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ABSTRACT

While large language models have made significant strides in code generation,
the pass rate of the generated code is bottlenecked on subtle errors, often requir-
ing human intervention to pass tests, especially for complex problems. Existing
LLM-based debugging systems treat generated programs as monolithic units, fail-
ing to address bugs at multiple levels of granularity, from low-level syntax errors
to high-level algorithmic flaws. In this paper, we introduce Multi-Granularity
Debugger (MGDebugger), a hierarchical code debugger by isolating, identify-
ing, and resolving bugs at various levels of granularity. MGDebugger decom-
poses problematic code into a hierarchical tree structure of subfunctions, with
each level representing a particular granularity of error. During debugging, it an-
alyzes each subfunction and iteratively resolves bugs in a bottom-up manner. To
effectively test each subfunction, we propose an LLM-simulated Python executor,
which traces code execution and tracks important variable states to pinpoint errors
accurately. Extensive experiments demonstrate that MGDebugger outperforms
existing debugging systems, achieving an 18.9% improvement in accuracy over
seed generations in HumanEval and a 97.6% repair success rate in HumanEval-
Fix. Furthermore, MGDebugger effectively fixes bugs across different categories
and difficulty levels, demonstrating its robustness and effectiveness.1

1 INTRODUCTION

Large language models (LLMs) such as GPT-4 (OpenAI, 2023), LLaMA (Touvron et al., 2023),
and DeepSeek-Coder (Zhu et al., 2024) have made significant advances in AI-assisted coding
tasks (Chen et al., 2021; Lu et al., 2021; Li et al., 2022). Trained on vast corpora of text and
code, LLMs can understand and generate code snippets for various programming tasks, ranging
from simple data structures to complex algorithmic problems (Li et al., 2022). These models have
demonstrated proficiency in tasks such as code completion, bug detection, and even tackling com-
petitive programming challenges.

While the code generated by large models generally meets the requirements, it often contains critical
errors that require human intervention to pass tests (Liu et al., 2023b; Dou et al., 2024). This has
gradually led to a new development paradigm: large models generate the code, while humans fix it.
Therefore, the “last mile”, as well as the most crucial step, of code generation is how to efficiently
repair the code generated by large models.

Numerous efforts have been made to debug LLM-generated code. The most popular way is to reuse
the LLM generator to debug the generated code with the feedback from test case execution (Chen
et al., 2023b; Zhong et al., 2024; Hu et al., 2024). While these methods increase the pass rates,
they treat the erroneous program as a holistic set of statements (Chen et al., 2023b; Shinn et al.,
2023; Zhong et al., 2024; Ding et al., 2024) regardless of the varying types and levels of failures.
Failures of test cases arise from different levels of factors, from low-level syntactic errors to high-
level algorithmic flaws. A holistic treatment overlooks the internal structure of the code and limits
the effectiveness of the debugging systems, especially when dealing with complex programs that
need debugging across different modules (Zeller, 2009; Tian et al., 2024).

1Code and data available at https://anonymous.4open.science/r/MGDebugger-B388
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In this paper, we introduce Multi-granularity Debugger (MGDebugger), a novel debugging method
for LLM-generated code. Instead of treating entire functions as single units, MGDebugger employs
a hierarchical, bottom-up strategy to systematically debug code. It begins by decomposing the code
into a tree structure of sub-functions, allowing for the isolation of semantic units for independent
debugging. Each sub-function is debugged progressively, starting with the most granular ones and
working upward to higher-level compositions until the entire code is repaired. To effectively test
and debug each subfunction, MGDebugger generates test cases derived from the public test cases
of the main function. Then, it employs an LLM-based execution simulator to track changes in key
variables, facilitating precise and flexible error identification based on the failed test cases. Through
debugging at multiple levels of granularity from the bottom up in a recursive manner, MGDebugger
can uncover and rectify bugs that traditional holistic debugging methods might overlook.

Extensive experiments with three models across three benchmarks demonstrate that MGDebugger
significantly outperforms existing debugging methods, elevating accuracy from 75.6% to 94.5%
on HumanEval (Chen et al., 2021) and achieving a remarkable 97.6% repair success rate on Hu-
manEvalFix (Muennighoff et al., 2023). Ablation studies confirm the vital role of the hierarchical
debugging strategy. We also evaluate MGDebugger’s effectiveness in handling diverse bug types
and varying code lengths, highlighting its robustness and adaptability in real-world coding sce-
narios. Overall, these results underscore MGDebugger’s potential for enhancing the reliability of
LLM-generated code.

2 RELATED WORK

Code Generation with LLMs Recent models such as GPT4 (OpenAI, 2023), Codestral (Mistral
AI team, 2024), and DeepSeek-Coder (Zhu et al., 2024) have advanced code generation through
instruction tuning and RLHF with mixed code and natural language data (Ziegler et al., 2020; Hu-
sain et al., 2020; Rafailov et al., 2023). Code generation with LLMs has been enhanced by various
techniques. Some approaches focus on improving the quality of generated code using planning algo-
rithms, transitioning from outlines to detailed implementations (Zhang et al., 2022; Yao et al., 2023;
Zelikman et al., 2023; Zhou et al., 2023; Zheng et al., 2023). Other methods sample multiple pro-
grams from the same LLM and rank them to identify the best one (Chen et al., 2023a; 2022; Ni et al.,
2023). Additionally, some works leverage multi-agent collaboration frameworks to enhance code
generation quality (Zhang et al., 2024; Huang et al., 2023a; Dong et al., 2024). These approaches
aim to optimize the production of correct code from the outset. By contrast, MGDebugger targets
the post-generation phase, focusing on debugging and fixing errors that inevitably arise during the
code generation process.

Repairing LLM-Generated Code Program repair is a critical aspect of software development,
aiming to automatically identify and fix bugs in code (Just et al., 2014; Gupta et al., 2020; Yasunaga
& Liang, 2021). There are two main streams of research in repairing code generated by LLMs: (1)
training models to repair code (Huang et al., 2023b; Jiang et al., 2024; Ding et al., 2024; Zheng
et al., 2024; Moon et al., 2024; Kumar et al., 2024) and (2) providing external feedback to the raw
pretrained models to fix code (Jiang et al., 2023; Chen et al., 2023b; Olausson et al., 2023; Zhong
et al., 2024; Hu et al., 2024). By contrast to previous work that trains separate models for code
repair (Ding et al., 2024; Zheng et al., 2024; Moon et al., 2024), MGDebugger does not require
task-specific retraining but takes advantage of the inherent capabilities of pretrained LLMs. This
flexibility allows MGDebugger to operate in zero-shot settings, offering a lightweight and scalable
alternative. And exploring the ability of LLMs to fix their own code is a promising direction for
self-improvement training of the LLMs (Wang et al., 2023; Burns et al., 2023).

MGDebugger falls under the category of work that leverages pretrained models to fix code by rea-
soning with external feedback. Several recent methods (Zhang et al., 2023; Olausson et al., 2023;
Bouzenia et al., 2024; Lee et al., 2024; Xia & Zhang, 2023) utilize execution results from test cases
to guide LLMs in code correction. More recent works have explored advanced debugging tech-
niques utilizing LLM’s reasoning ability. Reflexion (Shinn et al., 2023) prompts LLMs to reflect on
the generated code and uses a memory buffer for iterative refinement. Self-Debugging (Chen et al.,
2023b) prompts LLMs to explain or dry run generated programs, known as rubber duck debugging.
LDB (Zhong et al., 2024) segments programs into basic blocks, tracking variable values during run-
time after each block to verify the correctness against the task description. Although these methods
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def make_palindrome(string: str) -> str:
""" 
Find the shortest palindrome that begins with a supplied string.
""”

# Find the longest suffix that is a palindrome
suffix_start = 0

for i in range(len(string)):
# Check if the suffix is a palindrome

if string[i:] == string[i:][::-1]:
suffix_start = i

# Combine the string with the reversed suffix
palidrome_string = string + string[:suffix_start][::-1]

return palidrome_string

def make_palindrome(string: str) -> str:
""" 
Find the shortest palindrome that begins with a supplied string.
""”

# Find the longest suffix that is a palindrome
suffix_start = 0

for i in range(len(string)):
# Check if the suffix is a palindrome

if string[i:] == string[i:][::-1]:
suffix_start = i

# Combine the string with the reversed suffix
palidrome_string = string + string[:suffix_start][::-1]

return palidrome_string

make_palindrome

is_palindrome

find_longest_suffix build_palindrome

make_palindrome

Existing Methods: Sequential Debugging

MGDebugger: Hierarchical Debugging

!

!✅

!❌ !✅

!✅

Hierarchical
Decomposition

Bug localization is easier

Analyze
Together

Bug localization is challenging

!
: LLM Debugger

❓

Bottom-up
recursive debugging

Monolithic debugging

Figure 1: Workflow of MGDebugger compared to existing methods. Existing methods debug the
function holistically, making it difficult to pinpoint the bugs. To address this issue, MGDebugger
decomposes the code into a hierarchical structure, isolating subfunctions for independent bottom-up
debugging. In this way, MGDebugger can identify and fix bugs at multiple levels of granularity,
from bottom-level syntax errors to high-level algorithmic flaws. For simplicity, we omit the exact
code after decomposition here, and provide the full example in Appendix A.

incorporate detailed execution feedback and iterative refinement, they treat the whole function as a
single unit and perform sequential debugging, limiting their effectiveness with complex code (Xia
et al., 2023; Hossain et al., 2024). MGDebugger addresses this issue by introducing a hierarchi-
cal approach, debugging from low-level errors to high-level flaws. This method ensures a more
systematic and accurate debugging process, especially for complex and multifunctional systems.

3 METHODOLOGY

3.1 OVERVIEW

We present MGDebugger, a novel bottom-up hierarchical debugging method for repairing LLM-
generated code. The overall workflow of MGDebugger is illustrated in Figure 1, while the detailed
debugging process for each subfunction is depicted in Figure 2.

As shown in Figure 1, MGDebugger begins with Hierarchical Code Decomposition (Section 3.2),
which decomposes the input buggy code into a hierarchical structure of subfunctions. This enables
systematic identification and resolution of bugs at various levels of granularity. For each subfunction,
MGDebugger Generates Test Case Generation for Subfunctions (Section 3.3), deriving private test
cases from public test cases of the main function, as illustrated in Figure 2. MGDebugger then
executes these test cases and Debugs Subfunction with LLM-Simulated Execution (Section 3.4). The
LLM simulates step-by-step code execution for failed test cases, monitoring critical variables and
state changes to pinpoint the cause of errors. Once a subfunction has been fixed, MGDebugger
updates it in the hierarchical structure and propagates the changes to dependent functions through
Bottom-up Debugging (Section 3.5). This hierarchical debugging approach not only tackles different
types of bugs at various levels of abstraction but also guarantees a cohesive and systematic debugging
process throughout the entire code structure.

3
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def find_longest_suffix(string: str) -> int:
"""Find the longest postfix of supplied string that is 

a palindrome."""
suffix_start = 0
for i in range(len(string)):

if is_palindrome(string[i:]):
suffix_start = i

return suffix_start

def find_longest_suffix(string: str) -> int:
"""Find the longest postfix of supplied string that is 

a palindrome."""
suffix_start = 0
for i in range(len(string)):

if is_palindrome(string[i:]):
suffix_start = i
break

return suffix_start

assert find_longest_suffix(‘cat‘) == 2 # Got 2
assert find_longest_suffix(‘cata‘) == 1 # Got 3
assert find_longest_suffix(‘’) == 0 # Got 0

Test Case
Generation

LLM-Simulated
Execution

❌

✅

Bug
Fixed

!"

!

!"

1. `suffix_start = 0`:
* `suffix_start` is initialized to 0.

2. `for i in range(len('cata'))`:
* `i` iterates over the the input string length 4.

3. `if is_palindrome('cata'[4:]):`:
* checks if the substring starting from index 4 is a palindrome.

...
10. `return suffix_start`:

* finally returns `suffix_start`, which is 3.

We need to stop iterating once a palindrome is found, rather 
than continuing to the end of the string, by adding a `break`

Figure 2: Illustration of the subfunction debugging process. Initially, the LLM generates test cases
for the subfunction and collects the results. Subsequently, it simulates the code execution step-by-
step, focusing on the change of key variables. This helps the LLM to pinpoint errors accurately and
produce a corrected version of the subfunction.

3.2 HIERARCHICAL CODE DECOMPOSITION

Modularizing and decomposing complex code into smaller helper subfunctions has been proven to
be helpful especially for large functions that are difficult to understand (Jain et al., 2023; Zelikman
et al., 2023). To enable hierarchical debugging, we need to transform the input code into a tree-like
structure of subfunctions.

Specifically, given an LLM-generated function f , we decompose it into a hierarchical structure
of subfunctions denoted as (f1, ..., fn). These subfunctions can be organized as a tree froot =
TREE(froot,CHILD(froot)), where froot represents the main function and CHILD(f) denotes the set
of subfunctions directly called by f . We leverage an LLM for the decomposition, adhering to three
principles: (1) each subfunction represents the minimal reusable unit of code with a specific purpose,
(2) higher-level functions call lower-level functions to achieve complex functionality, and (3) the
overall structure facilitates isolated testing and debugging. As illustrated in Figure 1, the resulting
tree-like structure allows us to isolate logical units of the code, enabling more focused debugging
efforts across different levels of granularity (Woodfield et al., 1981; Isazadeh et al., 2017). The
prompt template used for code decomposition is provided in Appendix G.1.

3.3 GENERATING TEST CASES FOR SUBFUNCTIONS

Having obtained the hierarchy of subfunctions, we aim to verify the correctness of each subfunc-
tion. For this purpose, we generate test cases for each subfunction leveraging automatic unit test
generation techniques (Wang et al., 2021; Schäfer et al., 2024; Liu et al., 2023a). For each sub-
function fi ∈ froot, we generate a set of test cases Ti. Following the problem settings from Chen
et al. (2023b) and Zhong et al. (2024), we assume that the public test cases for the main function
Tpub have been provided, which is common in most code generation benchmarks (Chen et al., 2021;
Hendrycks et al., 2021; Muennighoff et al., 2023)2. We can leverage these test cases to derive a set
of corresponding test cases for each subfunction.

We employ the same LLM for the test case generation. For each fi ∈ froot. The LLM is now
prompted to perform the following steps: (1) analyze how the subfunction is used within the main
function and how it contributes to the expected outputs in the public test cases; (2) for each public
test case, reason through the overall code structure step by step to figure out the input and expected
output for the subfunction. This approach ensures that the generated test cases are not only reflective
of the subfunction’s intended functionality but also contextualized within the constraints provided
by the public test cases, enhancing the robustness and relevance of the test cases. The template for
generating test cases is provided in Appendix G.2.

2Otherwise, we can use LLM-generated test cases instead.
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Algorithm 1 MGDebugger: Bottom-up Recursive Debugging
Input: f : Input LLM-generated function; Tpub: Public test cases.
Output: f ′: Debugged f .

1: function MGDEBUGGER(f, Tpub)
2: if f has subfunctions {f1, . . . , fn} then
3: for fi ∈ f do ▷ Depth-first traversal
4: f ′

i ← MGDEBUGGER(fi, Tpub) ▷ Recursive debugging
5: fi=f ′

i ▷ Replace fi with the debugged version
6: end for
7: end if
8: Tf ← GENTEST(f, Tpub) ▷ Generate test cases for f
9: Rf ← EXEC(f, Tf ) ▷ Execute test cases for f

10: if pass (Rf , Tf ) then
11: return f ▷ Correct function; keep as is
12: else
13: f ′ ← DEBUG(f, Tf ,Rf ) ▷ Debug function f based on test resultsRf

14: return f ′ ▷ Return the corrected code
15: end if
16: end function

3.4 DEBUGGING SUBFUNCTIONS WITH LLM-SIMULATED EXECUTION

With the generated test cases, we debug each subfunction by running them on the test case inputs,
obtaining the results, and comparing these results against the expected outcomes in the test cases.
When a failed test case is identified, we fix the corresponding subfunction and produce a corrected
version.

One straightforward way to implement this process is to use an external Python executor to mon-
itor runtime variable values (Zhong et al., 2024). However, when debugging high-level functions,
tracking variable values within lower-level subfunctions is often unnecessary, as their correctness is
ensured by the bottom-up debugging methodology. Furthermore, directly collecting all execution
traces from the external debugger can add unnecessary overhead and complexity to the process.

Inspired by the methodology in Li et al. (2023), we propose an LLM-simulated code executor, which
prompts LLM to act as a Python interpreter and track the code execution. As shown in Figure 2,
we request the LLM to simulate the execution process, reasoning about key variables and their
states at each step, and thoroughly analyzing the failed test cases. This eliminates the need for an
external debugger, offering a more flexible and efficient debugging solution. In addition, the LLM
can accurately identify where errors occur and grasp their surrounding context. The LLM prompt
for the debugging process is detailed in Appendix G.3.

3.5 BOTTOM-UP DEBUGGING

Having introduced code decomposition and the debugging process for each subfunction, we now
outline the overall debugging workflow.

We initiate the process by calling MGDebugger on the main function with the decomposed code froot
and the set of public test cases Tpub. MGDebugger traverses the hierarchical structure in a depth-first
manner, recursively debugging each subfunction before moving on to the higher-level functions.
For each specific subfunction, MGDebugger generates relevant test cases and debugs the function
based on the results. When a fix is identified, MGDebugger updates the function and propagates
the changes to the dependent functions. This recursive, bottom-up strategy systematically addresses
bugs , beginning with the most granular levels and progressively advancing through the function
hierarchy. This method accommodates various types of bugs at different abstraction levels, from
low-level syntax errors to high-level logical flaws, by focusing on one level of the hierarchy at a
time and building up the corrected code in a structured manner. The detailed algorithm is presented
in Algorithm 1.

5
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4 EXPERIMENTS

4.1 SETUP

Models We select three state-of-the-art LLMs ranging from 7B to 22B parameters as backbones for
code generation and debugging: CodeQwen1.5 (7B) (Bai et al., 2023), DeepSeek-Coder-V2-Lite
(16B) (Zhu et al., 2024), and Codestral (22B) (Mistral AI team, 2024). Please refer to Appendix C
for our implementation details.

Datasets We conduct experiments on three datasets. HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) are two widely used benchmarks for evaluating code generation systems
with 164 and 500 problems, respectively. The HumanEvalFix dataset (Muennighoff et al., 2023)
consists of 164 buggy functions with six different bug categories: value misuse, missing logic, ex-
cess logic, operator misuse, variable misuse, and function misuse. The detailed explanations and
distribution of bug categories can be found in Appendix B.

Metrics We adopt two metrics to evaluate our method: 1) Accuracy (Chen et al., 2023b; Zhong
et al., 2024), which measures the overall proportion of correct code samples among all generated
code samples after debugging. A code is correct iff it passes all private test cases assigned to it. 2)
Repair Success Rate (RSR) (Yasunaga & Liang, 2021), which refers to the proportion of fixed code
samples to the total number of buggy code samples.

Baselines We compare MGDebugger with eight state-of-the-art methods for debugging LLM-
generated code. 1) Simple Feedback is a basic baseline that informs the LLM that the code is
incorrect and asks it to fix the issue. 2) Self-Edit (Zhang et al., 2023) prompts the LLM to edit the
code based on the execution results of the test cases. 3) Self-Debugging (Chen et al., 2023b) has
two variants: Self-Debugging (Expl.) prompts the LLM to explain the generated code line-by-line,
while Self-Debugging (Trace) asks the LLM to dry run the code for debugging. 4) LDB (Zhong
et al., 2024) segments the code into basic blocks, functions or lines, and tracks variable values dur-
ing runtime after each block to verify correctness against the task description. 5) Reflexion (Shinn
et al., 2023) asks the LLM to reflect on the previous code given execution results and uses a memory
buffer to enable iterative refinement.

4.2 MAIN RESULTS

The results in Table 1 show that MGDebugger consistently outperforms existing approaches across
all models and datasets. Specifically, MGDebugger achieves the highest accuracy improvements,
with gains of +15.3% to +18.9% on HumanEval and +11.4% to +13.4% on MBPP. These improve-
ments are particularly notable when compared to baseline methods such as Self-Debugging (Expl.)
and Reflexion, which also incorporate external feedback but exhibit lower gains in accuracy and
RSR. The strong results across models of varying sizes highlight the adaptability of MGDebugger
to different LLM architectures.

Moreover, MGDebugger demonstrates remarkable debugging capabilities, particularly with
DeepSeek-Coder-V2-Lite (16B) and Codestral (22B), where it achieves an accuracy of 94.5% on
the HumanEval dataset, the highest score among all methods. This is especially impressive con-
sidering that MGDebugger operates in a zero-shot setting without task-specific retraining. This
result illustrates the inherent debugging ability of larger LLMs with MGDebugger. Additionally, the
method’s performance on MBPP, achieving an RSR of up to 41.1% with smaller models like Code-
Qwen1.5 (7B), further underscores its robustness. In general, these results validate MGDebugger as
a highly effective and scalable debugging method for LLM-generated code.

4.3 ABLATION STUDY

To understand the contribution of each component in MGDebugger and validate our design choices,
we conduct an ablation study by systematically removing key components of our method: hierar-
chical code decomposition, LLM-simulated execution, and test case generation for subfunction de-
bugging. Each variant is evaluated on both the HumanEval and MBPP datasets using the DeepSeek-
Coder-V2-Lite model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results of MGDebugger and other methods on HumanEval and MBPP. Acc.: Accuracy, ∆:
Improvement over baseline (No-Debugging), RSR: Repair Success Rate.

Model Method

Dataset
HumanEval MBPP

Acc. ∆ Acc. RSR Acc. ∆ Acc. RSR
(%) (%) (%) (%) (%) (%)

DeepSeek-Coder-V2-Lite

No-Debugging 76.8 – – 67.2 – –
Simple Feedback 82.3 +5.5 23.7 69.4 +2.2 6.7
Self-Edit 82.9 +6.1 26.3 71.2 +4.0 12.2
LDB (Block) 84.1 +7.3 31.6 74.0 +6.8 20.7
LDB (Line) 82.3 +5.5 23.7 71.8 +4.6 14.0
LDB (Function) 81.7 +4.9 21.1 72.6 +5.3 16.5
Self-Debugging (Expl.) 87.2 +10.4 44.7 73.4 +6.2 18.9
Self-Debugging (Trace) 86.0 +9.2 39.5 72.6 +5.3 16.5
Reflexion 90.9 +14.1 60.5 76.6 +9.4 28.7
MGDebugger 94.5 +17.7 76.3 80.0 +12.8 39.0

CodeQwen1.5

No-Debugging 76.2 – – 67.4 – –
Simple Feedback 85.4 +9.2 38.5 74.0 +6.6 20.2
Self-Edit 84.1 +7.9 33.3 75.0 +7.6 23.3
LDB (Block) 79.3 +3.1 12.8 72.8 +5.4 16.6
LDB (Line) 79.9 +3.7 15.4 72.6 +5.2 16.0
LDB (Function) 80.5 +4.3 17.9 72.8 +5.4 16.6
Self-Debugging (Expl.) 87.8 +11.6 48.7 77.4 +10.0 30.7
Self-Debugging (Trace) 84.8 +8.6 35.9 76.8 +9.4 28.8
Reflexion 87.8 +11.6 48.7 78.6 +11.2 34.4
MGDebugger 91.5 +15.3 64.1 80.8 +13.4 41.1

Codestral

No-Debugging 75.6 – – 65.4 – –
Simple Feedback 88.4 +12.8 52.5 71.6 +6.2 17.9
Self-Edit 86.0 +10.4 42.5 75.8 +10.4 30.0
LDB (Block) 83.5 +7.9 32.5 72.2 +6.8 19.7
LDB (Line) 83.5 +7.9 32.5 71.8 +6.4 18.5
LDB (Function) 82.3 +6.7 27.5 72.0 +6.6 19.1
Self-Debugging (Expl.) 89.6 +14.0 57.5 76.4 +11.0 31.8
Self-Debugging (trace) 84.1 +8.5 35.0 73.6 +8.2 23.7
Reflexion 86.6 +11.0 45.0 75.2 +9.8 28.3
MGDebugger 94.5 +18.9 77.5 76.8 +11.4 32.9

Table 2: Ablation study results for DeepSeek-Coder-V2-Lite. Acc.: Accuracy, ∆ Acc.: Improve-
ment over baseline (No-Debugging), RSR: Repair Success Rate.

Method HumanEval MBPP
Acc. (%) ∆ Acc. (%) RSR (%) Acc. (%) ∆ Acc. (%) RSR (%)

MGDebugger 94.5 +17.7 76.3 80.0 +12.8 39.0
- w/o Hierarchical Debugging 89.0 +12.2 52.6 78.2 +11.0 33.5
- w/o Simulated Execution 90.2 +13.4 61.3 79.2 +12.0 36.6
- w/o Test Case Generation 90.9 +14.1 60.5 79.2 +12.0 36.6
No-Debugging 76.8 – – 67.2 – –

As shown in Table 2, each component of MGDebugger plays a crucial role in the overall effec-
tiveness of the method. Among them, the hierarchical debugging strategy is the most impactful
component. By ablating this strategy, the repair success rate drops significantly from 76.3% to
52.6% on HumanEval and from 39.0% to 33.5% on MBPP. This result highlights the importance
of the hierarchical approach in systematically identifying and fixing bugs at different granularity
levels. Additionally, the LLM-simulated execution and test case generation for subfunctions also fa-
cilitate debugging the decomposed code, yielding substantial improvements in accuracy and repair
success rates. These results underscore the effectiveness of MGDebugger’s design choices and the
importance of its hierarchical debugging strategy.
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Table 3: Performance (RSR) on different bug categories in HumanEvalFix with different models.
The best and second-best scores are highlighted in bold and underline, respectively.

Method Value Missing Logic Excess Logic Operator Variable Function Overall

DeepSeek-Coder-V2-Lite
Simple Feedback 84.9 96.0 80.7 78.3 86.4 87.5 85.4
Self-Edit 78.8 92.0 80.7 82.6 84.1 62.5 82.3
LDB (Block) 69.7 96.0 74.2 87.0 86.4 62.5 81.1
LDB (Line) 63.6 84.0 67.7 73.9 84.1 62.5 74.4
LDB (Function) 69.7 88.0 71.0 87.0 77.3 62.5 76.8
Self-Debugging (Expl.) 66.7 80.0 64.5 78.3 86.4 50.0 74.4
Self-Debugging (Trace) 81.8 88.0 71.0 78.3 79.6 75.0 79.3
Reflexion 90.9 100.0 90.3 91.3 86.4 100.0 91.5
MGDebugger 87.9 100.0 100.0 100.0 100.0 100.0 97.6

CodeQwen1.5
Simple Feedback 81.8 92.0 87.1 69.6 81.8 87.5 82.9
Self-Edit 72.7 92.0 80.7 65.2 86.4 87.5 80.5
LDB (Block) 36.4 72.0 51.6 60.9 63.6 62.5 56.7
LDB (Line) 36.4 76.0 45.2 56.5 54.6 50.0 52.4
LDB (Function) 27.3 60.0 51.6 56.5 59.1 62.5 51.2
Self-Debugging (Expl.) 69.7 92.0 90.3 69.6 77.3 62.5 78.7
Self-Debugging (Trace) 72.7 72.0 80.6 69.6 70.5 75.0 73.2
Reflexion 66.7 88.0 80.6 91.3 86.4 75.0 81.7
MGDebugger 78.8 96.0 87.1 95.7 84.1 100.0 87.8

Codestral
Simple Feedback 75.8 92.0 67.7 82.6 84.1 62.5 79.3
Self-Edit 78.8 100.0 80.7 87.0 84.1 87.5 85.4
LDB (Block) 66.7 92.0 67.7 82.6 81.8 87.5 78.1
LDB (Line) 63.6 92.0 64.5 82.6 81.8 75.0 76.2
LDB (Function) 57.6 88.0 67.7 91.3 75.0 75.0 74.4
Self-Debugging (Expl.) 75.8 96.0 83.9 87.0 90.9 87.5 86.6
Self-Debugging (Trace) 57.6 84.0 64.5 73.9 81.8 75.0 72.6
Reflexion 69.7 88.0 61.3 82.6 88.6 75.0 78.0
MGDebugger 87.9 100.0 87.1 82.6 95.5 75.0 90.2

4.4 DEBUGGING DIFFERENT TYPES OF BUGS

To assess the versatility and effectiveness of MGDebugger across various bug categories, we carry
out experiments using the HumanEvalFix dataset, which is specifically designed to evaluate code
debugging performance. The dataset involves six distinct bug categories: value misuse, missing
logic, excess logic, operator misuse, variable misuse, and function misuse, allowing us to examine
how effectively MGDebugger addresses different types of programming errors compared to existing
methods. The detailed explanations of each bug category are available in Appendix B.

Table 3 presents the RSRs across various bug categories. We observe that MGDebugger consistently
outperforms other methods with significantly higher overall accuracies. And MGDebugger achieves
a remarkable repair success rate of 97.6% using DeepSeek-Coder, with 100% success rates in all bug
categories except for value misuse. This is particularly notable given the complexity and diversity
of the bugs in the dataset. This highlights the effectiveness of the hierarchical debugging strategy.

Looking into details of different bug categories, MGDebugger shows a strong advantage in debug-
ging bottom-level bugs, such as missing logic and excess logic. Missing logic refers to situations
where essential code is omitted, preventing the solution from functioning correctly. Excess logic,
on the other hand, involves unnecessary code that can lead to mistakes and confusion (Muennighoff
et al., 2023). Other methods often struggle to identify and address these underlying issues because
they treat the code holistically. This can lead to confusion over bottom-level details when dealing
with complex logical errors. By contrast, the hierarchical decomposition in MGDebugger allows
it to focus on different levels of code granularity. This enables more effective identification and
correction of bugs. These results demonstrate the robustness and versatility of MGDebugger across
various bug types.
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Figure 3: Repair success rate of different meth-
ods when debugging code of different lengths on
HumanEvalFix with DeepSeek-Coder. MGDe-
bugger consistently outperforms other methods
across different code lengths, especially in long
codes.
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Figure 4: Impact of the number of debugging at-
tempts on the cumulative repair success rate of
MGDebugger and other methods on HumanEval-
Fix with DeepSeek-Coder. MGDebugger con-
tinues to improve with more debug attempts and
achieves the highest success rate.

4.5 DEBUGGING CODE WITH VARYING LENGTH

We further assess the versatility of MGDebugger in debugging code of varing lengths (i.e., number of
tokens), since code length often correlates with complexity and debugging challenges. We categorize
code snippets from the HumanEvalFix dataset into short, medium, and long groups, ensuring equal
sample sizes. We subsequently analyze the RSR scores obtained by MGDebugger and baselines
when using DeepSeek-Coder as the backbone LLM.

The results are presented in Figure 3. We can observe that as the code length increases, most
methods experience an obvious decrease in performance due to the increased complexity. We note
that MGDebugger consistently outperforms other methods in different code lengths and especially
excels in debugging longer and more complex code snippets. This showcases the scalability and
robustness of MGDebugger in handling code of varying lengths and complexities. The results on
other two datasets are available in Appendix D, where MGDebugger also consistently outperforms
other methods across different code lengths.

4.6 IMPACT OF DEBUG ATTEMPTS

Another important factor for LLM-based debugging is the number of debugging attempts. Itera-
tive debugging allows LLMs to refine their corrections over multiple passes, potentially leading to
better outcomes. We aim to assess MGDebugger’s ability to improve over successive iterations.
Following Zhong et al. (2024), we vary the number of debugging attempts from 1 to 10 using the
HumanEvalFix dataset and DeepSeek-Coder.

The results in Figure 4 show that MGDebugger achieves the highest cumulative RSR score among
all methods, highlighting its ability to continually refine its debugging over multiple attempts. In par-
ticular, while most methods plateau after the first few debug attempts, MGDebugger and Reflexion
continue to improve with more iterations. This result underscores the great potential of MGDe-
bugger for iterative and comprehensive debugging, making it a promising solution for complex and
challenging code repair tasks. The results on the other two datasets are available in Appendix E,
where MGDebugger outperforms other methods from the first attempt and continues to improve
with great potential.

4.7 CASE STUDY

We perform a qualitative analysis of how MGDebugger effectively identifies and corrects buggy
parts compared to baseline methods. Figure 5 shows an example of debugging code snippets from
the HumanEvalFix dataset using MGDebugger and other representative methods, with DeepSeek-
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LDB (Block)

❌Result: [5]

Reflexion

❌Result: [5]

Self-Debugging (Expl.)

❌Result: [5]

MGDebugger

✅Result: [1,5]

Debugged Code by Various MethodsOriginal Buggy Code

Buggy Code

❌

💡should be n*3 + 1

TimeoutError

Description

def get_odd_collatz(n):

odd_numbers = []

while n != 1:
if n % 2 == 1:

odd_numbers.append(n)
if n % 2 == 0:

n = n // 2
else:

n = 3 * n + 1

return sorted(odd_numbers)

def get_odd_collatz(n):

if n <= 0:
raise ValueError("Input must be a positive 

integer.")

odd_numbers = []
while n != 1:

if n % 2 == 1:
odd_numbers.append(n)

n = n // 2 if n % 2 == 0 else 3 * n + 1

return sorted(odd_numbers)

def get_odd_collatz(n):

odd_collatz = []

while n > 1:
if n % 2 == 1:

odd_collatz.append(n)
if n % 2 == 0:

n = n // 2
else:

n = 3 * n + 1

return sorted(odd_collatz)

def get_odd_collatz(n):
sequence = generate_collatz_sequence(n)
odd_numbers = filter_odd_numbers(sequence)
return sorted(odd_numbers)

def generate_collatz_sequence(n):
sequence = []
while n > 1:

sequence.append(n)
if n % 2 == 0:

n = n // 2
else:

n = n * 3 + 1
sequence.append(1)
return sequence

def filter_odd_numbers(sequence):
return [num for num in sequence if num % 2 == 1]

def get_odd_collatz(n):

if n%2==0:
odd_collatz = [] 

else:
odd_collatz = [n]

while n > 1:
if n % 2 == 0:

n = n/2
else:

n = n*2 + 1

if n%2 == 1:
odd_collatz.append(int(n))

return sorted(odd_collatz)

Given a positive integer n, return a sorted list 
that has the odd numbers in collatz sequence.

The Collatz sequence starts with n and repeatedly 
applying the rule "if n is even, divide it by 2; 
if n is odd, multiply it by 3 and add 1."

Test case:
assert get_odd_collatz(5) == [1, 5]

Explanation:
The Collatz sequence for 5 is [5, 16, 8, 4, 2, 1], 
so the odd numbers are [1, 5].

Figure 5: Examples of code debugging by various methods on HumanEvalFix with DeepSeek-
Coder. The three baseline methods fix the original bug but introduce new bugs that will miss the
last “1” in the results. By contrast, MGDebugger successfully identifies and corrects the bug after
decomposing the code into clear subfunctions for separate debugging.

Coder-V2-Lite as the backbone LLM. The original buggy solution computes the Collatz sequence
with an incorrect computation logic of n = n × 2 + 1. While other methods correct the computa-
tion to n = n × 3 + 1, they introduce a new bug that misses the last “1” in the Collatz sequence.
This is possibly because they get distracted by the need to filter odd numbers, and thus move the
operation of appending the number to the results before updating n. MGDebugger excelled by de-
composing the problem into distinct subfunctions: sequence generation and odd number filtering.
By debugging each subfunction independently, MGDebugger ensured comprehensive error correc-
tion, including the subtle requirement of incorporating 1 into the Collatz sequence. This approach
demonstrates MGDebugger’s ability to handle complex, multi-step problems more effectively than
holistic debugging methods. Additionally, it highlights MGDebugger’s ability to not only fix bugs
but also restructure code for enhanced clarity and correctness, demonstrating its potential in improv-
ing the quality of LLM-generated code. More examples and analysis on the three datasets can be
found in Appendix F.

5 CONCLUSION

In this paper, we introduced MGDebugger, a novel hierarchical code debugging framework that
systematically fixes bugs at multiple levels of granularity. By decomposing complex code into
a hierarchical structure, generating targeted test cases and employing LLM-simulated execution,
MGDebugger effectively identifies and fixes bugs ranging from syntax errors to logical flaws in a
bottom-up manner. Experiments across various models and datasets demonstrate MGDebugger’s
superior performance over existing methods, particularly in handling complex logical errors and
longer code snippets.

Future work can build upon this foundation to develop more advanced code generation and debug-
ging methodologies. One direction is to extend MGDebugger to handle more complex bugs and code
structures, such as multi-file projects and codebase with multiple dependencies. Another direction
is to explore the collaboration of hierarchical code generation approaches such as Parsel (Zelikman
et al., 2023) with hierarchical debugging, enabling end-to-end code generation and debugging sys-
tems. Furthermore, integrating MGDebugger into self-training systems to correct outputs from base
models, then retraining the base models with the corrected data, could potentially improve their
performance iteratively (Gulcehre et al., 2023).
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A DETAILED HIERARCHICAL DECOMPOSITION EXAMPLE

We provide the detailed illustration of the hierarchical decomposition process in MGDebugger, as
shown in Figure 6, which has been simplified for illustration in Figure 1. For the original function
“make palindrome”, we decompose it into three minimal reusable subfunctions. And the relation-
ships between subfunctions are naturally captured in the hierarchical structure based on the function
calls. This hierarchical decomposition allows MGDebugger to systematically analyze and debug the
code at different levels of granularity, leading to more effective identification and correction of bugs.

def make_palindrome(string: str) -> str:
""" 
Find the shortest palindrome that begins with a supplied string.
"""

suffix_start = find_longest_suffix(string)
palindrome_string = build_palindrome(string, suffix_start)
return palindrome_string

def find_longest_suffix(string: str) -> int:
"""Find the longest postfix of supplied string that is a 

palindrome."""
suffix_start = 0
for i in range(len(string)):

if is_palindrome(string[i:]):
suffix_start = i

return suffix_start

def is_palindrome(string: str) -> bool:
"""Test if given string is a palindrome """
return string == string[::-1]

def build_palindrome(string: str, suffix_start: int) -> str:
"""Append to the end of the string reverse of a string prefix 

that comes before the palindromic suffix. """
return string + string[:suffix_start][::-1]

def make_palindrome(string: str) -> str:
""" 
Find the shortest palindrome that begins with a supplied string.
""”

# Find the longest suffix that is a palindrome
suffix_start = 0

for i in range(len(string)):
# Check if the suffix is a palindrome

if string[i:] == string[i:][::-1]:
suffix_start = i

# Combine the string with the reversed suffix
palidrome_string = string + string[:suffix_start][::-1]

return palidrome_string

is_palindrome

find_longest_suffix build_palindrome

make_palindrome

Details of Hierarchical Decomposition

Hierarchical
Decomposition

Corresponding
Structure

Figure 6: Detailed illustration of the hierarchical decomposition process in MGDebugger. The
original code is decomposed into multiple sub-functions, each representing a significant step or
logical block. The relationships between sub-functions are naturally captured in the hierarchical
structure based on the function calls.

B HUMANEVALFIX DATASET

To access the ability of MGDebugger in debugging code with different types of bugs, we use the
HumanEvalFix dataset (Muennighoff et al., 2023), which consists of 164 buggy functions across six
programming languages, each provided with solutions and unit tests. For our experiments, we focus
on the Python subset of the dataset. The buggy functions are categorized into six types of bugs:
value misuse, missing logic, excess logic, operator misuse, variable misuse, and function misuse.
Table 4 shows the distribution and explanations of these bug types within the HumanEvalFix dataset.
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Table 4: Distribution and explanations of bugs in the HumanEvalFix dataset.
Bug Category Explanation Count
Value Misuse An incorrect value is used 44
Missing Logic Misses code needed to solve the problem 33
Excess Logic Contains excess code leading to mistakes 31

Operator Misuse An incorrect operator is used 25
Variable Misuse An incorrect variable is used 23
Function Misuse An incorrect function is used 8

C IMPLEMENTATION DETAILS

We generate seed programs for HumanEval and MBPP using the BigCode Evaluation Harness
framework3. The specific versions of models used in our experiments are DeepSeek-Coder-V2-
Lite-Instruct4, CodeQwen1.5-7B-Chat5, and Codestral-22B-v0.16. All experiments are conducted
on NVIDIA A100 GPUs with 80GB memory. During debugging, we use the vLLM engine7 to
serve the LLMs, setting the maximum token length according to each LLM’s max length. Follow-
ing Zhong et al. (2024), we limit the maximum number of debugging iterations to 10 for all methods.
Additionally, the sampling temperature is set to 0.8 in MGDebugger.

To obtain visible test cases for HumanEval and HumanEvalFix, we extract the given visible test
cases from the task description. For MBPP, we use the first test case of each problem as the visible
test case and use the rest as hidden test cases, in line with the settings referenced from Chen et al.
(2023b) and Zhong et al. (2024).

D DEBUGGING CODE WITH VARYING LENGTHS ON HUMANEVAL AND
MBPP

To further demonstrate the robustness of MGDebugger in handling code of varying lengths, we
present examples from MBPP and HumanEval. Similar to the examples provided for HumanEval-
Fix, we categorize the problems into short, medium, and long groups based on their code lengths,
and we measure the repair success rates of MGDebugger and other baseline methods. All methods
are built upon DeepSeek-Coder-V2-Lite. As is observed in Figure 7 and Figure 8, MGDebugger
consistently outperforms other methods across different code lengths, especially in longer codes.
This result demonstrates the scalability and robustness of MGDebugger in handling code of varying
lengths and complexities again.

E IMPACT OF DEBUG ATTEMPTS ON HUMANEVAL AND MBPP

We also investigate the impact of debug attempts on the cumulative repair success rate of MGDe-
bugger and other methods on HumanEval and MBPP. As shown in Figure 9 and Figure 10, MGDe-
bugger continues to improve with more debug attempts and achieves the highest success rate among
all methods. Different from the results on HumanEvalFix that MGDebugger starts to ourperform
other methods after the first attempt, MGDebugger significantly outperforms other methods from the
beginning to the end on HumanEval and MBPP. This result highlights the effectiveness of MGDe-
bugger in iterative and comprehensive debugging, making it a promising solution for complex and
challenging code repair tasks.

3https://github.com/bigcode-project/bigcode-evaluation-harness
4https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
5https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat
6https://huggingface.co/TechxGenus/Codestral-22B-v0.1-GPTQ
7https://github.com/vllm-project/vllm
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Figure 7: Repair success rate of different meth-
ods when debugging code of different lengths
on HumanEval with DeepSeek-Coder. MGDe-
bugger consistently performs the best across dif-
ferent code lengths.
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Figure 8: Repair success rate of different meth-
ods when debugging code of different lengths
in MBPP with DeepSeek-Coder. MGDebugger
consistently performs the best across different
code lengths.
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Figure 9: Impact of debug attempts on the cu-
mulative repair success rate of MGDebugger and
other methods on HumanEval with DeepSeek-
Coder. MGDebugger continues to improve
with more debug attempts and outperforms other
methods from the beginning to the end.
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Figure 10: Impact of debug attempts on the cu-
mulative repair success rate of MGDebugger and
other methods on MBPP with DeepSeek-Coder.
MGDebugger continues to improve with more
debug attempts and outperforms other methods
from the beginning to the end.

F EXAMPLES

We provide example code repairs for HumanEval, MBPP, and HumanEvalFix with DeepSeek-
Coder-V2-Lite as the base model. The results of MGDebugger and baselines: Simple Feedback,
Self-Edit, LDB (Block), LDB (Line), LDB (Function), Self-Debugging (Expl.), Self-Debugging
(Trace) and Reflexion, are shown in the following tables. The buggy part in the original code is
highlighted in yellow, and the repaired code is compared with the original buggy code, with changes
highlighted in green if the repair passes the final test cases and in red if it fails. The functional com-
ments in the solution code have been replaced with placeholders for brevity, as they are the same as
those in the problem description.

The success of code repair often depends on initial solutions, as other methods typically change only
a few lines of the original code, keeping the overall structure the same. This tendency to keep the
structure of the initial solution may cause other methods to miss important parts of the code that are
actually flawed. By contrast, by breaking down the code into smaller parts and looking at different
levels of detail, our approach makes these seemingly correct but actually wrong parts easier to spot,
as seen in the example of HumanEval. Also, the core of the code is often found in just a few lines,
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especially in math or dynamic programming problems. These sections usually need several steps of
reasoning to understand and debug. By decomposing them into smaller subfunctions and simulating
the execution to trace variable changes, MGDebugger can effectively identify and correct these bugs,
as seen in the MBPP and HumanEvalFix examples.

F.1 EXAMPLE ON HUMANEVAL

Info: HumanEval/54

Problem:
def same_chars(s0: str, s1: str):

"""
Check if two words have the same characters.
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc')
True
>>> same_chars('abcd', 'dddddddabc')
True
>>> same_chars('dddddddabc', 'abcd')
True
>>> same_chars('eabcd', 'dddddddabc')
False
>>> same_chars('abcd', 'dddddddabce')
False
>>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc')
False
"""

Buggy Seed Solution:
def same_chars(s0: str, s1: str):

"""
Check if two words have the same characters.
...
"""
return sorted(s0) == sorted(s1)

F.1.1 SIMPLE FEEDBACK

def same_chars(s0: str, s1: str):
"""
Check if two words have the same characters.
...
"""
return Counter(s0) == Counter(s1)

Result: ✗

F.1.2 SELF-EDIT

def same_chars(s0: str, s1: str):
"""
Check if two words have the same characters.
...
"""
return Counter(s0) == Counter(s1)

Result: ✗

F.1.3 LDB (BLOCK)
def same_chars(s0: str, s1: str):

"""
Check if two words have the same characters.
...
"""
if len(s0) != len(s1):

return False
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for char in set(s0):
if s0.count(char) != s1.count(char):

return False

return True

Result: ✗

F.1.4 LDB (LINE)
def same_chars(s0: str, s1: str):

"""
Check if two words have the same characters.
...
"""
return Counter(s0) == Counter(s1)

Result: ✗

F.1.5 LDB (FUNCTION)
def same_chars(s0: str, s1: str):

"""
Check if two words have the same characters.
...
"""
return Counter(s0) == Counter(s1)

Result: ✗

F.1.6 SELF-DEBUGGING (EXPL.)
def same_chars(s0: str, s1: str):

"""
Check if two words have the same characters.
...
"""
return sorted(s0) == sorted(s1)

Result: ✗

F.1.7 SELF-DEBUGGING (TRACE)
def same_chars(s0: str, s1: str):

"""
Check if two words have the same characters.
...
"""
return sorted(s0) == sorted(s1)

Result: ✗

F.1.8 REFLEXION

def same_chars(s0: str, s1: str):
"""
Check if two words have the same characters.
...
"""
if len(s0) > len(s1):

s0, s1 = s1, s0
it = iter(s1)
return all(char in it for char in s0)

Result: ✗

F.1.9 MGDEBUGGER
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def same_chars(s0: str, s1: str) -> bool:
"""
Check if two words have the same characters.
...
"""
return sorted chars equal(s0, s1)

def sorted chars equal(s0: str, s1: str) -> bool:
"""Helper function to check if the sorted characters of two strings
are equal."""
return sort string(s0) == sort string(s1)

def sort string(s: str) -> list:
"""Helper function to sort the characters of a string."""
return sorted(set(s))

Result: ✓

F.2 EXAMPLE ON MBPP

Info: MBPP/185

Problem:
def parabola_focus(a, b, c):

"""
Write a function to find the focus of a parabola.
"""

Buggy Seed Solution:
def parabola_focus(a, b, c):

"""
Write a function to find the focus of a parabola.
"""
x_focus = -b / (2 * a)
y focus = (1 - (b**2) / (4 * a * c))
return (x_focus, y_focus)

F.2.1 SIMPLE FEEDBACK

def parabola_focus(a, b, c):
"""
Write a function to find the focus of a parabola.
"""
x_focus = -b / (2 * a)
y focus = c - (b**2) / (4 * a)
return (x_focus, y_focus)

Result: ✗

F.2.2 SELF-EDIT

def parabola_focus(a, b, c):
"""
Write a function to find the focus of a parabola.
"""
x_focus = -b / (2 * a)
y focus = c - (b**2) / (4 * a)
return (x_focus, y_focus)

Result: ✗

F.2.3 LDB (BLOCK)
def parabola_focus(a, b, c):

"""
Write a function to find the focus of a parabola.
"""
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x_focus = -b / (2 * a)
y focus = (1 - (b**2) / (4 * a * c))
return (x_focus, y_focus)

Result: ✗

F.2.4 LDB (LINE)
def parabola_focus(a, b, c):

"""
Write a function to find the focus of a parabola.
"""
x_focus = -b / (2 * a)
y focus = c - (b**2) / (4 * a)
return (x_focus, y_focus)

Result: ✗

F.2.5 LDB (FUNCTION)
def parabola_focus(a, b, c):

"""
Write a function to find the focus of a parabola.
"""
x_focus = -b / (2 * a)
y focus = (1 - (b**2) / (4 * a * c)) # Corrected formula for y focus
return (x_focus, y_focus)

Result: ✗

F.2.6 SELF-DEBUGGING (EXPL.)
def parabola_focus(a, b, c):

"""
Write a function to find the focus of a parabola.
"""
x_focus = -b / (2 * a)
y focus = c - (b**2) / (4 * a)
return (x_focus, y_focus)

Result: ✗

F.2.7 SELF-DEBUGGING (TRACE)
def parabola_focus(a, b, c):

"""
Write a function to find the focus of a parabola.
"""
# Calculate the discriminant
discriminant = b**2 - 4*a*c

# Calculate the x-coordinate of the focus
x_focus = -b / (2 * a)

# Calculate the y-coordinate of the focus
y focus = (1 - discriminant) / (4 * a)

return (x_focus, y_focus)

Result: ✓

F.2.8 REFLEXION

def parabola_focus(a, b, c):
"""
Write a function to find the focus of a parabola.
"""
x_focus = -b / (2 * a)
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y_focus = c - (b**2) / (4 * a)
return (x_focus, round(y focus, 2)

Result: ✗

F.2.9 MGDEBUGGER

def parabola_focus(a, b, c):
"""Write a function to find the focus of a parabola."""
x_focus = calculate x focus(a, b)
y_focus = calculate y focus(a, b, c)
return (x_focus, y_focus)

def calculate x focus(a, b):
"""Calculate the x-coordinate of the focus of a parabola."""
return -b / (2 * a)

def calculate y focus(a, b, c):
"""Calculate the y-coordinate of the focus of a parabola."""
x vertex = -b / (2 * a)
y vertex = a * (x vertex ** 2) + b * x vertex + c
y focus = y vertex + 1 / (4 * a)

return y focus

Result: ✓

F.3 EXAMPLE ON HUMANEVALFIX

Info: HumanEval/130

Problem:
def tri(n):

"""Everyone knows Fibonacci sequence, it was studied deeply by
mathematicians in
the last couple centuries. However, what people don't know is
Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)

= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a
list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""

Buggy Seed Solution:
def tri(n):

"""
...
"""
if n == 0:

return [1]
my_tri = [1, 3]
for i in range(2, n + 1):

if i % 2 == 0:
my_tri.append(i / 2 + 1)

else:
my tri.append(my tri[i - 1] + my tri[i - 2] + i + (i + 3) / 2)
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return my_tri

F.3.1 SIMPLE FEEDBACK

def tri(n):
"""
...
"""
if n == 0:

return [1]
my_tri = [1, 3]
for i in range(2, n + 1):

if i % 2 == 0:
my_tri.append(1 + i / 2)

else:
my tri.append(my tri[i - 1] + my tri[i - 2] + (i + 1) / 2)

return my_tri

Result: ✗

F.3.2 SELF-EDIT

def tri(n):
"""
...
"""
if n == 0:

return [1]
if n == 1:

return [1, 3]
my_tri = [1, 3]
for i in range(2, n + 1):

if i % 2 == 0:
my tri.append(1 + i // 2) # Use integer division

else:
my tri.append(my tri[i - 1] + my tri[i - 2] + my tri[i - 3])

return my_tri

Result: ✗

F.3.3 LDB (BLOCK)
def tri(n):

"""
...
"""
if n == 0:

return [1]
my_tri = [1, 3]
for i in range(2, n + 1):

if i % 2 == 0:
my_tri.append(1 + i / 2)

else:
my tri.append(my tri[i - 1] + my tri[i - 2] + i + 1) / 2)

return my_tri

Result: ✗

F.3.4 LDB (LINE)
def tri(n):

"""
...
"""
if n == 0:

return [1]
my tri = [1, 3, 2] # Initialize with the first three known values
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for i in range(3, n + 1):
if i % 2 == 0:

my_tri.append(1 + i / 2)
else:

my tri.append(my tri[i - 1] + my tri[i - 2] + my tri[i - 3])
return my_tri

Result: ✗

F.3.5 LDB (FUNCTION)
def tri(n):

"""
...
"""
if n == 0:

return [1]
my tri = [1, 3, 2] # Initialize with the first three known values
for i in range(3, n + 1):

if i % 2 == 0:
my_tri.append(1 + i / 2)

else:
my tri.append(my tri[i - 1] + my tri[i - 2] + my tri[i - 3])

return my_tri

Result: ✗

F.3.6 SELF-DEBUGGING (EXPL.)
def tri(n):

"""
...
"""
if n == 0:

return [1]
if n == 1:

return [1, 3]
my_tri = [1, 3]
for i in range(2, n + 1):

if i % 2 == 0:
my tri.append(1 + i // 2) # Use integer division

else:
my tri.append(my tri[i - 1] + my tri[i - 2] + my tri[i - 3])

return my_tri

Result: ✗

F.3.7 SELF-DEBUGGING (TRACE)
def tri(n):

"""
...
"""
if n == 0:

return [1]
my tri = [1, 3, 2] # Initialize with tri(0), tri(1), and tri(2)
for i in range(3, n + 1):

if i % 2 == 0:
my tri.append(1 + i // 2) # Use integer division

else:
my tri.append(my tri[i - 1] + my tri[i - 2] + my tri[i - 3])

return my_tri

Result: ✗

F.3.8 REFLEXION

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

def tri(n):
"""
...
"""
if n == 0:

return [1]
elif n == 1:

return [1, 3]

trib sequence = [1, 3, 2])

for i in range(3, n + 1):
if i % 2 == 0:

trib_sequence.append(1 + i // 2)
else:

trib sequence.append(trib sequence[i - 1] + trib sequence[i -
2] + trib sequence[i - 3])

return trib_sequence

Result: ✗

F.3.9 MGDEBUGGER

def tri(n):
"""
...
"""
if n == 0:

return [1]
my_tri = [1, 3]
for i in range(2, n + 1):

if i % 2 == 0:
my_tri.append((1 + i / 2))

else:
my tri.append(tri odd(my tri, i))

return my_tri

def tri odd(my tri, i):
"""Helper function to compute the Tribonacci sequence value for odd
n."""
if i < 3:

return None # or return a default value
return my tri[i - 1] + my tri[i - 2] + tri special(i)

def tri special(n):
"""Helper function to compute the special value for odd n."""
return (n + 3) // 2

Result: ✓

G PROMPT TEMPLATES FOR MGDEBUGGER

We provide prompt templates for the three main components of MGDebugger: hierarchical decom-
position, test case generation, and sub-function debugging with LLM-simulated execution. These
prompts are designed to guide the language model in generating the desired outputs for each step of
the debugging process. They have been slightly modified for clarity and brevity, please refer to our
codes if you need the exact prompt templates 8.

8https://anonymous.4open.science/r/MGDebugger-B388
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G.1 PROMPT FOR HIERARCHICAL DECOMPOSITION

Prompt Template for Hierarchical Decomposition

SYSTEM PROMPT:
You are an AI assistant specialized in refactoring Python code into a tree-style hierarchical
structure.
USER PROMPT:
Convert the following Python code into a tree-style hierarchical structure with multiple levels
of sub-functions. Each significant step or logical block should be its own function, and func-
tions can call other sub-functions. Ensure that the main function calls these sub-functions in
the correct order, creating a tree-like structure.
Original Code:
{code}
Instruction:
Please first analyze the codes step by step, and then provide the converted code in a Python
code block. When providing the final converted code, make sure to include all the functions
in a flattened format, where each function is defined separately.

G.2 PROMPT FOR TEST CASE GENERATION

Prompt for Test Case Generation

SYSTEM PROMPT:
You are an AI assistant specialized in analyzing Python functions and generating test cases.
USER PROMPT:
Full Code:
{full code}
Public Test Cases for the Main Function:
{public test cases}
Instruction:
Please analyze how the {function name} function is used within the main function and how
it contributes to the expected outputs in the gold test cases. For each test case, you should
analyze step-by-step based on both the input and the expected output of the main function,
and then provide the corresponding input and expected output for the {function name} func-
tion. Ensure that the generated test cases are consistent with the behavior expected in the
public test cases.

G.3 PROMPT FOR DEBUGGING SUBFUNCTION

Prompt for Debugging Subfunction

SYSTEM PROMPT:
You are an AI assistant helping to debug Python functions.
USER PROMPT:
Debug the following Python function. The function is not passing all test cases. Analyze the
code, identify the bug, and provide a fixed version of the function.
Function Code:
{function code}
Test Case Results:
{test case results}
Instruction:
Please try to work as a Python interpreter to execute the code step-by-step. Identify the
change of each variable as you ”run” the code line-by-line. Based on the execution trace, try
to identify the bug and provide the final fixed code in a Python code block.
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