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Abstract
How do we infer a 3D scene from a single image
in the presence of corruptions like rain, snow or
fog? Straightforward domain randomization re-
lies on knowing the family of corruptions ahead
of time. Here, we propose a Bayesian approach—
dubbed robust inverse graphics (RIG)—that relies
on a strong scene prior and an uninformative uni-
form corruption prior, making it applicable to a
wide range of corruptions. Given a single image,
RIG performs posterior inference jointly over the
scene and the corruption. We demonstrate this
idea by training a neural radiance field (NeRF)
scene prior and using a secondary NeRF to rep-
resent the corruptions over which we place an
uninformative prior. RIG, trained only on clean
data, outperforms depth estimators and alternative
NeRF approaches that perform point estimation
instead of full inference. The results hold for
a number of scene prior architectures based on
normalizing flows and diffusion models. For the
latter, we develop reconstruction-guidance with
auxiliary latents (ReGAL)—a diffusion condition-
ing algorithm that is applicable in the presence of
auxiliary latent variables such as the corruption.
RIG demonstrates how scene priors can be used
beyond generation tasks.

1. Introduction
We explore the inference of a 3D scene from a single image
that is robust to corruptions to the underlying 3D scene and
its measurement, such as the presence of rain, snow, fog or
other floaters, or imperfect knowledge of camera parameters.
Being robust to such corruptions would extend the range
of normal operation of such a system. For example, a self-
driving car would be able to drive in more diverse weather
conditions.
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Figure 1. Robust Inverse Graphics (RIG). By modeling the gener-
ative process of 2D renderings y of 3D scenes, we can reconstruct
clean scenes by performing joint probabilistic inference on scene
latents (x) and corruption parameters (c).

Current approaches either use domain randomization (Zhao
et al., 2022; Gasperini et al., 2023; Zhu et al., 2023; Saun-
ders et al., 2023) or regularize training using additional loss
terms (Wynn & Turmukhambetov, 2023; Warburg et al.,
2023). Data randomization involves selecting a family of
corruptions which are included in the data generation pro-
cess. However, we don’t always know the kind of corrup-
tions we want to be robust to. Floaters—inaccurate high
density regions in the reconstructed scenes—are difficult
to predict ahead of time, so are commonly handled by in-
cluding additional loss terms in the reconstruction loss. It is
unclear how to extend this approach to other possibly more
extreme situations.

We propose robust inverse graphics (RIG), where we view
the problem through the lens of probabilistic inference. We
rely on a pre-trained scene prior, in our case a prior over
neural radiance fields (NeRFs)1, and a weak prior over
corruptions—in the case of 3D scene corruptions, another
NeRF with a uniform prior over its parameters. RIG per-
forms full probabilistic inference over both the scene and
corruption NeRF parameters instead of searching for the
most probable solution, such as a single set of NeRF param-
eters obtained via maximum a posteriori (MAP) inference.

Fine-tuning by minimizing reconstruction error is a standard
technique in conditional 3D generation (e.g. Chen et al.,

1We require a 3D representation which supports differentiable
rendering and is convenient to place a distribution over. NeRFs
were the best at fulfilling these requirements at the time of writing,
but other approaches could also work, such as Gaussian splatting.
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2023). In the presence of priors, fine-tuning corresponds to
obtaining a MAP estimate of the NeRF parameters of the
scene and the NeRF parameters of the observed corruption.
While MAP may yield good point estimates in a multi-
view setting, in a single-image setting it yields a “billboard”
solution where the corruption NeRF ends up explaining the
scene from the conditioned-on view at the expense of the
scene NeRF—the corruption NeRF can become a billboard
in front of the camera. Below, we prove that this problem is
intrinsic to MAP inference, and empirically show that doing
full probabilistic inference doesn’t suffer from this problem.

We make the following core contributions:

1. We propose RIG, a general framework for robust in-
verse graphics via performing full probabilistic infer-
ence over scene and corruption latents.

2. We validate the RIG approach on 3D datasets with a
number of prior and NeRF representations, across a
number of possible corruptions. We empirically show
that full probabilistic inference produces better results
than point estimates on the monocular depth

3. To enable RIG on diffusion-based priors, we develop
reconstruction-guidance with auxiliary latents (Re-
GAL) and its importance sampling generalization—a
class of general-purpose diffusion conditioning meth-
ods that is applicable to latent variable models where
a subset of the latents is modeled using a diffusion
prior. To the best of our knowledge, we are the first to
consider diffusion conditioning in this setting.

2. Method
Given a single image y, we would like to infer the underly-
ing 3D scene representation x over which we have a prior
p(x). We assume the scene contains a corruption c with
a corresponding prior p(c) and that we have a rendering
function R(x, c, ζ) that produces an image given the scene,
the corruption and camera parameters ζ . We form the likeli-
hood p(y|x, c) (we omit ζ for notational clarity) by treating
the rendered image as the mean of per-pixel-and-channel
independent Gaussians with a constant-variance observa-
tion noise. Our approach, dubbed robust inverse graphics
(RIG), performs full posterior inference p(x, c|y) to obtain
the scene. Figure 1 illustrates the approach.

Scene representation We focus on neural radiance field
(NeRF) representations (Mildenhall et al., 2021) because
of their amenability to gradient-based inference. Let
f(x, xr, dr) be a trainable function2 mapping from the
scene latent x, ray position xr ∈ R3 and ray direction
dr ∈ S2 to color γ ∈ [0, 1]3 and density σ ∈ R+. Given

2For a fixed x, f(x, ·, ·) is a radiance field.
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Figure 2. Example corruptions. FOV refers to the field-of-view
intrinsic parameter of the pinhole camera parameterization.

camera extrinsics and intrinsics ζ, we render the color of
a pixel by casting a ray from the camera origin through
that pixel’s center and evaluating the volumetric rendering
integral along that ray. In practice, this integral is estimated
using stochastic quadrature by querying the integrated ra-
diance field along the ray, using hierarchical sampling de-
scribed in Barron et al. (2021; 2023). Rendering the full
image, denoted y = R(x) (and omitting the camera param-
eters ζ), is done by volumetrically rendering each pixel in
the image. See Appendix A for details.

Scene prior We assume we have a pre-trained prior p(x)
over NeRFs from which we can sample the scene latent x
and render images y from different viewpoints ζ. In our
experiments, we use the ProbNeRF model (Hoffman et al.,
2023) which places a RealNVP (Dinh et al., 2016) prior
over x and trains a hypernetwork mapping from x to the
weights of a multi-layer perceptron that maps from (xr, dr)
to (γ, σ). One advantage of the ProbNeRF model is that it
is easy to evaluate the prior density p(x). We also validate
our method on more powerful denoising diffusion priors
(Section 3) where p(x) is not easy to evaluate, for which we
develop a novel inference algorithm (Section 4).

Corruption representation and prior We focus on corrup-
tions to the 3D scenes such as floaters or weather artifacts
like rain, snow or fog, although our approach generalizes to
sensor corruptions like camera intrinsics noise (Section 6.1).
Figure 2 shows some examples of how corruptions affect
the observed images. For camera intrinsics, we focus on in-
ferring the field-of-view (FOV), which is one of the camera
intrinsic parameters of the pinhole camera parameteriza-
tion. We represent the 3D corruptions c as parameters of
another NeRF. Unlike the scene x, we don’t require a strong
prior over c. In our experiments, we assume an improper
prior p(c) ∝ 1. This means that we don’t need to know the
family of corruptions ahead of time; the corruption can be
any 3D entity ranging from weather artifacts and floaters to
unwanted objects.

Likelihood To render an image y given the scene latent
x and corruption c, we compose the respective NeRF
outputs. Given a ray position and direction (xr, dr) we
compose the outputs of the scene NeRF (γz, σz) and cor-
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Figure 3. A toy model of full posterior inference avoiding “bill-
board” solutions of MAP. See main text for details.

ruption NeRF (γc, σc) as σ = σz + σc, γ = (γzσz +
γcσc)/σ (Niemeyer & Geiger, 2021). We denote render-
ing of the composed NeRF as y = R(x, c). The like-
lihood is a per-pixel-and-channel Gaussian p(y|x, c) =∏

pixel i and channel j N (yij |R(x, c)ij , σ2
y) where σ2

y is the ob-
servation noise variance.

MAP inference isn’t enough A straightforward approach
to inferring the scene x would be to find the MAP estimate
(x∗, c∗) that maximizes p(x)p(c)p(y|x, c). However, this
approach leads to “billboard” solutions, where the corrup-
tion c ends up explaining the scene, like a billboard placed
in front of the camera3. We prove this below:

Proposition 2.1. Assume p(c) ∝ 1, for any x there exists a
c such that R(x, c) = y, and p(y | x, c) is maximized if and
only if R(x, c) = y. Then the set of MAP solutions is

argmax
x,c

p(y, x|c)p(c) = argmax
x,c

p(y, x|c)

= {x, c : y = R(x, c) and x ∈ argmax
x

p(x)}, (1)

that is, x is the maximum a-priori scene that renders exactly
to y, either because c covers it completely or because the
uncovered parts happen to render to y.

Proof. Let the maximum likelihood, prior, and joint proba-
bility values be L∗ := maxx,c p(y|x, c), P ∗ = maxx p(x)
and V ∗ := maxx,c p(y, x|c) = maxx(p(x)maxc p(y |
x, c)) = maxx p(x)L

∗ = L∗P ∗. All elements in set (1)
attain the value p(y|x, c)p(x) = V ∗, hence they belong to
the argmax set. Any (x, c) not in set (1) attains a value of
p(y|x, c)p(x) smaller than V ∗: if R(x, c) 6= y, the likeli-
hood is smaller than L∗; if x /∈ argmaxx p(x), the prior
density is smaller than P ∗; in either case the joint is less
than L∗P ∗. Hence set (1) contains all argmax values.

3This “billboard” need not be flat.

Full posterior inference as an effective alternative In
RIG, we perform full posterior inference to obtain the un-
derlying scene x, c ∼ p(x, c|y) ∝ p(x)p(c)p(y|x, c) which
empirically circumvents the billboard solution (Section 6.1).
Intuitively, this can be seen as an instance of the mode not
being the same as the typical set. The region around the
mode where the corruption completely covers the scene has
high density but low volume—there aren’t many corruptions
that render exactly to the observed image. On the other hand,
the posterior takes into account both density and volume,
concentrating on regions with high probability mass—there
are many non-billboard corruptions that together with a cor-
rect scene render to the observed image, although each such
solution may have low density.

We illustrate this in a toy example (Figure 3) where the
scene is defined by a single opaque pixel with a one-channel
color x ∼ N (0.2, 0.25) (the distribution is truncated and
normalized on [0, 1]) and a single semi-transparent floater
corruption c := (cr, cα) between it and the camera with
color cr ∼ U(0, 1) and opacity cα ∼ U(0, 1). We ob-
serve the color y under a likelihoodN (µ(z, c), 0.12) whose
mean is the result of alpha blending the scene and the
corruption elements. The MAP solution that maximizes
p(cr, cα, x|y = 0.5) assigns the corruption opacity cα = 1
(Figure 3, bottom-left, red cross), completely obscuring the
scene. This causes the MAP solution for x to revert to the
maximum a-priori value (Figure 3, bottom-right, dotted and
solid line). However if we perform full posterior inference
(quadrature in this case), we observe high probability mass
in regions where cα < 1 (Figure 3, bottom-left), where
the corruption doesn’t completely obscure the scene. As a
result, the posterior over the scene x has more mass around
the value of y (Figure 3, bottom-right, dashed line).

Variational inference We use variational inference where
we optimize the evidence lower bound (ELBO) with respect
to a guide distribution q(x, c):

ELBO(q) = Eq(x,c)[log p(y, x|c)− log q(x, c)]. (2)

We use a mean-field parameterization where x and c are
independent q(x, c) = q(x)q(c), with each dimension of
x and c being parameterized by a separate Gaussian mean
and log standard deviation. We optimize these parameters
using stochastic gradients of the ELBO, estimated via the
path derivative estimator (Roeder et al., 2017). We run the
optimization multiple times (8 in our experiments) and pick
the run with the largest ELBO to avoid getting stuck in local
optima (cf. Multi-IVON from Shen et al., 2024).

3. Diffusion Scene Priors
Denoising diffusion (Ho et al., 2020) has emerged as a pow-
erful alternative to normalizing flows. While it is possible
to directly replace the RealNVP used in ProbNeRF with a
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diffusion-based prior (e.g. Dupont et al., 2022), diffusion
models allow us to tractably increase the dimensionality of
our latent representation. A high dimensional latent space
enables high fidelity samples and reconstructions. We build
on the Single-Stage Diffusion NeRF (SSDNeRF) frame-
work (Chen et al., 2023) to train the scene prior. SSDNeRF
optimizes a set of per-training-example latents {xn}, also
known as GLO latents (Bojanowski et al., 2018), the dif-
fusion prior pφ(x) parameterized by φ, and the likelihood
pψ(y|x) parameterized by ψ. See Appendix D for additional
details.

Diffusion models A diffusion model is a latent variable
generative model comprising a forward and a reverse pro-
cess. The forward diffusion process q(z|x) starts from data
x and sequentially adds Gaussian noise to produce a set of
latent variables z := {zt; t ∈ [0, 1]} where t = 0 has least
noise and t = 1 has most noise. The forward process is
defined through its marginals q(zt|x) = N (zt;αtx, σ

2
t I)

with αt and σt following a schedule where the signal-to-
noise ratio α2

t /σ
2
t decreases as t increases. We use the

variance-preserving schedule where α2
t = 1− σ2

t .

The reverse diffusion process pφ(x, z), parameterized by φ,
starts from p(z1) = N (z1; 0, I) and removes noise at each
step via pφ(zs|zt) (0 ≤ s < t ≤ 1) to produce gradually
less noisy latents until z0 which is decoded into x via a
fixed process p(x|z0). In practice, this is done by picking a
finite number of discretization bins T in [0, 1]. The reverse
process is trained to match q(x)q(z|x) given a target data
distribution q(x) so that the marginal pφ(x) ends up match-
ing q(x). In the continuous limit (T → ∞), the optimal
pφ(zs|zt) is a Gaussian which can be parameterized as the
data-conditional forward process q(zs|zt, x = xφ(zt; t))
where the data is given by a denoising model xφ(zt; t)
that predicts x given zt at time t. In practice, we pa-
rameterize the noise content of zt via εφ(zt; t) such that
xφ(zt; t) = (zt − σtεφ(zt; t))/αt and train it by minimiz-
ing the loss

Ldiff(φ, x) = Et∼U(0,1),ε∼N (0,I)

[
w(t)‖εφ(zt; t)− ε‖2

]
,

(3)

where w(t) is a weight schedule, often set to one. We pick
w(t) so that the negative loss is the evidence lower bound
−Ldiff(φ, x) ≤ log pθ(x) (Kingma et al., 2021).

NeRF representations The diffusion prior is defined over
a NeRF representation x. We experiment with triplanes,
the representation used in SSDNeRF, as well as a set latent
representation based on the scene representation transformer
(SRT) (Sajjadi et al., 2022).

While we found that the triplane representation—which uses
a UNet denoiser (Ronneberger et al., 2015)—was sufficient
for the ShapeNet dataset, SRT’s set latents performed much
better on the more complex MultiShapeNet dataset. Since

SRT doesn’t learn a prior over x, we adopt a transformer-
based denoiser that is permutation invariant based on Point-
E (Nichol et al., 2022). In our experiments, we report per-
formance of the triplane representation for ShapeNet and
SRT’s set latents for MultiShapeNet.

In both cases we train a decoder, parameterized by ψ, map-
ping from the representation of a ray position and direction
(xr, dr) to a color and a density (γ, σ). For triplanes, it is
a small MLP and for set latents, it is SRT’s decoder trans-
former. Like before, we can form a renderer R(x) (omit-
ting camera parameters ζ) and the corresponding likelihood
pψ(y|x), and the corresponding variants for the case with
corruption: R(x, c), pψ(y|x, c).

Training We adopt SSDNeRF’s training procedure where
given a training dataset {yn}Nn=1 ∼ p(y), we maintain a
set of per-training-example latents {xn}Nn=1 which are co-
trained with the prior and likelihood parameters (φ, ψ). In-
terpreting the negative log likelihood as the reconstruction
loss Lrec(y, x, ψ) = log pψ(y|x), the training loss is

L({xn}, φ, ψ) = (4)
En∼U({1,...,N}) [λrecLrec(yn, xn, ψ) + λdiffLdiff(φ, xn)]

where λrec, λdiff > 0 weighting factors. The negative loss,
−L({xn}, φ, ψ) ≤ Ep(y) [log pθ,ψ(y)], can be interpreted
as an ELBO where the guide distribution is a delta mass on
xn if y = yn, q{xn}(x|yn) = δxn

(x), making the guide’s
entropy term in ELBO vanish; the guide is well-defined
during training. Once trained, we can discard the latents
and use pφ(x)pψ(y|x) as the scene prior. See Appendix E
for additional details.

4. Diffusion Conditioning with Auxiliary
Latents

Given a diffusion model, we can sample from p(x) by it-
eratively denoising z1 ∼ N (0, I) until z0 and decoding
x ∼ p(x|z0), however it is not easy to evaluate the den-
sity p(x) due to the required marginalization of z. This
makes it difficult to infer p(x|y) ∝ p(x)p(y|x) as well as
p(x, c|y) ∝ p(x)p(c)p(y|x, c). We review reconstruction-
guidance as a method for solving the former and propose
reconstruction-guidance with auxiliary latents (ReGAL) for
solving the latter.

Reconstruction-guidance Reconstruction-guidance condi-
tioning (Ho et al., 2022) modifies the unconditional sam-
pling process by sampling zs ∼ p(zs|zt, y) instead of from
p(zs|zt) at each discretization step. Since p(zs|zt, y) is in-
tractable, we approximate it by augmenting the score func-
tion in p(zs|zt) by the gradient of the log likelihood. The
score of the diffusion latent variable at time t can be es-
timated as ∇zt log q(zt) ≈ sφ(zt; t) = −εφ(zt; t)/σt and
the reverse diffusion process can be written in terms of this
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Algorithm 1 Reconstruction-guidance diffusion condition-
ing with auxiliary latents (ReGAL)

1: Input: Diffusion prior denoiser εφ(zt; t), prior over the
auxiliary latent p(c|x), likelihood p(y|x, c), Langevin
step size δ, number of discretization bins T and a dis-
cretization schedule s(i) = (i − 1)/T, t(i) = i/T ,
observation y.

2: Output: Approximate sample x, c from p(x, c|y) ∝
p(x)p(c|x)p(y|x, c).

3: Initialize z1 ∼ p(z1) = N (z1; 0, 1) and c1 ∼ p(c|z1).
4: for i = T, . . . , 1 do
5: Sample zs(i) ∼ p̂(zs(i)|zt(i), y).
6: Sample cs(i) ∼ p̂(cs(i)|zs(i), ct(i), y; δ).
7: end for
8: Sample x ∼ p(x|z0), c ∼ p̂(c|x, c0, y; δ).
9: Return: x, c.

score as

p(zs|zt) = N

(
zs;

zt
αt|s

+
σ2
t|s

αt|s
sφ(zt; t),

σ2
t|sσ

2
s

σ2
t

I

)
(5)

where αt|s = αt/αs and σ2
t|s = σ2

t −α2
t|sσ

2
s (Kingma et al.,

2021). In reconstruction-guidance conditioning, we replace
the score term in (5) by a “reconstruction-guided” score
which approximates the posterior score∇zt log p(zt|y) as

s̃φ(zt, y; t) := sφ(zt; t) +∇zt log p̃(y|zt) (6)

where the intractable likelihood p(y|zt) is approximated as
p̃(y|zt) := p(y|x = xφ(zt; t)), using x’s “reconstruction”:

p̂(zs|zt, y) := N

(
zs;

zt
αt|s

+
σ2
t|s

αt|s
s̃φ(zt, y; t),

σ2
t|sσ

2
s

σ2
t

I

)
.

(7)

Reconstruction-guidance with auxiliary latents (Re-
GAL) In RIG, we have a diffusion prior over the scene
p(x) as well as a prior over the corruptions p(c). This
is an instance of a more general setting where c is an
auxiliary latent variable with a prior p(c|x). We pro-
pose ReGAL (Algorithm 1) for approximating the poste-
rior p(c, x|y) ∝ p(x)p(c|x)p(y|x, c) for a given likelihood
p(y|x, c), such as the scene-and-corruption renderer in RIG.

ReGAL alternates between sampling from the
reconstruction-guidance conditional p̂(zs|zt, y) (7)
and a Langevin update (Welling & Teh, 2011) on c:

p̂(cs|zt, ct, y; δ) := N
(
cs; ct +

δ

2
s̃cφ(zt, ct, y; t), δI

)
(8)

where δ is a step size and the score of the target distribution
p(c|x, y) is approximated as

s̃cφ(zt, ct, y; t) := (9)

∇ct log p(ct|x = xφ(zt; t)) +∇ct log p(y|x = xφ(zt; t), ct)

Running these Langevin updates results in a sample from
the posterior p(c|x, y). Like reconstruction-guidance condi-
tioning, ReGAL does not converge to the target distribution
of interest since it relies on score function estimation and
marginalization by denoising. In most cases, we find that
ReGAL produces compelling results for RIG tasks as it in-
tuitively moves (x, c) towards a region with high likelihood
p(y|x, c) via the likelihood score.

In some experiments, we find that this basic version of Re-
GAL is not enough as it samples in an “open-loop”, without
re-checking the samples against the posterior of interest.
To address this problem, we re-interpret ReGAL as an im-
portance sampling algorithm which produces K samples
{(xk, ck), wk}Kk=1. An importance weight wk is a ratio be-
tween the unnormalized target distribution—in this case
formed by multiplying the diffusion prior over all the noised
variables times the likelihood p(z)p(x|z)p(c|x)p(y|x, c)—
and the ReGAL proposal. These importance weights are
used to check the quality of proposed samples against the
posterior of interest. When K > 1, ReGAL has conver-
gence guarantees consistent with the classical importance
sampling results. The weighted set of K samples can be
used to estimate the posterior expectation of any test func-
tion f , Ep(x,c|y)[f(x, c)] as

∑K
k=1 wkf(xk, ck)/

∑K
k=1 wk.

This estimator is consistent: it converges to the posterior
expectation with increasing K (Owen, 2013). We can
also resample from the weighted empirical distribution∑K
k=1 wkδ(xk,ck)(x, c)/

∑K
k=1 wk to get an unweighted

sample. See Appendix B and Algorithm 2 for an extended
description of how to incorporate the K hyperparameter
into ReGAL.

5. Related Work
Robust Monocular Depth Estimation Most robust depth
estimation algorithms are trained via regression on a diverse
set of datasets and are not expected to generalize far from
the training distribution (Zhao et al., 2022; Gasperini et al.,
2023; Zhu et al., 2023; Saunders et al., 2023). The primary
challenge of these works is how to generate a sufficient
amount of data to train the regression models across enough
conditions. In comparison, our method requires only a
coarse model of the corruptions ahead of time.

Robust Multi-View Reconstruction In the field of NeRF
training the problem of robust reconstruction is well ex-
plored. Methods that use robust losses (Sabour et al., 2023),
3D regularization (Wynn & Turmukhambetov, 2023; War-
burg et al., 2023) and uncertainty estimation (Goli et al.,

5



Robust Inverse Graphics via Probabilistic Inference

Data
ProbNeRF
MAP Clean

SSDNeRF
Clean

ProbNeRF
MAP

ProbNeRF
VI

SSDNeRF
ReGAL DPT

Co
rr

up
te

d 
RG

B

N/A N/A

PSNR: 32.02 PSNR: 26.50 PSNR: 25.54

N/A

Cl
ea

n 
RG

B

PSNR: 28.89 PSNR: 34.73 PSNR: 16.11 PSNR: 19.72 PSNR: 23.81

N/A

Cl
ea

n 
D

ep
th

VSD: 0.18 VSD: 0.15 VSD: 0.77 VSD: 0.35 VSD: 0.20 VSD: 0.63

Data
SSDNeRF

Clean
SSDNeRF

ReGAL DPT

Co
rr

up
te

d 
RG

B

N/A

PSNR: 25.91

N/A

Cl
ea

n 
RG

B

PSNR: 22.08 PSNR: 14.61

N/A

Cl
ea

n 
D

ep
th

VSD: 0.92 VSD: 0.93 VSD: 0.98

Figure 4. Example decorruptions for the cloud corruption. The Clean columns are conditioned on the Clean RGB data, while the rest are
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Figure 5. MAP solution uses the corruption NeRF to explain the
observation more than the VI solution.
2023) have produced impressive results. Most of those
methods focus on the removal of floaters, and while certain
corruptions considered in our work (e.g. rain/clouds) are
similar to floaters, it is not obvious how to extend these
robustness techniques to other corruption types.

Analysis by Synthesis Using generative models in visual
perception is rare in modern systems in part due to perfor-
mance issues. A number of systems combine NeRFs with
structured generative models with nuisance variables (Yuan
et al., 2021; Verbin et al., 2021; Park et al., 2023; Ost et al.,
2021). We follow this line of work and extend it with priors
over NeRFs and probabilistic inference over the joint distri-
bution of scenes and auxiliary parameters. While it is not
our main focus, the posterior samples can be used to quan-
tify scene uncertainty (Guo et al., 2020; Rodriguez-Pardo
et al., 2023; Hoffman et al., 2023).

Diffusion conditioning To the best of our knowledge, we
are the first to consider the problem of diffusion conditioning
with auxiliary latents: conditioning models where a diffu-
sion model is used as a prior only over a subset of latent
variables. Our proposed method, ReGAL, bears similarities
to existing diffusion conditioning methods. Unlike classifier-
free guidance (Ho & Salimans, 2021) and classifier-guided
diffusion (Dhariwal & Nichol, 2021) which require retrain-
ing for each new likelihood, we focus on the case when
this is undesirable or even impossible. A common approach
for addressing this problem is reconstruction-guidance (Ho

et al., 2022) which ReGAL builds upon. Wu et al. (2023)
propose an sequential Monte Carlo (SMC)-based general-
ization of reconstruction-guidance which comes with con-
vergence guarantees like ReGAL with K > 1. However, it
isn’t applicable to models with auxiliary latents. While it is
possible to design an SMC version of ReGAL (Appendix C),
it didn’t improve performance metrics in our domain.

6. Experiments
The core benchmark we explore is monocular depth
estimation in presence of corruptions. Monocular depth
estimation is useful in context of autonomous car navigation
(Jing et al., 2022) and robotics (Zhou et al., 2019). In this
task, the models are given a single RGB image of a scene
and must predict a depth image, representing, for each pixel,
the distance of the corresponding object surface element
from the camera. We also evaluate the quality of RGB
reconstructions from multiple test views given one view
of a scene with corruptions. The source code for many
of these experiments is available at https://github.
com/tensorflow/probability/tree/main/
discussion/robust_inverse_graphics.

Datasets We evaluate our method on two datasets. For
the first dataset, we use the cars category from ShapeNet
(Chang et al., 2015). The dataset consists of 3486 cars,
where 3137 are used for training and the remaining 349
for evaluation. The cars are placed at the origin and have
a canonical orientation, but often vary in their scale. For
each training scene, we generate 50 camera positions ran-
domly from a unit sphere, all oriented towards the scene
origin. For testing, the camera positions are generated as
{cos(kπ/8), π/8, sin(kπ/8)}|k ∈ [0, 16).

For the second dataset, we use the MultiShapeNet (MSN)
dataset (Sajjadi et al., 2022). This dataset consists of objects
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Figure 6. VSD(←) histograms across all conditions. Lower is better.

from a number of categories from ShapeNet placed in a
square region (side length 5) on a randomly textured ground
plane, and lit by a randomly chosen HDRI dome. Aside
from adding our corruptions, we follow Sajjadi et al. (2022)
for the scene and camera positions. We generate 10000
training scenes and 300 evaluation scenes. The training set
scenes have 100 camera positions, and testing ones have 10.

For the rain and fog corruptions we use the Blender-
provided particle and volumetric effects. For the FOV, we
randomly sample the FOV from [π/4, 3π/4]. We use Kubric
(Greff et al., 2022), which uses Blender to render and pro-
vide ground truth RGB, depth and segmentation images. All
images have resolution of 128× 128.

Metrics For depth estimation, we use the visible surface
discrepancy (VSD) metric (Hodaň et al., 2016), defined as:

V SD(d,M, d̂, M̂) = 1−
1

|M ∪ M̂ |

∑
p∈M∪M̂

1(p ∈M ∩ M̂ ∧ |d(p)− d̂(p)| < τ),

where d and d̂ are the true and predicted depth images, M
and M̂ are the true and predicted object masks, p is a pixel
position, 1(·) is an indicator function and τ is an accuracy
threshold. We use τ = 0.05 for ShapeNet and τ = 0.1
for MSN. For NeRFs we define the mask as the region
where the opacity of the object is greater than 0.5. Predicted
depth is defined as the 95th percentile distance of the ray
scattering. VSD is a convenient metric because we are solely

interested in recovering the depth maps corresponding to
the objects, rather than the background, and VSD penalizes
making mistakes about the object silhouette. For MSN, we
evaluate the depth predictions on the parts of the image that
are explained by the ground plane and the objects on it. This
is operationally defined as regions of the image where depth
is less than 30 units.

For images with volumetric corruptions, we compute VSD
relative to the uncorrupted image (and omit the corrup-
tion NeRF when rendering the reconstruction). For RGB
image comparisons we use the PSNR metric, defined as
−10 log10 MSE, where MSE is mean-squared-error across
pixels and channels.

Baseline We use DPT (Ranftl et al., 2021) as a baseline.
DPT is a powerful generic depth estimator, which uses a
feedforward model that outputs the depth up to an affine
transformation. DPT is trained on a variety of indoor and
outdoor scenes with ground truth depths. When computing
the VSD metric for this model, we use the ground-truth mask
M as its predicted M̂ and determine the affine transforma-
tion of its depth by minimizing squared error between the
model’s predictions and ground truth depths in the masked
region. This gives this baseline a strong advantage in that it
does not need to solve the scale-distance ambiguity.
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ShapeNet

Model Clean Rain Cloud FOV

DPT 0.30± 0.007 0.63± 0.0065 0.58± 0.0071 0.49± 0.01
ProbNeRF MAP 0.30± 0.0034 0.43± 0.0044 0.48± 0.0042 0.46± 0.0047
ProbNeRF VI 0.30± 0.0034 0.32± 0.0039 0.45± 0.0043 0.36± 0.004
SSDNeRF ReGAL (K=1) 0.32± 0.0032 0.26± 0.0027 0.40± 0.0043 0.49± 0.0052
SSDNeRF ReGAL (K=4) 0.28± 0.0029 0.25± 0.0027 0.40± 0.0042 0.43± 0.0049
SSDNeRF ReGAL (K=8) 0.27± 0.0029 0.25± 0.0027 0.41± 0.0042 0.34± 0.0041

MultiShapeNet

Model Clean Rain Cloud FOV

DPT 0.91± 0.0037 0.90± 0.0035 0.90± 0.0035 0.92± 0.0031
SSDNeRF ReGAL (K=1) 0.87± 0.0015 0.88± 0.0015 0.88± 0.0015 0.95± 0.0013
SSDNeRF ReGAL (K=4) 0.87± 0.0015 0.88± 0.0015 0.88± 0.0015 0.95± 0.0013
SSDNeRF ReGAL (K=8) 0.88± 0.0015 0.89± 0.0014 0.88± 0.0015 0.95± 0.0013

Table 1. Mean VSD values across all conditions. Lower is better. The confidence intervals are 3 × SEM computed from a five runs via
bootstrap.

6.1. MAP vs full posterior inference

Figure 6 and Table 1 summarize the depth reconstruction
results. For each algorithm and dataset, we aggregate the
metrics across all views and all test scenes. While for every
algorithm there is considerable variation in the performance
of the algorithms, in aggregate we see that probabilistic in-
ference (ProbNeRF VI and SSDNeRF ReGAL) outperform
the point estimates and the regression baseline on the cor-
rupted scenes for ShapeNet. For MSN, our prior does not
model the data distribution with enough fidelity to resolve
the fine details of objects (see Figure 10), and therefore does
not decisively outperform the relatively coarse estimate that
DPT provides. For FOV estimation in particular, small er-
rors in the estimated FOV parameter lead to large changes
in the predicted depths, which is something DPT does not
need to contend with due to the calibration procedure we
use to evaluate its predictions. Improving the quality of the
prior would be a natural area of future improvement.

In addition to VSD, we also compute the PSNR metric for
all conditions. As with VSD, we remove the corruption
from both the data and the reconstruction. Figure 7 and
Table 2 show that ReGAL outperforms the other conditions.
We do not have a regression baseline for this task.

For ReGAL, we vary the number of importance samples
K. The decorruption quality is weakly dependent on this
for most settings, but is is most noticeably beneficial for the
FOV estimation task for ShapeNet.

Figure 4 shows an illustrative scene decorruption result for
the cloud corruption and several of the compared methods.
When possible, for each method we show the full reconstruc-
tion (scene and corruption), just the scene reconstruction
and the depth image for the scene. For ProbNeRF, we see
that the VI full inference has a more faithful reconstruction

than a MAP point estimate, due to MAP’s over-reliance on
the corruption parameters to explain most of the image, as
can be also be seen in Figure 5. The more powerful prior
used for SSDNeRF model produces the best reconstructions
on clean images (“SSDNeRF Clean” column of Figure 4)
and, when used with ReGAL, the most accurate depth im-
age. For MSN, we do not have a point estimate baseline,
as ProbNeRF is not expressive enough to represent MSN
scenes.

Due to its design and training dataset, DPT cannot separately
extract the depth image for the obscured sections of the
car, and is penalized accordingly. A more powerful depth
estimator that supports multi-modal predictions (Saxena
et al., 2023; Duan et al., 2023; Ke et al., 2023), if trained on
corrupted images, could, in principle, match our method’s
performance. Probabilistic inference in our model makes
sharp predictions without requiring examples of corruptions.

7. Discussion
We have presented a general strategy in attaining robustness
for monocular depth estimation using probabilistic infer-
ence using scene priors. For diffusion scene priors, we
develop a general-purpose diffusion conditioning approach,
ReGAL, which when applied to our domain produces the
best performance in our experiments.

There are two key limitations and areas of improvement
for our work. The reliance on a 3D prior makes it diffi-
cult to apply our method to robust perception of real world
scenes, as it requires a 3D prior over real world scenes
(see Appendix G for prior samples from models used in
the experiments). While a lot of progress has been made in
unconditional 3D models (Bautista et al., 2022; Chen et al.,
2023; Chai et al., 2023; Kim et al., 2023), their fidelity and
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Figure 7. PSNR(→) histograms across all conditions. Higher is better.
ShapeNet

Model Clean Rain Cloud FOV

ProbNeRF MAP 27.08± 0.17 18.96± 0.3 17.68± 0.25 31.88± 0.38
ProbNeRF VI 27.11± 0.2 23.22± 0.29 19.54± 0.27 32.97± 0.47
SSDNeRF ReGAL (K=1) 30.49± 0.16 26.58± 0.22 19.89± 0.31 35.08± 0.32
SSDNeRF ReGAL (K=4) 30.80± 0.15 26.47± 0.22 19.95± 0.29 34.44± 0.33
SSDNeRF ReGAL (K=8) 30.87± 0.15 26.32± 0.23 19.83± 0.29 35.22± 0.27

MultiShapeNet

Model Clean Rain Cloud FOV

SSDNeRF ReGAL (K=1) 25.37± 0.15 19.01± 0.38 14.40± 0.21 23.99± 0.31
SSDNeRF ReGAL (K=4) 25.68± 0.13 16.74± 0.35 14.65± 0.2 25.19± 0.26
SSDNeRF ReGAL (K=8) 25.79± 0.13 15.65± 0.34 14.71± 0.2 25.39± 0.26

Table 2. Mean PSNR values across all conditions. Higher is better. The confidence intervals are 3 × SEM computed from a five runs via
bootstrap. Note that the PSNR values for the FOV dataset are inflated because of the white background which takes up a higher fraction of
the image for larger fields-of-view values.

breadth of coverage of real world scenes remains small.

A second limitation is that of inference speed. Performing
probabilistic inference for every image is prohibitively slow
for the majority of applications. For diffusion models, there
exist approaches to accelerate sampling (e.g. Song et al.,
2023). Real-time performance, however, will require amor-
tized inference, likely by training a parameterized encoder.
The challenge of this approach is how to attain this speedup
without losing the flexibility and robustness of our method.
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A. NeRF Rendering Details
We follow Barron et al. (2021) and use hierarchical sampling. Given a ray (xr, dr) we first query the proposal NeRF using 48
regularly spaced points between near n and far f values. For ShapeNet, n = 0.2, f = 1.5. For MSN, n = 0.2, f = 30. The
density values evaluated at those samples are used to form a proposal distribution, and 48 samples are taken from the final
NeRF, and to compute the rendered color and depth. We use the same NeRF network for both steps, and rely on integrated
position encoding to inform the neural networks of the level of detail they should represent. For grid representations
(triplanes), we use multisampling by deterministically generating sigma points from the Gaussians associated with each ray
sample using the unscented transformation from Menegaz et al. (2011). This a simplification of the approach used in Barron
et al. (2023), as the (relatively) low fidelity of our NeRFs does not require the full anti-aliasing machinery of that work.

B. ReGAL with Importance Sampling
The basic variant of ReGAL (Section 4, Algorithm 1) can be viewed as a one-sample importance sampler that samples from
an extended-space target density

γ(z[0,1], c[0,1], x, c) := pdiff(z1)

 ∏
i=T,...,1

pdiff(zs(i)|zt(i))

 pdiff(x|z0)︸ ︷︷ ︸
Probability of denoising diffusion

 ∏
i=T,...,0

paux(ct(i)|zt(i))

 paux(c|x)︸ ︷︷ ︸
Probability of auxiliary latents

p(y|x, c)︸ ︷︷ ︸
Likelihood

(10)

where we discretize the unit time interval into T bins with s(i) = (i− 1)/T and t(i) = i/T , and define the intermediate
diffusion latent variables as z[0,1] := (zt(i))

T
i=0.

To aid clarity, we add subscripts to the density terms to indicate whether they come from the diffusion model (“diff”) or
the prior over the auxiliary latent (“aux”). The densities that come from the diffusion model are (i) the initial diffusion
noise pdiff(z1) = N (z1; 0, I), (ii) the reverse denoising step pdiff(zs(i)|zt(i)) and (iii) the decoder pdiff(x|z0). The prior over
the auxiliary latent paux(c|z) is given. However, we introduce copies of the auxiliary latent variable c[0,1] := (ct(i))

T
i=0

(corresponding to the intermediate diffusion variables z[0,1]) and place the auxiliary latent prior paux(ct(i)|zt(i)) over them.

Integrating out z[0,1], c[0,1] leaves us with the desired target unnormalized density p(x)p(c|x)p(y|x, c). Hence sampling
from π(z[0,1], c[0,1], x, c) ∝ γ(z[0,1], c[0,1], x, c) and ignoring z[0,1], c[0,1] leaves us with a sample from the desired posterior
p(x, c|y) ∝ p(x)p(c|x)p(y|x, c).

The last piece for defining an importance sampler is the proposal distribution which we set to be the ReGAL procedure in
Algorithm 1, resulting in the following proposal density

q(z[0,1], c[0,1], x, c) := pdiff(z1)paux(c1|z1)︸ ︷︷ ︸
Init. before the for loop

 ∏
i=T,...,1

p̂(zs(i)|zt(i), y)p̂(cs(i)|zs(i), ct(i), y)


︸ ︷︷ ︸

The for loop

pdiff(x|z0)p̂(c|x, c0, y)︸ ︷︷ ︸
Sampling after the for loop

. (11)

Given a budget of K samples, importance sampling samples K times from zk[0,1], c
k
[0,1], x

k, ck ∼ q and assigns each sample
a weight of

wk =
γ(zk[0,1], c

k
[0,1], x

k, ck)

q(zk[0,1], c
k
[0,1], x

k, ck)
, (k = 1, . . . ,K). (12)

The full algorithm can be seen in Algorithm 2.

The posterior p(x, c|y) can be approximated as a weighed sum of delta masses
∑K
k=1

wk∑K
i=1 wi

δ(xk,ck)(x, c) and the posterior

expectation of any test function f can be estimated as Ep(x,c|y)[f(x, c)] ≈
∑K
k=1

wk∑K
i=1 wi

f(xk, ck). Note that while ReGAL
(Algorithm 1) isn’t guaranteed to converge to the desired posterior, this importance sampling version of it is—the posterior
expectation estimate is consistent with K.
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Algorithm 2 ReGAL with Importance Sampling
1: Input: Diffusion prior denoiser εφ(zt; t), prior over the auxiliary latent p(c|x), likelihood p(y|x, c), Langevin step size
δ, number of discretization bins T and a discretization schedule s(i) = (i− 1)/T, t(i) = i/T , number of importance
samples K, observation y.

2: Output: A set of weighted particles {((xk, ck), wk)}Kk=1 that approximates p(x, c|y) ∝ p(x)p(c|x)p(y|x, c).
3: for k = 1, . . . ,K do
4: Sample zk1 ∼ p(z1) = N (z1; 0, 1) and ck1 ∼ p(c|z1).
5: for i = T, . . . , 1 do
6: Sample zks(i) ∼ p̂(zs(i)|z

k
t(i), y) (see (7)).

7: Sample cks(i) ∼ p̂(cs(i)|z
k
s(i), ct(i), y; δ) (see (8)).

8: end for
9: Sample xk ∼ p(x|zk0 ), ck ∼ p̂(c|xk, ck0 , y; δ) (see (8)).

10: Evaluate weight wk according to (12).
11: end for
12: Return: {((xk, ck), wk)}Kk=1.

In order to get one unweighted approximate sample, we can resample according to the weights: i ∼ Cat(w1:K); (x, c)←
(xi, ci). Alternatively, we can compute the posterior mean by setting the test function f above to be the identity function. In
practice, due to severe weight degeneracy, we find both alternatives to produce nearly identical outputs.

C. ReGAL with Sequential Monte Carlo
Given the sequential nature of ReGAL, it is natural to introduce place it within a sequential Monte Carlo (SMC) framework
(Doucet et al., 2009; Chopin et al., 2020). The resultant algorithm, dubbed ReGAL-SMC, generalizes the previous versions.

ReGAL samples variables in the following order

(z1, c1), (zt(T−1), ct(T−1)), . . . , (zt(i), ct(i)), (zs(i), cs(i)), . . . , (zt(1), ct(1)), (z0, c0), (x, c)

where the full sequence has length T + 2. To simplify notation for SMC, let’s re-define this sequence as ((z(n), c(n)))Nn=1

where N = T + 2. That is, (z(n), c(n)) := (zt(T−n+1), ct(T−n+1)) for n = 1, . . . , N − 1 and (z(N), c(N)) := (x, c).

Final target distribution Using this notation, we can rewrite the target distribution on the full extended space z(1:N), c(1:N)

from (10) as

γN (z(1:N), c(1:N)) := pdiff(z
(1))paux(c

(1)|z(1))

(
N∏
n=2

pdiff(z
(n)|z(n−1))paux(c

(n)|z(n))

)
p(y|z(N), c(N)) (13)

where the density terms correspond to the terms in (10).

Given a sequence of variables z(1:N), c(1:N), SMC sequentially builds approximations of target distributions γn(z(1:n), c(1:n))
from n = 1 to N . Since the final target distribution γN in (13) marginalizes to the desired posterior distribution p(x, c|y),
given an approximate sample (z(1:N), c(1:N)) from γN , we can take (x, c) := (z(N), c(N)) to be the approximate sample
from p(x, c|y).

Intermediate target distributions While there is complete freedom in defining the target densities γn(z(1:n), c(1:n)) when
n < N , some choices lead to better posterior approximations. A straightforward choice would be defining γn exactly the
same as (13), with the product going only until n and without the likelihood term. This choice is problematic since the
likelihood term is incorporated only at the last step so the target distributions are equal to the prior for all but the last step.
Thus, SMC makes no progress in approximating the posterior for the first N − 1 steps, and is asked to do the full inference
in one step.

A better sequence of targets would include the prior times the lookahead likelihood, p(y|z(n), c(n)) :=∫
p(y|z(N), c(N))

∏N
i=n+1 p(z

(i), c(i)|z(i−1), c(i−1)) dz(n+1:N)dc(n+1:N). In this case, SMC targets the smoothing poste-
rior γopt

n (z(1:n), c(1:n)) :=
∫
γN (z1:N , c1:N ) dz(n+1:N) which yields a much more gradual transition when n goes from 1 to
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N . Since the lookahead likelihood is unavailable, we approximate it as

p̃(y|z(n), c(n)) := p(y|x = xφ(zt = z(n); t = t(T − n+ 1)), c = c(n)) ≈ p(y|z(n), c(n)) (14)

like in (9). Thus, the actual intermediate target density (that approximates γopt
n ) we use in ReGAL-SMC is

γn(z
(1:n), c(1:n)) := pdiff(z

(1))paux(c
(1)|z(1))

(
n∏
i=2

pdiff(z
(i)|z(i−1))paux(c

(i)|z(i))

)
p̃(y|z(n), c(n)), (n = 1, . . . , N − 1).

(15)

Proposals and weights We can factorize the proposal distribution in (11) as a Markov chain of per-step proposals
q(z(1:N), c(1:N)) =

∏N
n=1 qn(z

(n), c(n)|z(n−1), c(n−1)) where

qn(z
(n), c(n)|z(n−1), c(n−1)) =


pdiff(z

(1))paux(c
(1)|z(1)) if n = 1

p̂(z(n)|z(n−1), y)p̂(c(n)|z(n), c(n−1), y) if 1 < n < N

pdiff(z
(N)|z(N−1))p̂(c(N)|z(N), c(N−1), y) if n = N.

(16)

Algorithm 3 shows the full algorithm, where the weights are computed as

w(1)(z(1), c(1)) =
γ1(z

(1), c(1))

qn(z(1), c(1))
(17)

=
pdiff(z

(1))paux(c
(1)|z(1))p̃(y|z(1), c(1))

pdiff(z(1))paux(c(1)|z(1))
(18)

= p̃(y|z(1), c(1)), (19)

w(n)(z(1:n), c(1:n)) =
γn(z

(1:n), c(1:n))

γn−1(z(1:n−1), c(1:n−1))qn(z(n), c(n)|z(n−1), c(n−1))
(20)

=


p̃(y|z(n),c(n))pdiff(z

(n)|z(n−1))paux(c
(n)|z(n))

p̃(y|z(n−1),c(n−1))p̂(z(n)|z(n−1),y)p̂(c(n)|z(n),c(n−1),y)
if 1 < n < N

p̃(y|z(N),c(N))paux(c
(N)|z(N))

p̃(y|z(N−1),c(N−1))p̂(c(N)|z(N),c(N−1),y)
if n = N.

(21)

At optimality Proposals in (16) are meant to approximate the conditional posterior qopt
n (z(n), c(n)|z(n−1), c(n−1), y) ∝

γopt
n (z(1:n), c(1:n))/γopt

n−1(z
(1:n−1), c(1:n−1)). If qn = qopt

n , sequentially sampling from qn yields an exact posterior sample.
Moreover, if γn = γopt

n , SMC’s weights are constant at every step, thus avoiding any resampling. In practice, our
approximations to qopt

n and γopt
n are not exact, requiring the weights and resampling in order to make SMC’s posterior

approximation consistent.

D. Scene Prior Architecture Details
When computing the likelihood, we subsample 1024 all the rays across all views of a scene, with the number primarily
motivated by its effect on inference speed.

ProbNeRF We use the same architecture as Hoffman et al. (2023).

Triplane SSDNeRF The triplane NeRF we use has 3 planes with shape [128, 128, 6]. Samples from those planes are
trilinearly interpolated, concatenated and passed through one hidden layer of size 64 for the density output, and another layer
of the same size for the color output. We use the ReLU activation the hidden layers. For the color output we additionally
concatenate positional encodings for the ray direction. We use the sigmoid activation for color, and softplus for density.
We additionally bias the pre-activation density input by −3, so improve the gradient flow to all parts of the NeRF. We
deliberately use relatively lightweight parameterization for the NeRF, so as to force the prior to do model the distribution as
adjacent to the observations as possible.

For the denoiser, we use a UNet with the following levels: [128, 128, 128] → [64, 64, 256] → [32, 32, 256] →
[16, 16, 512]→ [8, 8, 512]. The final 3 levels also get a spatial attention module with 4 heads.
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Algorithm 3 ReGAL with Sequential Monte Carlo
1: Input: Diffusion prior denoiser εφ(zt; t), prior over the auxiliary latent p(c|x), likelihood p(y|x, c), Langevin step size
δ, number of discretization bins T and a discretization schedule s(i) = (i− 1)/T, t(i) = i/T , number of importance
samples K, observation y.

2: Output: A set of weighted particles {((xk, ck), wk)}Kk=1 that approximates p(x, c|y) ∝ p(x)p(c|x)p(y|x, c).
3: Propose z(1),k, c(1),k ∼ q1(z(1), c(1)) (k = 1, . . . ,K) (see (16)).
4: Evaluate weight w(1),k = w(1)(z(1),k, c(1),k) (k = 1, . . . ,K) (see (19)).
5: for n = 2, . . . , N do
6: Sample ancestral indices a(n−1),1:K based on weights w(n−1),1:K .
7: Set z(n−1),k, c(n−1),k ← z(n−1),a

(n−1),k

, c(n−1),a
(n−1),k

(k = 1, . . . ,K).
8: Propose z(n),k, c(n),k ∼ qn(z(n), c(n)|z(n−1),k, c(n−1),k) (k = 1, . . . ,K) (see (16)).
9: Evaluate weight w(n),k = w(n)(z(1:n),k, c(1:n),k) (k = 1, . . . ,K) (see (21)).

10: end for
11: Return: {((x(N),k, c(N),k), w(N),k)}Kk=1.

Set-Latent SSDNeRF For the set-latent NeRF, we use a similar architecture as Sajjadi et al. (2022). We use 512 latents,
each with 64 dimensions. The transformer uses 8 heads, with the QKV dimension set to 256 and MLP dimension to 256.
After the transformer, we use the same stack of layers and conditioning signals as with the TriPlane NeRF described above.
For MSN we set the radius of the NeRF to 15, outside of which we set the density to 0.

For the denoiser, we use a transformer with 12 layers and 16 heads, and QKV dimension set to 1024 and MLP dimension to
2048. The inputs are first projected to a dimension of 512.

E. Scene Prior Training Details
ProbNeRF We train for 2× 106 steps. We use the Adam (Kingma & Ba, 2017) optimizer with a learning rate schedule
where we warm up the learning rate from 0 to 10−4 over 50 steps, and then step-wise halve it every 50000 steps afterward.
We used a minibatch of 8 scenes. For the guide, we use 10 random views per scene.

SSDNeRF We train for 5× 105 steps. For ShapeNet, we use the Adam optimizer with a learning rate schedule where we
warm up the learning rate from 0 to 10−3 and then step-wise halve it every 125000 steps afterward. For MSN, we use the
cosine learning rate schedule (Loshchilov & Hutter, 2017), where we warm up the learning rate from 0 to 10−3 and then
decay it to 0 over the training duration. We use a minibatch of 16 scenes. For MSN, we found it necessary to clip the global
gradient norm to 1.

For the scene latents, they’re initialized at zeros for ShapeNet and from an isotropic Gaussian with a scale of 0.1. It is
important to initialize the latents away from zero when using a transformer-based denoiser. We use L2 regularization for the
latents, with a factor of 10 for ShapeNet and 30 for MSN. We anneal the number of latent optimization substeps from 15 to
4 at iteration 10000, and, for MSN, to 1 at iteration 100000. Generally, using fewer substeps lets the diffusion prior have an
easier job fitting the distribution of the learned scene latents.

F. Scene Prior Evaluation Details
ShapeNet Masks Kubric provides ground truth segmentation masks for rendered objects. For ShapeNet we found it
necessary to also clip the regions which had depths greater than 1000.

Corruption Parameterization For the NeRF corruption, we use the same NeRF as ProbNeRF. For the FOV parameteriza-
tion we perform inference over R, but constrain it to lie in [π/4, 3π/4] via the sigmoid transformation.

ProbNeRF MAP We use the Adam optimizer with learning rate of 10−2 for 3000 iterations.

ProbNeRF VI We use the Adam optimizer with learning rate of 10−4 for 10000 iterations. A lower learning rate is
necessary for stability. We anneal the KL divergence term (Kingma & Welling, 2019) with a schedule that linearly increases
from 0 to 1 over a period of 5000 iterations.

Diffusion Conditioning We use a schedule to anneal the likelihood f(t) = 0.01 + 0.99(1− t)1.5. Additionally, for Rain
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and Cloud corruptions for MSN, we scale the likelihood when computing p̂(zs|zt, y) Equation (7) by a factor of 3. This is
to encourage the scene parameters to explain the scene rather than the corruption NeRF. We expect this to be less necessary
with a stronger prior, and indeed we did not need to do this for ShapeNet.

For ShapeNet, we use T = 500 for clean and rain conditions, T = 5000 for clouds and T = 1500 for FOV. For MSN, we
use T = 2000 steps in all cases except FOV, where we use T = 5000. In general, harder corruptions require more steps, but
due to computational requirements we preferred to use as few steps as feasible.

For ShapeNet, we use δ = 10−5 for rain and cloud conditions, δ = 10−6 for FOV. For MSN, we use δ = 3× 10−5 for rain
and cloud conditions, δ = 10−5 for FOV. Up to a limit, using a larger step size encourages mixing of the SMC rejuvenation
kernel.

G. Prior Samples
In Figures 8 to 10, we show unconditional samples from the scene priors used in the experiments. The ShapeNet car samples
contain much finer details under the SSDNeRF model. While MultiShapeNet samples are not as high quality, the underlying
scene prior still proves to empirically outperform baselines in the robust inverse graphics tasks in the experiments.

Figure 8. ShapeNet cars prior samples from the ProbNeRF model.

H. Additional Reconstructions
See Figures 11 to 14.

I. Posterior Uncertainty
In Figure 15 we show multiple samples from the posterior for the clouds corruption of the ShapeNet cars dataset for
SSDNeRF ReGAL (K = 8).
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Figure 9. ShapeNet cars prior samples from the SSDNeRF model.

Figure 10. MultiShapeNet prior samples from the SSDNeRF model.

J. Performance
On a single A100 GPU, for each image it takes 9.5 minutes for MultiShapeNet and 7.5 minutes for ShapeNet to run ReGAL
for 2000 steps to generate 8 particles. The time is proportional to the number of steps, so at a cost of quality, it could be
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reduced (as much as 10x before complete breakdown). The particles can be simulated on separate GPUs as well with
relatively small cross-GPU communication requirements (due to IS/SMC resampling). Ultimately, however, practical
deployment of this method would require more advanced diffusion sampling methods (such as Consistency Models (Song
et al., 2023) and Flow Matching (Lipman et al., 2022)) which would drastically reduce the number of steps we need to take.
It is likely these are not drop-in and would require adjustment of the ReGAL algorithm.
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Figure 11. Reconstructions for the rain corruption of the ShapeNet cars dataset. See Figure 4 for details.
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Figure 12. Reconstructions for the clouds corruption of the ShapeNet cars dataset. See Figure 4 for details.
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Figure 13. Reconstructions for the rain corruption of the MultiShapeNet dataset. See Figure 4 for details.
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Figure 14. Reconstructions for the clouds corruption of the MultiShapeNet. See Figure 4 for details.
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Figure 15. Multiple samples from the posterior for the clouds corruption of the ShapeNet cars dataset for SSDNeRF ReGAL (K=8). See
Figure 4 for details.
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