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Abstract

Whole slide image (WSI) analysis is gaining prominence within the medical imag-
ing field. Recent advances in pathology foundation models have shown the potential
to extract powerful feature representations from WSIs for downstream tasks. How-
ever, these foundation models are usually designed for general-purpose pathology
image analysis and may not be optimal for specific downstream tasks or cancer
types. In this work, we present Concept Anchor-guided Task-specific Feature
Enhancement (CATE), an adaptable paradigm that can boost the expressivity and
discriminativeness of pathology foundation models for specific downstream tasks.
Based on a set of task-specific concepts derived from the pathology vision-language
model with expert-designed prompts, we introduce two interconnected modules to
dynamically calibrate the generic image features extracted by foundation models
for certain tasks or cancer types. Specifically, we design a Concept-guided Informa-
tion Bottleneck module to enhance task-relevant characteristics by maximizing the
mutual information between image features and concept anchors while suppressing
superfluous information. Moreover, a Concept-Feature Interference module is
proposed to utilize the similarity between calibrated features and concept anchors
to further generate discriminative task-specific features. The extensive experiments
on public WSI datasets demonstrate that CATE significantly enhances the per-
formance and generalizability of MIL models. Additionally, heatmap and umap
visualization results also reveal the effectiveness and interpretability of CATE. The
source code is available at https://github.com/HKU-MedAI/CATE.

1 Introduction

Multiple Instance Learning (MIL) [26, 34, 23, 2] is widely adopted for weakly supervised analysis in
computational pathology, where the input of MIL is typically a set of patch features generated by a
pre-trained feature extractor (i.e., image encoder). Although promising progress has been achieved,
the effectiveness of MIL models heavily relies on the quality of the extracted features. A robust
feature extractor can discern more distinctive pathological features, thereby improving the predictive
capabilities of MIL models. Recently, several studies have explored using pretrained foundation
models on large-scale pathology datasets with self-supervised learning as the feature extractors
for WSI analysis [37, 7, 3, 36]. Additionally, drawing inspiration from the success of Contrastive
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Figure 1: (a) Illustration of the key idea of concept-guided information bottleneck to enhance
the task-relevant information and discard the task-irrelevant information. (b) Task-specific model
adaptation with CATE to enhance the generalization across different data sources.

Language-Image Pretraining (CLIP) [30, 20] in bridging visual and linguistic modalities, some works
have aimed to develop a pathology vision-language foundation model (VLM) to simultaneously
learn representations of pathology images and their corresponding captions [15, 25]. The intrinsic
consistency between the image feature space and caption embedding space in the pathology VLM
enables the image encoder to extract more meaningful and discriminative features for downstream
WSI analysis applications [25].

Although the development of these pathology foundation models has significantly advanced com-
putational pathology, these models are designed for general-purpose pathology image analysis and
may not be optimal for specific downstream tasks or cancer types, as the features extracted by the
image encoder may contain generic yet task-irrelevant information that will harm the performance of
specific downstream tasks. For example, as illustrated in Figure 1(a), the features extracted by the
image encoder of a pathology VLM can include both task-relevant information (e.g., arrangement
or morphology of tumor cells) and task-irrelevant elements(such as background information, stain
styles, etc.). The latter information may act as "noise", distracting the learning process of MIL models
tailored to specific tasks, and potentially impairing the generalization performance of these models
across different data sources. Consequently, it is crucial to undertake task-specific adaptation to
enhance feature extraction of generic foundation models and enable MIL models to concentrate on
task-relevant information and thus improve analysis performance and generalization [32, 38].

In this paper, we propose a novel paradigm, named Concept Anchor-guided Task-specific Feature
Enhancement (CATE), to enhance the generic features extracted by the pathology VLM for specific
downstream tasks (e.g., cancer subtyping). Without requiring additional supervision or significant
computational resources, CATE offers an approximately "free lunch" in the context of pathology
VLM. Specifically, we first derive a set of task-specific concept anchors from the pathology VLM
with task-specific prompts, and these prompts rely on human expert design or are generated through
querying large language models (LLMs), necessitating a certain level of pathological background
knowledge. Based on these concept anchors, we design two concept-driven modules, i.e., the Concept-
guided Information Bottleneck (CIB) module and the Concept-Feature Interference (CFI) module,
to calibrate and generate task-specific features for downstream analysis. Particularly, with the task-
specific concepts as the guidance, the CIB module enhances task-relevant features by maximizing
the mutual information between the image features and the concept anchors and also eliminates
task-irrelevant information by minimizing the superfluous information, as shown in Figure 1(a).
Moreover, the CFI module further generates discriminative task-specific features by utilizing the
similarities between the calibrated image features and concept anchors (i.e., concept scores). By
incorporating the CATE into existing MIL frameworks, we not only obtain more discriminative
features but also improve generalization regarding domain shift by eliminating task-irrelevant features
and concentrating on pertinent information, as shown in Figure 1(b).

In summary, the main contributions of this work are threefold:

• We introduce a novel method, named CATE, for model adaptation in computational pathology. To
the best of our knowledge, this is the first initiative to conduct task-specific feature enhancement
based on the pathology foundation model for MIL tasks.

• We design a new CIB module to enhance the task-relevant information and discard irrelevant
information with the guidance of task-specific concepts, and a new CFI module to generate
task-specific features by exploiting the similarities between image features and concept anchors.
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• Extensive experiments on Whole Slide Image (WSI) analysis tasks demonstrate that CATE
significantly enhances the performance and generalization capabilities of MIL models.

2 Related Work
Multiple Instance Learning (MIL) for WSI Analysis. MIL is the predominant paradigm for WSI
analysis, treating each WSI as a bag of patch instances and classifying the entire WSI based on
aggregated patch-level features. Attention-based methods [16, 26, 17, 39] are highly regarded for
their ability to determine the significance of each instance within the bag. For instance, Ilse et al. [16]
introduced an attention-based MIL model, while Lu et al. [26] proposed clustering-constrained-
attention to refine this mechanism further. To model the relationships among instances, graph-based
and Transformer-based methods have been developed [10, 2, 13]. For example, Chen et al. [2]
introduced a Transformer-based hierarchical network to capitalize on the inherent hierarchical
structure of WSIs.

Pathology Foundation Model. With the advancement of foundation models in computer vision,
several pathology foundation models have been developed to serve as robust image encoders for
WSI analysis. Riasatian et al. [31] proposed fine-tuning the DenseNet [12] on the TCGA dataset,
while Filiot et al. [7] utilized iBOT [42] to pretrain a vision Transformer using the Masked Image
Modeling framework. Recently, Chen et al. [3] pre-trained a general-purpose foundation model on
large-scale pathology datasets using DINOv2 [28], which has demonstrated strong and readily usable
representations for WSI analysis. Inspired by CLIP [30], Ikezogwo et al. [15], Huang et al. [14],
and Lu et al. [25] developed vision-language foundation models by training on large-scale pathology
datasets with image-caption pairs. These foundation models have demonstrated superior performance
in downstream tasks due to their ability to extract more discriminative features for WSI analysis.

Feature Enhancement in Computational Pathology. Several methods have been developed to
obtain more discriminative features for WSI analysis by adapting pathology foundation models [41,
24] or designing new plug-and-play modules [35]. For instance, Zhang et al. [41] suggested aligning
the image features with text features extracted from a pre-trained natural language model to enhance
the feature representation of WSI patch images, while it operates solely at the patch level, without
considering the informational relationship between image and text features. Recently, Tang et al. [35]
introduced Re-embedded Regional Transformer for feature re-embedding, aimed at enhancing WSI
analysis when integrated with existing MIL methods. However, while this method considers the
spatial information of WSIs and adds flexibility to MIL models, it falls short in extracting task-specific
discriminative information for WSI analysis.

3 Method

3.1 Overview

The proposed CATE can be seamlessly integrated with any MIL framework to adapt the existing
pathology foundation model (Pathology VLM) for performance-improved WSI analysis via task-
specific enhancement. Specifically, consider a training set D = {(x,y)} of WSI-label pairs, where
x = {x1,x2, ...,xN} is a set of patch features with dimension of C (i.e., xi ∈ RC ) extracted by the
image encoder of pathology VLM, N denotes the number of patches, and y is the corresponding
label. The objective of CATE is to obtain the corresponding enhanced task-specific feature set z from
the original feature x with the guidance of pre-extracted concepts anchors c (see description below)
for downstream usage:

z = CATE (x, c) , ŷ = MIL (z) . (1)

As illustrated in Figure 2, we design two different modules to enhance the extracted features from
foundation models: (1) Concept-guided Information Bottleneck (CIB) module calibrates original
image features with the guidance of concept anchors with information bottleneck principle; and
(2) Concept-Feature Interference (CFI) module generates discriminative task-specific features by
leveraging the similarities between the calibrated image features and concept anchors. Specifically,
the enhanced patch features can be represented as z = {z1, z2, ...,zN}, where zi is the concatenation
of the calibrated feature αi and the interference feature βi generated by CIB and CFI module:

zi = Concat [αi,βi] = Concat [CIB (xi, c) ,CFI (xi, c)] . (2)
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Figure 2: (a) Overview of CATE: the outputs of the CIB and CFI modules are concatenated to form
the enhanced feature for downstream MIL models. (b) Task-relevant concept generation. (c) Concept-
guided Information Bottleneck (CIB) module. (c) Concept-Feature Interference (CFI) module.

Concept Extraction. We extract two kinds of task-specific concept anchors, c = {ccs, cca}, com-
prising class-specific concepts ccs = {ccs

i }mi=1 (e.g., subtyping classes) and class-agnostic concepts
cca = {cca

i }ni=1 (e.g., adipose, connective, and normal tissues), with m and n representing the num-
bers of class-specific and class-agnostic concepts, respectively. These concepts are generated by the
text encoder of pathology VLM with prompt p. Each prompt consists of a class name (e.g., "invasive
ductal carcinoma") and a template (e.g., "An image of <CLASSNAME>"). To obtain more robust
concepts, we use multiple prompts for each class and the final concept anchor is the average of the
embeddings generated by different prompts. Details of class names and templates for various tasks
are provided in Appendix G. Note that due to the inherent consistency between the image and text
embedding space in VLM, these extracted concepts can also be regarded as image concept vectors.

3.2 Concept-guided Information Bottleneck

The objective of this module is to find a distribution p(α|x) that maps the original image feature x
into a representation α, which contains enhanced task-discriminative characteristics and suppressed
task-irrelevant information. WSIs typically contain various cell types or tissues (e.g., tumor cells,
normal cells, adipose tissue, connective tissue), while only a subset of patches (e.g., with tumor
cells) is crucial for certain tasks such as tumor subtyping. We thus define x̂ = {x̂i}ki=1 ⊆ x as
the representative subset of the original feature set (e.g., tumor tissue patches), where k denotes the
number of representative patches. Note that this selection can be conducted with a simple comparison
of image features with class-specific concepts (see discussion below). To this end, the corresponding
enhanced feature set is α̂ = {α̂i}ki=1 ⊆ α and we want to find the conditional distribution p(α̂i|x̂i)
to map the selected patch feature x̂i ∈ RC into a more discriminative enhanced feature α̂i ∈ RC ,
which is discriminative enough to identify the label y.

Sufficiency and Consistency Requirements. To quantify the informativeness requirement of the
calibrated feature α̂, we consider the sufficiency of α̂ for y. As defined in Appendix E.1, the encoded
feature α̂ derived from the original feature x̂ is sufficient for determining the label y if and only if
the amount of task-specific information remains unchanged after calibration, i.e., I(x̂;y) = I(α̂;y).
However, the label y pertains to the slide level and specific labels cannot be assigned to each instance
due to the absence of patch-level annotations.

To address this challenge, we propose using the task-specific concept anchor as the guidance for
each single α̂. Specifically, we posit that the concept anchor c is distinguishable for the task
and contains task-relevant information for label y. Given the consistency between image and text
features in pathology VLM, any representation α̂ containing all information accessible from both
image feature x̂ and concept c will also encapsulate the discriminative information required for the
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label. This consistency requirement is detailed in Appendix E.1. Thus, if α̂ is sufficient for c (i.e.,
I(x̂; c|α̂) = 0), then α̂ is as predictive for label y as the joint of original feature x̂ and concept
anchor c. Applying the chain rule of mutual information, we derive:

I(x̂; α̂) = I(α̂; c)︸ ︷︷ ︸
Predictive Information

+ I(x̂; α̂|c)︸ ︷︷ ︸
Superfluous Information

. (3)

According to the consistency between the concept anchor and original feature, the mutual information
term I(α̂; c) represents the predictive information for the task, while the conditional information term
I(x̂; α̂|c) denotes task-irrelevant information (i.e., superfluous information) in original patch feature
x̂, which can be minimized to enhance the robustness and generalization ability of downstream MIL
models. As a result, the main objective of the feature calibration in this module can be formalized as
maximize predictive information I(α̂; c) while minimize the superfluous information I(x̂; α̂|c).

Predictive Information Maximization (PIM). The predictive information in Equ (3) equals to the
mutual information between the calibrated feature and concept anchors. To maximize this, we choose
the InfoNCE [27] to estimate the lower bound of the mutual information, which can be obtained
by comparing positive pairs sampled from the joint distribution α̂, ccs

pos ∼ p(α̂, ccs) to pairs α̂, ccs
j

and α̂, cca
j built using a set of negative class concepts ccs

j ∼ p (ccs) and class-agnostic concepts
cca
j ∼ p (cca):

INCE (α̂; c) = E
α̂,ccs

pos

[
k∑

i=1

log
f
(
ccs

pos, α̂i

)∑m
j=1 f

(
ccs
j , α̂i

)
+
∑n

j=1 f
(
cca
j , α̂i

)] . (4)

We set f (c, α̂i) = exp
(
α̂T

i c/τ
)

with τ > 0 in practice following [27]. By maximizing this mutual
information lower bound, f (c, α̂i) will be proportional to the density ratio p (c, α̂i)/p (c) p (α̂i) as
proved in [27]. Hence, f (c, α̂i) preserves the mutual information between the calibrated feature and
concept anchor. The detailed derivation can be found in Appendix E.2. The loss function for PIM
can be denoted as:

LPIM = E
α̂,ccs

pos

[
−

k∑
i=1

α̂T
i c

cs
pos

τ

]
+ E

α̂,ccs
pos

 k∑
i=1

log

 m∑
j=1

exp
α̂T

i c
cs
j

τ
+

n∑
j=1

exp
α̂T

i c
ca
j

τ

 . (5)

Superfluous Information Minimization (SIM). To compress task-irrelevant information, we aim to
minimize the superfluous information term as defined in Equ (3). This objective can be achieved by
minimizing the mutual information I(x̂; α̂). In practice, we conduct SIM for all patches in the subset
x, as each patch may contain task-irrelevant information. Following [1], it can be represented as:

I(x;α) =

∫
p (x,α) log p (α|x) dxdα−

∫
p (α) log p (α) dα. (6)

After that, we let the distribution of α: r (α) (e.g., Gaussian distribution in this work), be a variational
approximation to the marginal distribution p (α), and we can obtain the upper bound for I(x;α):

I(x;α) ≤
∫

p (x) p (α|x) log p (α|x)
r (α)

dxdα. (7)

Furthermore, we use a variational distribution qθ (α|x) with parameter θ to approximate p (α|x) and
we implement the parameterization of the variational distribution with MLP by predicting the mean
and variance of the Gaussian distribution and sample the calibrated feature α from this distribution:

α ∼ N
(
MLPµ (x) ,MLPΣ (x)

)
. (8)

In practice, we implement this by utilizing the reparameterization trick [18] to obtain an unbiased
estimate of the gradient and further optimize the variational distribution. The detailed derivation
can be found in Appendix E.3. The minimization of the upper bound of I(x;α) equals to the
minimization of the Kullback-Leibler divergence between qθ (α|x) and r (α). Therefore, the loss
function can be represented as:

LSIM = E

[
k∑

i=1

DKL (qθ (αi|xi) ||r (αi))

]
. (9)
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Discussion. We further provide explanation of CIB module with the information plane [8, 6] in
Appendix F. It should be noted that the PIM supervises only the representative subset x̂ containing
task-relevant information (selected by the similarity between image features and corresponding
class-specific concepts). Meanwhile, the SIM is applied to all patches in x, as any patch may carry
information irrelevant to the task (e.g., background information and stain styles). Besides, SIM
cannot be directly optimized without the guidance of concept anchors (i.e., PIM) due to the absence
of patch-level labels. As demonstrated in the ablation study in Section 4.4, the absence of concept
anchor guidance leads to the collapse of discriminative information in the calibrated feature, adversely
affecting downstream task performance. By maximizing predictive information and minimizing
superfluous details, the CIB module effectively enhances the discriminative capacity of the original
features and aligns them with the task-specific concept anchors for improved prediction.

3.3 Concept-Feature Interference

We also propose the Concept-Feature Interference (CFI) module to utilize the similarity characteristic
between calibrated features and concept anchors to further obtain robust and discriminative infor-
mation for the downstream tasks. Our primary focus is on the class-specific concept anchors ccs.
Specifically, for each CIB encoded feature αi, we calculate the cosine similarity between αi and
each class-specific concept ccs

i . It is important to note that the number of class-specific concepts m
is larger than the number of classes, as we use multiple <CLASSNAME> and templates to generate
the concept anchor for each class, as shown in the Appendix G. Thus, we can obtain the similarity
vector by concatenating the similarity scores between αi and each class-specific concept ccs

i . To
integrate the interference information (similarity relationship) into the enhanced feature, we align the
similarity vector with the calibrated feature αi using a Self-Normalizing Network (SNN) layer [19].
This allows us to obtain the final interference vector βi of CFI:

βi = SNN(Concat [{Sim (αi, c
cs
i )}mi=1]) . (10)

The interference vector contains superficial information that indicates the similarity between the
calibrated feature and concept anchor directly. This is completely different from the calibrated
feature of the CIB module, which contains discriminative latent information for the downstream
tasks. Therefore, integrating the interference feature can further provide robust and discriminative
information for the downstream tasks.

Discussion. The CFI module is designed to utilize the similarity characteristic between calibrated
feature and concept anchor as a discriminative feature, which can be further integrated into the
calibrated feature for downstream tasks. This is different from other studies that directly compare
the similarity between visual features and textual concept features of different classes to perform
zero-shot classification [25].

3.4 Training Objective

The overall training objective of the CATE framework can be represented as the combination of
the cross entropy loss LCE for the downstream tasks, the predictive information maximization loss
LPIM , and the superfluous information minimization loss LSIM :

L = LCE + λPLPIM + λSLSIM , (11)

where λP and λS are hyperparameters and influence of them is discussed in Appendix C.

4 Experiments

4.1 Experimental Settings

Tasks and Datasets. We conducted cancer subtyping tasks on three public WSI datasets from The
Cancer Genome Atlas (TCGA) project: Invasive Breast Carcinoma (BRCA), Non-Small Cell Lung
Cancer (NSCLC), and Renal Cell Carcinoma (RCC). Detailed dataset information is available in
Appendix D.

6



Table 1: Cancer Subtyping Results on BRCA of MIL Models Incorporated with CATE.

Method CATE
BRCA (NIND=1)

OOD-AUC Gain OOD-ACC Gain IND-AUC Gain IND-ACC Gain

ABMIL ✗ 0.914±0.015 N/A 0.852±0.014 N/A 0.963±0.044 N/A 0.888±0.053 N/A
CLAM ✗ 0.907±0.017 N/A 0.802±0.053 N/A 0.965±0.049 N/A 0.888±0.068 N/A
DSMIL ✗ 0.925±0.020 N/A 0.836±0.048 N/A 0.969±0.040 N/A 0.900±0.080 N/A
DTFD-MIL ✗ 0.912±0.012 N/A 0.858±0.020 N/A 0.944±0.058 N/A 0.894±0.070 N/A
TransMIL ✗ 0.918±0.015 N/A 0.832±0.046 N/A 0.969±0.036 N/A 0.918±0.067 N/A
R2T-MIL† ✗ 0.901±0.027 N/A 0.816±0.051 N/A 0.965±0.033 N/A 0.894±0.022 N/A

ABMIL ✓ 0.951±0.003 ↑4.05% 0.897±0.026 ↑5.28% 0.998±0.006 ↑3.63% 0.965±0.045 ↑8.67%
CLAM ✓ 0.951±0.005 ↑4.85% 0.906±0.020 ↑12.97% 0.998±0.006 ↑3.42% 0.965±0.037 ↑8.67%
DSMIL ✓ 0.936±0.007 ↑1.19% 0.866±0.036 ↑3.59% 0.990±0.022 ↑2.17% 0.959±0.044 ↑6.56%
DTFD-MIL ✓ 0.947±0.004 ↑3.84% 0.906±0.009 ↑5.59% 0.985±0.028 ↑4.34% 0.953±0.042 ↑6.60%
TransMIL ✓ 0.938±0.005 ↑2.18% 0.880±0.023 ↑5.77% 0.998±0.006 ↑2.99% 0.965±0.027 ↑5.12%

Method CATE
BRCA (NIND=2)

OOD-AUC Gain OOD-ACC Gain IND-AUC Gain IND-ACC Gain

ABMIL ✗ 0.899±0.035 N/A 0.892±0.019 N/A 0.967±0.019 N/A 0.941±0.024 N/A
CLAM ✗ 0.893±0.030 N/A 0.862±0.019 N/A 0.960±0.042 N/A 0.935±0.027 N/A
DSMIL ✗ 0.881±0.032 N/A 0.852±0.028 N/A 0.946±0.057 N/A 0.940±0.020 N/A
DTFD-MIL ✗ 0.909±0.019 N/A 0.878±0.014 N/A 0.973±0.023 N/A 0.945±0.041 N/A
TransMIL ✗ 0.904±0.023 N/A 0.852±0.090 N/A 0.966±0.031 N/A 0.936±0.052 N/A
R2T-MIL† ✗ 0.902±0.028 N/A 0.873±0.027 N/A 0.946±0.060 N/A 0.929±0.048 N/A

ABMIL ✓ 0.943±0.006 ↑4.89% 0.907±0.018 ↑1.68% 0.981±0.018 ↑1.45% 0.948±0.030 ↑0.74%
CLAM ✓ 0.945±0.008 ↑5.82% 0.896±0.030 ↑3.94% 0.976±0.023 ↑1.67% 0.938±0.043 ↑0.32%
DSMIL ✓ 0.919±0.015 ↑4.31% 0.869±0.036 ↑2.00% 0.958±0.051 ↑1.27% 0.949±0.024 ↑0.96%
DTFD-MIL ✓ 0.946±0.005 ↑4.07% 0.887±0.027 ↑1.03% 0.977±0.023 ↑0.41% 0.946±0.036 ↑0.11%
TransMIL ✓ 0.920±0.011 ↑1.77% 0.867±0.046 ↑1.76% 0.968±0.045 ↑0.21% 0.940±0.026 ↑0.43%
* The best results are highlighted in bold, and the second-best results are underlined.
† R2T-MIL is designed for feature re-embedding that utilize ABMIL as base MIL model.

IND and OOD Settings. The datasets in the TCGA contains samples from different source sites (i.e.,
different hospitals or laboratories), which are indicated in the sample barcodes2. And different source
sites have different staining protocols and imaging characteristics, causing feature domain shifts
between different sites [4, 5]. Therefore, MIL models trained on several sites may not generalize well
to others. To better evaluate the true performance of the models, we selected several sites as IND data
(in-domain, the testing and training data are from the same sites), and used data from other sites as
OOD data (out-of-domain, the testing and training data are from different sites), and reported the
testing performance on both IND and OOD data. Specifically, we designated NIND sites as IND and
the remaining as OOD. Each experiment involved splitting the IND data into training, validation, and
testing sets, training the models on IND data, and evaluating them on both IND and OOD testing data.
For the BRCA dataset, we randomly selected one or two sites as IND data and used the remaining
sites as OOD data. However, for NSCLC (2 categories) and RCC (3 categories) datasets, each site
contains samples from only one subtype. Therefore, we cannot select only one site as IND data, as
it will include one category/subtype in the training data. Instead, we randomly selected one or two
corresponding sites for each category as IND data for NSCLC and RCC, and used the other sites as
OOD data. Finally, we obtained 1 or 2 IND sites for BRCA, 2 or 4 for NSCLC, and 3 or 6 for RCC.

Evaluation. We report the area under the receiver operating characteristic curve (AUC) and accuracy
for the OOD and IND test sets, respectively, with means and standard deviations over 10 runs of
Monte-Carlo Cross Validation. Notably, the OOD performance is emphasized for NSCLC and RCC,
where each site contains samples from only one cancer subtype. Traditional MIL models tend to
recognize site-specific patterns (e.g., staining) as shortcuts and excel in in-domain evaluations, rather
than identifying useful class-specific features, making performance less reflective of the models’
actual capability. Therefore, OOD performance more accurately reflects the models’ discriminative
and generalization capabilities.

Comparisons. Given that CATE is an adaptable method, we evaluated the performance variations
across various MIL models both with and without the integration of CATE. We specifically focused
on the following state-of-the-art MIL models: the original ABMIL [16], CLAM [26], DSMIL [21],

2https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/
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Table 2: Cancer Subtyping Results on NSCLC and RCC.

Method
NSCLC (NIND=2) NSCLC (NIND=4)

OOD-AUC OOD-ACC IND-AUC
#

IND-ACC
#

OOD-AUC OOD-ACC IND-AUC
#

IND-ACC
#

ABMIL 0.874±0.021 0.803±0.021 0.997±0.004 0.954±0.028 0.951±0.023 0.883±0.029 0.974±0.018 0.910±0.036
CLAM 0.875±0.020 0.801±0.021 0.997±0.007 0.963±0.042 0.931±0.037 0.870±0.036 0.977±0.023 0.926±0.048
DSMIL 0.839±0.046 0.764±0.043 0.993±0.004 0.963±0.028 0.934±0.019 0.864±0.026 0.974±0.013 0.913±0.042
DTFD-MIL 0.903±0.023 0.836±0.026 0.990±0.009 0.958±0.049 0.949±0.010 0.893±0.012 0.981±0.012 0.918±0.040
TransMIL 0.790±0.028 0.712±0.024 0.997±0.004 0.954±0.033 0.917±0.022 0.832±0.031 0.977±0.014 0.923±0.029
R2T-MIL † 0.739±0.088 0.690±0.075 0.999±0.002 0.971±0.036 0.892±0.041 0.800±0.059 0.977±0.018 0.916±0.045

CATE-MIL 0.945±0.016 0.840±0.043 0.985±0.011 0.938±0.037 0.969±0.003 0.906±0.011 0.967±0.019 0.905±0.054

Method
RCC (NIND=3) RCC (NIND=6)

OOD-AUC OOD-ACC IND-AUC# IND-ACC# OOD-AUC OOD-ACC IND-AUC# IND-ACC#

ABMIL 0.973±0.005 0.891±0.017 0.997±0.004 0.961±0.032 0.971±0.007 0.885±0.010 0.973±0.010 0.897±0.023
CLAM 0.972±0.004 0.893±0.012 0.991±0.005 0.961±0.032 0.969±0.009 0.888±0.015 0.975±0.011 0.896±0.031
DSMIL 0.977±0.002 0.893±0.010 0.996±0.006 0.965±0.026 0.969±0.008 0.883±0.016 0.980±0.012 0.901±0.022
DTFD-MIL 0.975±0.003 0.897±0.012 0.996±0.004 0.943±0.046 0.971±0.007 0.893±0.017 0.974±0.012 0.878±0.022
TransMIL 0.961±0.010 0.864±0.022 0.994±0.004 0.930±0.030 0.947±0.017 0.828±0.037 0.975±0.013 0.894±0.027
R2T-MIL † 0.956±0.018 0.847±0.022 0.991±0.008 0.936±0.030 0.932±0.020 0.803±0.048 0.974±0.012 0.897±0.029

CATE-MIL 0.983±0.002 0.911±0.018 0.989±0.009 0.944±0.031 0.979±0.007 0.905±0.017 0.963±0.011 0.882±0.032

* The best results are highlighted in bold, and the second-best results are underlined.
† R2T-MIL is designed for feature re-embedding that utilize ABMIL as base MIL model.
# The in-domain performance of NSCLC and RCC does not represent the true ability of the models, as each site contains only samples

from one cancer subtype. We primarily focus on the OOD performance for these two datasets.

TransMIL [33], DTFD-MIL [40], and R2T-MIL [35]. The R2T-MIL [35] is a feature re-embedding
method that utilizes ABMIL as the base MIL model.

Implementation Details. This study begins the image feature extraction process by segmenting
the foreground tissue and then splitting the WSI into 512×512 pixels patches at 20× magnification.
Subsequently, these patches are processed through a pre-trained image encoder from CONCH [25] to
extract image features. For concept anchors, we utilize CONCH’s text encoder to derive task-relevant
concepts from predefined text prompts, with detailed prompt information available in Appendix G.
Model parameters are optimized using the Adam optimizer with a learning rate of 10−5. The batch
size is set to 1, and all the experiments are conducted on a single NVIDIA RTX 3090 GPU.

4.2 Experimental Results

Quantitative Results on BRCA Dataset. To fully evaluate the effectiveness of CATE, we assessed
its impact on several state-of-the-art MIL models using the BRCA dataset. The results are shown
in Table 1, where the MIL models integrated with CATE outperform their original counterparts in
both in-domain (IND) and out-of-domain (OOD) testing, which demonstrates the effectiveness and
generalization capabilities of CATE. Comparing with R2T-MIL, which is a feature re-embedding
method that utilizes ABMIL as the base MIL model, CATE incorporated with ABMIL consistently
achieves better performance in terms of both OOD and IND testing. To further investigate the
effectiveness of CATE, we conducted experiments by altering the in-domain sites and applying
traditional settings. Detailed results are available in Appendix B.

Qualitative Analysis. To qualitatively investigate the effectiveness of CATE, we visualized attention
heatmaps, UMAP, and the similarities between original features and corresponding class concept
features, as well as calibrated features and class concept features, as shown in Figure 3. Additional
visualization results are provided in Appendix H. As shown in Figure 3 (a&b), attention heatmap
comparisons reveal that CATE-MIL focuses more intensely on cancerous regions, with a clearer
delineation between high and low attention areas. By comparing the similarities of original and
calibrated features to class concept features in Figure 3 (c&d), it is evident that the enhanced similarity
in cancerous regions is significantly higher than in original features. Moreover, the disparity between
cancerous and non-cancerous regions’ similarities is also expanded, which further verifies the ability
of CATE to enhance task-relevant information and suppress irrelevant information. We further
performed a UMAP visualization of class concept features, original features, and calibrated features.
As depicted in Figure 3 (f), calibrated features are notably closer to the corresponding class (IDC)
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concept features compared to the original features, which demonstrates CATE’s ability to effectively
align features with task-relevant concepts and enhance task-relevant information.
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Figure 3: (a) Attention heatmap of CATE-MIL. (b) Attention heatmap of the original ABMIL. (c)
similarity between the calibrated features and the corresponding class concept feature. (d) similarity
between the original features and the corresponding class concept feature. (e) Original WSI. (f)
UMAP visualization of class concept features, original features, and enhanced features.

4.3 Results on Additional Datasets

For clarity and to highlight the superiority of ABMIL when enhanced with CATE, we developed
CATE-MIL by incorporating CATE into ABMIL and compared it against other leading MIL models
on NSCLC and RCC datasets. The comparative results in Table 2 confirm that CATE-MIL consistently
outperforms other models in both OOD and IND performance. However, it is noted that CATE-MIL
performs poorly on the in-domain testing data for NSCLC and RCC. This underperformance may
be attributed to the elimination of task-irrelevant information, including site-specific patterns, by
CATE, potentially degrading performance on in-domain data for these datasets. Consequently, OOD
performance more accurately reflects the discriminative and generalization capabilities of the models.

4.4 Ablation Analysis

We conduct ablation studies to assess the effectiveness of each component within CATE, and
the results are shown in Table 3. Initially, incorporating Predictive Information Maximization
(PIM) enables ABMIL to achieve improved performance in most experiments, which demonstrates
PIM’s efficacy in extracting task-relevant information. However, using Superfluous Information
Minimization (SIM) alone results in performance degradation across most experiments, which
suggests that SIM may discard some task-relevant information without guidance from a task-relevant
concept anchor. Incorporating both PIM and SIM consistently enhances ABMIL’s performance in
all experiments, which further verifies that their combination effectively boosts the generalization
capabilities of MIL models. We also conduct experiments by only using the interference features in
CFI as the input of ABMIL, and the results show that the interference features are also informative for
WSI classification tasks. More ablation analysis about the weights of PIM and SIM in CIB module
the number of representative patches are in Appendix C.

5 Conclusion and Discussion

In this paper, we introduce CATE, a new approach that offers a "free lunch" for task-specific adapta-
tion of pathology VLM by leveraging the inherent consistency between image and text modalities.
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Table 3: Ablation study of CATE.

Method PIM SIM CFI BRCA
(NIND=1)

BRCA
(NIND=2)

NSCLC
(NIND=2)

NSCLC
(NIND=4)

RCC
(NIND=3)

RCC
(NIND=6)

ABMIL 0.914±0.015 0.899±0.035 0.874±0.021 0.951±0.023 0.973±0.005 0.971±0.007
✓ 0.932±0.011 0.939±0.012 0.906±0.026 0.901±0.047 0.976±0.005 0.973±0.005

✓ 0.895±0.022 0.885±0.140 0.656±0.041 0.898±0.028 0.952±0.014 0.954±0.015
✓ ✓ 0.936±0.010 0.942±0.010 0.910±0.030 0.960±0.011 0.979±0.004 0.977±0.005

✓ 0.913±0.024 0.884±0.032 0.850±0.036 0.918±0.029 0.975±0.008 0.941±0.022
CATE-MIL ✓ ✓ ✓ 0.951±0.003 0.943±0.006 0.945±0.016 0.970±0.003 0.983±0.002 0.979±0.007

CATE shows the potential to enhance the generic features extracted by pathology VLM for specific
downstream tasks, using task-specific concept anchors as guidance. The proposed CIB module
calibrates the image features by enhancing task-relevant information while suppressing task-irrelevant
information, while the CFI module obtains the interference vector for each patch to generate discrimi-
native task-specific features. Extensive experiments on WSI datasets demonstrate the effectiveness of
CATE in improving the performance and generalizability of state-of-the-art MIL methods.

Limitations and Social Impact. The proposed CATE offers a promising solution to customize
the pathology VLM for specific tasks, significantly improving the performance and applicability
of MIL methods in WSI analysis. However, the performance of CATE heavily depends on the
quality of the concept anchors, which, in turn, relies on domain knowledge and the quality of the
pre-trained pathology VLM. Additionally, while CATE is optimized for classification tasks such
as cancer subtyping, it may not be readily applicable to other analytical tasks, such as survival
prediction. However, there might be a potential solution to address this challenge. For instance, we
could leverage LLMs or retrieval-based LLMs to generate descriptive prompts about the general
morphological appearance of WSIs for specific cancer types. By asking targeted questions, we
can summarize reliable and general morphological descriptions associated with different survival
outcomes or biomarker expressions and further verify these prompts with pathologists. Moreover,
since medical data may contain sensitive information, ensuring the privacy and security of such data
is crucial.
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A Overview

The structure of this supplementary material as shown below,

• Appendix B presents additional experimental results, including changes in in-domain and
out-of-domain site splitting, further comparisons on the BRCA dataset under traditional
settings, additional results on the PRAD dataset, and results under site-preserved cross-
validation.

• Appendix C discusses additional ablation study results concerning hyperparameters, includ-
ing the impact of loss weights for PIM and SIM, the effect of the number of representative
patches k, and further ablation studies on the CIB module.

• Appendix D presents detailed descriptions of datasets and experimental settings.
• Appendix E provides the detailed definition and formula derivation.
• Appendix F elaborates on the Concept Information Bottleneck (CIB) module using the

information plane.
• Appendix G details the prompts used in our experiments.
• Appendix H presents additional visualization results.

B Additional Results

B.1 Additional Cancer Subtyping Results with Different IND and OOD Sites

To further evaluate the generalization ability of the proposed CATE method, we conduct additional
experiments on TCGA-BRCA dataset with different settings of in-domain (IND) and out-of-domain
(OOD) sites. The detailed experimental settings are shown below:

• BRCA (NIND=1): One site as the in-domain data, and the other sites as the out-of-domain
data. The details of the in-domain site are shown below:

– AR: 44 slides of IDC and 15 slides of ILC.
• BRCA (NIND=2): Two sites as the in-domain data, and the other sites as the out-of-domain

data. The details of the in-domain sites are shown below:
– AR: 44 slides of IDC and 15 slides of ILC.
– B6: 39 slides of IDC and 6 slides of ILC.

The additional results are presented in Table 4. It is evident that the proposed CATE-MIL consistently
delivers superior performance in both in-domain and out-of-domain settings, demonstrating its
effectiveness in enhancing task-specific information and minimizing the impact of irrelevant data.

B.2 Additional Cancer Subtyping Results with Traditional Experimental Settings

In the main paper, we divided the dataset into in-domain and out-of-domain sites to evaluate the
generalization ability of the proposed CATE method. To further evaluate its effectiveness, we
conducted additional experiments under traditional settings, randomly splitting the dataset into
training, validation, and testing sets. We report the performance metrics, including means and
standard deviations over 10 Monte-Carlo Cross-Validation runs, in Table 5. Additionally, we provide
comparisons of training times and parameter sizes for various methods.

It is evident that the proposed CATE-MIL consistently outperforms others in both AUC and ACC
metrics, underscoring its superiority. Furthermore, CATE-MIL benefits from shorter training times
and smaller parameter sizes compared to the R2T-MIL method.

B.3 Additional Gleason Grading Results on PRAD

CATE is a general framework that can be applied to more complex tasks beyond cancer subtyping,
such as Gleason grading in prostate cancer. We have conducted conducted experiments on the
TCGA-PRAD dataset to evaluate the performance of CATE-MIL in Gleason grading. Specifically,
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Table 4: Supplementary Cancer Subtyping Results on BRCA.

Method
BRCA (NIND=1)

OOD-AUC OOD-ACC IND-AUC IND-ACC

ABMIL 0.916 ± 0.017 0.882 ± 0.022 0.977 ± 0.029 0.953 ± 0.036
CLAM 0.895 ± 0.031 0.842 ± 0.049 0.973 ± 0.035 0.938 ± 0.043
DSMIL 0.892 ± 0.017 0.863 ± 0.016 0.967 ± 0.022 0.924 ± 0.048
TransMIL 0.917 ± 0.008 0.878 ± 0.016 0.980 ± 0.031 0.955 ± 0.038
DTFD-MIL 0.920 ± 0.023 0.881 ± 0.024 0.982 ± 0.030 0.957 ± 0.038
†R2T-MIL 0.902 ± 0.022 0.835 ± 0.063 0.963 ± 0.037 0.944 ± 0.039
†CATE-MIL 0.938 ± 0.014 0.895 ± 0.021 0.984 ± 0.021 0.959 ± 0.038

Method
BRCA (NIND=2)

OOD-AUC OOD-ACC IND-AUC IND-ACC

ABMIL 0.914 ± 0.012 0.879 ± 0.017 0.954 ± 0.035 0.910 ± 0.043
CLAM 0.914 ± 0.021 0.890 ± 0.013 0.958 ± 0.034 0.926 ± 0.050
DSMIL 0.931 ± 0.007 0.900 ± 0.012 0.971 ± 0.020 0.919 ± 0.034
TransMIL 0.929 ± 0.009 0.897 ± 0.006 0.962 ± 0.030 0.903 ± 0.039
DTFD-MIL 0.898 ± 0.009 0.868 ± 0.017 0.950 ± 0.034 0.890 ± 0.037
†R2T-MIL 0.919 ± 0.017 0.893 ± 0.017 0.962 ± 0.025 0.906 ± 0.026
†CATE-MIL 0.947 ± 0.005 0.920 ± 0.004 0.980 ± 0.015 0.939 ± 0.022

The best results are highlighted in bold, and the second-best results are underlined.
† denotes the methods for feature re-embedding that utilize ABMIL as base MIL model.

Table 5: Results on BRCA under Traditional Settings.

Method AUC ACC Training Time Params Size

ABMIL 0.922±0.046 0.902±0.039 67.16 S 1.26 MB
CLAM 0.928±0.030 0.912±0.034 67.99 S 2.01 MB
DSMIL 0.934±0.039 0.910±0.033 72.91 S 1.26 MB
TransMIL 0.927±0.046 0.906±0.032 72.39 S 5.39 MB
DTFD-MIL 0.940±0.030 0.901±0.041 70.99 S 8.03 MB
†R2T-MIL 0.936±0.027 0.903±0.028 68.87 S 9.28 MB (1.26+8.02)
†CATE-MIL 0.945±0.033 0.917±0.029 68.53 S 4.26 MB (1.26+3.00)

The best results are highlighted in bold, and the second-best results are underlined.
† denotes the methods for feature re-embedding that utilize ABMIL as base MIL model.

Table 6: Supplementary Gleason Grading Results on PRAD.

Method
PRAD

OOD-AUC OOD-ACC IND-AUC IND-ACC

ABMIL 0.704 ± 0.034 0.510 ± 0.075 0.742 ± 0.060 0.575 ± 0.051

CATE-MIL 0.755 ± 0.050 0.567 ± 0.067 0.797 ± 0.044 0.643 ± 0.075

Table 7: Supplementary Results under Site-Preserved Cross-Validation.

Dataset Method OOD-AUC IND-AUC

BRCA ABMIL 0.912 ± 0.012 0.905 ± 0.043
CATE-MIL 0.935 ± 0.014 0.942 ± 0.038

NSCLC ABMIL 0.942 ± 0.016 0.941 ± 0.013
CATE-MIL 0.951 ± 0.015 0.943 ± 0.008

RCC ABMIL 0.980 ± 0.001 0.986 ± 0.010
CATE-MIL 0.983 ± 0.001 0.989 ± 0.007
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the samples in PRAD dataset are divided into Gleason pattern 3, 4, and 5, and the task is to classify
the samples into these three categories. The results are shown in Table 6. It is evident that CATE-MIL
consistently outperforms the base model ABMIL in both in-domain and out-of-domain settings,
demonstrating its effectiveness in enhancing task-specific information and minimizing the impact of
irrelevant data. In the future, as more studies reveal the connection between morphological features
and molecular biomarkers and more powerful pathology VLMs are developed, our framework has
the potential to benefit more complex tasks.

B.4 Additional Experiments using Site-Preserved Cross-Validation

To provide a more comprehensive evaluation of the proposed CATE-MIL, we conduct additional
experiments using site-preserved cross-validation [11], where the samples from the same site are
preserved in the same fold. For each fold, we split the data into training and testing sets, and these
testing sets are regarded as in-domain testing data. And the other sites are used as out-of-domain
testing data. The results are shown in Table 7. It is evident that CATE-MIL consistently outperforms
ABMIL in both in-domain and out-of-domain settings.

C Additional Ablation Study

C.1 Ablation Study of the Weight of PIM and SIM Losses

The overall objective of the proposed CATE-MIL is a weighted sum of the PIM and SIM losses,
along with the classification loss:

L = LCE + λPLPIM + λSLSIM . (12)

We note that the hyperparameters for the weights of the PIM and SIM losses were not specifically
tuned in the main paper. To investigate the effect of the weight of PIM and SIM losses on the model
performance, we conduct an ablation study on BRCA (NIND=2) with CATE-MIL (ABMIL integrated
with CATE), varying the weights of PIM and SIM losses. The results are shown in Figure 4.
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Figure 4: Ablation study of the weight of PIM and SIM losses on the model performance.

From Figure 4, it is evident that CATE enhances the performance of the base model ABMIL in
most scenarios, particularly in out-of-domain settings. When the weight of PIM loss λP is too low,
model performance suffers, underscoring the significant role of PIM loss in enhancing task-specific
information. Conversely, an excessively high λP also diminishes performance, as the model overly
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prioritizes maximizing mutual information between the original and calibrated features at the expense
of optimizing classification loss. Regarding the weight of SIM loss λS , optimal performance is
achieved when λS is approximately 30. If the λS is too low, the model fails to effectively eliminate
irrelevant information, thereby impairing performance. Conversely, if λS is too high, the model risks
discarding task-relevant information, leading to performance degradation.
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Figure 5: Ablation study of k.

C.2 Ablation Study of the Number of Representative Patches k

In this section, we conduct an ablation study to investigate the impact of the number of representative
patches, k, on model performance, as discussed in Section 3.2. In practice, the representative patches
are selected based on the similarities between the original image feature and the corresponding
class-specific concept anchor.

As shown in Figure 5, it is evident that CATE generally enhances the performance of the base model,
ABMIL. When the number of representative patches k is too small, model performance degrades
due to insufficient capture of task-specific information. Conversely, an excessively large k also
leads to performance degradation in out-of-domain scenarios, as it introduces noise from irrelevant
information. Consequently, we have set the number of representative patches k to 10 in the main
paper.

C.3 Additional Ablation Study of CIB Module

We further conducted experiments on CATE-MIL without concept alignment (discarding PIM loss
and SIM loss of the CIB module) and replaced the CIB module with an MLP to investigate the effect
of concept alignment and the increased number of parameters. The results are shown in Table 8.
The performance of CATE-MIL significantly decreases in both cases, demonstrating the importance
of concept alignment in the CIB module and that the improvements of CATE are not due to the
increased number of parameters.

Table 8: Supplementary Ablation Study of CIB Module.

Method BRCA
(NIND=1)

BRCA
(NIND=2)

NSCLC
(NIND=2)

NSCLC
(NIND=4)

RCC
(NIND=3)

RCC
(NIND=6)

CATE-MIL w/o CFI (Baseline) 0.936±0.010 0.942±0.010 0.910±0.030 0.960±0.011 0.979±0.004 0.977±0.005
- w/o concept alignment 0.900±0.017 0.884±0.033 0.742±0.059 0.897±0.022 0.961±0.011 0.932±0.016
- Replace CIB with MLP 0.888±0.027 0.902±0.037 0.816±0.040 0.931±0.023 0.966±0.006 0.951±0.021

D Datasets Description and Detailed Experimental Settings

In this section, we provide detailed descriptions of the datasets used in the experiments and the
detailed experimental settings that we used in the experiments in Section 4.2.
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D.1 Datasets Description

• TCGA-BRCA: The dataset contains nine disease subtypes, and this study focuses on the
classification of Invasive ductal carcinoma (IDC, 726 slides from 694 cases) and invasive
lobular carcinoma (ILC, 149 slides from 143 cases). The dataset is collected from 36 sites
with 20 of them having both IDC and ILC slides, and the other 16 sites only have IDC slides
or ILC slides.

• TCGA-NSCLC: The dataset contains two disease subtypes, including lung adenocarcinoma
(LUAD, 492 slides from 430 cases) and lung squamous cell carcinoma (LUSC, 466 slides
from 432 cases). The dataset is collected from 66 sites. Different from TCGA-BRCA, each
site only contains one disease subtype.

• TCGA-RCC: The dataset contains three disease subtypes, including clear cell renal cell
carcinoma (CCRCC, 498 slides from 492 cases), papillary renal cell carcinoma (PRCC, 289
slides from 267 cases), and chromophobe renal cell carcinoma (CHRCC, 118 slides from
107 cases). The dataset is collected from 55 sites. Similar to TCGA-NSCLC, each site only
contains one disease subtype.

D.2 Detailed Experimental Settings

To validate that the proposed CATE effectively improves MIL model performance by enhancing the
task-specific information and eliminating the disturbance of task-irrelevant information, we conduct
extensive experiments across three datasets under various in-domain and out-of-domain settings.

Specifically, for TCGA-BRCA dataset, we conduct the following experiments:

• BRCA (NIND=1): One site as the in-domain data, and the other sites as the out-of-domain
data. The details of the in-domain site are shown below:

– D8: 59 slides of IDC and 8 slides of ILC.
• BRCA (NIND=2): Two sites as the in-domain data, and the other sites as the out-of-domain

data. The details of the in-domain sites are shown below:
– A8: 48 slides of IDC and 5 slides of ILC.
– D8: 59 slides of IDC and 8 slides of ILC.

For TCGA-NSCLC dataset, we conduct the following experiments:

• NSCLC (NIND=2): Two sites as the in-domain data, and the other sites as the out-of-domain
data. The details of the in-domain sites are shown below:

– 44: 43 slides of LUAD and 0 slides of LUSC.
– 22: 0 slides of LUAD and 36 slides of LUSC.

• NSCLC (NIND=4): Four sites as the in-domain data, and the other sites as the out-of-domain
data. The details of the in-domain sites are shown below:

– 44: 43 slides of LUAD and 0 slides of LUSC.
– 50: 20 slides of LUAD and 0 slides of LUSC.
– 22: 0 slides of LUAD and 36 slides of LUSC.
– 56: 0 slides of LUAD and 35 slides of LUSC.

For TCGA-RCC dataset, we conduct the following experiments:

• RCC (NIND=3): Three sites as the in-domain data, and the other sites as the out-of-domain
data. The details of the in-domain sites are shown below:

– A3: 48 slides of CCRCC, 0 slides of CHRCC, and 0 slides of PRCC.
– KL: 0 slides of CCRCC, 24 slides of CHRCC, and 0 slides of PRCC.
– 2Z: 0 slides of CCRCC, 0 slides of CHRCC, and 23 slides of PRCC.

• RCC (NIND=6): Six sites as the in-domain data, and the other sites as the out-of-domain
data. The details of the in-domain sites are shown below:

– A3: 48 slides of CCRCC, 0 slides of CHRCC, and 0 slides of PRCC.
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– AK: 15 slides of CCRCC, 0 slides of CHRCC, and 0 slides of PRCC.

– KL: 0 slides of CCRCC, 24 slides of CHRCC, and 0 slides of PRCC.

– KM: 0 slides of CCRCC, 20 slides of CHRCC, and 0 slides of PRCC.

– 2Z: 0 slides of CCRCC, 0 slides of CHRCC, and 23 slides of PRCC.

– 5P: 0 slides of CCRCC, 0 slides of CHRCC, and 15 slides of PRCC.

E Detailed Definition and Formula Derivation

E.1 Definition of Sufficiency and Consistency

In this part, we will define the sufficiency and consistency in the context of the concept information
bottleneck (CIB) module.

First, we define the mutual information between two random variables X and Y as:

I(X;Y ) =
∑

p(x, y) log
p(x, y)

p(x)p(y)
. (13)

Sufficiency: To quantify the requirement that the calibrated features should be maximally informative
about the label information y, we define the sufficiency as the mutual information between the label
information and the calibrated features:

Sufficiency. α̂ is sufficient for y ⇐⇒ I(x̂;y|α̂) = 0 ⇐⇒ I(x̂;y) = I(α̂;y).

The sufficiency definition requires that the calibrated features α̂ encapsulate all information about the
label information y that is accessible from the original features x̂. In essence, the calibrated feature
α̂ of original feature x̂ is sufficient for determining label y if and only if the amount of information
regarding the specific task is unchanged after the transformation.

Consistency: Since the image feature x̂ and the concept anchor c are consistent in the pathology
VLM, we posit that any representation containing all information accessible from both the original
feature and the concept anchor also encompasses the necessary discriminative label information.
Thus, we define the consistency between the concept anchor and the original feature as:

Consistency. c is consistent with x̂ for y ⇐⇒ I(y; x̂|c) = 0.

The consistency definition requires that the concept anchor c and the original feature x̂ should be
consistent with the label information y.

E.2 Maximize Predictive Information with InfoNCE

In this part, we will prove that the predictive information for the concept anchor can be maximized
by maximizing the InfoNCE mutual information lower bound, which is defined in Equation 4. As
in [27], the optimal value for f (c, α̂i) should be proportional to the density ratio:

f (c, α̂i) ∝
p (c, α̂i)

p (c) p (α̂i)
. (14)
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And we can get:

IoptNCE (α̂; c) = E
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αi

p
(
ccs
j , α̂i

)
p
(
ccs
j

)
p (α̂i)

+ n Ê
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(15)

where Cneg denotes the negative concepts, including both negative class concepts and other type
concepts. We can see that the InfoNCE estimation is a lower bound of the mutual information
between the concept anchor and the calibrated features:

I
(
ccs

pos; α̂
)
≥ IoptNCE (α̂; c) + k log (m+ n) ≥ INCE (α̂; c) . (16)

Thus, the predictive information of calibrated features for the concept anchor can be maximized by
maximizing the InfoNCE mutual information lower bound.

E.3 Superfluous Information Minimization

As shown in Equation 3, the mutual information between the original features and the calibrated
features I(x̂; α̂) can be decomposed into the mutual information I(α̂; c) between the calibrated
features and the concept anchor and the mutual information I(x̂; α̂|c) between the concept anchor
and the calibrated features:

I(x̂; α̂) = I(α̂; c)︸ ︷︷ ︸
Predictive information for c

+ I(x̂; α̂|c)︸ ︷︷ ︸
Superfluous information

. (17)

As introduced in section 3.2, the first item is the predictive information for the concept anchor,
which can be maximized by maximizing the InfoNCE mutual information lower bound. Thus, the
second superfluous information item can be minimized by minimizing I(x̂; α̂). In practice, the
superfluous information minimization is conducted on all patches in the subset x, since the task-
irrelevant information is distributed across all patches. Thus, the superfluous information can be
minimized by minimizing I(x;α). As in [1], this mutual information can be represented as:

I(x;α) =

∫
p (x,α) log

p (α|x)
p (α)

dxdα

=

∫
p (x,α) log p (α|x) dxdα−

∫
p (α) log p (α) dα.

(18)

However, the computing of the marginal distribution p (α) =
∫
p (α|x) p (x) dx is intractable. Thus,

we can let the Gaussian distribution r (α) approximate the marginal distribution p (α). Since the
Kullback-Leibler divergence between two distributions is non-negative, we can get:∫

p (α) log p (α) dα ≥
∫

p (α) log r (α) dα. (19)

20



Thus, the mutual information I(x;α) have the upper bound:

I(x;α) ≤
∫

p (x,α) log p (α|x) dxdα−
∫

p (α) log r (α) dα

=

∫
p (x) p (α|x) log p (α|x)

r (α)
dxdα.

(20)

In practice, to compute this upper bound, we approximate distribution p (x) with the empirical
distribution:

p (x) =
1

N

N∑
i=1

δxi
(x) . (21)

Thus, the upper bound of the mutual information I(x;α) can be computed as:∫
p (x) p (α|x) log p (α|x)

r (α)
dxdα ≈ 1

N

N∑
i=1

qθ (αi|xi) log
qθ (αi|xi)

r (αi)
, (22)

where qθ (α|x) is a variational distribution with parameter θ to approximate p (α|x), and we imple-
ment this variational distribution with MLP:

qθ (α|x) = N
(
α|MLPµ (x) ,MLPΣ (x)

)
, (23)

where MLPµ and MLPΣ are implemented with MLPs which output the mean µ and covariance
matrix Σ of the Gaussian distribution. In practice, we utilize the reparameterization trick [18] to
sample from the Gaussian distribution to get an unbiased estimate of the gradient to optimize the
opjective. Thus, the upper bound can be optimized by minimizing the KL divergence between the
variational distribution qθ (α|x) and the Gaussian distribution r (α):

min
θ

Ex [DKL (qθ (α|x) ||r (α))] . (24)

F Explanation of CIB with Information Plane

To better understand the concept information bottleneck (CIB) method, we provide an explanation of
CIB with the information plane [8, 6].
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Figure 6: Explanation of CIB module with Information Plane.

As shown in Figure 6, the information plane is a two-dimensional space where the x-axis represents
the mutual information between the original features and the calibrated features of CIB module
I(x̂; α̂), and the y-axis represents the mutual information between the label information and the
calibrated features I(y; x̂). The line colored orange in the information plane defines sufficiency,
indicating where the calibrated features are maximally informative about the label information y.
The consistency definition falls to the left of the sufficiency line, denoting a state where the calibrated
features, containing all information from both the original feature and the concept anchor, also include
the label information. The InfoMAX principle [9] states that the optimal calibrated feature should be
maximally informative about the original feature.
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Ideally, a good calibrated feature α̂ should be maximally informative about the label information
y (the sufficiency line in the information plane) while minimally informative about the original
features x̂ (i.e., the ideal situation in the information plane). This situation can be achieved by directly
supervised learning. However, the weakly supervised nature of MIL methods complicates this goal.
As demonstrated in the ablation analysis in Section 4.4, if we directly perform superfluous information
minimization without the guidance of concept anchor (i.e., predictive information maximization), the
calibrated features will be less informative about the label information y and the model performance
will be degraded significantly. To address this issue, the proposed CIB module introduces the concept
anchor c to guide the learning process of information bottleneck for each instance. As shown in
Figure 6, the CIB module could effectively reduce the mutual information between the original
features and the calibrated features I(x̂; α̂) while preserving the mutual information between the
label information and the calibrated features I(y; α̂).

G Prompts

In this section, we provide the detailed prompt templates and concepts for the datasets, which are used
to generate the concept anchor for the CIB module. The prompt templates are shown in Table 9, and
the concepts for TCGA-BRCA, TCGA-NSCLC, and TCGA-RCC are shown in Table 10, Table 11,
and Table 12, respectively. The templates and the class-agnostic prompts are referred from the
original paper of CONCH [25], and the class-specific prompts are generated by querying the LLM
with the question such as ‘In addition to tumor tissues, what types of tissue or cells are present in
whole slide images of breast cancer?’ The quality of LLM generated prompts has been demonstrated
in several recent studies [29, 22]. In principle, we can use LLM (e.g., GPT-4) to generate reliable
expert-designed prompts and further verified by pathologists. This strategy can ensure the scalability
and reliability of the prompts.

Table 9: Prompt Templates.

Templates

<CLASSNAME>.
a photomicrograph showing <CLASSNAME>.
a photomicrograph of <CLASSNAME>.
an image of <CLASSNAME>.
an image showing <CLASSNAME>.
an example of <CLASSNAME>.
<CLASSNAME> is shown.
this is <CLASSNAME>.
there is <CLASSNAME>.
a histopathological image showing <CLASSNAME>.
a histopathological image of <CLASSNAME>.
a histopathological photograph of <CLASSNAME>.
a histopathological photograph showing <CLASSNAME>.
shows <CLASSNAME>.
presence of <CLASSNAME>.
<CLASSNAME> is present.
an H&E stained image of <CLASSNAME>.
an H&E stained image showing <CLASSNAME>.
an H&E image showing <CLASSNAME>.
an H&E image of <CLASSNAME>.
<CLASSNAME>, H&E stain.
<CLASSNAME>, H&E
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Table 10: Concepts for TCGA-BRCA.

Concept Type Classes Concept Prompts

Class-specific Concept

IDC

invasive ductal carcinoma
breast invasive ductal carcinoma
invasive ductal carcinoma of the breast
invasive carcinoma of the breast, ductal pattern
idc

ILC

invasive lobular carcinoma
breast invasive lobular carcinoma
invasive lobular carcinoma of the breast
invasive carcinoma of the breast, lobular pattern
ilc

Class-agnostic Concept

Adipocytes

adipocytes
adipose tissue
fat cells
fat tissue
fat

Connective tissue

connective tissue
stroma
fibrous tissue
collagen

Necrotic Tissue necrotic tissue
necrosis

Normal Breast Tissue Cells
normal breast tissue
normal breast cells
normal breast

Table 11: Concepts for TCGA-NSCLC.

Concept Type Classes Concept Prompts

Class-specific Concept

LUAD

adenocarcinoma
lung adenocarcinoma
adenocarcinoma of the lung
luad

LUSC

squamous cell carcinoma
lung squamous cell carcinoma
squamous cell carcinoma of the lung
lusc

Class-agnostic Concept

Connective tissue

connective tissue
stroma
fibrous tissue
collagen

Necrotic Tissue necrotic tissue
necrosis

Normal Lung Tissue Cells
normal lung tissue
normal lung cells
normal lung
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Table 12: Concepts for TCGA-RCC.

Concept Type Classes Concept Prompts

Class-specific Concept

CCRCC

clear cell renal cell carcinoma
renal cell carcinoma, clear cell type
renal cell carcinoma of the clear cell type
clear cell rcc

PRCC

papillary renal cell carcinoma
renal cell carcinoma, papillary type
renal cell carcinoma of the papillary type
papillary rcc

CHRCC

chromophobe renal cell carcinoma
renal cell carcinoma, chromophobe type
renal cell carcinoma of the chromophobe type
chromophobe rcc

Class-agnostic Concept

Adipocytes

adipocytes
adipose tissue
fat cells
fat tissue
fat

Connective tissue

connective tissue
stroma
fibrous tissue
collagen

Necrotic Tissue necrotic tissue
necrosis

Normal Kidney Tissue Cells
normal kidney tissue
normal kidney cells
normal kidney

H More Visualization

To further illustrate the effectiveness of the proposed CATE-MIL, we provide more visualization
results in this section. The visualization results for IDC and ILC in TCGA-BRCA are shown in
Figure 7 and Figure 8, respectively.
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Figure 7: Visualization results for samples of IDC in TCGA-BRCA. (a) Attention heatmap of
CATE-MIL. (b) Attention heatmap of original ABMIL. (c) similarity between the calibrated features
and the corresponding class concept feature. (d) similarity between the original features and the
corresponding class concept feature. (e) Original WSI. (f) UMAP visualization.
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Figure 8: Visualization results for samples of ILC in TCGA-BRCA. (a) Attention heatmap of
CATE-MIL. (b) Attention heatmap of original ABMIL. (c) similarity between the calibrated features
and the corresponding class concept feature. (d) similarity between the original features and the
corresponding class concept feature. (e) Original WSI. (f) UMAP visualization.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discuss the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: For each theoretical result, the paper provide the full set of assumptions and a
complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper report error bars suitably and correctly defined.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources needed to
reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper well documented and is the documentation
provided alongside the assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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