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ABSTRACT

Identifying the causes of a model’s unfairness is an important yet relatively unex-
plored task. We look into this problem through the lens of training data – the major
source of unfairness. We ask the following questions: how would the unfairness
of a model change if its training samples (1) were collected from a different (e.g.
demographic) group, (2) were labeled differently, or (3) whose features were mod-
ified? In other words, we quantify the influence of training samples on unfairness
by counterfactually changing samples based on predefined concepts, i.e. data at-
tributes such as features (X), labels (Y ), and sensitive attributes (A). To compute
a training sample’s influence on the model’s unfairness w.r.t a concept, we gener-
ate counterfactual samples based on the concept, i.e. the counterfactual versions
of the sample if the concept were changed. We then calculate the resulting impact
on the unfairness, via influence function (Koh & Liang, 2017; Rousseeuw et al.,
2011), as if the counterfactual samples were used in training. Our framework not
only can help practitioners understand the observed unfairness and mitigate it by
repairing their training data, but also leads to many other applications, e.g. detect-
ing mislabeling, fixing imbalanced representations, and detecting fairness-targeted
poisoning attacks.

1 INTRODUCTION

A fundamental question in machine learning fairness is: what causes unfairness? Without knowing
the answer, it is hard to understand and fix the problem. In practice, this is also one of the first
questions the practitioners would ask after computing the fairness measures and finding the model
to be unfair. Although the question sounds simple, it is hard to identify the exact source of unfair-
ness in the machine learning pipeline, as admitted by many leading fairness practitioners, e.g. Meta
blog (Bogen & Corbett-Davies, 2021) states: “Unfairness in an AI model could have many possible
causes, including not enough training data, a lack of features, a misspecified target of prediction,
or a measurement error in the input features. Even for the most sophisticated AI researchers and
engineers, these problems are not straightforward to fix.”

The sources of unfairness are many, including data sampling bias or under-representation (Chai &
Wang, 2022; Zhu et al., 2022; Celis et al., 2021; Bagdasaryan et al., 2019), data labeling bias (Wang
et al., 2021; Wu et al., 2022b; Fogliato et al., 2020), model architecture (or feature representation)
(Adel et al., 2019; Madras et al., 2018; Zemel et al., 2013; Song et al., 2019; Xing et al., 2021; Li
et al., 2021a; Song et al., 2021; Li et al., 2020), distribution shift (Ding et al., 2021; Chen et al.,
2022; Rezaei et al., 2021; Giguere et al., 2022) etc. In this work, we tackle this problem by looking
at the most important and obvious source of bias: the training samples. If the model’s training
samples are biased, then it would be highly challenging for the model to remain fair. Specifically,
we ask the following questions regarding how training samples would impact the model’s unfairness:
how a model’s (un)fairness would change if its training samples (1) were collected from a different
(e.g. demographic) group, (2) were labeled differently, or (3) were modified for some features?
Answering those questions can help practitioners (1) explain the cause of the model’s unfairness in
terms of training data, (2) repair the training data to improve fairness, and (3) detect biased or noisy
training labels, under-represented group, and corrupted features that hurt fairness.

In this work, we measure the training sample’s impact on fairness using influence function (Cook
& Weisberg, 1982; Koh & Liang, 2017), and we define the influence on fairness measure w.r.t a
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training concept, i.e. a categorical variable that describes data property. For example, we can choose
the concept to be the sensitive group attribute and counterfactually1 change it to answer the question
“What is the impact on fairness if the training data were sampled from a different group?” Or
we can choose the concept to be the training labels, and then our method measures the impact on
fairness when the label is changed. We can also apply the concept to the training features. Our
flexible framework generalizes the prior works that only consider removing or reweighing training
samples (Wang et al., 2022a; Li & Liu, 2022), and we can provide a broader set of explanations and
give more insights to practitioners in a wider scope (e.g. what if a data pattern is drawn from another
demographic group?). We name our influence framework as Concept Influence for Fairness (CIF).

In addition to explaining the unfairness, CIF can also recommend practitioners ways to fix the train-
ing data to improve fairness by counterfactually changing concepts in training data. Furthermore,
we demonstrate the power of our framework in a number of other applications including (1) detect-
ing mislabeling, (2) detecting poisoning attacks, and (3) fixing imbalanced representation. Through
experiments on 4 datasets – including synthetic, tabular, and image – we show that our method
achieves satisfactory performance in a wide range of tasks.

2 INFLUENCE OF TRAINING CONCEPTS

We start with introducing the influence function for fairness, the concept in training data, and define
our Concept Influence for Fairness (CIF).

2.1 FAIRNESS INFLUENCE FUNCTION

Influence Function on Group Fairness. Denote the training data by Dtrain = {ztr

i
=

(xtr
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, ytr

i
)}n

i=1 and the validation data by Dval = {zval
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)}n

i=1. Suppose the
model is parameterized by ✓ 2 ⇥, and there exists a subset of training data with sample indices
K = {K1, ..., Kk}. If we perturb a group K by assigning each sample i 2 K with weight wi 2 [0, 1],
denote the resulting counterfactual model’s weights by ✓̂K.
Definition 1. The fairness influence of reweighing group K in the training data is defined as the
difference of fairness measure between the original model ✓̂ (trained on the full training data) and
the counterfactual model ✓̂K:

infl(Dval,K, ✓̂) := `fair(✓̂)� `fair(✓̂K) (1)

where `fair is the fairness measure (will be specified shortly after).

Similar to (Koh & Liang, 2017; Koh et al., 2019; Li & Liu, 2022), we can derive the closed-form
solution of fairness influence function (see Appendix A for the derivation):

Proposition 1. The first-order approximation of infl(Dval,K, ✓̂) takes the following form:

infl(Dval,K, ✓̂) ⇡ �r✓`fair(✓̂)
|H�1

✓̂
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where H
✓̂

is the hessian matrix i.e. H
✓̂
:= 1

n
r2
P

n

i=1 `(ztr

i
; ✓̂), and ` is the original loss function

(e.g. cross-entropy loss in classification).

Approximated Fairness Loss. The loss `fair(✓̂) quantifies the fairness of a trained model ✓̂. Simi-
larly to prior work (Wang et al., 2022a; Sattigeri et al., 2022), we can approximate it with a surrogate
loss on the validation data. Denote the corresponding classifier for ✓ as h✓, we can approximate the
widely used group fairness Demographic Parity (Calders et al., 2009; Chouldechova, 2017) (DP)

1We use the word “counterfactual” in its literal sense, i.e. being different from the factual world, in the same
empirical fashion of the counterfactual example or the counterfactual explanation (Verma et al., 2020; Ustun
et al., 2019; Roese, 1997) rather than in the rigorous and theoretical sense of “counterfactual” in the causal
inference. Our work does not belong to the area of causal inference.
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(a) Overriding sensitive attribute A. (b) Overriding feature X . (c) Overriding label Y .

Figure 1: Our data dependency assumption. Yellow arrows represent the data dependency link and
red arrows represent the effect of overriding (i.e. counterfactually changing the value of a concept).
In training data, the concept variable C can override sensitive attribute A (i.e. Figure (a)), features
X (i.e. Figure (b)), and label Y (i.e. Figure (c)). We train the model ✓ on X and Y , and compute
the validation fairness metric Fair on the validation dataset Dval.

violation as the following (assume both A and the classification task are binary):

`DP (✓̂) :=
��P(h✓(X) = 1|A = 0)� P(h✓(X) = 1|A = 1)

�� (3)
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where g is the logit of the predicted probability for class 1. See Appendix C for the approximated
violation of Equality of Opportunity (Hardt et al., 2016) (EOP) and Equality of Odds (Woodworth
et al., 2017) (EO).

2.2 CONCEPTS IN TRAINING DATA

A concept is a sample-level categorical attribute associated with the training data. Formally, denote
a concept by C 2 C := {1, 2, ..., c} where C is a discrete concept encoded in the dataset (X, Y, A).
C can simply be either Y or A or any feature in X or in a broader definition. See Figure 1 for
an illustration of the training concepts and our data dependency assumption. Our core idea is to
quantify the influence when each training sample is replaced by its counterfactual sample, i.e. the
counterfactual version of the sample if its concept were changed, when we transform the sample
w.r.t. a certain concept. We use the term override to mean counterfactually changing the concept,
e.g. overriding a sample’s concept to c means counterfactually setting its concept to c and replacing
the sample with its counterfactual version as if its concept were c. We will formally define overriding
in Section 2.3.

Examples. We provide examples of concepts and motivate why transforming samples based on
training concepts can be intuitively helpful for fairness.

• Concept as Sensitive Attribute (C = A). Intuitively speaking, the sensitive/group attribute
relates closely to fairness measures due to its importance in controlling the sampled distribution of
each group. Changing A corresponds to asking counterfactually what if a similar or counterfactual
sample were from a different sensitive group.

• Concept as Label (C = Y ). In many situations, there are uncertainties in the label Y |X . Some
other times, the observed Y can either encode noise, mislabeling or subjective biases. They can
all contribute to unfairness. Changing Y implies the counterfactual effect if we were to change
the label (e.g. a sampling, a historical decision, or a human judgment) of a sample.

• Concept as Predefined Feature Attribute (C = attr(X)). Our framework allows us to prede-
fine a relevant concept based on feature X . C can be either an externally labeled concept (e.g.
sample-level label in image data) or a part of X (e.g. a categorical2 feature in tabular data). For
instance, if we want to understand how skin color would affect the model’s fairness, and if so
which data samples would impact the observed fairness the most w.r.t skin color, we can specify

2All concepts in X , Y , or A that we consider are assumed to be categorical because the continuous concept
is not well-defined in the literature of concept.
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C = attr(image) 2 {dark, light}. Then transforming w.r.t. this concept corresponds to identify-
ing samples from different skin colors that, if were included in the training data, would lead to a
fairer model.

• Concept as Removal. Our setting is also flexible enough to consider the effect of removing a
training sample, as commonly considered in the literature on influence function (Li & Liu, 2022).
Consider a selection variable S 2 {1, 0} for each instance ztr

i
, for each sample that appears in the

training data we have si = 1. Changing to si = 0 means the sample is counterfactually removed,
i.e. ẑtr

i
(c0) = ?. By allowing the removal concept, we can incorporate the prior works on the

influence of removing samples into our framework.

2.3 CONCEPT INFLUENCE FOR FAIRNESS (CIF)

Our goal is to quantify the counterfactual effect of changing concept c for each data sample (x, y, a).
Mathematically, denote by (x̂, ŷ, â) the counterfactual sample by overriding c. Consider a training
sample ztr

i
:= (xi, yi, ai, ci), and define a counterfactual sample for ztr

i
when counterfactually

changing from C = c to C = c0 as follows:
x̂(c0), ŷ(c0), â(c0) = tranform(X = x, Y = y, A = a, override(C = c0)), c0 6= c. (5)

In the definition above, override(·) operator counterfactually sets the value of the concept variable
to a different c0. If differs from merely C = c in the sense that the change on C would also
change other variables, i.e. A, X , Y , or the action of removing samples. It also differs from the
well-known do-operator in the causal literature (Pearl, 2010), in the sense that the procedure does
not necessarily need to follow the mechanism of causal inference, and therefore can include any
empirical mechanisms that approximate counterfactuals. The difference is vital because when it is
unclear whether the problem is identifiable or not (Zhang & Hyvärinen, 2009; Zhang & Hyvarinen,
2012; Shimizu et al., 2006; Hoyer et al., 2008), we still want to develop heuristic approximations.
And transform(·) maps the original training samples to their corresponding counterfactual samples
by considering the effect of override(·).
Therefore, our override(·) and transform(·) can include both traditional causal inference methods
when we deal with synthetic data, and, more importantly, empirical heuristics when identifiability is
unclear. We include three typical scenarios:
• Assigning values: When we override label Y , we can simply set the label value (which is not a

typical case in causal inference), i.e.
tranform(X = x, Y = y, A = a, override(Y = y0)) = (x, y0, a)

• Empirical approximation: When identifiability is unclear, which is the major case that we study,
we can approximate the counterfactual samples by training a generative model G,3 i.e.

transform(X = x, Y = y, A = a, override(C = c0)) = Gc!c0(x, y, a)

• Do-intervention: When the counterfactual distribution is theoretically identifiable, which is only
in the synthetic setting, then the transform(·) and override(·) are the sampling functions and the
do-operator, i.e. 4

tranform(X = x, Y = y, A = a, override(C = c0)) (6)

= x̂(c0), ŷ(c0), â(c0) ⇠ P
⇣
X̂, Ŷ , Â|X = x, Y = y, A = a, do(C = c0)

⌘
, c0 6= c. (7)

The effectiveness of our solution depends on finding a proper transform(·), which is our work’s
focus, and the quality of transform(·) can be verified empirically in experiments. In addition, our
framework is general; if researchers discover better ways to approximate counterfactuals, they plug
those into our framework easily.

Concept Influence for Fairness. Denote a counterfactual sample as ẑtr

i
(c0) =

(x̂i(c0), ŷi(c0), âi(c0), ĉi = c0). Then we define the counterfactual model when replacing ztr

i
=

(xi, yi, ai, ci) with ẑtr

i
(c0) as:

✓̂i,c0 := argmin
✓
{R(✓)� ✏ · `(✓, ztr

i
) + ✏ · `(✓, ẑtr

i
(c0))} (8)

3In Section 3.1, we introduce how to construct transform(·) in this case.
4The definition is slightly abused – when C overlaps with any of (X,Y,A), the do(·) operation has a higher

priority and is assumed to automatically overwrite the other dependencies. For example, when C = A, we
have: P

⇣
X̂, Ŷ , Â|X = x, Y = y,A = a, do(C = c0)

⌘
= P

⇣
X̂, Ŷ , Â|X = x, Y = y,A = a, do(A = â)

⌘
.
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Definition 2 (Concept Influence for Fairness (CIF)). The concept influence for fairness (CIF) of
overriding on a concept C to c0 in sample i on the fairness loss `fair is defined as:

infl(Dval, ✓̂i,c0) := `fair(✓̂)� `fair(✓̂i,c0) (9)

Based on Proposition 1, we can easily prove (see Appendix B for the proof):
Proposition 2. The concept influence for fairness (CIF) of a training sample ztr

i
when counterfac-

tually transformed to ẑtr

i
(c0) based on the target concept c0 can be computed as:

infl(Dval, ✓̂i,c0) ⇡ �r✓`fair(✓̂)
|H�1

✓̂

⇣
r`(ztr

i
; ✓̂)�r`(ẑtr

i
(c0); ✓̂)

⌘
(10)

Why Can CIF Improve Fairness? We include the full theoretical analysis of why overriding
training concepts using CIF framework can improve fairness in Appendix D. We briefly summarize
here. When overriding label Y , we can change a training label of a disadvantaged group from a
wrong label to a correct one, and effectively improve the performance of the model for this group.
Therefore the label (re)assignment can reduce the accuracy disparities. Overriding sensitive attribute
A improves fairness by balancing the data distribution. Later in the experiments (Figure 14 in
Appendix E.7), we show that the influence function often identifies the data from the majority group
and recommends them to be changed to the minority group.

3 ALGORITHMIC DETAILS

We present our method of generating counterfactual samples and computing CIF.

3.1 GENERATING COUNTERFACTUAL SAMPLES

To compute the fairness influence based on Eqn. 10, we need to first generate the corresponding
counterfactual sample ẑtr

i
(c0) = (x̂i(c0), ŷi(c0), âi(c0), ĉi = c0) when we override concept C from c

to c0. Theoretically, generating the counterfactual examples requires the assumptions of the under-
lying causal graph but we use a set of practical algorithms to approximate.

Overriding Label Y . Since there is no variable in training data dependent on Y (Figure 1c), we
can simply change the sample’s label to the target label ŷi and keep other attributes unchanged, i.e.
ẑtr

i
(ŷi) = (xi, ŷi, ai, ĉi = ŷi).

Overriding Sensitive Attribute A. When we override a sample’s A, both its X and Y need to
change (Figure 1a). This is the same as asking, e.g. in a loan application, “How a female applicant’s
profile (i.e. xi) and the loan decision (i.e. yi) would change, had she been a male (i.e. ai = âi)?”
Inspired by (Black et al., 2020), we train a W-GAN (Arjovsky et al., 2017) with optimal transport
mapping (Villani et al., 2009) to generate in-distributional5 counterfactual samples for xi as if xi

belongs to a different ai. To do so, we need to map the distribution of X from A = a to A = a0.
We first partition the training samples’ feature into two groups: X|A = a and X|A = a0. Then
we train a W-GAN with the generator Ga!a0 as the approximated optimal transport mapping from
X|A = a to X|A = a0 and the discriminator Da!a0 ensures the mapped samples Ga!a0(X) and
the real samples X|A = a0 are indistinguishable. The training objectives are the following:

`Ga!a0 =
1

n

⇣ X

x 2 X|A=a

D(G(x)) + � ·
X

x 2 X|A=a

c(x, G(x))
⌘

`Da!a0 =
1

n

⇣ X

x0 2 X|A=a0

D(x0)�
X

x2X|A=a

D(G(x))
⌘ (11)

5We need the counterfactual samples to be in-distributional rather than out-of-distributional because we
need the change between the counterfactual sample and the original sample to be large enough to impact the
fairness measure. We tried counterfactual examples (Wachter et al., 2017) that impose minimum change to the
original sample, and it does not work well in mitigation because the fairness influence value they induce is too
small. Other approaches like data generation via causal graph only work on synthetic data.
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where n is the number of training samples, � is the weight balancing the conventional W-GAN
generator loss (i.e. the first term in `Ga!a0 ) and the distance cost function c(.) (i.e. `2 norm in our
case) that makes sure the mapped samples are not too far from the original distribution.

After we train the W-GAN on the training data, we can use the trained generator Ga!a0 to map
a sample xi to its counterfactual version x̂i = Gai!âi(xi). In addition, once we have the coun-
terfactual features, we can use the original model to predict the corresponding counterfactual label
(i.e. following the dependency link X ! Y in Figure 1a). The resulting counterfactual sample is
ẑtr

i
(âi) = (x̂i, h✓̂

(x̂i), âi, ĉi = âi).

Overriding Feature X . In image data, assume there exists an image-label attribute C = attr(X),
e.g. young or old in facial images, and overriding X means transforming the image (i.e. all pixel
values in X) as if it belongs to a different C. In tabular data, C is one of the features in X , and
when C is changed, all other features in X need to change accordingly. In both cases, similar to
overriding A, we train a W-GAN to learn the mapping from the group X|C = c to X|C = c0; the
resulting generator is Gc!c0 and the generated counterfactual feature is x̂i = Gci!ĉi(xi). Similarly,
since the data dependency X ! Y exists in our assumption in Figure 1b, we also use the original
model’s predicted label as the counterfactual label. The resulting counterfactual sample is ẑtr

i
(ĉi) =

(x̂i, h✓̂
(x̂i), ai, ĉi = x̂i).

Removal. Removing is simply setting the counterfactual sample to be null, i.e. ẑtr

i
(c0) = ?.

3.2 COMPUTING INFLUENCE

Following (Koh & Liang, 2017), we use the Hessian vector product (HVP) to compute the product
of the second and the third term in Eqn. 10 together. Let v :=

⇣
r`(ztr

i
; ✓̂)�r`(ẑtr

i
(c0); ✓̂)

⌘
, we

can compute H�1v recursively (Agarwal et al., 2017):

Ĥ�1
r

v = v + (I � Ĥ0)Ĥ
�1
r�1v (12)

where Ĥ0 is the Hessian matrix approximated on random batches. Let t be the final recursive
iteration, then the final CIF is infl(Dval, ✓̂i,c0) ⇡ �r✓`fair(✓̂)|Ĥ�1

t
v, where `fair(✓̂) is the surrogate

loss of fairness measure (e.g. Eqn. 4, 21 or 25).

Similar to (Koh & Liang, 2017), we assume the loss is twice-differentiable and strongly convex in
✓, so that H

✓̂
exists and is positive definite, i.e. H�1

✓̂
exists. If the assumptions are not satisfied, the

convergence would suffer. It is a well-documented problem in the literature (Koh & Liang, 2017;
Basu et al., 2020a). However, our goal is not to propose a better influence function approximating
algorithm; we aim to demonstrate the idea of leveraging influence function to help practitioners un-
derstand the unfairness. As better influence-approximating algorithms are invented, our framework
is flexible enough to plug in and benefit from the improvement. Later in Section 4.1, we empirically
show the accuracy of our influence estimation.

4 EXPERIMENTS

We present a series of experiments to validate the effectiveness of CIF in explaining and mitigating
model unfairness, detecting biased/poisoned samples, and recommending resampling to balance
representation.

We test CIF on 4 datasets: synthetic, COMPAS (Angwin et al., 2016), Adult (Kohavi et al., 1996),
and CelebA (Liu et al., 2015). We report results on three group fairness metrics (DP, EOP, and
EO, see Table 1 in Appendix C for the definition). We include dataset details in Appendix E.1 and
experiment details in Appendix E.2.

4.1 MITIGATION PERFORMANCE

We test the CIF-based mitigation by first computing CIF values on all training samples, and then
replacing samples with the highest CIF values by their corresponding generated counterfactual sam-
ples, and retraining the model. In each retraining on the removed training set, we repeat the training
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Figure 2: CIF-based mitigation performance with fairness measure Demographic Parity (DP).

Figure 3: CIF-based mitigation performance with fairness measure Equality of Opportunity (EOP).

Figure 4: CIF-based mitigation performance with fairness measure Equality of Odds (EO).

process 10 times and report the standard deviation of the fairness measure in the error bars. Fig-
ure 2-4 show the fairness performance after the model training. We observe that all three fairness
measures improve significantly after following CIF’s mitigation recommendations. See Figure 8-10
in Appendix E.3 for the reported model accuracy.

We summarize observations: (1) Overriding Y is highly effective on real-world data but not on
synthetic. We conjecture that this is because we control the synthetic data to be cleanly labeled,
which is not the case for other real-world data.6 (2) Overriding A proves to be helpful for most
cases, especially for DP, which highly relates to the demographic variable A. (3) We set the size of
synthetic data to be small (1,000) to show that simply removing training samples might not always
be a good strategy, particularly on a small dataset in which the model would suffer significantly from
losing training samples.

Fairness-utility Tradeoff. We report the fairness-utility tradeoffs of our mitigation on COMPAS,
together with the in-processing mitigation (Agarwal et al., 2018) in Figure 5. Our mitigation is
comparable to (Agarwal et al., 2018); sometimes we can achieve better fairness given a similar level
of accuracy (e.g. when accuracy is ⇠ 60%).

Accuracy of CIF Estimate. Figure 6 plots influence value vs. the actual difference in fairness loss
(DP) on the COMPAS dataset. See Appendix E.5 for experiment details. The relationship between

6To test this hypothesis, we add label noise in the synthetic data to see if it would make Y-overriding
more effective. Table 2 in Appendix E.4 shows the results. When labels are no long clean, our Y-overriding
becomes more effective, showing that indeed label noise can be a significant contributor to the unfairness, as
also indicated by prior work (Wang et al., 2021).
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Figure 5: Fairness-accuracy tradeoff
of CIF-based mitigation on COMPAS.
CIF-based mitigation is comparable
to in-processing mitigation method,
and sometimes achieves better fairness
given a similar level of accuracy.

Figure 6: Estimated influence value vs. the actual dif-
ference in fairness loss on COMPAS with fairness metric
Demographic Parity (DP).

our estimated influence and the actual change in fairness is largely linear, meaning our influence
value can estimate the fairness change reasonably well.

Distribution of CIF. We show the distribution of influence values computed on COMPAS cor-
responding to three fairness metrics in Figure 11 (Appendix E.6). Overriding Y has the highest
influence value. This is because we change the value of Y directly in this operation, which is
more “unnaturally” compared to generating more “natural” counterfactual examples with W-GAN
(overriding X and A) or model-predicted value of Y (overriding X). So practitioners should be
particularly cautious about mislabelling, e.g. if any unprivileged group should be labeled favorable
but ended up getting labeled unfavorable.

4.2 ADDITIONAL APPLICATIONS OF CIF

We provide three examples of additional applications that can be derived from our CIF framework:
(1) fixing mislabelling, (2) defending against poisoning attacks, and (3) resampling imbalanced
representations. We include experiment details and results in Appendix E.7.

Fixing Mislabeling. We flip training labels Y in the Adult dataset to artificially increase the model’s
unfairness. Following (Wang et al., 2021), we add group-dependent label noise, i.e. the probability of
flipping a sample’s Y is based on its A, to enlarge the fairness gap. We then compute Y -overriding
CIF on each sample, and flag samples with the top CIF value. In Figure 12 (Appendix E.7), we
report the precision of our CIF-based detection and mitigation performance if we flip the detected
samples’ labels and retrain the model. Our detection can flag the incorrect labels that are known
to be the source of the unfairness with high precision (compared to randomly flagging the same
percentage) and improves the model fairness if the detected labels are corrected.

Defending against Poisoning Attacks. We demonstrate the application of defending models against
fairness poisoning attacks. To generate poisoned training samples that cause the model’s unfairness,
we choose poisoned training samples with the same probability based on the group- and label-
dependent probability in the previous application. In addition to flipping the samples’ labels, we
also set the target feature (i.e. race in Adult) to be a fixed value (i.e. white) regardless of the original
feature value. The attack that modifies a sample’s feature to be a fixed value and changes its label is
known as backdoor attack (Gu et al., 2019; Li et al., 2021b; Wu et al., 2022a), a special type of poi-
soning attack. After the poisoning, all fairness measures become worse. For detection, we compute
X-overriding CIF on the poisoned feature, and flag samples with high CIF value. For mitigation, if
we flag a sample to be poisoned, we remove it from the training set and retrain the model. Figure 13
(Appendix E.7) shows the precision of our detection and the mitigation performance after removal.
We observe a high precision and reasonably good fairness improvement.

Resampling Imbalanced Representations. To create an extremely imbalanced representation in
the training set, we upsample the positive samples in the privileged group (i.e. male) by 200% in
the Adult dataset, further increasing the percentage of positive samples that belong to the privileged
group, and therefore the training samples are overwhelmingly represented by the privileged group.
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The resulting fairness becomes worse. We then compute A-overriding CIF, and replace the high-
influence samples with their counterfactual samples (i.e. adding counterfactual samples in the un-
privileged group and reducing samples from the privileged group). In Figure 14 (Appendix E.7), we
report the percentage of high-influence samples that belong to the privileged group (i.e. how much
CIF recommends the data balancing) and the mitigation performance. The high-influence samples
are almost all from the privileged group, which is expected, and if they were converted to the coun-
terfactual samples as if they are from the unprivileged group, i.e. recollecting and resampling the
training distribution, then fairness can improve.

5 RELATED WORK

Influence Function. The goal of influence function is to quantify the impact of training data on
the model’s output. (Koh & Liang, 2017) popularizes the idea of training data influence to the
attention of our research community and has demonstrated its power in a variety of applications.
Later works have aimed to improve the efficiency of computing influence functions. For example,
Tracein (Pruthi et al., 2020) proposes a first-order solution that leverages the training gradients of the
samples, and a neural tangent kernel approach for speeding up this task. Other works have explored
the computation of group influence (Basu et al., 2020b), the robustness of influence function (Basu
et al., 2020a), its application in explainable AI (Linardatos et al., 2020) and other tasks like graph
networks (Chen et al., 2023).

Influence Function for Fairness. Our work is closely relevant to the recent discussions on quan-
tifying training data’s influence on a model’s fairness properties. (Wang et al., 2022a) computes
the training data influence to fairness when removing a certain set of training samples. (Li & Liu,
2022) discusses a soft version of the removal and computes also the optimal “removal weights” for
each sample to improve fairness. And (Sattigeri et al., 2022) leverages the computed influence to
perform a post-hoc model update to improve its fairness. Note that those works consider the fairness
effect of removing or reweighing training samples. Our work targets a more flexible and powerful
definition of influence that can give practitioners a wider scope of understanding by introducing the
idea of concepts and generating counterfactual samples as well as result in a wider range of potential
applications.

Data Repairing for Fairness. Our work is also related to the work on data repairing to improve
fairness. (Krasanakis et al., 2018; Lahoti et al., 2020) discuss the possibilities of reweighing training
data to improve fairness. (Zhang et al., 2022) proposes a “reprogramming” framework that modified
the features of training data. (Liu & Wang, 2021) explores the possibility of resampling labels to
improve the fairness of training. Other works study the robustness of model w.r.t fairness (Wang
et al., 2022b; Chhabra et al., 2023; Li et al., 2022). Another line of research that repairs training data
is through training data pre-proccessing (Calmon et al., 2017; Celis et al., 2020; Kamiran & Calders,
2012; du Pin Calmon et al., 2018), synthetic fair data (Sattigeri et al., 2019; Jang et al., 2021; Xu
et al., 2018; van Breugel et al., 2021), and data augmentation (Sharma et al., 2020; Chuang &
Mroueh, 2021).

6 CONCLUSIONS AND LIMITATIONS

We propose Concept Influence for Fairness (CIF), which generalizes the definition of influence func-
tion for fairness from focusing only on the effects of removing or reweighing the training samples to
a broader range of dimensions related to the training data’s properties. The main idea is to consider
the effects of transforming the sample based on a certain concept of training data, which is a more
flexible framework to help practitioners better understand unfairness with a wider scope and leads
to more potential downstream applications.

We point out two limitations: (1) CIF needs to generate counterfactual samples w.r.t different con-
cepts, which can be computationally expensive and (2) in CIF-based mitigation, it can be non-trivial
to determine the optimal number of training samples to override that would maximally improve
fairness.
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