5

10 4

10 3

10 2

10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 6

10 4

10 2

100

10 6

10 4

10 2

100

W
idth = 64

Figure 9: Grid search for the power-law initialization applied to fit function f3 (x, y) for G = 20.
Each heatmap corresponds to an architecture, with the horizontal and vertical axis representing α
and β, respectively, and color denoting final training loss.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

2.
0

1.
5

1.
0

0.
5

0.
0

Depth = 1 Depth = 2 Depth = 3 Depth = 4

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

10 5

10 4

10 3

10 2

10 1

W
idth = 2

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

W
idth = 4

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 5

10 4

10 3

10 2

10 1

W
idth = 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

10 7

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 4

10 2

100

10 5

10 3

10 1

101

W
idth = 16

10 7

10 6

10 5

10 4

10 3

10 2

10 7

10 6

10 5

10 4

10 3

10 2

10 1

10 6

10 4

10 2

100

10 6

10 4

10 2

100

102

W
idth = 32

10 7

10 6

10 5

10 4

10 6

10 4

10 2

100

10 6

10 4

10 2

100

102

10 6

10 4

10 2

100

102

W
idth = 64

Figure 10: Grid search for the power-law initialization applied to fit function f3 (x, y) for G = 40.
Each heatmap corresponds to an architecture, with the horizontal and vertical axis representing α
and β, respectively, and color denoting final training loss.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

2.
0

1.
5

1.
0

0.
5

0.
0

Depth = 1 Depth = 2 Depth = 3 Depth = 4

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

10 1

100

10 1

100

10 1

100

101

10 1

100

101

W
idth = 2

10 1

100

10 1

100

101

10 1

100

101

10 1

100

101

102

W
idth = 4

10 1

100

101

10 1

100

101

10 2

10 1

100

101

102

103

10 2

100

102

104

W
idth = 8

10 1

100

101

10 2

10 1

100

101

102

103

10 2

100

102

104

10 2

100

102

104

106

W
idth = 16

10 1

100

101

10 2

100

102

104

10 2

100

102

104

106

108

10 1

102

105

108

1011

W
idth = 32

10 1

100

101

102

10 1

101

103

105

10 2

100

102

104

106

108

100

103

106

109

1012

W
idth = 64

Figure 11: Grid search for the power-law initialization applied for the solution of the Allen–Cahn
equation for G = 5. Each heatmap corresponds to an architecture, with the horizontal and vertical
axis representing α and β, respectively, and color denoting final training loss.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

2.
0

1.
5

1.
0

0.
5

0.
0

Depth = 1 Depth = 2 Depth = 3 Depth = 4

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

10 1

100

10 1

100

101

10 1

100

101

10 1

100

101

102

103

104

W
idth = 2

10 1

100

101

10 2

10 1

100

101

102

10 2

10 1

100

101

102

10 2

100

102

104

W
idth = 4

10 1

100

101

10 3

10 2

10 1

100

101

102

103

10 2

100

102

104

10 2

100

102

104

106

W
idth = 8

10 1

100

101

102

10 2

100

102

104

10 3

10 1

101

103

105

10 2

100

102

104

106

108

W
idth = 16

10 1

100

101

102

10 2

100

102

104

10 3

10 1

101

103

105

107

10 1

102

105

108

1011

W
idth = 32

10 1

100

101

102

103

104

10 2

100

102

104

10 1

101

103

105

107

109

100

103

106

109

1012

1015

W
idth = 64

Figure 12: Grid search for the power-law initialization applied for the solution of the Allen–Cahn
equation for G = 10. Each heatmap corresponds to an architecture, with the horizontal and vertical
axis representing α and β, respectively, and color denoting final training loss.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

2.
0

1.
5

1.
0

0.
5

0.
0

Depth = 1 Depth = 2 Depth = 3 Depth = 4

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0

2.
0

1.
5

1.
0

0.
5

0.
0

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

10 1

100

101

10 1

100

101

10 1

100

101

102

103

104

105

100

102

104

106

108

1010

W
idth = 2

10 2

10 1

100

101

10 3

10 2

10 1

100

101

10 2

100

102

104

106

10 1

102

105

108

1011

W
idth = 4

10 2

10 1

100

101

102

10 3

10 2

10 1

100

101

102

103

10 3

10 1

101

103

105

107

10 1

102

105

108

1011

W
idth = 8

10 3

10 2

10 1

100

101

102

10 3

10 1

101

103

105

10 3

10 1

101

103

105

107

109

100

103

106

109

1012

W
idth = 16

10 3

10 2

10 1

100

101

102

10 3

10 1

101

103

105

10 2

101

104

107

1010

10 1

102

105

108

1011

1014

W
idth = 32

10 2

10 1

100

101

102

103

104

10 3

10 1

101

103

105

107

10 1

102

105

108

1011

10 1

102

105

108

1011

1014

1017

W
idth = 64

Figure 13: Grid search for the power-law initialization applied for the solution of the Allen–Cahn
equation for G = 20. Each heatmap corresponds to an architecture, with the horizontal and vertical
axis representing α and β, respectively, and color denoting final training loss.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

E TRAINING CURVES WITH LEARNING RATE SCHEDULING

In Section 4.2 of the main text, the training curves shown in Figures 1 and 2 were obtained using
a fixed learning rate in order to isolate the effect of initialization, as initialization and learning-
rate adaptability are known to interact (e.g., (Yang et al., 2021)). However, the fixed learning rate
induces oscillations in the loss curves, particularly for the Glorot and power-law schemes in the
larger architectures. To verify that these oscillations are purely an artifact of the constant learning
rate, we repeat the same training experiments using a learning-rate scheduler.

Figure 14 shows the results for the function fitting benchmarks, where all settings are identical to
those in the main text except for the use of a learning-rate scheduler: training begins with a learning
rate of 10−3, followed by exponential decay with decay factor 0.9 every 50 iterations. Similarly,
Figure 15 shows the results for the PDE benchmarks, again using all the same hyperparameters as

0 1000 2000
10 5

10 4

10 3

10 2

10 1

Tr
ai

ni
ng

 L
os

s

f1(x, y)

0 1000 2000

10 2

10 1

100

f2(x, y)

0 1000 2000

10 4

10 3

10 2

10 1

100
f3(x, y)

0 1000 2000

10 3

10 2

10 1

f4(x, y)

0 1000 2000

10 2

10 1

G
=

5, depth = 2, width = 8

f5(x, y)

0 1000 2000
Training Iteration

10 6

10 4

10 2

100

Tr
ai

ni
ng

 L
os

s

0 1000 2000
Training Iteration

10 5

10 3

10 1

101

0 1000 2000
Training Iteration

10 6

10 4

10 2

100

0 1000 2000
Training Iteration

10 5

10 3

10 1

0 1000 2000
Training Iteration

10 5

10 4

10 3

10 2

10 1

100

G
=

20, depth = 3, width = 32

Baseline LeCun Glorot Power-Law

Figure 14: Training loss curves for function fitting benchmarks under baseline, LeCun-numerical,
Glorot and power-law (α = 0.25, β = 1.75) initializations when using a learning-rate scheduler.
Results are averaged over five seeds, with shaded regions indicating the standard error. Top row:
“small” architecture (G = 5, two hidden layers with 8 neurons each). Bottom row: “large” archi-
tecture (G = 20, three hidden layers with 32 neurons each).

0 1000 2000 3000 4000 5000
10 2

10 1

100

101

Tr
ai

ni
ng

 L
os

s

Allen-Cahn

0 1000 2000 3000 4000 5000

10 1

100

101
Burgers

0 1000 2000 3000 4000 5000

103

104

 G = 5
depth = 2, width = 8

Helmholtz

0 1000 2000 3000 4000 5000
Training Iteration

10 3

10 1

101

103

105

Tr
ai

ni
ng

 L
os

s

0 1000 2000 3000 4000 5000
Training Iteration

10 3

100

103

106

109

0 1000 2000 3000 4000 5000
Training Iteration

102

105

108

1011

1014

 G = 20
depth = 3, width = 32

Baseline LeCun Glorot Power-Law

Figure 15: Training loss curves for forward PDE benchmarks under baseline, LeCun-numerical,
Glorot and power-law (α = 0.25, β = 1.75) initializations when using a learning-rate scheduler.
Results are averaged over five seeds, with shaded regions indicating the standard error. Top row:
“small” architecture (G = 5, two hidden layers with 8 neurons each). Bottom row: “large” archi-
tecture (G = 20, three hidden layers with 32 neurons each).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

in the main text except for the scheduler: training begins with a learning rate of 10−3, followed by
exponential decay with decay factor 0.85 every 100 iterations.

Across both sets of benchmarks, the learning-rate schedulers eliminate the oscillatory behavior ob-
served under a fixed learning rate, yielding smoother training curves. Quantitatively, the final losses
are slightly higher than those reported in the main text, due to the learning rate decaying even in re-
gions where a larger step size would allow for further progress. Nonetheless, this influences only the
numerical values: the qualitative picture remains unchanged, and the relative performance ordering
of the initialization schemes is consistent with the fixed learning rate setting.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F NEURAL TANGENT KERNEL ANALYSIS

In this work, we use NTK analysis (Jacot et al., 2018) to better understand the effect of initialization
schemes on function fitting and PDE benchmarks, both in terms of stability and conditioning.

F.1 NTK FOR PIML WITH RBA WEIGHTS

In this subsection, we derive the NTK formalism used in our PDE experiments. Specifically, we
extend the standard NTK framework for PIML (Wang et al., 2022) to cover the RBA-weighted loss
function of Eq. (31).

We denote the PDE and boundary/initial condition residuals at the i-th collocation point by r
(pde)
i

and r
(bc)
i , respectively, as in Appendix C.2. We may re-weight the loss function of Eq. (31) to

follow Wang et al. (2022) and subsequently write it in vector form as

L(θ) =
1

2

∥∥r̃(pde)(θ)∥∥2
2
+

1

2

∥∥r̃(bc)(θ)∥∥2
2
, r̃(ξ) = A(ξ)r(ξ), (33)

where r(ξ) stacks the residuals of type ξ ∈ {pde,bc}, α(ξ) = (α
(ξ)
1 , . . . , α

(ξ)
Nξ

)⊤ are the RBA
weights and A(ξ) = diag(α(ξ)). Throughout a single gradient step we treat α(ξ) as constants, as
they are updated only between steps by Eq. (32), outside of the gradient descent scheme.

Let J(ξ)(θ) ∈ RNξ×P be the Jacobian of the residuals with respect to the parameters, i.e., its i-th
row is J(ξ)

i (θ) = ∂r
(ξ)
i (θ)/∂θ⊤. For a parameter update ∆θ = −η∇θL(θ), a first-order expansion

around θ yields,

∆r̃(ξ)(θ) = A(ξ)∆r(ξ)(θ) ≈ A(ξ)J(ξ)(θ)∆θ. (34)

Using Eq. (33) and the chain rule, the full-batch gradient is

∇θL(θ) =

Npde∑
i=1

r̃
(pde)
i (θ)∇θ r̃

(pde)
i (θ) +

Nbc∑
i=1

r̃
(bc)
i (θ)∇θ r̃

(bc)
i (θ). (35)

Since r̃
(ξ)
i = α

(ξ)
i r

(ξ)
i and α(ξ) is held fixed within the step,

∇θ r̃
(ξ)
i (θ) = α

(ξ)
i ∇θ r

(ξ)
i (θ) = α

(ξ)
i

(
J
(ξ)
i (θ)

)⊤
. (36)

Substituting ∆θ = −η∇θL(θ) into Eq. (34) and grouping terms gives the linear dynamics

∆r̃(ξ)(θ) ≈ − η

[(
A(ξ)J(ξ)(θ)

)(
A(pde)J(pde)(θ)

)⊤︸ ︷︷ ︸
K̃(ξ,pde)

r̃(pde)(θ)

+
(
A(ξ)J(ξ)(θ)

)(
A(bc)J(bc)(θ)

)⊤︸ ︷︷ ︸
K̃(ξ,bc)

r̃(bc)(θ)

]
. (37)

As mentioned in the main text, Eq. (37) shows that the weighted residual vectors r̃(ξ) evolve under
a weighted NTK with blocks

K̃(ξ,ζ) =
(
A(ξ)J(ξ)

)(
A(ζ)J(ζ)

)⊤
, ξ, ζ ∈ {pde,bc}. (38)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.2 NTK SPECTRA FOR VARYING POWER-LAW EXPONENTS

To complement the heatmaps of Appendix D and to further illustrate the robustness of the power-law
initialization, we examine in this Appendix how the NTK spectrum varies across different (α, β)
configurations. The goal of this analysis is twofold. First, it provides an NTK-based view of the
“good regions” identified in the grid search, showing how favorable exponent choices correspond
to well-conditioned and stable kernels. Second, it demonstrates that the power-law scheme is not
sensitive to a single finely tuned pair of exponents: more than one (α, β) combinations within the
identified range yield well-behaved spectra. This supports the idea that one may tune the exponents
once per problem domain and thereafter select any configuration from the favorable region.

Figure 16 displays the NTK eigenvalue spectra for all exponent pairs considered in the grid search,
using the “large” architecture (G = 20, three hidden layers with 32 neurons each) and the function
fitting target f3(x, y). Figure 17 shows the corresponding results for the PDE residual term of
Burgers’ equation. In both cases, well-conditioned spectra concentrate in the same regions suggested
by the grid-search results.

106

108

1010

 =
 0

.0

 = 0.0

104

105

106

107
 = 0.25

102

104

106
 = 0.5

100

102

104

106
 = 0.75

10 1

101

103

105

 = 1.0

10 2

100

102

104

106
 = 1.25

10 2

100

102

104

106
 = 1.5

10 2

100

102

104

106
 = 1.75

10 2

100

102

104

106
 = 2.0

104

106

108

1010

 =
 0

.2
5

105

106

10 1

100

101

102

103

10 4

10 2

100

102

104

10 5

10 2

101

104

10 7

10 4

10 1

102

10 8

10 5

10 2

101

104

10 8

10 4

100

104

10 8

10 4

100

104

106
107

108

109

1010

 =
 0

.5

105

106

100

102

104

10 5

10 2

101

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

106

107

108

109

1010

 =
 0

.7
5

105

106

100

102

104

10 5

10 2

101

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

106

107

108

109

1010

 =
 1

.0

105

106

100

102

104

10 5

10 2

101

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

106

107

108

109

1010

 =
 1

.2
5

105

106

107

100

102

104

10 5

10 2

101

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

106

108

1010

 =
 1

.5

105

106

100

102

104

10 5

10 2

101

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

106

107

108

109

1010

 =
 1

.7
5

105

106

100

102

104

10 5

10 2

101

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

10 8

10 4

100

104

100 101 102

Index

106
107

108

109

1010

 =
 2

.0

100 101 102

Index

105

106

100 101 102

Index

100

102

104

100 101 102

Index

10 5

10 2

101

104

100 101 102

Index

10 8

10 4

100

104

100 101 102

Index

10 8

10 4

100

104

100 101 102

Index

10 8

10 4

100

104

100 101 102

Index

10 8

10 4

100

104

100 101 102

Index

10 8

10 4

100

104

Eigenvalue index (log scale)

Ei
ge

nv
al

ue
s (

lo
g

sc
al

e)

Initialization Intermediate Iterations Final Iteration

Figure 16: NTK eigenvalue spectra for the large architecture (G = 20, three hidden layers with 32
neurons each) on the function fitting target f3(x, y), shown for all (α, β) configurations considered
in the grid search. Each panel corresponds to one exponent pair and displays spectra at initialization,
mid-training, and convergence.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1014

1018

1022

1026

 =
 0

.0

 = 0.0

1011

1013

1015

 = 0.25

107

109

1011

 = 0.5

106

108

1010
 = 0.75

104

106

108

1010
 = 1.0

105

107

109

 = 1.25

104

106

108

1010
 = 1.5

104

106

108

1010
 = 1.75

103

105

107

109

 = 2.0

1020

1023

1026

 =
 0

.2
5

1013

1015

1017

104

105

106

107

101

103

105

10 2

100

102

104

106

10 3

100

103

106

10 4

10 1

102

105

10 5

10 2

101

104

10 5

10 2

101

104

1020

1022

1024

1026

1028

 =
 0

.5

1013

1015

1017

104

105

106

107

10 1

101

103

105

10 5

10 2

101

104

107

10 8

10 4

100

104

10 9

10 5

10 1

103

107

10 10

10 5

100

105

10 10

10 5

100

105

1022

1024

1026

1028

 =
 0

.7
5

1013

1015

1017

104

105

106

107

10 1

101

103

105

10 6

10 2

102

106

10 10

10 5

100

105

10 13

10 8

10 3

102

107

10 13

10 7

10 1

105

10 13

10 7

10 1

105

1021

1023

1025

1027

 =
 1

.0

1013

1015

1017

104

105

106

107

10 1

101

103

105

107

10 6

10 2

102

106

10 11

10 6

10 1

104

10 15

10 9

10 3

103

10 17

10 11

10 5

101

107

10 17

10 11

10 5

101

107

1020

1023

1026

 =
 1

.2
5

1014

1016

1018

104

105

106

107

10 1

101

103

105

10 6

10 2

102

106

10 11

10 6

10 1

104

10 16

10 10

10 4

102

10 19

10 12

10 5

102

10 20

10 13

10 6

101

108

1021

1023

1025

1027

 =
 1

.5

1012

1014

1016

1018

104

105

106

107

10 1

101

103

105

10 6

10 2

102

106

10 11

10 6

10 1

104

10 16

10 10

10 4

102

10 20

10 13

10 6

101

108

10 23

10 15

10 7

101

1020

1022

1024

1026

1028

 =
 1

.7
5

1013

1015

1017

104

105

106

107

10 1

101

103

105

10 6

10 2

102

106

10 11

10 6

10 1

104

10 16

10 10

10 4

102

10 20

10 13

10 6

101

108

10 24

10 16

10 8

100

100 101 102

Index

1021

1023

1025

1027

 =
 2

.0

100 101 102

Index

1013

1015

1017

100 101 102

Index

103

104

105

106

107

100 101 102

Index

10 1

101

103

105

100 101 102

Index

10 6

10 2

102

106

100 101 102

Index

10 11

10 6

10 1

104

100 101 102

Index

10 16

10 10

10 4

102

108

100 101 102

Index

10 20

10 13

10 6

101

108

100 101 102

Index

10 24

10 16

10 8

100

108

Eigenvalue index (log scale)

Ei
ge

nv
al

ue
s (

lo
g

sc
al

e)

Initialization Intermediate Iterations Final Iteration

Figure 17: NTK eigenvalue spectra for the large architecture (G = 20, three hidden layers with 32
neurons each) on the PDE residual term of Burgers’ equation, shown for all (α, β) configurations
considered in the grid search. Each panel corresponds to one exponent pair and displays spectra at
initialization, mid-training, and convergence.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F.3 ADDITIONAL NTK SPECTRA

For completeness, we report additional NTK spectra not included in the main text. Figures 18–
21 show the results for the remaining function fitting benchmarks (f1, f2, f4, f5), while Figures
22, 23 correspond to the Burgers’ and Helmholtz PDEs. All results are obtained using the “large”
architecture (G = 20, three hidden layers with 32 neurons each) and values α = 0.25, β = 1.75 for
the power-law initialization, consistent with the setting analyzed in Section 4.2.

100 101 102

Indices

104

105

Ei
ge

nv
al

ue
s

Baseline

100 101 102

Indices

104

105

106

LeCun

100 101 102

Indices

10 2

100

102

104

Glorot

100 101 102

Indices

10 8

10 5

10 2

101

104
Power-Law

Initialization Intermediate Iterations Final Iteration

Figure 18: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f1(x, y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses α = 0.25, β = 1.75.

100 101 102

Indices

104

105

Ei
ge

nv
al

ue
s

Baseline

100 101 102

Indices

104

105

106

LeCun

100 101 102

Indices

10 2

100

102

104

Glorot

100 101 102

Indices

10 8

10 5

10 2

101

104
Power-Law

Initialization Intermediate Iterations Final Iteration

Figure 19: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f2(x, y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses α = 0.25, β = 1.75.

100 101 102

Indices

103

104

105

Ei
ge

nv
al

ue
s

Baseline

100 101 102

Indices

104

105

106

LeCun

100 101 102

Indices

10 2

100

102

104

Glorot

100 101 102

Indices

10 8

10 5

10 2

101

104
Power-Law

Initialization Intermediate Iterations Final Iteration

Figure 20: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f4(x, y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses α = 0.25, β = 1.75.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

100 101 102

Indices

104

105

Ei
ge

nv
al

ue
s

Baseline

100 101 102

Indices

104

105

106

LeCun

100 101 102

Indices

10 2

100

102

104

Glorot

100 101 102

Indices

10 8

10 5

10 2

101

104
Power-Law

Initialization Intermediate Iterations Final Iteration

Figure 21: Eigenvalue spectra of the NTK matrix at initialization (solid blue), intermediate iterations
(dashed teal), and final iteration (dashed green) for function fitting benchmark f5(x, y) under dif-
ferent initialization strategies. Results correspond to the “large” architecture (G = 20, three hidden
layers with 32 neurons each). The power-law initialization uses α = 0.25, β = 1.75.

100 101 102
107

108

109

1010

1011

1012

Ei
ge

nv
al

ue
s (

PD
E)

Baseline

100 101 102

1012

1014

1016

LeCun

100 101 102

10 1

101

103

105

107
Glorot

100 101 102

10 5

10 2

101

104

107
Power-Law

100 101

Indices

102

103

104

105

Ei
ge

nv
al

ue
s (

BC
)

100 101

Indices

103

104

105

106

100 101

Indices

10 5

10 3

10 1

101

103

100 101

Indices

10 7

10 4

10 1

102

Initialization Intermediate Iterations Final Iteration

Figure 22: NTK eigenvalue spectra for the Burgers’ PDE benchmark under baseline, LeCun-
numerical, Glorot, and power-law (α = 0.25, β = 1.75) initializations. Top row: spectra corre-
sponding to the PDE residual term. Bottom row: spectra for the boundary/initial condition terms.
Solid blue lines show the initialization, dashed teal lines show intermediate iterations, and dashed
green lines show the final iteration.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

100 101 102

1012

1013

1014

1015

1016

1017

Ei
ge

nv
al

ue
s (

PD
E)

Baseline

100 101 102

1017

1018

1019

1020

1021

1022

LeCun

100 101 102

105

106

107

108

109
Glorot

100 101 102

10 1

102

105

108

Power-Law

100 101

Indices

10 7

10 4

10 1

102

105

Ei
ge

nv
al

ue
s (

BC
)

100 101

Indices

102

103

104

105

106

100 101

Indices

10 8

10 5

10 2

101

104

100 101

Indices

10 9

10 6

10 3

100

103

Initialization Intermediate Iterations Final Iteration

Figure 23: NTK eigenvalue spectra for the Helmholtz PDE benchmark under baseline, LeCun-
numerical, Glorot, and power-law (α = 0.25, β = 1.75) initializations. Top row: spectra corre-
sponding to the PDE residual term. Bottom row: spectra for the boundary/initial condition terms.
Solid blue lines show the initialization, dashed teal lines show intermediate iterations, and dashed
green lines show the final iteration.

36

	Introduction
	Background
	Kolmogorov–Arnold Networks
	Related Work

	Methodology
	Proposed Initializations
	Experimental Setup

	Experiments & Discussion
	Grid-Search Results
	Training Dynamics Analysis
	Feynman Dataset Benchmarks

	Conclusion
	Limitations and Future Work

	Derivation of LeCun-inspired Initialization Scheme
	Derivation of Glorot-inspired Initialization Scheme
	Implementation Details
	Function Fitting
	Forward PDE Problems
	Feynman Dataset

	Indicative Results for Power-Law Grid-Search
	Training Curves with Learning Rate Scheduling
	Neural Tangent Kernel Analysis
	NTK for PIML with RBA Weights
	NTK Spectra for Varying Power-Law Exponents
	Additional NTK Spectra

