
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING DRAFT POLICY MISALIGNMENT: GROUP
TREE OPTIMIZATION FOR SPECULATIVE DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Speculative decoding accelerates large language model (LLM) inference by letting
a lightweight draft model propose multiple tokens that the target model verifies in
parallel. Yet existing training objectives optimize only a single greedy draft path,
while decoding follows a tree policy that re-ranks and verifies multiple branches.
This draft policy misalignment limits achievable speedups. We introduce Group
Tree Optimization (GTO), which aligns training with the decoding-time tree pol-
icy through two components: (i) Draft Tree Reward, a sampling-free objective
equal to the expected acceptance length of the draft tree under the target model,
directly measuring decoding performance; (ii) Group-based Draft Policy Training,
a stable optimization scheme that contrasts trees from the current and a frozen ref-
erence draft model, forming debiased group-standardized advantages and apply-
ing a PPO-style surrogate along the longest accepted sequence for robust updates.
We further prove that increasing our Draft Tree Reward provably improves ac-
ceptance length and speedup. Across dialogue (MT-Bench), code (HumanEval),
and math (GSM8K), and multiple LLMs (e.g., LLaMA-3.1-8B, LLaMA-3.3-70B,
Vicuna-1.3-13B, DeepSeek-R1-Distill-LLaMA-8B), GTO increases acceptance
length by 7.4% and yields an additional 7.7% speedup over prior state-of-the-
art EAGLE-3. By bridging draft policy misalignment, GTO offers a practical,
general solution for efficient LLM inference. Code and draft models are available
at https://anonymous.4open.science/r/GTO-ICLR-348F/.

1 INTRODUCTION

Large language models (LLMs) like GPTs (Achiam et al., 2023) and LLaMAs (Touvron et al.,
2023a;b; Dubey et al., 2024) have achieved remarkable success in dialogue (Zheng et al., 2023),
coding (Chen et al., 2021), and reasoning (Cobbe et al., 2021). Yet their standard autoregressive de-
coding remains inefficient: each token requires a full forward pass, making inference both compute-
intensive and latency-bound. Speculative decoding (Leviathan et al., 2023; Chen et al., 2023a)
mitigates this by introducing a lightweight draft model to propose multiple tokens, which the target
LLM verifies in parallel. This enables multi-token generation per target step, substantially reducing
inference time.

Recent work has improved speculative decoding by refining draft model training. For instance,
HASS (Zhang et al., 2024) enforces feature consistency to reduce hidden-state mismatches, GRIF-
FIN (Hu et al., 2025) resolves token-level misalignments, and EAGLE-3 (Li et al., 2025) incorpo-
rates training-time rollouts to better mimic decoding. However, they face a fundamental limitation
yet: draft policy misalignment between training and decoding. That is, the training objective of
draft model does not align with how draft sequences are actually generated and used during decod-
ing, ultimately weakening the effectiveness of training for improving decoding performance.

Specifically, during training, given a context, the draft model is optimized to maximize the likelihood
of generating the same token as the target model (Li et al., 2024a;b; 2025; Zhang et al., 2024). It
treats drafting as a single-path sequence prediction problem, and its corresponding optimal training-
time draft policy is a greedy drafting: select the highest-probability token at each draft step to form
a single draft sequence (e.g., the leftmost draft path in Fig. 1 (a)). However, the practice decoding
differs from greedy drafting, and indeed adopts tree drafting (Li et al., 2024b): as shown in Fig. 1
(a), it uses draft model to expand a draft tree containing multiple draft sequences, then re-ranks
sequences using prediction confidences, and finally selects top-g tokens which are then verified
by the target LLM. This decoding-time policy is fundamentally different: unlike the training-time

1

https://anonymous.4open.science/r/GTO-ICLR-348F/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

It (1.00)

is (0.60) has (0.40)

a (0.36) the (0.24) to (0.38) some (0.02)

0.6 0.4

0.6 0.4 0.95 0.05

It (1.00)

is (0.70) has (0.30)

a (0.14) the (0.56) to (0.18) some (0.12)

0.7 0.3

0.2 0.8 0. 6 0.4

(a) Draft Tree Constructed by Draft Model
Pruned Pruned Pruned

(b) Draft Tree Verified by Target Model

Verified by Target Model

Accept

Greedy Path

Discard Discard Discard

DiscardAccept

Accept Path
Accept

Selected Selected

Selected

Selected

Figure 1: Draft policy misalignment between training and decoding. (a) The tree is built by draft
model at decoding: number on edge is the token probability predicted by draft model, e.g., “is” (0.6),
and number in parentheses is current path confidence, e.g., “It is” (0.6=1.0×0.6). Training enforces
a training-time greedy draft policy, following the locally best child and yielding the path “It→ is→
a” (confidence 0.36). At decoding, top-4 re-ranking compares sibling paths, where “It→ has→ to”
(0.38) outperforms the greedy branch which is thus pruned (red). Training signal concentrated on a
single greedy path is wasted when sibling branches win. (b) Target model verifies the tree with its
own probabilities. It compares the confidence of each sequence, and accepts the sequence “It→ is
→ the”. Even when the greedy branch survives, target model may accept a different sibling.

policy focusing on a single greedy draft path (the most left one in Fig. 1 (a)), it leverages multiple
high-quality branches (the whole tree in Fig. 1 (a)) to maximize the expected acceptance length.

This draft policy misalignment leads to two characteristic failure modes: (1) greedy path pruning;
and (2) verification mismatch. For (1), due to re-ranking and top-g selection, the optimal training-
time greedy path may be pruned at decoding if sibling branches achieve higher overall confidence.
For example, in Fig. 1(a), the greedy sequence “It is a” (confidence 0.36) is discarded in favor of the
sibling “It has to” (confidence 0.38). Regarding (2), even when the greedy path survives pruning,
target model may accept a different branch, e.g., accepting “It is the” rather than the greedy “It is
a” in Fig. 1(b). In both cases, training effort spent on the greedy path yields little decoding benefit.
These failures also reveal a structural bottleneck: training encourages convergence to a policy that
is effective and optimal only under single-path greedy drafting, but suboptimal for the tree-based
strategy used in practice, causing training-decoding misalignment and limiting decoding efficiency.
Bridging this gap is therefore crucial for realizing the full potential of speculative decoding in LLMs.

We empirically validate this misalignment using the EAGLE-3 draft model on LLaMA-3.1-
8B (Dubey et al., 2024). As shown in Fig. 2(a), 19–34% of greedy paths are pruned during draft tree
construction, and the finally accepted path matches the greedy one only 36–49% of the time. Even
when accepted, the greedy path averages 3−4 tokens, shorter than the 5−6 tokens of the full tree
(Fig. 2(b)). This confirms that greedy training overlooks globally optimal sequences, highlighting
the severity of draft policy misalignment and its direct impact on speculative decoding efficiency.

Contributions: To address the draft policy misalignment, we propose Group Tree Optimization
(GTO), a novel training algorithm for speculative decoding that explicitly optimizes the tree-based
draft policy rather than a single greedy path. By aligning training with the actual decoding proce-
dure, GTO ensures that draft models learn policies that directly improve decoding-time efficiency.

First, we introduce a draft-tree reward that directly aligns training with the decoding-time policy.
Unlike prior methods that optimize token-level accuracy (Li et al., 2025; Hu et al., 2025; Zhang
et al., 2024), GTO adopts the same rollout strategy used during decoding: the draft model generates
a tree of candidate sequences, which is then verified by the target LLM. We define the reward as
the expected acceptance length of the tree, a direct measure of decoding efficiency. This shifts the
objective from “predicting the next token correctly” to “producing draft trees that survive verification
and extend accepted prefixes as far as possible,” aligning the training goal with real decoding.

Second, we develop a stable and effective draft policy training algorithm to maximize this draft-
tree reward and thus boost decoding efficiency. Training is challenging because rewards are sparse,
position-dependent, and high variance. GTO addresses this with a group-based approach tailored to
deterministic draft-tree rollouts. We sample small groups of trees under both the current draft model
and a frozen reference, and use their contrasts to construct debiased tree-level rewards that cancel
position-specific difficulty. Within each group, standardized advantages normalize rewards across
contexts, reducing variance and improving credit assignment by highlighting which branches truly

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MT-bench HumanEval GSM8K10

20

30

40

50

Pr
ob

ab
ili

ty
 (%

)
38

49

36
34

19

28

(a)

Greedy Path
Accept Rate
Greedy Path
Prune Rate

MT-bench HumanEval GSM8K2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

A
cc

ep
ta

nc
e

L
en

gt
h

3.07

4.25

3.19

5.77

6.41
6.02

(b)

Greedy Path
Draft Tree

LLaMA3.1-8B DeepSeek-R1-8B Vicuna1.3-13B LLaMA3.3-70B2.5

3.0

3.5

4.0

4.5

5.0

5.5

Sp
ee

du
p

R
at

io

2.88 N/A

4.11

N/A

3.46 3.57

5.11

4.06
3.73

3.89

5.61

4.22

(c)

EAGLE-2
EAGLE-3
GTO

Figure 2: Experimental Results of Draft Policy Misalignment between Training and Decoding. (a)
Fraction of training-time greedy paths that are pruned during draft tree construction (orange bars)
and fraction where the accepted path coincides the greedy path (yellow bars). (b) Accepted greedy
paths are also shorter: their average acceptance length is 3−4 tokens, compared to 5−6 for the
entire draft tree. (c) Speedup Ratio Comparison of GTO and EAGLE-3.

drive longer accepted prefixes. Finally, we optimize a PPO-style clipped objective, defined over the
likelihood ratio along the longest accepted sequence, ensuring robust and efficient training.

Finally, we validate GTO across dialogue (MT-Bench (Zheng et al., 2023)), code (HumanEval (Chen
et al., 2021)), and reasoning (GSM8K (Cobbe et al., 2021)) benchmarks on LLaMA-3.1-8B,
LLaMA-3.3-70B, DeepSeek-R1-Distill-LLaMA-8B, and Vicuna-13B. GTO consistently improves
acceptance length by 7.4% over EAGLE-3, translating into an additional 7.7% speedup (Fig. 2 (c)).

2 RELATED WORK

Speculative decoding accelerates LLM inference by splitting each step into a lightweight draft and
a verification stage (Sun et al., 2024; Miao et al., 2024; Chen et al., 2023b; Kim et al., 2024; Liu
et al., 2023). Existing methods vary in how drafts are produced and verified: prompt- and retrieval-
based approaches (PLD, Lookahead, CLLMs) improve draft quality but degrade with scarce context
(Saxena, 2023; Fu et al., 2024; Kou et al., 2024); tree-based verification (Sequoia, SpecExec) boosts
acceptance but often increases compute (Chen et al., 2024; Svirschevski et al., 2024); REST and
Ouroboros reuse outputs or databases but depend on resource quality (He et al., 2023; Zhao et al.,
2024); hybrid designs (Chimera, Glide) partially integrate the target model at extra cost (Zeng et al.,
2024; Du et al., 2024). Efficiency-oriented drafters span Medusa, Hydra, and RNN/Transformer-
based models such as EAGLE-3, with methods like HASS and GRIFFIN addressing feature- and
token-level mismatches (Cai et al., 2024; Ankner et al., 2024; Cheng et al., 2024; Li et al., 2024a;b;
Zhang et al., 2024; Hu et al., 2025; Li et al., 2025). Despite these advances, a key limitation remains:
draft policy misalignment, where training optimizes a single greedy path but decoding verifies a tree
of candidates. We propose GTO to align the training objective with the decoding-time tree policy,
improving acceptance length and speedup. GTO complements existing methods and provides a
general solution to policy mismatch in speculative decoding.

3 GTO: GROUP TREE OPTIMIZATION

To address the draft policy misalignment highlighted in Section 1, we introduce Group Tree Op-
timization (GTO), a training framework that explicitly aligns the draft policy with decoding. The
central idea is to evaluate and optimize draft policies not on a single greedy path, but on entire draft
trees, using the same drafting procedure deployed at decoding. To this end, GTO consists of two
key components: (i) a draft-tree reward that faithfully measures expected decoding performance in
terms of accepted draft sequence length (Section 3.1), and (ii) a stable group-based optimization
algorithm for training with this reward (Section 3.2). Below we introduce them in turn.

3.1 DRAFT TREE REWARD

The effectiveness of speculative decoding is governed by the length of accepted draft sequence: the
longer the draft sequence accepted by the target model, the fewer verification steps are needed, and
thus the greater the decoding efficiency. With the same draft model, a higher expected acceptance
length directly translates to higher speedup. This makes expected acceptance length the most faithful
measure of practical decoding performance when using the same draft model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To capture this, GTO eliminates the traditional mismatch between training and decoding: instead of
optimizing token-level proxies along a greedy path, we construct draft trees during training using the
same decoding-time expansion and pruning policy (e.g., EAGLE-2–style multi-branch expansion,
reranking and selection). The draft model is then optimized with respect to a tree-level reward that
directly reflects its expected decoding-time utility.

Formally, given a training prefix (a.k.a., context) x1:t, we follow EAGLE-2, and construct a depth-d
draft tree Tt with the draft modelM:

Tt = G(M,x1:t), (1)

where G denotes the decoding policy. The policy G grows the tree in two stages.

(i) Layer-wise expansion. At depth ℓ ∈ {1, . . . , d}, consider all frontier expansions (token edges)
from the current layer. For each candidate expansion we compute a global acceptance score. We then
select the top-k token expansions across the entire layer according to the global acceptance score
and expand draft tree only on these children. This global competition allows promising siblings to
outcompete locally greedy choices and prevents early commitment to a single path.

(ii) Global pruning and re-ranking. After reaching the maximum depth, we collect all leaves and
re-rank them by the global acceptance score. We retain the top-g leaves and prune the rest.

The tree consists of N candidate sequences Tt = {St,1, . . . ,St,N}, each of length li ≤ d may be
different due to selection (pruning):

St,i =
{
x̄t+1,i, . . . , x̄t+li,i

}
, (2)

where
{
x̄t+1,i, . . . , x̄t+li,i

}
denotes the draft sequence St,i. Then, for each sequence, we define its

expected acceptance length under the target model T :

Lt,i =

li∑
j=1

P(x̄t+j,i |x1:t, x̄t+1:t+j−1,i) , (3)

with

P(x̄t+j,i |x1:t, x̄t+1:t+j−1,i) =

j∏
k=1

T (x̄t+k,i |x1:t, x̄t+1:t+k−1,i) . (4)

Here, Lt,i is the expectation of how many tokens of St,i will be accepted by target model T . This
definition is sampling-free, while remaining directly tied to decoding performance.

Accordingly, we can average the expected acceptance length of all sequences in the tree to measure
the overall decoding performance of the tree. However, since decoding utility depends on which
sequences (branches) survive pruning, we aggregate the sequence-level expectations with a smooth
max (log-sum-exp), balancing differentiability with a focus on the strongest sequences:

rt = R(Tt; η) =
1

η
log

(
N∑
i=1

exp
(
ηLt,i

))
, (5)

where the temperature η > 0 interpolates between the maximum (η →∞) and the average (η → 0)
branch acceptance length. We set η = 1 in experiments, which yields a stable and informative
reward and works very well in our all experiments. Ablation results in Table 3 show this strategy is
better than average all expected length or use the maximum length.

By training the draft model to maximize R(Tt), GTO ensures that the draft policy and training
objective are fully aligned with decoding. Unlike prior approaches that rely on token-level log-
likelihoods or greedy-path proxies, GTO directly optimizes for the expected acceptance length that
governs speculative decoding speedup.

Theoretical guarantee. Importantly, improving the Draft Tree Reward provably increases the ex-
pected decoding acceptance length, regardless of the target model’s sampling temperature:
Theorem 1 (Maximizing Draft Tree Reward Guarantees Improved Expected Acceptance Length).
Consider a draft tree Tt and target model temperature T ≥ 0. Let Ldec

T (Tt) denote the expected
acceptance length at decoding. Then:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) For T > 0, if the draft tree reward rt increases, then E[Ldec
T (Tt)] strictly increases.

(b) For T = 0, if rt increases, then E[Ldec
0 (Tt)] = maxi Lt,i also increases.

See its proof in Appendix A. This result establishes expected acceptance length as the key link
between training and decoding: optimizing the draft-tree reward directly improves speculative de-
coding efficiency in practice.

3.2 TREE REWARD OPTIMIZATION

Directly optimizing the tree-level reward is challenging, particularly early in training when the draft
model is weak and draft-token acceptance rates are low. In this regime, the tree reward is small
and high-variance, making naive optimization inefficient and unstable. To address this, following
LLM’s two-phase training (pretraining and fine-tuning), GTO adopts a two-phase group-based ap-
proach: an optional warmup to obtain a competent draft model, followed by a structured group-wise
optimization that stabilizes and accelerates training. This design improves sample efficiency and
can skip the warmup if a strong pretrained draft model is available. For example, in practice, we can
directly use the draft model well trained by EAGLE-3, GRIFFIN and HASS as the reference draft
model, which plays a role as the Phase I training.

Phase I: Draft model warmup. We first train a reference draft modelM0 using standard token-
level objectives like the ones in EAGLE-3 and GRIFFIN. This phase provides a baseline model to
stabilize subsequent group-based updates and can be skipped when a sufficiently strong draft model
exists, e.g., draft model well trained by EAGLE-3 and GRIFFIN.

Phase II: Group-based optimization of the draft tree reward. We now optimize the draft tree
reward while ensuring stability and robustness. Inspired by group-based reinforcement learning
methods (e.g., GRPO (Shao et al., 2024)), we sample groups of related examples and use group-
wise advantage estimation to reinforce high-performing samples while suppressing underperform-
ing ones. However, unlike standard RL, for a fixed prefix x1:t the draft-tree generation G(M,x1:t) is
effectively deterministic given the policy, limiting the utility of multiple rollouts from the same state.
To enable variance reduction and within-context comparisons, we form groups from nearby posi-
tions in the same sequence and optimize a clipped likelihood-ratio surrogate with group-normalized
advantages.

Grouping. Let the training sequence be x1:s = (x1, . . . , xs), where s is the sequence length. We
partition positions into K non-overlapping groups of adjacent indices. Each group is defined by a
start index tk and a fixed group size m (with m ∈ [4, 8] in practice):

G(k) = { tk, tk + 1, . . . , tk +m− 1 } ⊆ {1, . . . , s}, (6)

subject to
1 ≤ tk ≤ s−m+ 1, tk+1 ≥ tk +m (non-overlap). (7)

The number of groups K is determined by the available compute budget and the sequence length
(upper bounded by ⌊s/m⌋).

For every position i ∈ G(k), we construct a depth-limited draft tree with the current draft modelM
using the decoding policy G:

Ti = G(M,x1:i). (8)

By construction, indices within a group are adjacent: for any i, j ∈ G(k) we have |i− j| ≤ m− 1.
Consequently, the corresponding prefixes x1:i and x1:j differ by at most m − 1 trailing tokens
and share a long common context. Comparing tree-level rewards only within a group therefore:
(i) matches examples under nearly identical contexts, (ii) reduces variance in reward comparisons
caused by position-specific difficulty, and (iii) yields more reliable credit assignment across nearby
prefixes. Intuitively, we aggregate draft trees from adjacent prefixes so that the within-group differ-
ences are small, enabling stable and sample-efficient learning signals.

Reward shaping and standardization. A key challenge in draft tree reward optimization is that
raw tree rewardsR(Ti) exhibit systematic difficulty bias: some prefixes x1:i are inherently harder to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

continue than others, leading to lower acceptance rates regardless of draft quality. For instance, pre-
fixes ending with complex mathematical expressions or rare tokens may consistently yield shorter
accepted sequences, while simple conversational prefixes may achieve high acceptance even with
suboptimal drafts. This bias confounds the learning signal and can cause the model to avoid chal-
lenging contexts rather than improving on them.

To remove systematic difficulty bias across prefixes, we construct reference trees T̄i = G(M0,x1:i)
to debias the tree reward:

Ri = R(Ti)−R(T̄i), (9)
where R is the tree-level reward from Section 3.1. Within each group, rewards are standardized to
stabilize updates:

Ai =
Ri −mean({Rj}j∈G(k))

std({Rj}j∈G(k)) + δ
, (10)

with a small δ > 0 for numerical stability. Our ablation study (Table 5) demonstrates that without
debiasing, the model training will becomes unstable due to high variance in gradient magnitudes,
leading to worser performance in decoding.

Clipped likelihood-ratio objective. Let Ŝi be the longest accepted sequence in Ti under T , with
length li. Define a per-token likelihood ratio (geometric mean) betweenM andM0 on Ŝi:

si = exp

(
logM

(
Ŝi

∣∣x1:i

)
− logM0

(
Ŝi

∣∣x1:i

)
max(li, 1)

)
. (11)

We then optimize a PPO-style clipped surrogate over each group (Schulman et al., 2017):

LGTO = − 1

m

∑
i∈G(k)

min
(
si · Ai, clip

(
si, 1− ϵ, 1 + ϵ

)
· Ai

)
, (12)

where clip(s, a, b) = max{a,min{s, b}} and ϵ > 0 controls update magnitude.

Overall training objective. We combine the group-tree objective with a token-level loss Ltoken

using a scalar weight ω:
L = Ltoken + ω · LGTO. (13)

Ltoken denotes the token-level cross-entropy loss introduced in EAGLE-3 (Li et al., 2025) that
matches the draft modelM to the target model T under the same prefixes.

This two-phase group-based procedure transforms the decoding-faithful draft tree reward into a
stable and effective learning signal, enabling the draft model to reliably maximize expected accep-
tance length and align training with practical decoding performance. Details are summarized in
Appendix. B and Algorithm 1.

4 EXPERIMENT

Models & datasets. We test GTO on a representative set of LLMs, including LLaMA-3.1-Instruct-
8B (Touvron et al., 2023b), LLaMA-3.3-Instruct-70B (Touvron et al., 2023b), Vicuna-1.3-13B (Fan
et al., 2025), and DeepSeek-R1-Distill-LLaMA-8B (Guo et al., 2025). All experiments are con-
ducted on a single NVIDIA A100 80GB GPU, except for LLaMA-3.3-70B, which requires two
GPUs. We benchmark performance on three widely used evaluation suites: multi-turn conversation
(MT-Bench (Zheng et al., 2023)), code generation (HumanEval (Chen et al., 2021)), and mathemat-
ical reasoning (GSM8K (Cobbe et al., 2021)).

Baselines & implementations. Vanilla autoregressive decoding serves as the baseline (speedup
ratio = 1.00×). For comparison, we include recent SoTA speculative decoding methods: SPS (with
Vicuna-68M as draft) (Leviathan et al., 2023), PLD (Saxena, 2023), Lookahead (Fu et al., 2024),
Medusa (Cai et al., 2024), EAGLE (Li et al., 2024a), EAGLE-2 (Li et al., 2024b), HASS (Zhang
et al., 2024), GRIFFIN (Hu et al., 2025), and EAGLE-3 (Li et al., 2025). Whenever available, we
rely on public implementations and strictly reproduce their decoding policies and hyperparameters.

By default, GTO initializes its draft model from the one provided by EAGLE-3. To assess com-
patibility, we also experiment with draft models trained by other approaches (see Table 2). The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of speedup ratio SR and acceptance length τ on standard LLM benchmarks
with temperature T ∈ {0, 1}.

Temperature = 0 Temperature = 1

Model Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑

LLaMA-3.1
Instruct

8B

PLD 1.53 1.61 1.69 1.73 1.79 1.85 1.67 1.73 N/A, since the acceptance conditions are relaxedLookahead 1.61 1.67 1.72 1.78 1.84 1.93 1.72 1.79
EAGLE 1.73 2.97 2.43 3.26 2.04 3.06 2.07 3.10 1.62 2.39 1.97 3.08 1.92 2.89 1.84 2.79
EAGLE-2 2.52 4.02 3.31 4.70 2.83 4.21 2.89 4.31 2.04 3.13 2.62 4.37 2.37 3.71 2.34 3.74
GRIFFIN 2.95 4.68 3.73 5.90 3.15 5.16 3.28 5.25 2.29 3.90 3.24 5.39 2.66 4.67 2.73 4.65
EAGLE-3 3.27 5.77 3.68 6.41 3.41 6.02 3.46 6.07 2.37 4.51 3.07 5.73 2.88 5.37 2.77 5.20
GTO 3.44 6.15 4.17 6.95 3.59 6.47 3.73 6.52 2.49 4.70 3.17 5.92 3.02 5.75 2.89 5.46

Vicuna-1.3
13B

SPS 1.91 2.24 2.18 2.52 1.74 2.00 1.94 2.25 1.59 1.81 1.73 1.99 1.47 1.75 1.60 1.85
Medusa 1.99 2.48 2.37 2.74 2.18 2.61 2.18 2.61 N/A, since the acceptance conditions are relaxedHydra 2.57 3.25 3.02 3.68 2.61 3.37 2.73 3.43
EAGLE 2.81 3.67 3.23 4.12 2.74 3.62 2.93 3.80 2.14 3.06 2.48 3.46 2.35 3.37 2.32 3.30
EAGLE2 3.79 4.78 4.71 5.37 3.83 4.72 4.11 4.96 3.47 4.33 3.84 4.87 3.15 4.36 3.49 4.52
EAGLE-3 4.84 6.59 5.61 7.33 4.87 6.48 5.11 6.80 4.03 5.64 4.61 6.36 4.16 5.79 4.27 5.93
GTO 5.23 7.01 6.06 7.95 5.55 6.92 5.61 7.29 4.10 5.71 4.77 6.52 4.90 6.05 4.59 6.09

DeepSeek-R1
Distill-LLaMA

8B

PLD 1.34 1.42 1.53 1.62 1.48 1.54 1.45 1.53 N/A, since the acceptance conditions are relaxedLookahead 1.52 1.61 1.64 1.71 1.62 1.68 1.59 1.67
GRIFFIN 2.71 4.24 3.19 5.23 3.42 5.58 3.11 5.02 2.38 3.93 2.83 4.68 3.13 5.23 2.78 4.61
EAGLE-3 3.34 5.32 3.59 5.88 3.78 6.16 3.57 5.79 2.71 4.54 3.15 5.10 3.49 5.82 3.11 5.15
GTO 3.49 5.60 3.98 6.58 4.20 6.92 3.89 6.37 2.76 4.59 3.34 5.44 3.71 6.50 3.27 5.51

LLaMA-3.3
Instruct

70B

PLD 1.43 1.51 1.58 1.67 1.52 1.61 1.51 1.60 N/A, since the acceptance conditions are relaxedLookahead 1.58 1.66 1.71 1.79 1.73 1.82 1.67 1.76
EAGLE-3 3.78 5.40 4.41 6.26 3.99 5.90 4.06 5.85 3.68 5.18 4.05 5.85 3.88 5.65 3.87 5.56
GTO 3.97 5.56 4.68 6.51 4.11 6.25 4.22 6.14 3.90 5.34 4.21 6.20 4.07 5.82 4.06 5.78

initialized draft models are then fine-tuned with GTO on the ShareGPT dataset (Chiang et al.,
2023), except for the reasoning model DeepSeek-R1-Distill-LLaMA 8B, which is fine-tuned on
OpenThoughts-114k-math dataset (Guha et al., 2025). See additional training details for GTO in
Appendix B, and details for the baselines in Appendix C.

Metrics. For fairness and consistency, we follow priors, e.g., HASS, GRIFFIN, and EAGLE-3, and
fix the batch size to 1 and evaluate under decoding temperatures T ∈ {0, 1}. Same as prior works
like EAGLE-3, GTO is lossless and can preserve output quality. Thus, we focus on two efficiency
metrics: (i) Speedup Ratio (SR) — the runtime acceleration relative to vanilla decoding, and (ii)
Acceptance Length (τ) — the average number of tokens accepted per draft-verification cycle.

4.1 MAIN RESULTS

Comparison with SoTAs. We report the acceptance lengths (τ) and speedup ratios (SR) of GTO
and all baselines across three benchmarks in Table 1. One can observe that GTO consistently outper-
forms all baselines, including SoTA EAGLE-3, across all datasets, models, and temperature settings.
On average, each GTO drafting–verification cycle accepts 6–7 tokens, compared to 5–6 tokens for
EAGLE-3. As a result, in terms of tangible wall-clock speedups, GTO improves the runner-up
EAGLE-3 by 7.7% for temperature zero and 5.6% for temperature one in an average across four
evaluation models, while preserving the lossless property of speculative decoding.

Specifically, on the multi-turn conversation benchmark (MT-Bench), GTO achieves steady gains
across all models. For example, with LLaMA-3.1 8B at T=0, GTO improves the speedup ratio
by 5.2% over EAGLE-3, and by 5.1% at T=1. Vicuna-1.3 13B shows even larger gains, reaching
8.1% at T=0 and 1.7% at T=1. For code generation (HumanEval), the improvements are more
pronounced. With LLaMA-3.1 8B, GTO yields a 13.3% speedup increase at T=0 and 3.3% at
T=1. DeepSeek-R1 8B follows the same trend, achieving 10.9% and 6.0% improvements at T=0
and T=1, respectively. These results highlight the effectiveness of GTO’s tree-based optimization
for structured generation tasks such as coding. On mathematical reasoning (GSM8K), GTO again
surpasses EAGLE-3 across all configurations. For instance, with DeepSeek-R1 8B, GTO delivers an
11.1% speedup improvement at T=0 and 6.3% at T=1. The strong results on GSM8K suggest that
GTO’s draft-tree reward effectively captures sequential reasoning patterns critical for mathematical
problem solving.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparison of speedup ratio (SR) and acceptance length (τ) when respectively using draft
models trained by GRIFFIN and HASS as initialization of GTO.

Temperature = 0 Temperature = 1

Model Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑

LLaMA-3
Instruct

8B

GRIFFIN 3.09 4.85 3.65 5.97 3.30 5.31 3.35 5.38 2.62 4.35 3.31 5.62 3.07 5.08 3.00 5.02
GTO 3.28 5.17 4.03 6.44 3.53 5.73 3.61 5.78 2.74 4.54 3.47 5.95 3.23 5.41 3.15 5.30

HASS 2.75 4.63 3.51 5.70 3.09 5.06 3.12 5.13 2.41 4.15 3.09 5.41 2.92 4.90 2.81 4.82
GTO 2.95 4.96 3.86 6.19 3.33 5.47 3.38 5.54 2.54 4.36 3.23 5.69 3.06 5.25 2.94 5.10

LLaMA-2
Chat
7B

GRIFFIN 3.12 5.11 3.61 5.93 3.10 5.27 3.28 5.44 2.81 4.81 3.33 5.63 3.06 5.26 3.07 5.23
GTO 3.34 5.51 3.82 6.26 3.27 5.56 3.48 5.78 2.97 5.12 3.54 5.98 3.24 5.62 3.25 5.57

HASS 2.97 4.97 3.46 5.69 3.06 5.12 3.17 5.26 2.72 4.64 3.18 5.22 2.83 5.08 2.91 4.98
GTO 3.13 5.15 3.64 5.95 3.15 5.31 3.31 5.47 2.84 4.82 3.41 5.69 3.09 5.34 3.11 5.28

Table 3: Ablation of draft tree reward aggregation on LLaMA-3.1 8B.

Temperature = 0 Temperature = 1

Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑
GTO (LSE) 3.44 6.15 4.17 6.95 3.59 6.47 3.73 6.52 2.49 4.70 3.17 5.92 3.02 5.75 2.89 5.46
Max 3.38 6.05 4.06 6.80 3.52 6.36 3.65 6.40 2.46 4.65 3.12 5.84 2.97 5.66 2.85 5.38
Sum (Average) 3.29 5.92 3.95 6.62 3.42 6.18 3.55 6.24 2.41 4.56 3.04 5.72 2.90 5.55 2.78 5.28

The results across diverse tasks and models highlight the versatility and robustness of GTO. The con-
sistent improvements over the SoTA EAGLE-3, even at different temperatures, underscore GTO’s
effectiveness in handling varying levels of stochasticity in token predictions. Notably, the perfor-
mance gains are more pronounced at temperature T = 0 across most settings, suggesting that GTO’s
deterministic tree optimization particularly benefits greedy decoding scenarios.

Compatibility evaluation. To further test compatibility and transferability, we evaluate GTO with
draft models not initialized by EAGLE-3. Specifically, we fine-tune the draft models from two ef-
ficient speculative decoding methods—GRIFFIN and HASS—using GTO, and evaluate them under
identical configurations on LLaMA-3-Instruct-8B and LLaMA-2-Chat-7B.

As shown in Table 2, both GRIFFIN+GTO and HASS+GTO achieve consistent gains over their
baselines. At T=0, GRIFFIN+GTO improves the average speedup ratio (SR) and acceptance length
(τ) by 7.8% and 7.4%, respectively, while HASS+GTO improves them by 8.3% and 8.0%. At T=1,
GRIFFIN+GTO increases SR and τ by 5.0% and 5.6%, and HASS+GTO by 4.6% and 5.8%. These
results validate GTO’s compatibility and transferability across distinct draft backbones, establishing
it as a general and effective approach for bridging the training-decoding tree-policy misalignment.

4.2 ABLATION STUDY

Aggregation Operator. We ablate the aggregation operator in the Draft Tree Reward (Sec. 3.1) on
LLaMA-3.1-Instruct-8B. Our method employs the smooth maximum via log-sum-exp (LSE), which
preserves differentiability while emphasizing strong branches (Eq. (5)). We compare against two
alternatives under identical settings: (i) Sum (Average): rsumt = 1

N

∑N
i=1 Lt,i, treating all branches

equally; (ii) Max: rmax
t = maxi Lt,i, focusing only on the best branch but non-smooth.

Across all benchmarks and decoding temperatures, LSE aggregation (GTO) attains the best speedup
ratio (SR) and acceptance length (τ). At T=0, GTO improves the average SR by 2.1% over Max
and 4.8% over Sum, with comparable gains in τ . At T=1, the advantage remains, with SR gains of
1.4% over Max and 3.8% over Sum, again accompanied by consistent improvements in τ .

These results highlight the trade-offs of alternative operators: Sum dilutes signal by averaging weak
branches, while Max is brittle and non-smooth, overfitting to a single path with poor gradient cov-
erage. In contrast, LSE interpolates between them, providing a stable and selective objective that
better aligns with decoding-time re-ranking and pruning.

Group Size. We ablate the group size m in Tree Reward Optimization (Sec. 3.2) on LLaMA-3.1-
Instruct 8B with m ∈ {1, 4, 8, 16, 32}. As shown in Table 4, the default m=8 of GTO achieves the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation of grouping size m on LLaMA-3.1 8B.

Temperature = 0 Temperature = 1

Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑
m = 1 3.32 5.94 4.02 6.71 3.47 6.25 3.60 6.30 2.40 4.54 3.06 5.71 2.91 5.55 2.79 5.27
m = 4 3.42 6.12 4.15 6.91 3.57 6.44 3.71 6.49 2.48 4.68 3.15 5.89 3.01 5.72 2.88 5.43
m = 8 (GTO) 3.44 6.15 4.17 6.95 3.59 6.47 3.73 6.52 2.49 4.70 3.17 5.92 3.02 5.75 2.89 5.46
m = 16 3.27 5.84 3.96 6.60 3.41 6.15 3.55 6.20 2.37 4.47 3.01 5.62 2.87 5.46 2.75 5.18
m = 32 3.17 5.66 3.84 6.39 3.30 5.95 3.44 6.00 2.29 4.32 2.92 5.45 2.78 5.29 2.66 5.02

Table 5: Ablation of reward debiasing with a reference model on LLaMA-3.1 8B.

Temperature = 0 Temperature = 1

Method MT-bench HumanEval GSM8K Average MT-bench HumanEval GSM8K Average

SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑ SR ↑ τ ↑
GTO (Debiased) 3.44 6.15 4.17 6.95 3.59 6.47 3.73 6.52 2.49 4.70 3.17 5.92 3.02 5.75 2.89 5.46
w/o Debiasing 3.30 5.78 3.84 6.62 3.50 6.23 3.55 6.21 2.39 4.53 3.03 5.64 2.87 5.35 2.76 5.17

best average SR and τ , while m=4 is within < 1%, indicating a stable plateau. In contrast, m=1
and m=16 show clear degradation, and m=32 performs worst.

Small groups (e.g., m=1) suffer from noisy, context-misaligned rewards, weakening credit assign-
ment. Large groups (e.g., m ≥ 16) span longer contexts, introducing drift and bias that hurt learning.
Thus, moderate sizes (m ∈ [4, 8]) strike the best balance between variance reduction and context
alignment, yielding the most reliable gains in SR and τ .

Reward Debiasing. We ablate the reward shaping and standardization step (Eq. (9)) in Tree Re-
ward Optimization on LLaMA-3.1-Instruct-8B. Debiasing computes a control-variated reward by
subtracting the tree-level reward of a frozen reference draft modelM0 (Phase I) from the current
modelM for matched prefixes, reducing variance and improving credit assignment. We compare
our default GTO (Debiased) against a variant that omits this subtraction (w/o Debiasing), with all
other settings fixed.

As shown in Table 5, debiasing consistently improves both SR and τ . At T=0, GTO achieves
+5.0% SR and +5.1% τ over w/o Debiasing; at T=1, the gains are +5.6% and +4.7%. Without
debiasing, rewards are noisier and context-dependent, yielding weaker draft policies and shorter
acceptance lengths.

5 CONCLUSION

In this paper, we proposed Group Tree Optimization (GTO) to bridge the draft policy misalign-
ment between training and decoding. GTO introduces a decoding-faithful Draft Tree Reward that
directly optimizes the expected acceptance length and a stable group-based optimization that con-
trasts current and reference trees, standardizes advantages across nearby contexts, and updates via
a PPO-style clipped surrogate along the longest accepted sequence. Extensive evaluations across
diverse LLMs and datasets show that GTO consistently outperforms SoTAs, achieving the highest
speedup ratios and acceptance lengths.

Limitations. GTO increases training-time compute due to its two-phase procedure and the need
to construct and evaluate grouped draft trees during training. Nevertheless, GTO is model-agnostic
and complementary to existing speculative decoding methods: it can be directly fine-tuned on top of
pretrained draft models (e.g., EAGLE-3, GRIFFIN) without architectural changes or modifications
to the verification stack. In practice, the draft model is trained once, whereas decoding dominates
the runtime in real-world deployments; the added training cost is therefore amortized by improved
inference efficiency. In our experiments, GTO improves the speedup ratio by more than 7% over
EAGLE-3, making the extra training cost a reasonable trade-off for latency-sensitive applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

GTO improves efficiency of large language model decoding. Nevertheless, faster generation could
increase the throughput of undesirable content if deployed without safeguards. We recommend
deploying GTO only with established safety measures (content filters, rate limiting, audit logging,
and red-teaming) and within the original safety and usage policies of the underlying models.

REPRODUCIBILITY STATEMENT

We detail our work in the Methods section and describe implementation details in Section 3 and Ap-
pendix B. Our code and GTO’s draft models will be released publicly in https://anonymous.
4open.science/r/GTO-ICLR-348F/.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Zachary Ankner, Rishab Parthasarathy, Aniruddha Nrusimha, Christopher Rinard, Jonathan Ragan-
Kelley, and William Brandon. Hydra: Sequentially-dependent draft heads for medusa decoding.
arXiv preprint arXiv:2402.05109, 2024.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin, Zhihao Jia, and
Beidi Chen. Sequoia: Scalable, robust, and hardware-aware speculative decoding. arXiv preprint
arXiv:2402.12374, 2024.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun, Kevin Chen-Chuan Chang, and Jie Huang.
Cascade speculative drafting for even faster llm inference. arXiv preprint arXiv:2312.11462,
2023b.

Yunfei Cheng, Aonan Zhang, Xuanyu Zhang, Chong Wang, and Yi Wang. Recurrent drafter for fast
speculative decoding in large language models. arXiv preprint arXiv:2403.09919, 2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu,
Liqiang Nie, Zhaopeng Tu, et al. Glide with a cape: A low-hassle method to accelerate speculative
decoding. arXiv preprint arXiv:2402.02082, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

10

https://anonymous.4open.science/r/GTO-ICLR-348F/
https://anonymous.4open.science/r/GTO-ICLR-348F/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chenghao Fan, Zhenyi Lu, and Jie Tian. Chinese-vicuna: A chinese instruction-following llama-
based model. arXiv preprint arXiv:2504.12737, 2025.

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. Break the sequential dependency of llm infer-
ence using lookahead decoding. arXiv preprint arXiv:2402.02057, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Shijing Hu, Jingyang Li, Xingyu Xie, Zhihui Lu, Kim-Chuan Toh, and Pan Zhou. Griffin: Effective
token alignment for faster speculative decoding. arXiv preprint arXiv:2502.11018, 2025.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. Advances in Neural
Information Processing Systems, 36, 2024.

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
models. arXiv preprint arXiv:2403.00835, 2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024b.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
ation of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, Alvin Cheung, Zhijie Deng, Ion Stoica, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932–949, 2024.

Apoorv Saxena. Prompt lookup decoding, November 2023. URL https://github.com/
apoorvumang/prompt-lookup-decoding/.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

11

https://arxiv.org/abs/2506.04178
https://github.com/apoorvumang/prompt-lookup-decoding/
https://github.com/apoorvumang/prompt-lookup-decoding/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix
Yu. Spectr: Fast speculative decoding via optimal transport. Advances in Neural Information
Processing Systems, 36, 2024.

Ruslan Svirschevski, Avner May, Zhuoming Chen, Beidi Chen, Zhihao Jia, and Max Ryabinin.
Specexec: Massively parallel speculative decoding for interactive llm inference on consumer de-
vices. arXiv preprint arXiv:2406.02532, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ziqian Zeng, Jiahong Yu, Qianshi Pang, Zihao Wang, Huiping Zhuang, Hongen Shao, and Xiaofeng
Zou. Chimera: A lossless decoding method for accelerating large language models inference by
fusing all tokens. arXiv preprint arXiv:2402.15758, 2024.

Lefan Zhang, Xiaodan Wang, Yanhua Huang, and Ruiwen Xu. Learning harmonized representations
for speculative sampling. arXiv preprint arXiv:2408.15766, 2024.

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, Zhiyuan Liu, and Maosong Sun. Ouroboros:
Speculative decoding with large model enhanced drafting. arXiv preprint arXiv:2402.13720,
2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 1

We first make explicit the objects in play. Let the draft tree at step t have N branches (root-to-leaf
paths) indexed by i ∈ [N]. For each branch i, let zi,1:ℓi denote its token sequence up to depth ℓi,
and let

Lt,i ∈ {0, 1, . . . , d}
denote the (random or deterministic) number of consecutive tokens, starting at the current prefix,
that the target model would accept if branch i were proposed. The draft-tree reward is the smooth
maximum

rt =
1

η
log
(N∑

i=1

eηLt,i

)
with η > 0,

which satisfies the standard bounds

max
i

Lt,i ≤ rt ≤ max
i

Lt,i +
1

η
logN. (1)

For decoding, define for each j ≥ 1 the event

Ej(Tt) = {at least j tokens are accepted at decoding}.

Then the expected acceptance length under target temperature T can be expressed as

E
[
Ldec
T (Tt)

]
=

d∑
j=1

PT (Ej(Tt)) . (2)

We will use the following elementary monotonicity fact.

Lemma 1 (Coordinate-wise monotonicity of acceptance probability). Fix a draft tree topology and
branch token sequences {zi,1:ℓi}Ni=1. For any j ≥ 1, the event Ej(Tt) can be written as the union

Ej(Tt) =

N⋃
i=1

Bi,j , Bi,j := {the target rollout matches zi,1:j}.

If we increase a single coordinate Lt,i by ∆ ∈ N (keeping other Lt,k fixed), then for each j ∈
{Lt,i+1, . . . ,Lt,i+∆}, the union gains a new set Bi,j and hence

PT (Ej(Tt)) is non-decreasing.

Moreover, if T > 0 (softmax sampling with strictly positive support over tokens), then PT (Bi,j) > 0
and thus PT (Ej(Tt)) increases strictly for those j.

Proof sketch. For each i, the event Bi,j corresponds to the target producing the specific j-token
prefix zi,1:j . Increasing Lt,i by ∆ adds new prefixes at depths Lt,i+1, . . . ,Lt,i+∆, hence enlarging
the union. Under T > 0, each concrete token sequence has strictly positive probability under a
softmax LM, so the probability mass added is positive. Disjointness at the level of exact token
sequences follows from the tree structure: no two distinct branches share the same length-j token
prefix, so Bi,j is not a subset of

⋃
k ̸=i Bk,j .

We now prove the two cases in Theorem 1.

Proof of Theorem 1. (a) T > 0. The function rt =
1
η log

(∑
i e

ηLt,i
)

is strictly increasing in each
coordinate Lt,i. Because Lt,i are integer-valued lengths, any increase in rt implies that at least
one coordinate Lt,i increases by an integer ∆ ≥ 1.1 By Lemma 1, for each newly covered depth
j ∈ {Lt,i+1, . . . ,Lt,i+∆} we have PT (Ej(Tt)) increases strictly (because T > 0 confers strictly
positive mass on the corresponding prefix event). Summing these strictly positive increases over

1Formally, along any path that increases rt, the first time rt changes must coincide with an increment in at
least one discrete coordinate.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

j and possibly over multiple improved branches (if several coordinates increased) and invoking
equation 2 yields

E
[
Ldec
T (Tt)

]
increases strictly whenever rt increases.

(b) T = 0. Let s⋆ be the unique greedy target trajectory. Then Lt,i equals the longest common-prefix
length between branch i and s⋆, and

E
[
Ldec
0 (Tt)

]
= max

i
Lt,i.

Using the smooth-max bounds equation 1 with M := maxi Lt,i, we have

M ≤ rt ≤ M +
1

η
logN.

Consequently, if rt increases by more than the residual slack-to-plateau,

∆rt >
(
M +

1

η
logN

)
− rt,

then the new reward r′t must satisfy r′t > M+ 1
η logN , which is impossible unless the new maximum

increases to M ′ ≥M + 1. Hence, under T = 0,

r′t − rt >
(
M + 1

η logN
)
− rt =⇒ E

[
Ldec
0 (Tt)

]
= max

i
Lt,i strictly increases.

This gives a simple sufficient condition: an increase in rt that exceeds the softmax slack 1
η logN −

(rt −M) necessarily raises the deterministic acceptance length.

Putting (a) and (b) together, we obtain the stated guarantees: for T > 0, any increase in rt strictly
increases the expected acceptance length; for T = 0, an increase in rt that exceeds the smooth-max
slack forces an increase in maxi Lt,i.

Remarks. (i) The case T > 0 relies only on the strictly positive support of the target sampler;
it holds for any softmax temperature T > 0 (or any sampler with full support). (ii) The suffi-
cient condition in T = 0 is tight with respect to the standard smooth-max bounds equation 1; no
stronger implication can be made from rt alone because rt can increase by raising only sub-maximal
branches without changing the maximum.

B IMPLEMENTATION DETAIL

B.1 DRAFT TREE STRUCTURE

Across all experiments, we adopt a dynamic draft tree with a fixed budget of 60 draft tokens, a
maximum tree depth of 7 and top-k of 10, following the configuration shown to be effective in
EAGLE-3.

B.2 TOKEN-LEVEL LOSS IN EQ. (13)

Let D be the training corpus over a vocabulary V . For a sequence x = (x1, . . . , xL) ∈ D, denote
the prefix x1:i−1 = (x1, . . . , xi−1). Let pT (· | x1:i−1) and pM(· | x1:i−1) be the next-token
distributions produced by the target model T and the draft modelM, respectively, under the same
teacher-forced prefix. We define the token-level loss as the expected cross-entropy from the teacher
to the student:

Ltoken = Ex∼D

 1

|I(x)|
∑

i∈I(x)

H(pT (· | x1:i−1), pM(· | x1:i−1))

 ,

where I(x) ⊆ {1, . . . , L} indexes supervised positions (e.g., all non-padding positions) and

H(p, q) = −
∑
v∈V

p(v) log q(v)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

is the cross-entropy. Equivalently, since H(pT , pM) = KL(pT ∥pM)+H(pT) and H(pT) does not
depend onM, minimizing Ltoken is equivalent (up to an additive constant) to minimizing

Ex∼D

 1

|I(x)|
∑

i∈I(x)

KL(pT (· | x1:i−1) ∥ pM(· | x1:i−1))

 .

B.3 TRAINING CONFIGURATION

We fine-tune the draft model with AdamW and a warmup–decay schedule under mixed precision
and ZeRO optimizations. Key hyperparameters are summarized below

• Draft-tree construction: top-k for per-node expansion set to k = 10.

• Draft-tree reranking: top-g candidates per step set to g = 60.

• Smooth-max temperature in tree reward: η = 1.

• Number of groups per sequence: K = 16.

• Group size (prefixes per group): m = 8.

• Scalar weight on the GTO loss: ω = 0.5 in L = Ltoken + ωLGTO.

Optimizer and scheduler.

• Optimizer: AdamW with β1=0.9, β2=0.95, weight decay = 0.

• Learning rate: Warm up linearly from 0 to 5×10−6 over 1,000 steps, then decay over a
total of 60,000 steps.

• Gradient clipping: 0.5.

Precision and parallelism.

• Mixed precision: FP16 autocast with dynamic loss scaling (initial scale 214; window =
1000; hysteresis = 2; min scale = 1).

• ZeRO: Stage-2 with overlapping communication, all-gather/reduce-scatter enabled; bucket
sizes 2×108.

• Gradient accumulation: 2 steps; per-GPU micro-batch size: 1.

Training loop.

• Epochs: 5

• max sequence length: 2048

• dataloader workers: 2

Additional hyperparameters and scripts are available at https://anonymous.4open.
science/r/GTO-ICLR-348F/.

The full GTO update is summarized in Algorithm 1.

C CLARIFICATION OF BASELINE METHODS

For EAGLE, EAGLE-2, EAGLE-3, HASS, GRIFFIN, Medusa and Hydra, we directly utilized the
publicly released draft model parameters provided by the respective authors. For methods that do
not require draft model training, such as PLD, Lookahead, and SPS, we evaluated performance using
official code from their GitHub repositories.

15

https://anonymous.4open.science/r/GTO-ICLR-348F/
https://anonymous.4open.science/r/GTO-ICLR-348F/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 GTO Phase II: Group-based Optimization of Draft Tree Reward
Require: Draft model M, reference draft model M0, target model T , group size m, clip ϵ, std

floor δ, reward aggregatorR
1: for each minibatch of training sequences do
2: for each sequence x in batch do
3: Sample {G(k)}Kk=1 ← SampleGroups(x,m) ▷G(k) = {tk, . . . , tk +m− 1}
4: for each group G(k) do
5: for each i ∈ G(k) do
6: Build trees: Ti ← G(M,x1:i), T̄i ← G(M0,x1:i)
7: Compute rewards: ri ← R(Ti), r̄i ← R(T̄i)
8: Debiased reward: Ri ← ri − r̄i
9: Find longest accepted sequence Ŝi in Ti and its length li

10: Likelihood ratio: si ← exp
(
(logM(Ŝi|x1:i)− logM0(Ŝi|x1:i))/li

)
11: end for
12: Standardize within group: Ai ←

(
Ri −mean({Rj})

)
/
(
std({Rj}) + δ

)
13: Compute group loss: LGTO ← − 1

m

∑
i∈G(k) min

(
siAi, clip(si, 1− ϵ, 1 + ϵ)Ai

)
14: end for
15: end for
16: UpdateM by minimizing L = Ltoken + ωLGTO

17: end for

D TRAINING OVERHEAD OF GTO

Compute budget. All results were obtained on NVIDIA A100 80 GB GPUs under mixed preci-
sion with ZeRO-2. The Phase-II GTO fine-tuning requires approximately (i) 200 GPU-hours for
7B models, (ii) 400 GPU-hours for 13B models, and (iii) 900 GPU-hours for 70B models. These
compute budgets cover end-to-end GTO training (including grouped tree construction and verifica-
tion) and exclude any pretraining of the base or drafter models, as we fine-tune on publicly available
pretrained drafters.

Why the overhead is worthwhile.

• Model-agnostic and complementary. GTO is model-agnostic and complementary to ex-
isting speculative decoding methods: it can be directly fine-tuned on top of pretrained draft
models (e.g., EAGLE-3, GRIFFIN) without architectural changes or modifications to the
verification stack.

• Amortized cost in deployment. Train once, use everywhere: the draft model is trained a
single time, whereas decoding dominates the runtime in real-world deployments; the added
training cost is therefore amortized by improved inference efficiency.

• Measured gains. In our experiments, GTO delivers > 7% higher end-to-end speedup
ratio than EAGLE-3, making the small additional training budget a favorable trade-off for
latency-sensitive applications.

E LLM USAGE STATEMENT

Large language models were used minimally for proofreading and grammar checking. The research
ideas, methodology, experiments, and analysis were entirely conceived and conducted by the au-
thors.

16

