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ABSTRACT

Speculative decoding accelerates large language model (LLM) inference by letting
a lightweight draft model propose multiple tokens that the target model verifies in
parallel. Yet existing training objectives optimize only a single greedy draft path,
while decoding follows a tree policy that re-ranks and verifies multiple branches.
This draft policy misalignment limits achievable speedups. We introduce Group
Tree Optimization (GTO), which aligns training with the decoding-time tree pol-
icy through two components: (i) Draft Tree Reward, a sampling-free objective
equal to the expected acceptance length of the draft tree under the target model,
directly measuring decoding performance; (ii) Group-based Draft Policy Training,
a stable optimization scheme that contrasts trees from the current and a frozen ref-
erence draft model, forming debiased group-standardized advantages and apply-
ing a PPO-style surrogate along the longest accepted sequence for robust updates.
We further prove that increasing our Draft Tree Reward provably improves ac-
ceptance length and speedup. Across dialogue (MT-Bench), code (HumanEval),
and math (GSMS8K), and multiple LLMs (e.g., LLaMA-3.1-8B, LLaMA-3.3-70B,
Vicuna-1.3-13B, DeepSeek-R1-Distill-LLaMA-8B), GTO increases acceptance
length by 7.4% and yields an additional 7.7% speedup over prior state-of-the-
art EAGLE-3. By bridging draft policy misalignment, GTO offers a practical,
general solution for efficient LLM inference. Code and draft models are available
athttps://anonymous.4open.science/r/GTO-ICLR-348F/.

1 INTRODUCTION

Large language models (LLMs) like GPTs (Achiam et al., 2023) and LLaMAs (Touvron et al.,
2023a;b; Dubey et al., 2024) have achieved remarkable success in dialogue (Zheng et al., 2023),
coding (Chen et al., 2021), and reasoning (Cobbe et al., 2021). Yet their standard autoregressive de-
coding remains inefficient: each token requires a full forward pass, making inference both compute-
intensive and latency-bound. Speculative decoding (Leviathan et al., 2023; Chen et al., 2023a)
mitigates this by introducing a lightweight draft model to propose multiple tokens, which the target
LLM verifies in parallel. This enables multi-token generation per target step, substantially reducing
inference time.

Recent work has improved speculative decoding by refining draft model training. For instance,
HASS (Zhang et al., 2024) enforces feature consistency to reduce hidden-state mismatches, GRIF-
FIN (Hu et al., 2025) resolves token-level misalignments, and EAGLE-3 (Li et al., 2025) incorpo-
rates training-time rollouts to better mimic decoding. However, they face a fundamental limitation
yet: draft policy misalignment between training and decoding. That is, the training objective of
draft model does not align with how draft sequences are actually generated and used during decod-
ing, ultimately weakening the effectiveness of training for improving decoding performance.

Specifically, during training, given a context, the draft model is optimized to maximize the likelihood
of generating the same token as the target model (Li et al., 2024a;b; 2025; Zhang et al., 2024). It
treats drafting as a single-path sequence prediction problem, and its corresponding optimal training-
time draft policy is a greedy drafting: select the highest-probability token at each draft step to form
a single draft sequence (e.g., the leftmost draft path in Fig. | (a)). However, the practice decoding
differs from greedy drafting, and indeed adopts tree drafting (Li et al., 2024b): as shown in Fig. |
(a), it uses draft model to expand a draft tree containing multiple draft sequences, then re-ranks
sequences using prediction confidences, and finally selects top-g tokens which are then verified
by the target LLM. This decoding-time policy is fundamentally different: unlike the training-time
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Figure 1: Draft policy misalignment between training and decoding. (a) The tree is built by draft
model at decoding: number on edge is the token probability predicted by draft model, e.g., “is” (0.6),
and number in parentheses is current path confidence, e.g., “Itis” (0.6=1.0 x 0.6). Training enforces
a training-time greedy draft policy, following the locally best child and yielding the path “It — is —
a” (confidence 0.36). At decoding, top-4 re-ranking compares sibling paths, where “It — has — to”
(0.38) outperforms the greedy branch which is thus pruned (red). Training signal concentrated on a
single greedy path is wasted when sibling branches win. (b) Target model verifies the tree with its
own probabilities. It compares the confidence of each sequence, and accepts the sequence “It — is
— the”. Even when the greedy branch survives, target model may accept a different sibling.

policy focusing on a single greedy draft path (the most left one in Fig. 1 (a)), it leverages multiple
high-quality branches (the whole tree in Fig. 1 (a)) to maximize the expected acceptance length.

This draft policy misalignment leads to two characteristic failure modes: (1) greedy path pruning;
and (2) verification mismatch. For (1), due to re-ranking and top-g selection, the optimal training-
time greedy path may be pruned at decoding if sibling branches achieve higher overall confidence.
For example, in Fig. 1(a), the greedy sequence “It is a” (confidence 0.36) is discarded in favor of the
sibling “It has to” (confidence 0.38). Regarding (2), even when the greedy path survives pruning,
target model may accept a different branch, e.g., accepting “It is the” rather than the greedy “It is
a” in Fig. 1(b). In both cases, training effort spent on the greedy path yields little decoding benefit.
These failures also reveal a structural bottleneck: training encourages convergence to a policy that
is effective and optimal only under single-path greedy drafting, but suboptimal for the tree-based
strategy used in practice, causing training-decoding misalignment and limiting decoding efficiency.
Bridging this gap is therefore crucial for realizing the full potential of speculative decoding in LLMs.

We empirically validate this misalignment using the EAGLE-3 draft model on LLaMA-3.1-
8B (Dubey et al., 2024). As shown in Fig. 2(a), 19-34% of greedy paths are pruned during draft tree
construction, and the finally accepted path matches the greedy one only 36—49% of the time. Even
when accepted, the greedy path averages 3 —4 tokens, shorter than the 5—6 tokens of the full tree
(Fig. 2(b)). This confirms that greedy training overlooks globally optimal sequences, highlighting
the severity of draft policy misalignment and its direct impact on speculative decoding efficiency.

Contributions: To address the draft policy misalignment, we propose Group Tree Optimization
(GTO), a novel training algorithm for speculative decoding that explicitly optimizes the tree-based
draft policy rather than a single greedy path. By aligning training with the actual decoding proce-
dure, GTO ensures that draft models learn policies that directly improve decoding-time efficiency.

First, we introduce a draft-tree reward that directly aligns training with the decoding-time policy.
Unlike prior methods that optimize token-level accuracy (Li et al., 2025; Hu et al., 2025; Zhang
et al., 2024), GTO adopts the same rollout strategy used during decoding: the draft model generates
a tree of candidate sequences, which is then verified by the target LLM. We define the reward as
the expected acceptance length of the tree, a direct measure of decoding efficiency. This shifts the
objective from “predicting the next token correctly” to “producing draft trees that survive verification
and extend accepted prefixes as far as possible,” aligning the training goal with real decoding.

Second, we develop a stable and effective draft policy training algorithm to maximize this draft-
tree reward and thus boost decoding efficiency. Training is challenging because rewards are sparse,
position-dependent, and high variance. GTO addresses this with a group-based approach tailored to
deterministic draft-tree rollouts. We sample small groups of trees under both the current draft model
and a frozen reference, and use their contrasts to construct debiased tree-level rewards that cancel
position-specific difficulty. Within each group, standardized advantages normalize rewards across
contexts, reducing variance and improving credit assignment by highlighting which branches truly
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Figure 2: Experimental Results of Draft Policy Misalignment between Training and Decoding. (a)
Fraction of training-time greedy paths that are pruned during draft tree construction (orange bars)
and fraction where the accepted path coincides the greedy path (yellow bars). (b) Accepted greedy
paths are also shorter: their average acceptance length is 3—4 tokens, compared to 5—6 for the
entire draft tree. (c) Speedup Ratio Comparison of GTO and EAGLE-3.

drive longer accepted prefixes. Finally, we optimize a PPO-style clipped objective, defined over the
likelihood ratio along the longest accepted sequence, ensuring robust and efficient training.

Finally, we validate GTO across dialogue (MT-Bench (Zheng et al., 2023)), code (HumanEval (Chen
et al.,, 2021)), and reasoning (GSM8K (Cobbe et al., 2021)) benchmarks on LLaMA-3.1-8B,
LLaMA-3.3-70B, DeepSeek-R1-Distill-LLaMA-8B, and Vicuna-13B. GTO consistently improves
acceptance length by 7.4% over EAGLE-3, translating into an additional 7.7% speedup (Fig. 2 (¢)).

2 RELATED WORK

Speculative decoding accelerates LLM inference by splitting each step into a lightweight draft and
a verification stage (Sun et al., 2024; Miao et al., 2024; Chen et al., 2023b; Kim et al., 2024; Liu
et al., 2023). Existing methods vary in how drafts are produced and verified: prompt- and retrieval-
based approaches (PLD, Lookahead, CLLMs) improve draft quality but degrade with scarce context
(Saxena, 2023; Fu et al., 2024; Kou et al., 2024); tree-based verification (Sequoia, SpecExec) boosts
acceptance but often increases compute (Chen et al., 2024; Svirschevski et al., 2024); REST and
Ouroboros reuse outputs or databases but depend on resource quality (He et al., 2023; Zhao et al.,
2024); hybrid designs (Chimera, Glide) partially integrate the target model at extra cost (Zeng et al.,
2024; Du et al., 2024). Efficiency-oriented drafters span Medusa, Hydra, and RNN/Transformer-
based models such as EAGLE-3, with methods like HASS and GRIFFIN addressing feature- and
token-level mismatches (Cai et al., 2024; Ankner et al., 2024; Cheng et al., 2024; Li et al., 2024a;b;
Zhang et al., 2024; Hu et al., 2025; Li et al., 2025). Despite these advances, a key limitation remains:
draft policy misalignment, where training optimizes a single greedy path but decoding verifies a tree
of candidates. We propose GTO to align the training objective with the decoding-time tree policy,
improving acceptance length and speedup. GTO complements existing methods and provides a
general solution to policy mismatch in speculative decoding.

3 GTO: GROUP TREE OPTIMIZATION

To address the draft policy misalignment highlighted in Section 1, we introduce Group Tree Op-
timization (GTO), a training framework that explicitly aligns the draft policy with decoding. The
central idea is to evaluate and optimize draft policies not on a single greedy path, but on entire draft
trees, using the same drafting procedure deployed at decoding. To this end, GTO consists of two
key components: (i) a draft-tree reward that faithfully measures expected decoding performance in
terms of accepted draft sequence length (Section 3.1), and (ii) a stable group-based optimization
algorithm for training with this reward (Section 3.2). Below we introduce them in turn.

3.1 DRAFT TREE REWARD

The effectiveness of speculative decoding is governed by the length of accepted draft sequence: the
longer the draft sequence accepted by the target model, the fewer verification steps are needed, and
thus the greater the decoding efficiency. With the same draft model, a higher expected acceptance
length directly translates to higher speedup. This makes expected acceptance length the most faithful
measure of practical decoding performance when using the same draft model.
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To capture this, GTO eliminates the traditional mismatch between training and decoding: instead of
optimizing token-level proxies along a greedy path, we construct draft trees during training using the
same decoding-time expansion and pruning policy (e.g., EAGLE-2—style multi-branch expansion,
reranking and selection). The draft model is then optimized with respect to a tree-level reward that
directly reflects its expected decoding-time utility.

Formally, given a training prefix (a.k.a., context) x;.;, we follow EAGLE-2, and construct a depth-d
draft tree T'; with the draft model M:

T = g(Maxl:t)» (1)
where G denotes the decoding policy. The policy G grows the tree in two stages.

(i) Layer-wise expansion. At depth £ € {1,...,d}, consider all frontier expansions (token edges)
from the current layer. For each candidate expansion we compute a global acceptance score. We then
select the top-k token expansions across the entire layer according to the global acceptance score
and expand draft tree only on these children. This global competition allows promising siblings to
outcompete locally greedy choices and prevents early commitment to a single path.

(ii) Global pruning and re-ranking. After reaching the maximum depth, we collect all leaves and
re-rank them by the global acceptance score. We retain the top-g leaves and prune the rest.

The tree consists of N candidate sequences T; = {S;1,...,S; n}, each of length [; < d may be
different due to selection (pruning):

Sii= {it+1,i, e 7it+li,i}7 )

where {it+17i7 ... ait+lm‘} denotes the draft sequence S; ;. Then, for each sequence, we define its
expected acceptance length under the target model 7

l;

L,;= Z P(Ritji| Xity R iotj—1,i) 5 3)
j=1
with
j
P(Riaji | X1ty Rig1st4j—1,0) = H T (Rehyi | Xt K1t h—1,1) - 4)
k=1

Here, L, ; is the expectation of how many tokens of S; ; will be accepted by target model 7. This
definition is sampling-free, while remaining directly tied to decoding performance.

Accordingly, we can average the expected acceptance length of all sequences in the tree to measure
the overall decoding performance of the tree. However, since decoding utility depends on which
sequences (branches) survive pruning, we aggregate the sequence-level expectations with a smooth
max (log-sum-exp), balancing differentiability with a focus on the strongest sequences:

N
1
r, = R(Ty;n) = ; IOg<ZeXP(77Lt,i)>a (5)
i=1

where the temperature 7 > 0 interpolates between the maximum (77 — co) and the average (n — 0)
branch acceptance length. We set 7 = 1 in experiments, which yields a stable and informative
reward and works very well in our all experiments. Ablation results in Table 3 show this strategy is
better than average all expected length or use the maximum length.

By training the draft model to maximize R(T;), GTO ensures that the draft policy and training
objective are fully aligned with decoding. Unlike prior approaches that rely on token-level log-
likelihoods or greedy-path proxies, GTO directly optimizes for the expected acceptance length that
governs speculative decoding speedup.

Theoretical guarantee. Importantly, improving the Draft Tree Reward provably increases the ex-
pected decoding acceptance length, regardless of the target model’s sampling temperature:

Theorem 1 (Maximizing Draft Tree Reward Guarantees Improved Expected Acceptance Length).
Consider a draft tree T and target model temperature T > 0. Let L%ec(Tt) denote the expected
acceptance length at decoding. Then:
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(a) For T > 0, if the draft tree reward v, increases, then E[L$°(T)] strictly increases.
(b) ForT =0, ifr; increases, then E[L§*°(T,)] = max; L, ; also increases.

See its proof in Appendix A. This result establishes expected acceptance length as the key link
between training and decoding: optimizing the draft-tree reward directly improves speculative de-
coding efficiency in practice.

3.2 TREE REWARD OPTIMIZATION

Directly optimizing the tree-level reward is challenging, particularly early in training when the draft
model is weak and draft-token acceptance rates are low. In this regime, the tree reward is small
and high-variance, making naive optimization inefficient and unstable. To address this, following
LLM’s two-phase training (pretraining and fine-tuning), GTO adopts a two-phase group-based ap-
proach: an optional warmup to obtain a competent draft model, followed by a structured group-wise
optimization that stabilizes and accelerates training. This design improves sample efficiency and
can skip the warmup if a strong pretrained draft model is available. For example, in practice, we can
directly use the draft model well trained by EAGLE-3, GRIFFIN and HASS as the reference draft
model, which plays a role as the Phase I training.

Phase I: Draft model warmup. We first train a reference draft model M using standard token-
level objectives like the ones in EAGLE-3 and GRIFFIN. This phase provides a baseline model to
stabilize subsequent group-based updates and can be skipped when a sufficiently strong draft model
exists, e.g., draft model well trained by EAGLE-3 and GRIFFIN.

Phase II: Group-based optimization of the draft tree reward. We now optimize the draft tree
reward while ensuring stability and robustness. Inspired by group-based reinforcement learning
methods (e.g., GRPO (Shao et al., 2024)), we sample groups of related examples and use group-
wise advantage estimation to reinforce high-performing samples while suppressing underperform-
ing ones. However, unlike standard RL, for a fixed prefix x; .; the draft-tree generation G(M, x1.¢) is
effectively deterministic given the policy, limiting the utility of multiple rollouts from the same state.
To enable variance reduction and within-context comparisons, we form groups from nearby posi-
tions in the same sequence and optimize a clipped likelihood-ratio surrogate with group-normalized
advantages.

Grouping. Let the training sequence be x1.s = (z1,...,2s), where s is the sequence length. We
partition positions into K non-overlapping groups of adjacent indices. Each group is defined by a
start index ¢y, and a fixed group size m (with m € [4, 8] in practice):

G® = {tp, tp+1,..., th+m—1}C{1,...,s}, (6)

subject to
1<ty <s—m-+1, tk+1 >ty +m  (non-overlap). @)

The number of groups K is determined by the available compute budget and the sequence length
(upper bounded by |s/m ).

For every position i € G(¥), we construct a depth-limited draft tree with the current draft model M
using the decoding policy G:
T; = G(M,x1). (8)

By construction, indices within a group are adjacent: for any i, j € G*) we have |t —j| <m-—1
Consequently, the corresponding prefixes xi.; and x;.; differ by at most m — 1 trailing tokens
and share a long common context. Comparing tree-level rewards only within a group therefore:
(1) matches examples under nearly identical contexts, (ii) reduces variance in reward comparisons
caused by position-specific difficulty, and (iii) yields more reliable credit assignment across nearby
prefixes. Intuitively, we aggregate draft trees from adjacent prefixes so that the within-group differ-
ences are small, enabling stable and sample-efficient learning signals.

Reward shaping and standardization. A key challenge in draft tree reward optimization is that
raw tree rewards R ('T;) exhibit systematic difficulty bias: some prefixes x;.; are inherently harder to



Under review as a conference paper at ICLR 2026

continue than others, leading to lower acceptance rates regardless of draft quality. For instance, pre-
fixes ending with complex mathematical expressions or rare tokens may consistently yield shorter
accepted sequences, while simple conversational prefixes may achieve high acceptance even with
suboptimal drafts. This bias confounds the learning signal and can cause the model to avoid chal-
lenging contexts rather than improving on them.

To remove systematic difficulty bias across prefixes, we construct reference trees T,=6 (Mo, X1.4)
to debias the tree reward: B

R; = R(T;) — R(T:), )
where R is the tree-level reward from Section 3.1. Within each group, rewards are standardized to

stabilize updates:
Ri — mean({Rj }jGG(k) )

std({R;}jeam) +0

with a small § > 0 for numerical stability. Our ablation study (Table 5) demonstrates that without
debiasing, the model training will becomes unstable due to high variance in gradient magnitudes,
leading to worser performance in decoding.

A; = (10)

Clipped likelihood-ratio objective. Let §l be the longest accepted sequence in T; under 7, with
length ;. Define a per-token likelihood ratio (geometric mean) between M and Mg on S;:

log M(S; | x1.5) —log Mo (S; | x1.4
50 = exp| 18 MBi]x1) — log Mo(Si|x1) ) (1)
max(l;, 1)
We then optimize a PPO-style clipped surrogate over each group (Schulman et al., 2017):
1
L = —— i (i'Aia lip(si, 1 —€, 1 'Ai), 12
GTO p Z min|( s 01p(8 € +e) 12)

ieG (k)
where clip(s, a,b) = max{a, min{s, b}} and € > 0 controls update magnitude.

Overall training objective. We combine the group-tree objective with a token-level loss Lioken
using a scalar weight w:
L = ['token + w- ['GTO~ (13)

Lioken denotes the token-level cross-entropy loss introduced in EAGLE-3 (Li et al., 2025) that
matches the draft model M to the target model 7 under the same prefixes.

This two-phase group-based procedure transforms the decoding-faithful draft tree reward into a
stable and effective learning signal, enabling the draft model to reliably maximize expected accep-
tance length and align training with practical decoding performance. Details are summarized in
Appendix. B and Algorithm 1.

4 EXPERIMENT

Models & datasets. We test GTO on a representative set of LLMs, including LLaMA-3.1-Instruct-
8B (Touvron et al., 2023b), LLaMA-3.3-Instruct-70B (Touvron et al., 2023b), Vicuna-1.3-13B (Fan
et al., 2025), and DeepSeek-R1-Distill-LLaMA-8B (Guo et al., 2025). All experiments are con-
ducted on a single NVIDIA A100 80GB GPU, except for LLaMA-3.3-70B, which requires two
GPUs. We benchmark performance on three widely used evaluation suites: multi-turn conversation
(MT-Bench (Zheng et al., 2023)), code generation (HumanEval (Chen et al., 2021)), and mathemat-
ical reasoning (GSMS8K (Cobbe et al., 2021)).

Baselines & implementations. Vanilla autoregressive decoding serves as the baseline (speedup
ratio = 1.00x). For comparison, we include recent SoTA speculative decoding methods: SPS (with
Vicuna-68M as draft) (Leviathan et al., 2023), PLD (Saxena, 2023), Lookahead (Fu et al., 2024),
Medusa (Cai et al., 2024), EAGLE (Li et al., 2024a), EAGLE-2 (Li et al., 2024b), HASS (Zhang
et al., 2024), GRIFFIN (Hu et al., 2025), and EAGLE-3 (Li et al., 2025). Whenever available, we
rely on public implementations and strictly reproduce their decoding policies and hyperparameters.

By default, GTO initializes its draft model from the one provided by EAGLE-3. To assess com-
patibility, we also experiment with draft models trained by other approaches (see Table 2). The
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Table 1: Comparison of speedup ratio SR and acceptance length 7 on standard LLM benchmarks
with temperature T' € {0,1}.

| Temperature = 0 I Temperature = 1
Model Method || MT-bench HumanEval GSMSK | Average | MT-bench HumanEval GSMS8K | Average
|SRT r1 SRt rt SRt 71|SRt 71 |SRT r1 SRt r+ SRt 7t |SRt 71
PLD 1.53 161 169 173 179 1.85| 1.67 1.73 . ..
Lookahead | 1.61 1.67 172 178 184 1.93| 1.72 179 WA since theacceptance conditions are relaxed
LLaMA-3.1 EAGLE 1.73 297 243 326 204 3.06|2.07 3.10| 1.62 239 197 308 192 289| 1.84 2.79
Instruct EAGLE-2 || 2.52 4.02 331 470 2.83 421|289 431| 2.04 3.13 262 437 237 371|234 3.74
8B GRIFFIN 295 468 373 590 3.15 5.16| 328 525|229 390 324 539 266 4.67| 273 4.65
EAGLE-3 || 3.27 577 3.68 641 341 6.02| 346 6.07| 237 451 3.07 573 288 537|277 520
GTO 344 6.15 417 695 359 647|373 6.52 249 470 3.17 5.92 3.02 5.75| 2.89 5.46
SPS 191 224 218 252 1.74 2.00| 1.94 225| 159 1.81 1.73 199 147 1.75 ‘ 1.60 1.85
Medusa 199 248 237 274 218 261] 218 2.6 N/A, since the acceptance conditions are relaxed
Vicuna-1.3 Hydra 2.57 325 302 3.68 261 337|273 343 T P ;
13B ” EAGLE 2.81 3.67 323 4.12 274 3.62|293 380 2.14 3.06 248 346 235 337|232 3.30

EAGLE2 379 478 471 537 383 4.72| 411 496| 3.47 433 384 487 3.15 436|349 4.52
EAGLE-3 || 4.84 659 5.61 733 487 648|511 6.80| 4.03 564 4.61 636 4.16 579|427 593
GTO 523 7.01 6.06 795 555 692|561 7.29| 410 571 477 6.52 490 6.05| 459 6.09

PLD 1.34 142 153 1.62 148 154|145 153
DeepSeek-R1 Lookahead || 1.52 1.61 1.64 1.71 1.62 1.68| 1.59 1.67
Distill-lLLaMA GRIFFIN || 2.71 4.24 3.19 523 342 5.58| 3.11 5.02| 238 393 283 4.68 3.13 523|278 4.6l

N/A, since the acceptance conditions are relaxed

8B EAGLE-3 || 334 532 359 588 3.78 6.16] 357 579 271 454 315 510 349 582|311 515
GTO 349 560 398 6.58 420 6.92| 3.89 6.37| 2.76 4.59 334 544 371 6.50| 3.27 5.51
PLD 143 151 158 1.67 152 1.61| 1.51 1.60 . ..
Ll}ils\/tlr/z;?S Lookahead || 1.58 166 171 179 173 182| 1.67 176 N/A, since the acceptance conditions are relaxed

EAGLE-3 || 3.78 540 441 626 399 590| 406 585| 3.68 5.18 4.05 585 3.88 5.65|3.87 556

708 GTO 397 556 4.68 6.51 4.11 6.25| 422 6.14| 3.90 534 421 6.20 4.07 582| 4.06 5.78

initialized draft models are then fine-tuned with GTO on the ShareGPT dataset (Chiang et al.,
2023), except for the reasoning model DeepSeek-R1-Distill-LLaMA 8B, which is fine-tuned on
OpenThoughts-114k-math dataset (Guha et al., 2025). See additional training details for GTO in
Appendix B, and details for the baselines in Appendix C.

Metrics. For fairness and consistency, we follow priors, e.g., HASS, GRIFFIN, and EAGLE-3, and
fix the batch size to 1 and evaluate under decoding temperatures 7' € {0, 1}. Same as prior works
like EAGLE-3, GTO is lossless and can preserve output quality. Thus, we focus on two efficiency
metrics: (i) Speedup Ratio (S R) — the runtime acceleration relative to vanilla decoding, and (ii)
Acceptance Length (7) — the average number of tokens accepted per draft-verification cycle.

4.1 MAIN RESULTS

Comparison with SoTAs. We report the acceptance lengths (7) and speedup ratios (SR) of GTO
and all baselines across three benchmarks in Table 1. One can observe that GTO consistently outper-
forms all baselines, including SOTA EAGLE-3, across all datasets, models, and temperature settings.
On average, each GTO drafting—verification cycle accepts 67 tokens, compared to 5—6 tokens for
EAGLE-3. As a result, in terms of tangible wall-clock speedups, GTO improves the runner-up
EAGLE-3 by 7.7% for temperature zero and 5.6% for temperature one in an average across four
evaluation models, while preserving the lossless property of speculative decoding.

Specifically, on the multi-turn conversation benchmark (MT-Bench), GTO achieves steady gains
across all models. For example, with LLaMA-3.1 8B at T'=0, GTO improves the speedup ratio
by 5.2% over EAGLE-3, and by 5.1% at T'=1. Vicuna-1.3 13B shows even larger gains, reaching
8.1% at T'=0 and 1.7% at T'=1. For code generation (HumanEval), the improvements are more
pronounced. With LLaMA-3.1 8B, GTO yields a 13.3% speedup increase at 7'=0 and 3.3% at
T=1. DeepSeek-R1 8B follows the same trend, achieving 10.9% and 6.0% improvements at T'=0
and T'=1, respectively. These results highlight the effectiveness of GTO’s tree-based optimization
for structured generation tasks such as coding. On mathematical reasoning (GSMS8K), GTO again
surpasses EAGLE-3 across all configurations. For instance, with DeepSeek-R1 8B, GTO delivers an
11.1% speedup improvement at 7'=0 and 6.3% at T'=1. The strong results on GSM8K suggest that
GTO’s draft-tree reward effectively captures sequential reasoning patterns critical for mathematical
problem solving.
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Table 2: Comparison of speedup ratio (S R) and acceptance length (7) when respectively using draft
models trained by GRIFFIN and HASS as initialization of GTO.

I Temperature = 0 I Temperature = 1
Model Method | MT-bench HumanEval GSMS8K | Average || MT-bench HumanEval GSM8K | Average

| Skt «t SRt rt SRt 7t |SRt 7t | SRt =t SRt rt SRt r1|SRT =1
LLaMA-3 GRIFFIN H 3.09 485 365 597 330 531 ‘ 335 538 H 262 435 331 562 307 5.08 ‘ 3.00 5.02

Instruct GTO 328 517 403 644 353 573| 361 578| 274 454 347 595 323 541 315 530
8B HASS H 275 463 351 570 3.09 506| 3.12 5.13 H 241 415 3.09 541 292 490 | 2.81 482
GTO

295 496 386 619 333 547 ‘ 338 554 254 436 323 569 3.06 525 ‘ 294 510
LLaMA-2 GRIFFIN || 3.12 511 3.61 593 3.0 527 328 544/ 281 481 333 563 306 526| 3.07 523
(ajhat GTO 334 551 382 626 327 556 | 348 578 | 297 512 354 598 324 562 | 325 557
7B HASS 297 497 346 569 306 5.12| 3.17 526 272 464 3.18 522 283 508]| 291 498
GTO 313 515 364 595 315 531 | 331 547 | 2.84 482 341 569 3.09 534 | 311 528
Table 3: Ablation of draft tree reward aggregation on LLaMA-3.1 8B.
I Temperature = 0 | Temperature = 1
Method | MT-bench HumanEval GSM8K | Average || MT-bench HumanEval GSM8K | Average

| SRt 7t SRT 1t SRt rt|SRt rt|SRT =t SRT 71t SRt =1 |SRt =1

GTO (LSE) 344 615 417 695 359 647 | 373 652 249 470 317 592 302 575| 2.89 546
Max 338 605 4.06 680 352 636 3.65 640 246 4.65 312 584 297 566 | 285 538
Sum (Average) | 329 592 395 6.62 342 6.18 | 355 624 241 456 304 572 290 555|278 528

The results across diverse tasks and models highlight the versatility and robustness of GTO. The con-
sistent improvements over the SOTA EAGLE-3, even at different temperatures, underscore GTO’s
effectiveness in handling varying levels of stochasticity in token predictions. Notably, the perfor-
mance gains are more pronounced at temperature 7' = 0 across most settings, suggesting that GTO’s
deterministic tree optimization particularly benefits greedy decoding scenarios.

Compatibility evaluation. To further test compatibility and transferability, we evaluate GTO with
draft models not initialized by EAGLE-3. Specifically, we fine-tune the draft models from two ef-
ficient speculative decoding methods—GRIFFIN and HASS—using GTO, and evaluate them under
identical configurations on LLaMA-3-Instruct-8B and LLaMA-2-Chat-7B.

As shown in Table 2, both GRIFFIN+GTO and HASS+GTO achieve consistent gains over their
baselines. At T=0, GRIFFIN+GTO improves the average speedup ratio (S R) and acceptance length
(1) by 7.8% and 7.4%, respectively, while HASS+GTO improves them by 8.3% and 8.0%. At T'=1,
GRIFFIN+GTO increases SR and 7 by 5.0% and 5.6%, and HASS+GTO by 4.6% and 5.8%. These
results validate GTO’s compatibility and transferability across distinct draft backbones, establishing
it as a general and effective approach for bridging the training-decoding tree-policy misalignment.

4.2 ABLATION STUDY

Aggregation Operator. We ablate the aggregation operator in the Draft Tree Reward (Sec. 3.1) on
LLaMA-3.1-Instruct-8B. Our method employs the smooth maximum via log-sum-exp (LSE), which
preserves differentiability while emphasizing strong branches (Eq. (5)). We compare against two
alternatives under identical settings: (i) Sum (Average): ri"™ = % Zf\il L, ;, treating all branches
equally; (ii) Max: r}*** = max; L, ;, focusing only on the best branch but non-smooth.

Across all benchmarks and decoding temperatures, LSE aggregation (GTO) attains the best speedup
ratio (SR) and acceptance length (7). At T=0, GTO improves the average SR by 2.1% over Max
and 4.8% over Sum, with comparable gains in 7. At T=1, the advantage remains, with SR gains of
1.4% over Max and 3.8% over Sum, again accompanied by consistent improvements in 7.

These results highlight the trade-offs of alternative operators: Sum dilutes signal by averaging weak
branches, while Max is brittle and non-smooth, overfitting to a single path with poor gradient cov-
erage. In contrast, LSE interpolates between them, providing a stable and selective objective that
better aligns with decoding-time re-ranking and pruning.

Group Size. We ablate the group size m in Tree Reward Optimization (Sec. 3.2) on LLaMA-3.1-
Instruct 8B with m € {1,4,8,16,32}. As shown in Table 4, the default m=8 of GTO achieves the
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Table 4: Ablation of grouping size m on LLaMA-3.1 §B.

I Temperature = 0 I Temperature = 1
Method | MT-bench HumanEval GSMS8K | Average | MT-bench HumanEval GSMSK | Average

| SR+ r+ SRt 1 SRt 7t |SRt 1 |SRt 1 SRt =+ SR+ r1 |SRT 1
m=4 342 6.12 415 691 357 644 | 371 649 | 248 468 3.15 589 301 572| 288 543

m=1 332 594 402 671 347 625]| 3.60 630 | 240 454 3.06 571 291 555|279 527

m =8 (GTO) | 3.44 6.15 417 695 359 647 | 3.73 652 | 249 470 317 592 3.02 575| 2.89 546
m =16 327 584 396 660 341 6.15| 355 620 | 237 447 301 562 287 546|275 5.8
m = 32 317 566 384 639 330 595| 344 6.00| 229 432 292 545 278 529 | 266 502

Table 5: Ablation of reward debiasing with a reference model on LLaMA-3.1 8B.

| Temperature = 0 I Temperature = 1
Method || MT-bench HumanEval GSMS8K | Average | MT-bench HumanEval GSM8K | Average
| SRt =t SR+ r+ SR+ r1|SRt 71 |SRT =1 SRt 71t SRt 1 |SRt =1

GTO (Debiased) || 3.44 6.15 417 695 359 647 | 373 652 249 470 317 592 3.02 575| 2.89 546
w/o Debiasing 330 578 384 6.62 350 623| 355 621 239 453 3.03 564 287 535|276 517

best average SR and 7, while m=4 is within < 1%, indicating a stable plateau. In contrast, m=1
and m=16 show clear degradation, and m=32 performs worst.

Small groups (e.g., m=1) suffer from noisy, context-misaligned rewards, weakening credit assign-
ment. Large groups (e.g., m > 16) span longer contexts, introducing drift and bias that hurt learning.
Thus, moderate sizes (m € [4, 8]) strike the best balance between variance reduction and context
alignment, yielding the most reliable gains in SR and 7.

Reward Debiasing. We ablate the reward shaping and standardization step (Eq. (9)) in Tree Re-
ward Optimization on LLaMA-3.1-Instruct-8B. Debiasing computes a control-variated reward by
subtracting the tree-level reward of a frozen reference draft model M (Phase I) from the current
model M for matched prefixes, reducing variance and improving credit assignment. We compare
our default GTO (Debiased) against a variant that omits this subtraction (w/o Debiasing), with all
other settings fixed.

As shown in Table 5, debiasing consistently improves both SR and 7. At T'=0, GTO achieves
+5.0% SR and +5.1% 7 over w/o Debiasing; at T=1, the gains are +5.6% and +4.7%. Without
debiasing, rewards are noisier and context-dependent, yielding weaker draft policies and shorter
acceptance lengths.

5 CONCLUSION

In this paper, we proposed Group Tree Optimization (GTO) to bridge the draft policy misalign-
ment between training and decoding. GTO introduces a decoding-faithful Draft Tree Reward that
directly optimizes the expected acceptance length and a stable group-based optimization that con-
trasts current and reference trees, standardizes advantages across nearby contexts, and updates via
a PPO-style clipped surrogate along the longest accepted sequence. Extensive evaluations across
diverse LLMs and datasets show that GTO consistently outperforms SoTAs, achieving the highest
speedup ratios and acceptance lengths.

Limitations. GTO increases training-time compute due to its two-phase procedure and the need
to construct and evaluate grouped draft trees during training. Nevertheless, GTO is model-agnostic
and complementary to existing speculative decoding methods: it can be directly fine-tuned on top of
pretrained draft models (e.g., EAGLE-3, GRIFFIN) without architectural changes or modifications
to the verification stack. In practice, the draft model is trained once, whereas decoding dominates
the runtime in real-world deployments; the added training cost is therefore amortized by improved
inference efficiency. In our experiments, GTO improves the speedup ratio by more than 7% over
EAGLE-3, making the extra training cost a reasonable trade-off for latency-sensitive applications.
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ETHICS STATEMENT

GTO improves efficiency of large language model decoding. Nevertheless, faster generation could
increase the throughput of undesirable content if deployed without safeguards. We recommend
deploying GTO only with established safety measures (content filters, rate limiting, audit logging,
and red-teaming) and within the original safety and usage policies of the underlying models.

REPRODUCIBILITY STATEMENT

We detail our work in the Methods section and describe implementation details in Section 3 and Ap-
pendix B. Our code and GTO’s draft models will be released publicly in ht tps://anonymous.
4open.science/r/GTO-ICLR-348F/.
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A PROOF OF THEOREM 1

We first make explicit the objects in play. Let the draft tree at step ¢ have N branches (root-to-leaf
paths) indexed by ¢ € [N]. For each branch i, let z; 1.,, denote its token sequence up to depth ¢;,
and let

L., €{0,1,...,d}

denote the (random or deterministic) number of consecutive tokens, starting at the current prefix,
that the target model would accept if branch ¢ were proposed. The draft-tree reward is the smooth
maximum

N
1
ry = — log(Ze"L“) with 7 >0,
n i=1
which satisfies the standard bounds

1
maxL;; < ry < maxL;;+ —logN. (D)
3 K3 77

For decoding, define for each 7 > 1 the event
&;(Ty) = {atleast j tokens are accepted at decoding}.

Then the expected acceptance length under target temperature 7' can be expressed as
d
E[LF(T)] = Y Pr(&(Ty). 2
j=1

We will use the following elementary monotonicity fact.

Lemma 1 (Coordinate-wise monotonicity of acceptance probability). Fix a draft tree topology and
branch token sequences {z; 1.0, }~ 1. For any j > 1, the event £;(T}) can be written as the union

N
&i(Ty) = U Bi ;. B; ; := {the target rollout matches z; 1.; }.
i=1

If we increase a single coordinate Ly ; by A € N (keeping other Ly, fixed), then for each j €
{Lyi+1,...,Ly;+A}, the union gains a new set I3; ; and hence

Pr(E;(Ty)) is non-decreasing.

Moreover, if T > 0 (softmax sampling with strictly positive support over tokens), then Pr(B; ;) > 0
and thus Pp(E;(Ty)) increases strictly for those j.

Proof sketch. For each i, the event B; ; corresponds to the target producing the specific j-token
prefix z; 1.;. Increasing L ; by A adds new prefixes at depths L, ;+1, ..., L, ;+A, hence enlarging
the union. Under 7" > 0, each concrete token sequence has strictly positive probability under a
softmax LM, so the probability mass added is positive. Disjointness at the level of exact token
sequences follows from the tree structure: no two distinct branches share the same length-; token
prefix, so B3; ; is not a subset of (J, ; By ;- O

We now prove the two cases in Theorem 1.

Proof of Theorem 1. (a) T > 0. The function r; = %log( >, €™i) is strictly increasing in each
coordinate L; ;. Because L;; are integer-valued lengths, any increase in r; implies that at least
one coordinate L; ; increases by an integer A > 1.' By Lemma 1, for each newly covered depth
j€{Ly;+1,...,Ly;+A} we have Pr(E;(T;)) increases strictly (because 7' > 0 confers strictly
positive mass on the corresponding prefix event). Summing these strictly positive increases over

Formally, along any path that increases ry, the first time r; changes must coincide with an increment in at
least one discrete coordinate.
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7 and possibly over multiple improved branches (if several coordinates increased) and invoking
equation 2 yields

E[L$*(T,)] increases strictly whenever r, increases.
(b) T' = 0. Let s* be the unique greedy target trajectory. Then L, ; equals the longest common-prefix
length between branch ¢ and s*, and
E[L§*(T;)] = maxLy;.
K3

Using the smooth-max bounds equation 1 with M := max; L, ;, we have

1
M < r, < M+ —logN.
n

Consequently, if r; increases by more than the residual slack-to-plateau,
1
Ar; > (M—|— flogN) — 1y,
n

then the new reward r} must satisfy r;, > M +% log N, which is impossible unless the new maximum
increases to M’ > M + 1. Hence, under ' = 0,

r,—r; > (M + 5 log N) —r; = E[L{*(T;)] = maxL,; strictly increases.

This gives a simple sufficient condition: an increase in r; that exceeds the softmax slack % log N —
(ry — M) necessarily raises the deterministic acceptance length.

Putting (a) and (b) together, we obtain the stated guarantees: for 7" > 0, any increase in r; strictly
increases the expected acceptance length; for 7' = 0, an increase in r; that exceeds the smooth-max
slack forces an increase in max; Ly ;. O

Remarks. (i) The case T' > 0 relies only on the strictly positive support of the target sampler;
it holds for any softmax temperature 7' > 0 (or any sampler with full support). (ii) The suffi-
cient condition in 7" = 0 is tight with respect to the standard smooth-max bounds equation 1; no
stronger implication can be made from r; alone because r; can increase by raising only sub-maximal
branches without changing the maximum.

B IMPLEMENTATION DETAIL

B.1 DRAFT TREE STRUCTURE

Across all experiments, we adopt a dynamic draft tree with a fixed budget of 60 draft tokens, a
maximum tree depth of 7 and top-k of 10, following the configuration shown to be effective in
EAGLE-3.

B.2 TOKEN-LEVEL L0SS IN EQ. (13)

Let D be the training corpus over a vocabulary V. For a sequence x = (z1,...,21) € D, denote
the prefix x1.,-1 = (x1,...,2;-1). Let pr(- | x1.i—1) and pap(- | X1.4—1) be the next-token
distributions produced by the target model 7 and the draft model M, respectively, under the same
teacher-forced prefix. We define the token-level loss as the expected cross-entropy from the teacher
to the student:

1

Lioken = Ex~p | oy > Hpr(- [ xi1), pml- [ x1:01)) |
1,22,
where Z(x) C {1,..., L} indexes supervised positions (e.g., all non-padding positions) and
H(p,q) = = p(v) logq(v)
veV
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is the cross-entropy. Equivalently, since H (p7, pam) = KL(prllpm) + H(pr) and H (p7) does not
depend on M, minimizing L;oken 1S €quivalent (up to an additive constant) to minimizing

1
Ex~p T Z KL(p7 (- | x1:-1) | pA (- | X1:0-1))
761, 2,

B.3 TRAINING CONFIGURATION

We fine-tune the draft model with AdamW and a warmup—decay schedule under mixed precision
and ZeRO optimizations. Key hyperparameters are summarized below

* Draft-tree construction: top-k for per-node expansion set to k = 10.

* Draft-tree reranking: top-g candidates per step set to g = 60.

* Smooth-max temperature in tree reward: n = 1.

* Number of groups per sequence: K = 16.

* Group size (prefixes per group): m = 8.

* Scalar weight on the GTO loss: w = 0.5 in £ = Lioken + w LaTO-

Optimizer and scheduler.

* Optimizer: AdamW with $;=0.9, £2=0.95, weight decay = 0.

s Learning rate: Warm up linearly from 0 to 5x107 over 1,000 steps, then decay over a
total of 60,000 steps.

* Gradient clipping: 0.5.

Precision and parallelism.

» Mixed precision: FP16 autocast with dynamic loss scaling (initial scale 2'4; window =
1000; hysteresis = 2; min scale = 1).

» ZeRO: Stage-2 with overlapping communication, all-gather/reduce-scatter enabled; bucket
sizes 2x 108,

* Gradient accumulation: 2 steps; per-GPU micro-batch size: 1.

Training loop.

* Epochs: 5
* max sequence length: 2048

¢ dataloader workers: 2

Additional hyperparameters and scripts are available at https://anonymous.4open.
science/r/GTO-ICLR-348F/.

The full GTO update is summarized in Algorithm 1.

C CLARIFICATION OF BASELINE METHODS

For EAGLE, EAGLE-2, EAGLE-3, HASS, GRIFFIN, Medusa and Hydra, we directly utilized the
publicly released draft model parameters provided by the respective authors. For methods that do
not require draft model training, such as PLD, Lookahead, and SPS, we evaluated performance using
official code from their GitHub repositories.
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Algorithm 1 GTO Phase II: Group-based Optimization of Draft Tree Reward

Require: Draft model M, reference draft model My, target model 7T, group size m, clip ¢, std
floor 6§, reward aggregator R

1: for each minibatch of training sequences do
2 for each sequence x in batch do
3 Sample {G(k)}kK:1 + SampleGroups(x, m) > G = {ty, ... tp +m—1}
4 for each group G(*) do
5: for each i € G*) do B
6: Build trees: T'; < Q(M, Xl:i)s T, + g(Mo, Xl:i)
7 Compute rewards: r; + R(T;), t; + R(T;)
8: Debiased reward: R; < r; — T
9: Find longest accepted sequence S; in T; and its length /;
10: Likelihood ratio: s; ¢ exp ((log M(S;|x1.;) — log Mo(S;[x1.4))/L;)
11: end for
12: Standardize within group: A; < (R; — mean({R;}))/(std({R;}) + 4)
13: Compute group loss: LaTo < — 4 >, cqao min (s;4;, clip(s;, 1 —€,1+ €)A;)
14: end for
15: end for
16: Update M by minimizing £ = Lioken + wLGTO
17: end for

D TRAINING OVERHEAD OF GTO

Compute budget. All results were obtained on NVIDIA A100 80 GB GPUs under mixed preci-
sion with ZeRO-2. The Phase-II GTO fine-tuning requires approximately (i) 200 GPU-hours for
7B models, (ii) 400 GPU-hours for 13B models, and (iii) 900 GPU-hours for 70B models. These
compute budgets cover end-to-end GTO training (including grouped tree construction and verifica-
tion) and exclude any pretraining of the base or drafter models, as we fine-tune on publicly available
pretrained drafters.

Why the overhead is worthwhile.

* Model-agnostic and complementary. GTO is model-agnostic and complementary to ex-
isting speculative decoding methods: it can be directly fine-tuned on top of pretrained draft
models (e.g., EAGLE-3, GRIFFIN) without architectural changes or modifications to the
verification stack.

¢ Amortized cost in deployment. Train once, use everywhere: the draft model is trained a
single time, whereas decoding dominates the runtime in real-world deployments; the added
training cost is therefore amortized by improved inference efficiency.

e Measured gains. In our experiments, GTO delivers > 7% higher end-to-end speedup
ratio than EAGLE-3, making the small additional training budget a favorable trade-off for
latency-sensitive applications.

E LLM USAGE STATEMENT

Large language models were used minimally for proofreading and grammar checking. The research
ideas, methodology, experiments, and analysis were entirely conceived and conducted by the au-
thors.
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