
Automated Knowledge Bank Construction for Business
Intelligence LLMs

Joseph Standerfer
Amazon Web Services

Austin, TX, USA
joesta@amazon.com

Elisabeth Munger
Slalom

Seattle, WA, USA
liz.berg@slalom.com

Shayaan Naik
Amazon Web Services
New York, NY, USA

nashayaa@amazon.com

Abstract
This paper presents a novel approach to building automated knowl-
edge banks for Generative Business Intelligence (GenBI) systems,
enabling natural language interfaces to organizational data without
specialized engineering expertise. We demonstrate how dashboard
definitions can be transformed into knowledge repositories that
bridge the semantic gap between Large Language Models (LLMs)
and organization-specific data contexts. Our methodology extracts
SQL from dashboards, generates AI-powered data dictionaries, and
indexes business terminology to teach LLMs "your SQL, not just
SQL." Implemented for AWS Marketing, this system leverages dash-
boards as "proven recipes" containing both technical implemen-
tation and business context, ensuring alignment without manual
documentation. By treating dashboards as crystalized business in-
telligence—representing validated queries enriched with business
terminology—we demonstrate a scalable GenBI approach that main-
tains nuanced understanding of metrics calculations and business
definitions. Validation achieved 94% dashboard-to-SQL extraction
success across all dashboard components, while evaluation showed
83% accuracy on unseen questions, rising to 97% for metrics directly
visualized in source dashboards—demonstrating how automated
knowledge extraction effectively powers natural language analytics
while maintaining business context integrity.

CCS Concepts
• Information systems → Business intelligence; • Comput-
ing methodologies→ Natural language processing; Information
extraction.

Keywords
Generative AI, Business Intelligence, Retrieval-Augmented Genera-
tion, Data Discovery, Natural Language Processing
ACM Reference Format:
Joseph Standerfer, Elisabeth Munger, and Shayaan Naik. 2025. Automated
Knowledge Bank Construction for Business Intelligence LLMs. In Pro-
ceedings of KDD 2025 Workshop on Structured Knowledge for Large Lan-
guage Models (KDD 2025 Workshop). ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD 2025 Workshop, Toronto, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/25/08
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Enterprise organizations face a fundamental challenge in deploying
agentic AI systems: while Large Language Models excel at gen-
eral reasoning and language understanding, they struggle with
organization-specific contexts, terminology, and established busi-
ness practices. This gap is particularly acute in business intelligence
applications where subtle differences in metric calculations can
have significant financial implications.

Traditional approaches to this problem, such as manual docu-
mentation, custommodel training, or extensive prompt engineering,
prove costly and difficult to maintain. Meanwhile, enterprises pos-
sess rich repositories of validated business logic in their existing
dashboards, representing years of refined domain knowledge and
approved calculation methodologies. These dashboards serve as
"crystalized intelligence" but remain underutilized as knowledge
sources for AI systems.

We present an enterprise agentic AI platform that bridges this
gap through automated knowledge extraction from existing busi-
ness intelligence assets. Our tool-augmented agent architecture
transforms dashboard definitions into structured knowledge repos-
itories, enabling natural language interfaces that understand both
SQL syntax and organization-specific semantics. The system ad-
dresses key enterprise requirements:

• No-code deployment: Automatic extraction eliminatesman-
ual documentation

• Tool-augmented reasoning: Specialized tools for knowl-
edge retrieval, SQL generation, and visualization

• Enterprise integration: Seamless connection to existing
data platforms and BI systems

• Explainability: Full trace visibility into tool usage and
knowledge sources

• Trustworthiness: Alignment with validated business logic
from approved dashboards

Deployed for AWS Marketing teams analyzing lead flow pro-
cess data, our system demonstrates how agentic AI can democ-
ratize data access while maintaining the rigor required for enter-
prise decision-making. By treating dashboards as comprehensive
knowledge sources containing both technical implementation and
business context, we enable rapid deployment of natural language
analytics that understand "your SQL, not just SQL."

2 Related Work
Natural language interfaces to databases (NLIDB) have evolved
significantly from early rule-based systems [4] to modern neural
approaches. Recent text-to-SQL systems like PICARD [8] and DIN-
SQL [7] demonstrate impressive performance on benchmarks but

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD 2025 Workshop, August 6, 2025, Toronto, Canada Standerfer et al.

often struggle with enterprise contexts where business terminology
and metric definitions are critical [5].

Commercial BI platforms like Amazon QuickSight Q [1], Mi-
crosoft Power BI Q&A, and Tableau’s Ask Data provide natural
language capabilities but typically require significant manual setup
to define topics and semantic layers. This limits their flexibility for
ad-hoc exploration across domain boundaries.

Retrieval-augmented generation (RAG) has emerged as a promis-
ing approach for enhancing LLM performance in domain-specific
tasks. Lewis et al. [3] introduced the RAG framework for knowledge-
intensive NLP tasks. In parallel, systems like DBPal [11] have ex-
plored different approaches to database contexts by incorporat-
ing schema information and generating synthetic training data to
improve NL-to-SQL translation models. However, creating effec-
tive knowledge bases for these systems remains labor-intensive,
particularly in enterprise settings with complex data models and
domain-specific terminology [10].

Knowledge extraction from existing BI assets represents a less
explored direction. Setlur et al. [9] investigated how visualization
context could improve natural language understanding in visual
analysis systems, while Narechania et al. [6] proposed methods for
generating analytic specifications from natural language queries for
data visualization. Unlike these approaches that focus primarily on

visualization artifacts, our work treats dashboards as comprehen-
sive knowledge sources containing both technical implementation
and business context, enabling automated extraction of SQL pat-
terns, data structures, and business terminology without extensive
manual curation.

3 System Architecture
The GenBI agent architecture consists of five interconnected com-
ponents that transform natural language queries into data-driven
insights, with particular emphasis on the knowledge discovery
mechanisms:

(1) User Interface Layer: Multi-component interface featur-
ing a chat interface for query submission, an image viewer
for visualization display, and a response trace viewer for
transparency into the agent’s decision-making process.

(2) Orchestration Layer: GenBI Agent powered by Bedrock
LLM with specialized prompts and orchestration patterns
that guide knowledge retrieval operations and maintain con-
versation context.

(3) Data Discovery Layer: Central to our architecture, this
layer contains a DataDiscovery router function coordinating
between three specialized Lambda functions:

Figure 1: Generative BI Agent Implementation, Highlight Data Discovery Tools

Automated Knowledge Bank Construction for Business Intelligence LLMs KDD 2025 Workshop, August 6, 2025, Toronto, Canada

• TermDefinitionSearch: Retrieves business terminology def-
initions

• ColumnsSearch: Identifies relevant table and column struc-
tures

• SqlSearch: Retrieves similar known-good SQL patterns
(4) Execution Layer: Components for SQL execution (Exe-

cuteAthenaSQL) and visualization generation (GraphGen-
erate) that transform retrieved knowledge into actionable
insights.

(5) Data Storage Layer: Underlying data sources and knowl-
edge repositories, including:
• Table Source Data in Amazon S3
• Automatically extracted SQL knowledge bank indexed in
OpenSearch

• Automated data dictionary with LLM-generated descrip-
tions and comprehensive metadata

• Business terminology index for domain-specific concept
alignment

• Session data store for maintaining context across interac-
tions

The system follows a systematic workflow optimized for knowl-
edge retrieval and context maintenance:

(1) User query is received through the chat interface
(2) The orchestration layer analyzes the query and determines

required knowledge sources
(3) The DataDiscovery router coordinates parallel retrieval op-

erations:
• Business terminology identification via TermDefinition-
Search

• Data structure discovery via ColumnsSearch
• Relevant SQL pattern retrieval via SqlSearch

(4) Retrieved knowledge is synthesized by the LLM to generate
contextually appropriate SQL

(5) SQL is executed against Athena and results are transformed
into visualizations

(6) Response and visualization are presented to the user while
session context is maintained

This architecture ensures that the generated responses maintain
business context alignment by leveraging the rich knowledge repos-
itories that form the foundation of our approach. The emphasis on
comprehensive knowledge retrieval before query generation is key
to overcoming the semantic gap between general-purpose LLMs
and organization-specific data contexts.

4 Implementation Details
Our implementation emphasizes automation throughout the knowl-
edge extraction and organization process, transforming existing
business intelligence assets into structured knowledge reposito-
ries without requiring specialized data engineering expertise. The
Data Discovery Layer depends on three different Knowledge Base
components (SQL, column metadata, and term definitions), each
of which are described in this section. The SQL knowledge bank
and column metadata knowledge bank comprise the heart of our
solution: the automatic translation of dashboards and data tables
into structured information indexed for LLM and agent reference.

4.1 SQL Knowledge Bank Implementation

Figure 2: QuickSight Dashboard Query Extraction Process

A key innovation in our approach is the automatic extraction
of SQL knowledge from existing QuickSight dashboards. These
dashboards represent validated business logic that has been refined
over time and serves as the organization’s source of truth for key
metrics. By transforming these dashboards into a structured SQL
knowledge bank, we can teach LLMs organization-specific data
practices without manual documentation. As illustrated in Figure
2, our methodology follows a multi-stage pipeline with parallel
processing streams and feedback loops.

The architecture consists of five primary phases:
(1) Dashboard Acquisition: Using AWS CLI tools to retrieve

complete dashboard definitions as JSON objects containing
sheets, visuals, datasets, and control configurations.

(2) Component Extraction: Parsing of the dashboard JSON
into five component types:
• Datasets: Source data references and schema information
• Visuals: Chart and table configurations with field map-
pings

• Calculated Fields: Custom business calculations with re-
cursive dependencies

KDD 2025 Workshop, August 6, 2025, Toronto, Canada Standerfer et al.

• Controls/Parameters: User-configurable filter parameters
• Filters: Pre-defined data constraints

(3) Parallel LLMProcessing: Components are processed through
distinct but complementary LLM workflows:
• Left Stream: Dataset, visual, and calculated field informa-
tion is combined to generate both natural language de-
scriptions and SQL translations

• Right Stream: Controls and filters are processed to generate
SQL filter conditions

• These streams converge in a SQL and filter merging step
to create complete queries

(4) Validation Loop: Generated SQL undergoes a rigorous val-
idation process:
• Execution against actual data sources via Amazon Athena
• LLM-based error analysis and automated rewriting for
failed queries

• Iterative refinement until success or maximum attempts
reached

(5) Dual Output Generation: The process produces two com-
plementary outputs that are stored in an OpenSearch index:
• Semantic embeddings of descriptions for vector search
• Validated SQL scripts with associated metadata

4.1.1 Recursive Calculation Resolution. Calculated fields are one
source of complexity within the component extraction stage. Dash-
board authors frequently create nested calculations that reference
other calculated fields, forming a dependency graph that must be re-
cursively resolved before SQL generation. Our system implements
a recursive combination algorithm that:

(1) Identifies the complete set of calculated fields and their de-
pendencies

(2) Constructs a directed dependency graph to determine evalu-
ation order

(3) Recursively resolves expressions by substituting referenced
calculations

(4) Converts dashboard-specific calculation syntax to standard
SQL expressions

This approach enables accurate translation of complex business
metrics that may involve multiple levels of calculation logic while
preserving the original business intent.

4.1.2 LLM Choice. Our implementation employs a strategic com-
bination of LLMs optimized for different tasks:

(1) Initial Translation Tasks (Visual Description, SQL Gener-
ation, Filter Translation):
• Model: Meta’s Llama-3-70B-Instruct
• Rationale: Higher throughput, lower cost, and sufficient
accuracy for initial translation

(2) Refinement Tasks (SQL Error Analysis, Query Rewriting):
• Model: Claude 3.5 Sonnet
• Rationale: Superior reasoning capabilities for complex er-
ror resolution and SQL debugging

This two-model approach balances efficiency and accuracy, re-
serving the more capable but costly model for complex reasoning
tasks where its advanced capabilities provide the most value.

4.1.3 Case Study: Profit Segmentation Heatmap. To illustrate the
methodology used to generate the SQL knowledge bank, we include
an example of the extraction process for a complex HeatMap visual
displaying profit segmentation by industry and customer segment
from a publicly available business performance dashboard [2].

Figure 3: Profit Segmentation Heat Map from the AWS Quick-
Sight Demo Central Business Summary Dashboard [2]

Figure 4: Dashboard control Bar [2]

(1) Visual Definition Extraction: The system extracted the
complete visual definition, including field mappings (indus-
try for rows, segment for columns, profit as value).

(2) Initial Processing: Two parallel streams processed the vi-
sual:
• Stream 1: Generated a business context description and
base SQL query

• Stream 2: Identified applicable dashboard controls and
converted them to SQL filter conditions

(3) Merged Output: The system combined the base query with
filter conditions to create a complete SQL statement:

1 SELECT industry, segment, SUM(profit) AS profit
2 FROM dashboard_datasets.b2b_sales
3 WHERE date >= (SELECT MIN(date) FROM

dashboard_datasets.b2b_sales)
4 AND segment IN (SELECT DISTINCT segment FROM

dashboard_datasets.b2b_sales LIMIT 1)
5 -- Additional filters omitted for brevity
6 GROUP BY industry, segment
7 ORDER BY segment DESC
8

(4) Validation Loop: The system identified two issues during
validation:

Automated Knowledge Bank Construction for Business Intelligence LLMs KDD 2025 Workshop, August 6, 2025, Toronto, Canada

• First cycle: Syntax error with parameter placeholders
• Second cycle: Data type mismatch in the SUM function

(5) Final Output: After error correction, the system produced:
• A validated SQL query with proper type casting
• A semantic embedding of the visual description
• Associated metadata linking the query to its business con-
text

4.1.4 Performance Analysis. The extraction process was evaluated
on a business performance dashboard containing 47 visualizations
across 14 different types, achieving:

• 100% success rate in SQL extraction (47 out of 47 visuals)
• 100% success rate in business context description generation
• 100% success rate in filter merging for applicable visuals
• 94% success rate in validation (44 out of 47 visuals)
• An average of 3.2 refinement attempts per visual

These results demonstrate the robustness of our approach across
diverse visualization types and complex business logic patterns. The
final knowledge bank created from these extractions was indexed
in Amazon OpenSearch to support vector-based retrieval for the
GenBI agent, enabling contextually accurate SQL generation that
aligns with established business practices.

4.1.5 Amplifying Extraction Value through Control Combinations.
While our system successfully extracted 47 SQL queries from dash-
board visuals, the real power comes from how these queries can be
combined with the various controls and filters extracted from the
dashboard. Each visual typically supports multiple filter combina-
tions (segment selections, date ranges, geographic filters), meaning
a single extracted SQL query can serve as a template for thousands
of potential variations. During the query retrieval process, our sys-
tem identifies relevant SQL patterns from the original 47 extractions
but can dynamically apply different filter combinations based on
the user’s natural language query. This combinatorial approach
dramatically expands the effective coverage of our knowledge bank,
enabling accurate responses to a much wider range of questions
than the original dashboard visuals explicitly presented.

4.2 Data Dictionary Implementation
The data dictionary system employs a metadata extraction and
enrichment pipeline, as illustrated in Figure 5. This pipeline trans-
forms raw database schema information into searchable, semantically-
rich column descriptions that bridge the gap between technical data
structures and business terminology. This approach addresses com-
mon limitations of traditional data dictionaries, which often suffer
from manual maintenance requirements, lack of business context,
poor discoverability, limited search functionality, and scalability
issues.

This automated data dictionary consists of four primary compo-
nents:

(1) Metadata Extraction Engine: Utilizes AWS Athena to
query database metadata and extract comprehensive sta-
tistics about tables and columns

(2) DescriptionGenerator: Leverages an LLM to create contextually-
aware descriptions

(3) Search Index: Implements hybrid search throughOpenSearch
with both text-based and vector-based capabilities

Figure 5: Automated Data Dictionary Generation Process

(4) API Layer: Provides programmatic access to the dictionary
via Lambda functions

4.2.1 Metadata Extraction. Our implementation follows a multi-
stage extraction process that progressively builds richer context for
each database element:

(1) Schema Exploration: The process begins by querying the
schema.tables metadata through Amazon Athena to iden-
tify all available tables in the target databases.

(2) Table Iteration: For each identified table, the system exe-
cutes structured metadata queries to collect basic column
attributes including names, data types, and constraint infor-
mation.

(3) Deep ColumnAnalysis: The core of our approach employs
a specialized Column Analysis Function that executes three
distinct types of analytical queries for each column:
• Numerical Range Analysis: For numeric columns, queries
extracting distribution statistics including minimum/max-
imum values, averages, medians, and percentile break-
downs.

KDD 2025 Workshop, August 6, 2025, Toronto, Canada Standerfer et al.

• Text/Categorical Analysis: For string and categorical columns,
queries examining value patterns, format consistency, and
distinct value counts.

• Value Distribution Analysis: For all column types, sampling
representative values and calculating frequency percent-
ages to identify dominant patterns.

These analyses are then transformed into structured meta-
data outputs containing column names, data types, range
boundaries and distribution metrics, and foreign key rela-
tionships.

This progressive extraction approach ensures comprehensive
metadata collection while managing query complexity and execu-
tion time through strategic parallelization and query optimization
techniques. The extracted metadata serves two critical purposes:
providing context for LLM-based description generation and en-
abling advanced search capabilities based on statistical patterns
rather than just textual attributes.

4.2.2 Description Generation. A key innovation in our system is
the application of Large Language Models to transform techni-
cal metadata into business-oriented column descriptions. Our ap-
proach:

(1) Constructs a comprehensive context vector for each column
by combining its statistical signatures with table relation-
ships and naming patterns

(2) Feeds this context through a specialized LLM prompt de-
signed to emphasize business meaning over technical speci-
fications

(3) Generates natural language descriptions that capture the
column’s purpose within its business domain context

(4) Incorporates value pattern insights to highlight typical usage
patterns and constraints

This transformation bridges the gap between technical data-
base structures and business terminology, creating descriptions
that enhance discoverability without requiring detailed technical
knowledge.

4.2.3 Hybrid Search Index. The system implements a dual-mode
indexing strategy to support both keyword and semantic search
capabilities:

(1) Text-Based Indexing: The complete column information,
including the generated description, is indexed in Amazon
OpenSearch with specialized analyzers optimized for data-
base terminology.

(2) Semantic Vector Indexing: In parallel, the system gener-
ates embeddings of the column descriptions, creating dense
vector representations that capture semantic meaning be-
yond exact terminology matches.

This dual-indexing approach enables flexible search strategies
accommodating diverse user needs, from technical users seeking
specific columns to business users exploring available data assets
through natural language concepts.

Building on the dual-mode index, our search implementation
combines multiple query strategies:

(1) Custom Token Analysis: Specialized text analyzers trans-
form database naming conventions (snake_case, camelCase)
into searchable tokens through custom tokenization rules.

(2) Statistical Pattern Matching: Search criteria can include
value characteristics, allowing users to find columns with
specific distribution patterns.

(3) Vector Similarity Search: Semantic queries leverage embedding-
based similarity to identify conceptually relevant columns
even when terminology differs.

(4) Combined Ranking Algorithm: Results from different
search strategies are integrated through a weighted scoring
system that balances exact matches with semantic relevance.

4.2.4 Comprehensive Search Strategies. Our system supports five
complementary search strategies to accommodate diverse user
needs:

(1) Column Name Search: For technical users familiar with
naming conventions, including exact, phrase, and fuzzymatch-
ing.

(2) Description Search: For business users searching by con-
cept, using semantic matching against AI-generated descrip-
tions.

(3) Hybrid Search: Combining both approaches for comprehen-
sive results, merging and deduplicating results from multiple
search strategies.

(4) Filtered Searches: For narrowing results by technical crite-
ria, including table-specific and data type filtering.

(5) Natural Language Query Processing: For conversational
interfaces, extracting key search terms from natural language
queries.

This multi-strategy approach enables effective data discovery
for users with varying levels of technical knowledge and different
search intents.

4.2.5 Usage & Optimization. To maintain efficiency across large
data estates, the system implements several performance optimiza-
tions:

(1) Parallel Query Execution: Column analysis queries are
executed in parallel batches, with dynamic sizing based on
table complexity and system load.

(2) Incremental Processing: The system maintains execution
state to process only new or modified tables during refresh
cycles, minimizing redundant processing.

(3) Optimized Query Design: Statistical queries are designed
with sampling and approximate aggregate functions when
appropriate, balancing accuracy with performance.

(4) Caching Layer: Frequently accessed metadata and gener-
ated descriptions are cached to optimize response times for
common queries.

Performance evaluation demonstrated the system’s ability to
process metadata for over 5,000 columns across 200+ tables in
under 30 minutes, with search response times consistently below
200ms for typical user queries.

By integrating comprehensivemetadata extraction, LLM-powered
description generation, and sophisticated search capabilities, our
data dictionary system enables intuitive data discovery that main-
tains the technical precision required for effective query generation

Automated Knowledge Bank Construction for Business Intelligence LLMs KDD 2025 Workshop, August 6, 2025, Toronto, Canada

while accommodating the varied terminology needs of business
users.

4.3 Business Terminology Index
To complement the technical metadata, we also implemented a busi-
ness terminology index that captures domain-specific concepts and
definitions. This component was created by scraping existing inter-
nal documents and organizing the terminology in an OpenSearch
index for efficient retrieval. While less sophisticated than the other
two discovery mechanisms, this component provides critical busi-
ness context for interpreting user queries and aligning responses
with organizational terminology.

4.4 GenBI Agent Implementation
The GenBI agent was implemented using Amazon Bedrock with
structured knowledge retrieval capabilities and specialized action
groups for data discovery and execution:

1 GenBI Agent (Orchestration Layer)
2 |-- Bedrock LLM
3 |-- Orchestration Prompts
4 `-- Action Groups
5 |-- Data Discovery Actions
6 | |-- DataDiscovery Router Function
7 | | |-- TermDefinitionSearch Lambda
8 | | |-- ColumnsSearch Lambda
9 | | `-- SqlSearch Lambda
10 |-- Execute Athena SQL Actions
11 | `-- ExecuteAthenaSQL Lambda
12 `-- Data Visualization Actions
13 `-- GraphGenerate Lambda

The implementation leverages several AWS services in an inte-
grated architecture:

• Amazon Bedrock: Provides foundational LLM capabilities
with specialized knowledge-focused prompts

• AWS Lambda: Powers all functional components through
serverless execution, with particular emphasis on the knowl-
edge retrieval functions

• Amazon OpenSearch: Enables both vector and keyword
search across all knowledge repositories, with specialized
indices for SQL patterns, data definitions, and business ter-
minology

• Amazon Athena: Serves as both a query execution engine
and metadata source

• Amazon S3: Provides the underlying storage for both data
and session state

The user interface consists of three complementary components:

• Chat Interface: Accepts natural language queries and dis-
plays textual responses with embedded references to discov-
ered knowledge sources

• Image Viewer: Renders visualizations generated from query
results

• Response Trace: Provides visibility into which knowledge
sources were utilized during query processing, enhancing
user trust and allowing for feedback on knowledge quality

Central to our implementation is the DataDiscovery Router Func-
tion, which coordinates knowledge retrieval operations across mul-
tiple specialized sources. This router ensures that each query lever-
ages all relevant knowledge artifacts while maintaining session
context between interactions.

The agent follows a knowledge-centric workflow for processing
queries:

(1) Define relevant business terms using the terminology index,
establishing domain context

(2) Identify appropriate tables and columns using the compre-
hensive data dictionary

(3) Retrieve similar known-good queries from the SQL knowl-
edge bank extracted from dashboards

(4) Generate contextually appropriate SQL by synthesizing the
retrieved knowledge

(5) Execute SQL against Athena and create visualizations using
Python

(6) Store session context to maintain continuity across related
queries

This approach enables natural language-driven data exploration
that maintains business context alignment through specialized
knowledge sources rather than requiring extensive model fine-
tuning or manual prompt engineering for each query pattern.

5 Results
The GenBI system successfully achieved all five primary functional
requirements identified for the proof of concept:

(1) Enable GenBI without BI/SQL familiarity
(2) Generate narrative and visual query outputs
(3) Minimize user setup costs
(4) Enable scalability across the organization
(5) Provide orchestrated agents with enhanced context
Our evaluation focused on two key dimensions: the system’s

ability to extract knowledge from dashboards and its performance in
answering natural language queries using this extracted knowledge.

5.1 Dashboard Knowledge Extraction
Performance

The system demonstrated robust performance in automatically
extracting SQL knowledge from existing QuickSight dashboards:

• 94% dashboard-to-SQL extraction success rate across the full
range of dashboard visuals and components

• 100% success rate in business context description generation
• Successful processing of 14 different visualization types with
varying complexity

This high extraction success rate validates our approach of treat-
ing dashboards as comprehensive knowledge sources containing
both technical implementation and business context.

5.2 Natural Language Query Performance
Using the automatically extracted and indexed knowledge, we eval-
uated the system’s ability to answer unseen test questions across
various metric categories:

The performance pattern strongly validates our central thesis:
the system achieved 97% accuracy for queries about metrics directly

KDD 2025 Workshop, August 6, 2025, Toronto, Canada Standerfer et al.

Table 1: Query Accuracy by Knowledge Alignment

Query Category Accuracy
All unseen test questions (overall) 83%
Metric topics directly visualized in source dashboards 97%
Metrics requiring novel combinations or calculations 76%

visualized in source dashboards, demonstrating that dashboard-
extracted knowledge serves as an effective foundation for natural
language analytics. The overall 83% immediate accuracy on unseen
test questions is particularly notable given that it relies solely on
automatically extracted knowledge rather than manually curated
SQL or descriptions.

These results demonstrate how automated knowledge extraction
from existing assets can effectively power natural language analyt-
ics while maintaining business context integrity. The performance
differential between visualized metrics (97%) and novel combina-
tions (76%) also provides clear direction for improvement: expand-
ing dashboard coverage or selectively augmenting the knowledge
base for critical metrics not currently visualized.

6 Conclusion
This paper presented a scalable approach to implementing gen-
erative BI systems that leverage automated knowledge base con-
struction from existing business intelligence assets. By treating
dashboards as "proven recipes" containing both technical implemen-
tation and business context, we demonstrated how organizations
can rapidly deploy natural language interfaces to complex business
data without extensive manual documentation, data engineering
expertise, or model fine-tuning.

The key innovations—automated SQL extraction from dash-
boards, AI-powered data dictionary generation, and business ter-
minology indexing—provide a comprehensive foundation for LLM-
based query processing that maintains business context alignment.
This approach significantly reduces the implementation burden for
generative BI systems while improving their accuracy and utility
in domain-specific applications.

References
[1] Amazon Web Services. 2022. Amazon QuickSight Q—ML-powered BI question

answering. Amazon Web Services, Inc.
[2] AWS QuickSight. 2024. QuickSight Demo Central: Executive Business Sum-

mary Dashboard. https://democentral.learnquicksight.online/#Analysis-
DashboardDemo-Exec-Business-Summary

[3] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing
Systems, Vol. 33. 9459–9474.

[4] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language
Interface for Relational Databases. Proceedings of the VLDB Endowment 8, 1 (2014),
73–84. doi:10.14778/2735461.2735468

[5] Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng, Can Zheng, Junxiang
Wang, Tanmoy Chowdhury, Yun Li, Hejie Cui, Xuchao Zhang, Tianjiao Zhao,
Amit Panalkar, Dhagash Mehta, Stefano Pasquali, Wei Cheng, Haoyu Wang,
Yanchi Liu, Zhengzhang Chen, Haifeng Chen, Chris White, Quanquan Gu, Jian
Pei, Carl Yang, and Liang Zhao. 2023. Domain Specialization as the Key to Make
Large Language Models Disruptive: A Comprehensive Survey. arXiv preprint
arXiv:2305.18703 (2023). doi:10.48550/arXiv.2305.18703

[6] Arpit Narechania, Arjun Srinivasan, and John Stasko. 2021. NL4DV: A Toolkit for
Generating Analytic Specifications for Data Visualization from Natural Language

Queries. IEEE Transactions on Visualization and Computer Graphics 27, 2 (2021),
369–379. doi:10.1109/TVCG.2020.3030378

[7] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed
In-Context Learning of Text-to-SQL with Self-Correction. arXiv preprint
arXiv:2304.11015 (2023). doi:10.48550/arXiv.2304.11015

[8] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing incrementally for constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. 9895–9901.

[9] Vidya Setlur, Sarah E. Battersby, Melanie Tory, Rich Gossweiler, and Angel X.
Chang. 2016. Eviza: A Natural Language Interface for Visual Analysis. In Pro-
ceedings of the 29th Annual Symposium on User Interface Software and Technology
(Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY,
USA, 365–377. doi:10.1145/2984511.2984588

[10] S. M Towhidul Islam Tonmoy, S M Mehedi Zaman, Vinija Jain, Anku Rani,
Vipula Rawte, Aman Chadha, and Amitava Das. 2024. A Comprehensive
Survey of Hallucination Mitigation Techniques in Large Language Models.
arXiv:2401.01313 [cs.CL]

[11] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi,
Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hättasch, Steffen
Eger, Ugur Cetintemel, and Carsten Binnig. 2020. DBPal: A Fully Pluggable
NL2SQL Training Pipeline. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. ACM, 2347–2361. doi:10.1145/3318464.
3380589

https://democentral.learnquicksight.online/#Analysis-DashboardDemo-Exec-Business-Summary
https://democentral.learnquicksight.online/#Analysis-DashboardDemo-Exec-Business-Summary
https://doi.org/10.14778/2735461.2735468
https://doi.org/10.48550/arXiv.2305.18703
https://doi.org/10.1109/TVCG.2020.3030378
https://doi.org/10.48550/arXiv.2304.11015
https://doi.org/10.1145/2984511.2984588
https://arxiv.org/abs/2401.01313
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1145/3318464.3380589

Automated Knowledge Bank Construction for Business Intelligence LLMs KDD 2025 Workshop, August 6, 2025, Toronto, Canada

A SQL Extraction Prompt Templates
These specialized prompts guide LLMs through different stages of
the SQL extraction process, ensuring consistent and high-quality
results.

A.1 SQL Extraction Prompt

1 You are an expert in analyzing Amazon Quicksight dashboard visuals.
Your task is to interpret the visual definition and create
corresponding SQL code.

2
3 For each visual, you will generate an SQL query that could be used

to fetch the data for this visual.
4
5 Instructions:
6 - Create a single ANSI SQL statement (AWS Athena database) to supply

the visual.
7 - Use the Source Table name(s) as the name of the source table(s).
8 - Focus ONLY on the actual data fields and calculations specified in

the JSON structure.
9 - Use the Expression (if given) as the column calculation logic, and

the ColumnName as the output column name in the SQL statement
(Ex: Expression AS ColumnName).

10 - There may be a Name field in the JSON structure. Do NOT use Name
as a SQL column name, always use the ColumnName as the SQL
column name.

11 - If the visual is just an image file, or does not require tabular
data, return an empty sql code block (Ex: ```sql\n```)

12 - Wrap your response in an sql code block so that it can be parsed.
(Ex: ```sql\n(sql code...)```)

13 - Do not include any explanations or prose.

A.2 Description Generation Prompt

1 You are an expert in analyzing Amazon Quicksight dashboard visuals.
Your task is to interpret the visual definition and generate a
description.

2
3 For each visual, you will provide a brief description of what the

visual represents.
4
5 Instructions:
6 - Provide one paragraph describing what information the chart is

providing from a non-technical user's perspective
7 - Wrap your response in XML tags: <description>your description here

</description>
8 - If the visual is just an image file, or does not require tabular

data, return <description>N/A</description>

A.3 Filter Extraction and SQL Refinement
The system also employs specialized prompts for filter extraction
and SQL refinement. The filter extraction prompt identifies dash-
board controls and parameters, while the SQL refinement prompt
handles error correction using detailed Athena error messages. Due
to space constraints, these additional prompts are available in our
online repository.

B Dashboard-to-SQL Case Study
To illustrate our knowledge extraction methodology, we present a
complete case study of extracting SQL from aHeatMap visualization
in a business performance dashboard.

B.1 Visual Identification and Processing
The process begins with identifying the "Profit Segmentation"
HeatMap visual from the Business Performance Analysis dashboard.

This visual displays profit distribution across industry segments
and is part of a dashboard with multiple filtering controls.

The initial JSON definition includes configuration for rows (in-
dustry), columns (segment), and values (sum of profit). Our system
extracts this information to understand the visualization’s struc-
ture:

1 {
2 "VisualId": "3787bc03-63e6-45d1-bbf2-7baffa915d97",
3 "Title": {
4 "FormatText": {
5 "PlainText": "Profit Segmentation"
6 }
7 },
8 "ChartConfiguration": {
9 "FieldWells": {
10 "HeatMapAggregatedFieldWells": {
11 "Rows": [
12 {
13 "CategoricalDimensionField": {
14 "Column": {
15 "DataSetIdentifier": "B2B Sales",
16 "ColumnName": "industry"
17 }
18 }
19 }
20],
21 "Columns": [
22 {
23 "CategoricalDimensionField": {
24 "Column": {
25 "DataSetIdentifier": "B2B Sales",
26 "ColumnName": "segment"
27 }
28 }
29 }
30],
31 "Values": [
32 {
33 "NumericalMeasureField": {
34 "Column": {
35 "DataSetIdentifier": "B2B Sales",
36 "ColumnName": "profit"
37 },
38 "AggregationFunction": "SUM"
39 }
40 }
41]
42 }
43 },
44 "SortConfiguration": {
45 "HeatMapColumnSort": [
46 {
47 "Direction": "DESC"
48 }
49]
50 }
51 }
52 }

B.2 SQL Generation and Refinement Process
The system generates both a business description and SQL query
from the visual definition. The initial SQL is:

1 SELECT industry, segment, SUM(profit) AS profit
2 FROM dashboard_datasets.b2b_sales
3 GROUP BY industry, segment
4 ORDER BY segment DESC

Next, the system identifies applicable dashboard filters andmerges
them into the SQL:

1 SELECT industry, segment, SUM(profit) AS profit
2 FROM dashboard_datasets.b2b_sales

KDD 2025 Workshop, August 6, 2025, Toronto, Canada Standerfer et al.

3 WHERE date >= (SELECT MIN(date) FROM dashboard_datasets.b2b_sales)
4 AND segment IN (SELECT DISTINCT segment FROM dashboard_datasets.

b2b_sales LIMIT 1)
5 AND category IN (SELECT DISTINCT category FROM dashboard_datasets.

b2b_sales LIMIT 1)
6 AND ship_state IN (SELECT DISTINCT ship_state FROM

dashboard_datasets.b2b_sales LIMIT 1)
7 GROUP BY industry, segment
8 ORDER BY segment DESC

During validation, the system identifies a data type issue with
the profit column and automatically refines the SQL:

1 SELECT industry, segment, SUM(CAST(profit AS DOUBLE)) AS profit
2 FROM dashboard_datasets.b2b_sales
3 WHERE date >= (SELECT MIN(date) FROM dashboard_datasets.b2b_sales)
4 AND segment IN (SELECT DISTINCT segment FROM dashboard_datasets.

b2b_sales LIMIT 1)
5 AND category IN (SELECT DISTINCT category FROM dashboard_datasets.

b2b_sales LIMIT 1)
6 AND ship_state IN (SELECT DISTINCT ship_state FROM

dashboard_datasets.b2b_sales LIMIT 1)
7 GROUP BY industry, segment
8 ORDER BY segment DESC

This refined SQL successfully executes against the database,
completing the extraction process.

C Performance Metrics
C.1 SQL Extraction Success Rates
The dashboard SQL extraction process achieved the following re-
sults across the Business Performance Analysis dashboard:

• Total Visuals Processed: 47 across 5 sheets
• SQL Extraction Success Rate: 100% (47/47 visuals)
• Description Extraction Success Rate: 100% (47/47 visuals)
• Filter Merging Success Rate: 100% (37/37 applicable filters)
• SQL Validation Success Rate: 94% (44/47 visuals)
• Average Refinement Attempts: 3.2 attempts per visual

C.2 Success by Visualization Type
The system successfully handled 14 different visualization types
with varying success rates:

Table 2: SQL Extraction Success Rate by Visual Type

Visualization Type Count Success Rate
Line Chart 26 96%
KPI 6 100%
Insight 2 50%
Bar Chart 2 100%
Pivot Table 2 50%
TreeMap 1 100%
Pie Chart 1 100%
Gauge Chart 1 100%
Heat Map 1 100%
Table 1 100%
Filled Map 1 100%
Box Plot 1 100%
Sankey Diagram 1 100%
Waterfall Chart 1 100%

The three visuals that didn’t pass automatic validation contained
complex date formatting logic, nested aggregation functions, or cus-
tom multi-part calculations. All required issues could be identified
and fixed with minimal manual intervention.

D Core Implementation Components
This section highlights key implementation components of our
extraction architecture.

D.1 QuicksightDashboardProcessor Class
The QuicksightDashboardProcessor class forms the backbone
of our extraction system, handling the complex task of parsing
dashboard definitions:

1 class QuicksightDashboardProcessor:
2 def __init__(self, json_file_path: str, dataset_map: dict):
3 self.json_file_path = json_file_path
4 self.dataset_map = dataset_map
5 self.dashboard_name = self._get_dashboard_name()
6 self.dashboard_data = self._load_dashboard_data()
7 self.calculated_fields_dict = self.

_process_calculated_fields()
8
9 def _process_calculated_fields(self) -> dict:
10 """Process calculated fields from the dashboard definition

"""
11 calculated_fields = self.dashboard_data.get('Definition', {})

.get("CalculatedFields", [])
12 calculated_fields = self._trace_expressions(

calculated_fields)
13 calculated_fields = self._process_dataset_identifiers(

calculated_fields)
14 return {(field['DataSetIdentifier'], field['Name']): field['

Expression']
15 for field in calculated_fields}
16
17 def extract_visuals(self) -> pd.DataFrame:
18 """Extract all visuals from the dashboard"""
19 sheets = self.dashboard_data.get('Definition', {}).get('

Sheets', [])
20 visuals = []
21
22 for sheet in sheets:
23 sheet_id = sheet.get('SheetId')
24 sheet_name = sheet.get('Name')
25 sheet_visuals = sheet.get('Visuals', [])
26
27 for visual in sheet_visuals:
28 visual_data = {
29 'SheetId': sheet_id,
30 'SheetName': sheet_name,
31 'VisualId': visual.get('VisualId'),
32 'Title': self._extract_title(visual),
33 'Type': self._determine_visual_type(visual),
34 'Definition': visual
35 }
36 visuals.append(visual_data)
37
38 return pd.DataFrame(visuals)

D.2 SQL Extraction and Refinement
Our system employs a two-model LLM strategy optimized for dif-
ferent extraction tasks:

1 class LLMExtractor:
2 def __init__(self, llm: ChatBedrock):
3 self.llm = llm
4
5 def extract_sql(self, visual_definition: dict) -> str:
6 """Extract SQL from a visual definition"""
7 prompt = ChatPromptTemplate.from_messages([

Automated Knowledge Bank Construction for Business Intelligence LLMs KDD 2025 Workshop, August 6, 2025, Toronto, Canada

8 ("system", SQL_EXTRACTION_PROMPT),
9 ("human", "Please␣use␣this␣Quicksight␣visual␣definition:\

n{visual_def}␣to␣generate␣SQL.")
10])
11
12 chain = prompt | self.llm | StrOutputParser()
13 response = chain.invoke({"visual_def": json.dumps(

visual_definition)})
14
15 # Extract SQL from code block
16 sql = extract_code_block(response, "sql")
17 return sql if sql else ""
18
19 def refine_sql(self, original_sql: str, error_message: str) ->

str:
20 """Refine SQL based on error message"""
21 prompt = ChatPromptTemplate.from_messages([
22 ("system", SQL_REFINEMENT_PROMPT),
23 ("human", "Original␣SQL:\n{sql}\n\nError:\n{error}")
24])
25
26 chain = prompt | self.llm | StrOutputParser()
27 response = chain.invoke({"sql": original_sql, "error":

error_message})
28
29 # Extract refined SQL from code block
30 sql = extract_code_block(response, "sql")
31 return sql if sql else original_sql

D.3 Data Dictionary Implementation
The automated data dictionary system employs a sophisticated
metadata extraction pipeline that progressively builds rich context
for database elements:

1 class DataDictionaryExtractor:
2 def __init__(self, aws_region: str, database_name: str,

s3_output_dir: str):
3 self.database = database_name
4 self.aws_region = aws_region
5 self.s3_output = s3_output_dir
6 self.athena_client = AthenaClient(s3_output_dir)
7
8 def get_column_value_info(self, table: str, column_name: str,
9 percent_threshold: float = 0.01) ->

List[Dict[str, Any]]:
10 """Get value distribution information for a specific column

"""
11 percentage_query = f"""
12 WITH total AS (
13 SELECT COUNT(*) AS total_count
14 FROM {self.database}.{table}
15),
16 value_counts AS (
17 SELECT
18 CASE WHEN {column_name} IS NULL THEN 'NULL'
19 ELSE CAST({column_name} AS VARCHAR)
20 END AS val,
21 COUNT(*) AS count
22 FROM {self.database}.{table}
23 GROUP BY
24 CASE WHEN {column_name} IS NULL THEN 'NULL'
25 ELSE CAST({column_name} AS VARCHAR)
26 END
27)
28 SELECT
29 val,
30 count,
31 CAST(count AS DOUBLE) / total.total_count AS percentage
32 FROM value_counts, total
33 WHERE CAST(count AS DOUBLE) / total.total_count > {

percent_threshold}
34 ORDER BY percentage DESC
35 """
36
37 result = self.run_query(percentage_query)

38 return self._process_value_distribution(result)

E Knowledge Bank Structure
Each entry in the SQL knowledge bank contains rich metadata to
facilitate effective retrieval:

1 {
2 "id": "3787bc03-63e6-45d1-bbf2-7baffa915d97",
3 "title": "Profit Segmentation",
4 "visual_type": "HeatMapVisual",
5 "sheet_name": "Summary",
6 "dashboard_name": "Business Summary Dashboard",
7 "description": "This heat map chart displays the total profit for

different industries and customer segments...",
8 "sql": "SELECT industry, segment, SUM(CAST(profit AS DOUBLE)) AS

profit \nFROM dashboard_datasets.b2b_sales \nWHERE date >= (
SELECT MIN(date) FROM dashboard_datasets.b2b_sales) \nAND
segment IN (SELECT DISTINCT segment FROM dashboard_datasets.b2
b_sales LIMIT 1) \nAND category IN (SELECT DISTINCT category
FROM dashboard_datasets.b2b_sales LIMIT 1) \nAND ship_state IN
(SELECT DISTINCT ship_state FROM dashboard_datasets.b2b_sales
LIMIT 1) \nGROUP BY industry, segment \nORDER BY segment DESC",

9 "source_tables": ["dashboard_datasets.b2b_sales"],
10 "filters": [
11 {
12 "name": "Start Date",
13 "type": "DateTimePicker",
14 "column": "date",
15 "description": "Filters data from the selected date forward"
16 },
17 {
18 "name": "Segment Filter",
19 "type": "Dropdown",
20 "column": "segment",
21 "multi_select": true
22 }
23],
24 "business_context": {
25 "purpose": "Strategic segmentation analysis for identifying high-

value industry/segment combinations",
26 "audience": "Sales leadership and account management teams",
27 "usage_pattern": "Weekly business reviews, quarterly strategic

planning",
28 "related_metrics": ["Customer Profitability", "Industry Revenue

Trend", "Segment Growth Rate"]
29 },
30 "technical_metadata": {
31 "refinement_attempts": 2,
32 "validation_success": true,
33 "extraction_date": "2024-04-29"
34 }
35 }

This structured format facilitates both semantic search through
the description field and pattern matching through the SQL field,
enabling effective retrieval of relevant examples during query gen-
eration.

F Search Implementation Details
The system implements a sophisticated hybrid search approach
combining keyword-based and vector-based techniques:

F.1 Custom Token Analysis for Database
Naming

1 "settings": {
2 "analysis": {
3 "analyzer": {
4 "column_analyzer": {
5 "type": "custom",
6 "tokenizer": "standard",

KDD 2025 Workshop, August 6, 2025, Toronto, Canada Standerfer et al.

7 "filter": [
8 "lowercase",
9 "word_delimiter_graph",
10 "unique"
11],
12 "char_filter": [
13 "underscore_to_space"
14]
15 }
16 },
17 "char_filter": {
18 "underscore_to_space": {
19 "type": "pattern_replace",
20 "pattern": "_",
21 "replacement": " "
22 }
23 }
24 }
25 }

F.2 Multi-Strategy Search
The search implementation employs multiple query strategies with
weighted scoring:

1 "bool": {
2 "should": [
3 // Exact match on the normalized column name
4 {
5 "term": {
6 "column_name.exact": {
7 "value": search_term,
8 "boost": 10.0
9 }
10 }
11 },
12 // Phrase match (words in exact order)
13 {
14 "match_phrase": {
15 "column_name": {
16 "query": search_term,
17 "boost": 5.0,
18 "slop": 1
19 }
20 }
21 },
22 // Token match (individual words in any order)
23 {
24 "match": {
25 "column_name": {
26 "query": search_term_no_underscores,
27 "operator": "and",
28 "boost": 3.0
29 }
30 }
31 },
32 // Description match
33 {
34 "match": {
35 "description": {
36 "query": search_term,
37 "boost": 1.0
38 }
39 }
40 }
41],
42 "minimum_should_match": 1,
43 "filter": []
44 }

F.3 Vector Search Integration
The system also supports vector-based semantic search using AWS
Bedrock embeddings:

1 class CustomVectorSearch:
2 def __init__(self, opensearch_url: str, index_name: str,
3 region: str = 'us-west-2',
4 embedding_model_id: str = 'amazon.titan-embed-text-

v2:0'):
5 self.opensearch_url = opensearch_url
6 self.index_name = index_name
7 self.bedrock_embeddings = self.get_embedder(
8 embedding_model_id=embedding_model_id,
9 region=region
10)
11
12 def get_embedder(self, embedding_model_id: str, region: str):
13 return BedrockEmbeddings(
14 region_name=region,
15 model_id=embedding_model_id
16)
17
18 def add_vectors(self, texts: List[str], embedding_contents: List

[str],
19 metadatas: List[Dict[str, Any]], batch_size: int

= 10):
20 embeddings = self.embedding_function.embed_documents(

embedding_contents)
21
22 for i in range(0, len(texts), batch_size):
23 texts_slice = texts[i:(i + batch_size)]
24 embeddings_slice = embeddings[i:(i + batch_size)]
25 metadatas_slice = metadatas[i:(i + batch_size)]
26
27 self.add_embeddings(
28 text_embeddings=[(t, e) for t, e in zip(texts_slice,

embeddings_slice)],
29 metadatas=metadatas_slice
30)

This hybrid approach enables both precise technical matching
for users familiar with database terminology and more exploratory
semantic search for business users approaching the system with
natural language questions.

	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Implementation Details
	4.1 SQL Knowledge Bank Implementation
	4.2 Data Dictionary Implementation
	4.3 Business Terminology Index
	4.4 GenBI Agent Implementation

	5 Results
	5.1 Dashboard Knowledge Extraction Performance
	5.2 Natural Language Query Performance

	6 Conclusion
	References
	A SQL Extraction Prompt Templates
	A.1 SQL Extraction Prompt
	A.2 Description Generation Prompt
	A.3 Filter Extraction and SQL Refinement

	B Dashboard-to-SQL Case Study
	B.1 Visual Identification and Processing
	B.2 SQL Generation and Refinement Process

	C Performance Metrics
	C.1 SQL Extraction Success Rates
	C.2 Success by Visualization Type

	D Core Implementation Components
	D.1 QuicksightDashboardProcessor Class
	D.2 SQL Extraction and Refinement
	D.3 Data Dictionary Implementation

	E Knowledge Bank Structure
	F Search Implementation Details
	F.1 Custom Token Analysis for Database Naming
	F.2 Multi-Strategy Search
	F.3 Vector Search Integration

