
Text2Robot: Evolutionary Robot Design from Text Descriptions

Ryan P. Ringel∗, Zachary S. Charlick∗, Jiaxun Liu∗, Boxi Xia and Boyuan Chen

Abstract— Robot design has traditionally been costly and
labor-intensive. Despite advancements in automated processes,
it remains challenging to navigate a vast design space while
producing physically manufacturable robots. We introduce
Text2Robot, a framework that converts user text specifications
and performance preferences into physical quadrupedal robots.
Within minutes, Text2Robot can use text-to-3D models to
provide strong initializations of diverse morphologies. Within
a day, our geometric processing algorithms and body-control
co-optimization produce a walking robot by explicitly consid-
ering real-world electronics and manufacturability. Text2Robot
enables rapid prototyping and opens new opportunities for
robot design with generative models. Our website is at http:
//generalroboticslab.com/Text2Robot/.

I. INTRODUCTION

For over half a century, robot design has been a costly
and labor-intensive process, requiring extensive human ef-
forts from initial sketches to detailed modeling, prototyping,
controller design, manufacturing, and testing. This traditional
approach has significant limitations, such as prohibitive costs,
lengthy development cycles, and constraints on innovation
bounded by human imagination and manual capabilities.
However, advancements in automated robot design [1–4]
promise to revolutionize this landscape. By automating key
aspects of the design process, we can drastically reduce
development time and costs, allowing industries to rapidly
produce specialized robots and enabling engineers to es-
tablish efficient manufacturing processes. Researchers also
benefit by quickly innovating desired hardware platforms.
Ultimately, automating robot design not only enables rapid
prototyping but also expands the realm of possible innova-
tions, surpassing the boundaries of what human designers
can envision and create.

One major challenge in automating robot design is navi-
gating the vast and intricate design space. Traditional engi-
neering design is time-intensive and demands considerable
technical expertise. While advancements in control engi-
neering [5–9] and machine learning [10–14] have enabled
automatic training of robot policies, designing morpholo-
gies remains laborious. Human designers typically spend
months conceptualizing, designing, and fabricating a robot,
balancing cost, manufacturability, and performance. Previous
automation attempts often simplify the design space by using
large repeating modules [1, 15–17] or voxel representations
[18, 19]. Though innovative, these designs are slow due to the
need to search within a vast design space and do not consider

This work is supported by DARPA FoundSci program under
award HR00112490372, by ARL STRONG program under awards
W911NF2320182 and W911NF2220113. All authors are from Duke Uni-
versity. ∗Equal contribution.

Fig. 1: Text2Robot creates physical robots from user-
specified text prompts and performance preferences while
considering real-world electronics and manufacturability.
real-world fabrication, resulting in theoretically sound but
impractical designs to produce.

Automated methods for robot design predominately in-
volve Evolutionary Algorithms (EAs) inspired by natural
evolution [20]. However, EA-based approaches are inherently
slow, starting with random solutions and iterating through
hundreds of generations. Moreover, existing solutions do not
scale well with increasing design complexity [21] and face
significant challenges in balancing multiple objectives, such
as control and morphology co-optimization [17, 22]. Conse-
quently, while these solutions may excel in simulations, they
frequently fail to address practical issues such as sim2real
transfer [16–18] and manufacturability. Problems like high
current draw from unrealistic degrees of freedom [16, 17] or
complex morphologies that are difficult to manufacture [16–
18] hinder the transition from theoretical designs to practical
and producible robots.

We present Text2Robot (Fig. 2), an “A-to-Z” framework
from user text specifications to physical walking robots.
Our approach utilizes recent advancements in text-to-3D
generative models to create initial mesh designs, which are
subsequently converted into kinetic robot models through
our geometric processing algorithms. Within minutes we
can generate a design, within an hour, a robot trained in
simulation, and within a day, a fabricated walking robot.
Our system not only fulfills users’ aesthetic preferences
but further optimizes the designs using an evolutionary
algorithm to incorporate other performance preferences. Our
key insight is that text-to-3D generative models can provide a
much stronger starting point for the evolutionary algorithm,
significantly accelerating the optimization process. Experi-
ments in both simulation and the physical world demonstrate
our ability to specify both aesthetic qualities and performance

ar
X

iv
:2

40
6.

19
96

3v
3 

 [
cs

.R
O

] 
 2

6 
Fe

b 
20

25

http://generalroboticslab.com/Text2Robot/
http://generalroboticslab.com/Text2Robot/


metrics, such as velocity tracking and energy efficiency.
Overall, our approach introduces the creative and artistic na-
ture of generative models to automated robot design with fast
prototyping from a text prompt, and has the potential to open
up novel opportunities in rapid design and manufacturing.

II. RELATED WORK

Generative Models for Design Generative AI aims to
enhance design efficiency [23, 24] and reduce labor costs [25,
26] by automating tasks [27] or portions of the workflows
[28–30]. Recent advances in generative models have led to
the integration of generative adversarial networks (GANs)
[31, 32], diffusion models [33, 34], and transformers [35, 36]
into the generative design process. Previous research has
utilized generative models for domain-specific code creation
[37, 38] or parameter-based physical designs [39, 40]. Such
systems often heavily rely on human feedback and tuning
during the design process. In contrast, our work focuses
on directly enabling artificial intelligence-generated content
(AIGC) for physically embodied and functional robot design.

Text-to-3D Models Recent advancements in text-to-3D gen-
erative models [41] utilize pre-trained text-to-image diffusion
models to optimize Neural Radiance Fields (NeRF) [42–44],
text-to-3D shape embeddings in a GANs framework [45], or
explicit and hybrid scene representations [46] to create 3D
generated content. Despite their growing capabilities, current
text-to-3D models are primarily used for visualization in
graphics and not for the creation of functioning machines.
Our work incorporates 3D AIGC into physical robot design
while considering electrical components and manufacturabil-
ity constraints.

Automated Robot Design Automated robot design often in-
volves co-optimizing control and morphology using classical
methods and analytical dynamics [47–50]. These approaches
rely on highly parameterized designs and specified models,
which limit creativity and practicality in real-world environ-
ments. Recent studies employ reinforcement learning for co-
optimization through optimizing the distribution of design
parameters[51, 52] or auto-differentiable hardware policies
[53–55], but their designs focus on limited design space and
often overlook real-world manufacturability and electronics.
Evolutionary Algorithms (EA) have been widely used [56]
to explore vast design spaces by combining modular building
blocks [1, 15, 16, 57] or voxels [18, 19, 22] through genetic
operators to co-evolve morphology and control to produce
complex and unexpected [58] designs. However, EA-based
approaches are computationally expensive, typically starting
from random solutions and requiring numerous generations
to produce effective designs. Our work leverages the open-
ended nature of EA-based approaches for design evolution
but drastically accelerates the process through strong initial-
izations by incorporating generative models.

III. APPROACH

Text2Robot (Fig. 2) generates a physical walking
quadrupedal robot that caters to a user’s text description

Fig. 2: Overview of the four steps in Text2Robot framework.

and performance priorities, such as energy efficiency or
velocity tracking accuracy. There are four major components
in Text2Robot: (1) A generative model to create static 3D
meshes of robots given user-specified texts. (2) A set of
geometric processing algorithms to convert the static meshes
into kinetic models, including the necessary components for
fabrication. (3) An optimization process based on evolution-
ary algorithms and reinforcement learning to further optimize
the robot morphologies and walking policies according to the
user’s performance preferences. (4) A final optimized robot
is quickly 3D-printed and assembled.

A. Mesh Generation from Text Prompts

Given a text prompt specifying the aesthetic of the robot,
we generate a 3D mesh of the robot using a text-to-3D model.
In this paper, we used one of the state-of-the-art models,
Meshy [59], that takes in the text prompt and produces
several candidate meshes. One high-level assumption in this
paper is to demonstrate our framework by automating the
design of quadrupedal robots with eight motors. Having
such constraints mimics the typical real-world design re-
quirements without the loss of generality of our framework.
We implemented a structured prompt design based on spec-
ified user descriptions to ensure Meshy consistently outputs
quadrupedal meshes.

The user provides a text description of their desired
robot in one to three words, which we incorporate into
the following prompt format: <Quadrupedal walking
robot resembling a "User-Provided
Description">. The generated candidate meshes are
then manually filtered according to the following constraints:
(1) the mesh must be continuous without disjoint bodies;
(2) the mesh must exhibit bilateral symmetry; and (3) the
mesh must include four legs.

B. Kinetic Robot Model from Static Meshes

Current text-to-3D models only produce static meshes for
visualization purposes. Our key challenge is to automatically
convert such static meshes into kinetic robot models. Impor-
tantly, unlike most simulated robot models that are simplified
for fast simulation, to automatically transfer our designs
to physical functioning robots, our generated robot model
should also consider real-world manufacturing factors such
as the placement of electronic components, wire connections,
physical collisions at joints, limits of the number of motors,
and manufacturability.

Mesh Repair and Preprocessing Due to the lack of realistic



constraints on the text-to-3D models, the generated mesh can
have errors such as being non-watertight. We first call the
mesh repair API through Fusion 360 [60] to repair the mesh
for the downstream workflow. We then leverage the mesh
conversion operation to convert the mesh to an organic BREP
(Boundary Representation) body. We scale the BREP body to
a volume of 6300cm3 to unify the initial mass of all robots.

Joint Allocation Deciding a set of feasible joint positions for
a quadrupedal robot with eight motors purely from the mesh
model is difficult. Inspired by natural quadrupedal animals,
we assume that our robots have four legs and two movable
joints for each leg. In other words, our robots have four
shoulder joints and four knee joints, dividing each leg into
an upper and lower leg.

We determine the position and orientation of each joint
based on the mesh model’s geometric features (Fig. 3 A
and B). The body’s origin is defined as the center of mass,
assuming uniform mass distribution. Starting from the origin
along the +y and −y direction, we create vertical slices
parallel to the xz plane and record the cross-sectional area
at each step. The slice closest to the origin with a local
minimum in cross-sectional area is mirrored to the other side
of the origin. The two slicing planes separate the mesh into
four legs and one body, defined as the base link. The origins
of the four shoulder joints correspond to the centroids of
their intersection profiles, with z-axes perpendicular to the
slicing plane and y-axes pointing downwards. Similarly, knee
joints are located at the slice planes with maximum cross-
sectional area, traversing along the xy plane for each leg.
We traverse from the bottom of the base link and stop 2cm
from the ground to ensure space for motor placement. The
origins of the knee joints correspond to the centroids of each
intersection profile, with z-axes perpendicular to their slicing
planes and x-axes parallel to the slicing planes pointing in
the robot’s facing direction. We follow the right-hand system.

Electronic Component Placement To create robots for real-
world manufacturing and walking, we need to consider the
placements of electronic components, including actuators,
batteries, and controllers. As in Fig. 3C, servo motors are
housed in a 3D-printed box with snap-in pegs inspired by
toy building blocks. Motors can be rotated in their casings to
achieve the desired axis of rotation during assembly. A larger
box encases other necessary electronics, such as the motor
controller, Raspberry Pi, and battery, and can be easily slid
into a central channel in the base link. To avoid self-collision
and reserve space for motor and electronics modules, we
offset the eight limbs by 4cm and cut extrusions.

By this step, the robot’s kinetic model is automatically
defined by our algorithms, and our pipeline exports the
model to Unified Robotics Description Format (URDF) [61].
To enlarge the design space for optimization in Sec. III-
C, we scale each leg in 0.5cm increments to generate nine
additional models. We further augment these models to thirty
variants by defining each joint’s rotational axis along the
x, y, or z axis of the joint coordinate.

Fig. 3: Geometric Processing. (A) Heat maps to visualize
the cross-section area from the XZ (left) and XY plane
(right). (B) The selected planes for slicing the mesh model
and the coordinate of the center of mass and the resulting
robot components and their joint coordinates. (C) The final
robot model with extruded boxes for electronics and motors.

C. Co-Optimization of Morphology and Policy

We propose an evolutionary algorithm (Fig. 4A) with a
dual-loop architecture to optimize both robot morphology
and control policy while simultaneously incorporating user
preferences. The inner loop employs reinforcement learning
to assess a robot’s capacity for acquiring a walking policy.
The outer loop utilizes genetic operators to evolve the robot
morphology from a design repository.

An initial population of robots will be trained for locomo-
tion to track changing velocities along x−y−yaw directions.
The robot observations include the previous actions, base
linear and angular velocities, joint positions and velocities,
the gravity vector projected onto the robot’s coordinate
system, and the target body velocity commands. The policy
outputs the joint position offsets that will be converted to
torques with a PD controller. The reward function consists
of a baseline reward (rbaseline) and optional user-adjustable
reward terms based on preference. rbaseline minimizes ve-
locity tracking error, maintains a plausible robot pose, and
penalizes excessive joint torque, accelerations, frequent step-
ping behavior, and abrupt action changes. The user-specified
components are the linear velocity tracking reward and joint
power penalty. The per-step reward can be defined as:

r = α1e
−0.25∥v∗

xy−vxy∥2︸ ︷︷ ︸
linear velocity tracking

+α2

n∑
i=0

∥q̇iτi∥︸ ︷︷ ︸
joint power

+rbaseline (1)

where v∗
xy is the commanded base linear velocity in xy

direction, and vxy is the actual base linear velocity, q̇ is
the joint velocities, τ is the joint torques, n is the number of
joints and α1 and α2 are the weights of the respective reward
terms. rbaseline are listed in the supplementary material.

We select the top 100 robots for each generation and create
another 100 new robots with genetic operators. 50 of the new
robots are created through mutations, and the other 50 are
created through crossovers. Crossover is achieved by dupli-
cating a random robot in the current generation and choosing
with a 50% chance to swap a joint or a limb with another
random robot in the current generation. For the mutations, the



Fig. 4: Morphology and Walking Policy Co-optimization.
(A) The inner loop implements reinforcement learning to
optimize the robot control policy, and the outer loop op-
timizes the robot morphologies through genetic operations.
(B) Our genetic representation and examples of crossover
and mutation operation.

robot can undergo a change in limb length, limb shape, body
shape, joint axis or remain the same with the possibility of
15%, 15%, 25%, 40%, and 5%, respectively. A constraint of
symmetry is imposed on the robot based on the observation
of natural animal characteristics and the practicality of our
implementation. To achieve this, the same change is applied
to all legs or joints to unify the joint type and length or shape
of the limb within the same body level. Although a larger
design space can be achieved without this constraint, this
ensures our robot has a stable starting pose at the beginning
of the inner loop training and improves the training quality.

By defining the fitness score based on different evaluation
metrics, our outer loop can prioritize different performances
for robot selection and optimize both morphology and walk-
ing policy toward user preference. We design two criteria
for users to prioritize: (1) Velocity tracking. We scale the
velocity tracking reward by 20 and add it to the total reward.
(2) Energy efficiency. We scale the energy penalty by 10 and
add it to the total reward.

Implementation Details We trained our multi-directional
walking policy using the Proximal Policy Optimization
(PPO) algorithm [62], following the implementation of par-
allel reinforcement learning described in [63, 64]. Each robot
was trained for 2.46 × 107 steps (a few minutes) before
evaluation. We extended the open-source IsaacGymEnvs sim-
ulation environment [65] for our parallel training with 4096
environments per robot. Both our actor and critic networks
employ three fully connected layers with dimensions of [512,
256, 128] and ELU activation functions. All training were
performed on servers with NVIDIA RTX A6000, NVIDIA
A100, and NVIDIA GeForce RTX 3090 GPUs. Comprehen-
sive details on the specific training hyperparameters are in
the supplementary material.

Fig. 5: Generated Meshes and Corresponding User De-
scriptions. (A) Sixteen robot mesh models generated from
our structured prompt with diverse user descriptions. (B) We
used the same or similar descriptions to generate four other
morphology variants for bug, frog, and dog robots.

D. Physical Assembly

All robots were printed on the Creality CR-10 Smart Pro
3D printer due to its large printing bed. We use the Hi-
wonder HTD-45H High Voltage Serial Bus Servo to actuate
our robots. We list detailed information on other electric
components in supplementary material. The resulting robot
assembly can be completed in minutes due to our modular
design and careful considerations of electronic component
placement and manufacturability.

IV. EXPERIMENT

In this section, we aim to evaluate Text2Robot from
various aspects. First, we assess its ability to generate robot
designs that align with diverse user-specified aesthetics.
Second, we highlight the key advantages of integrating
generative models into the automated robot design workflow.
Third, we evaluate the performance of co-optimizing body
morphology and control policy while prioritizing differ-
ent performance metrics as specified by users. Finally, we
demonstrate the real-world applicability of Text2Robot by
fabricating and showcasing the physical robots.

A. Aesthetic Specification Matching

To assess the effectiveness of Text2Robot in generating
robot designs that align with diverse user-specified aesthetics,
we evaluated the initial stages of the framework using a va-
riety of input text prompts. This evaluation aimed to demon-
strate the capabilities of our chosen generative model in the
context of robot design. We tested sixteen diverse prompts,
encompassing both animal-inspired descriptions (e.g., “dog”,
“frog”) and more creative concepts (e.g., “bread”, “can”,
“shoe”). The qualitative results in Fig. 5A demonstrate that
the generated designs can capture the essence of the input
descriptions while adhering to the fundamental structure of a
quadrupedal robot. We further investigated achieving subtle
variations in generated morphologies by tweaking prompts,
producing unique robot designs for specific species like
“Bug”, “Dog”, and “Frog”, as shown in Fig. 5B. For each



Fig. 6: Reward comparison of the Text2Robot and Robo-
Grammar robots and visualization of the best-performing and
worst-performing robots.

of the above designs, we exported 30 robots in total by
our geometric processing stage with various leg lengths and
joint orientations for subsequent experiments. Text2Robot
can generate a robot mesh within 1 ∼ 2 mins and convert it
into a URDF model in 30 secs.

B. Advantages of Incorporating Text-to-3D Models

We hypothesize that one key advantage of integrating text-
to-3D models is to provide a much stronger initialization
for evolutionary design. Therefore, we compared with Robo-
Grammar [16] which enables a wide range of symmetrical
robot designs based on simple primitive geometries as a
baseline. To ensure a fair comparison, we filtered robots
generated with their recursive graph grammar to only include
quadrupedal robots with two joints per leg and with similar
body lengths. We created URDF files for their robot and
assigned the weights to match the weights of our robots.
We then trained 150 RoboGrammar robots and 150 of our
generated designs for the same amount of steps for a walking
policy. Our 150 robots are randomly selected from 600 robots
augmented from the sixteen prompts (Fig. 5A) and another
four prompts in the bug species (Fig. 5B). Fig. 6 shows that
our initialized robots outperformed the baseline initialized
robots by a large margin.

We found most RoboGrammar robots suffer from unnat-
ural placement and orientation of joints and links. Limbs on
the same side are often too close together which compro-
mises balance, and links protrude in the same direction as
the joint axis, making the limb ineffective for locomotion. In
contrast, Text2Robot leverages the knowledge of the physical
world embedded within a text-to-3D generative model to
produce quadrupedal robots with appropriate leg lengths, link
and body proportions, and stable static initial postures.

C. Morphology and Walking Policy Co-optimization

Single Species Optimization We first co-optimized mor-
phology and control with similar morphologies to “Bug”,
“Frog” and “Dog” as shown in Fig 5. Each species contains
five variants of morphology from similar prompts. In each of
the three trials, we used the 150 robots augmented from the
five robots as the initial population in our EA, and all robots
were optimized based on the general reward in Eq. 1. Fig. 7

Fig. 7: General Reward Optimization. The reward of the
best robot per generation and the morphology of the best
robot in the last generation.
shows the emergence of successful locomotion within only a
few generations, indicating the effectiveness of our method
in generating walking quadrupedal robots. We continued to
evolve the robots for 20 generations, and the performance
was further improved with evolved morphologies.

Increasing Diversity We then investigated the effect of
increasing diversity in the robot bank. We used the 600 robots
augmented from the sixteen prompts and an additional four
prompts in the bug species. The final selected robot achieved
higher rewards compared to the robot optimized with similar
morphologies (Fig. 7). Text2Robot enables higher-quality de-
signs simply by expanding the diversity of text descriptions.
This demonstrates the potential of our method to scale up and
achieve better performance with more diverse and creative
text prompts.

D. Co-optimization with Preferences

We evaluate Text2Robot to optimize robot designs accord-
ing to user-supplied priorities: energy or velocity tracking.
We used all robots with their augmented sets from Fig. 5.
We adjusted the calculation of the fitness score by scaling
the reward with additional amplified energy or velocity
contribution. Fig. 8 shows the results of diverse species based
on each preference under 50 generations of evolution. The
results of a single species are listed in the supplementary
material.

In the optimization for robots from single species or
diverse species, our method is able to optimize the robot per-
formance per generation while considering the performance
priorities. The results show a strong correlation between the
top-performing robot and the targeted performance criteria,
and the other performance criteria, which were not being
optimized, appeared more random and sporadic. These re-
sults demonstrate that our robot is optimized to meet user
preferences. We found the robots selected from velocity
optimization generally have longer and wider bodies, while
the robots selected from energy optimization have lower
body weights. We also find that the performance of the
diverse robot bank is better than that of single-species banks,
indicating the scalability of our method.

E. Co-optimization for Rough Terrain

We applied Text2Robot to rough terrain and observed
that it effectively informed evolved robot morphologies with



higher-performing foot shapes. We also aim to highlight
the impact of input texts on informing details of the robot
designs, such as foot shapes, beyond just the large body
components as shown above. We used the robots from the
diverse bank in Fig. 5 and applied a VHACD decomposition
to increase the simulated realism of foot contact. Following
prior curriculum design [65], robots are trained to progress
through increasingly challenging terrains (smooth slope,
rough slope, stairs, discrete, and stepping stones).

Analysis of selected robot morphologies reveals a cor-
relation between foot shape and terrain type, as illustrated
in Fig. 9. Arched feet, favored in flat terrain trials, pro-
vide enhanced stability, speed, and efficient energy transfer
due to their curvature. This advantage, however, hinges on
predictable surface contact dynamics. We observed that the
large foot dimensions of arched feet increase the risk of
snagging on uneven terrain. Conversely, simple rounded feet,
chosen for rough terrain, demonstrated superior adaptability
to unpredictable surfaces, promoting stability and balance.
F. Physical Walking Robot

We selected the highest-performing “Bug” and “Frog”
from the single-species optimization and the two robots
from the diverse bank optimized for velocity tracking and
energy efficiency to demonstrate our ability to fabricate the
generated designs. Each robot required approximately a day
to manufacture, but assembly (Fig. 10) was completed within
minutes. We show a primitive Sim2Real transfer by simply
playing the trained locomotion in simulation and directly
executing the joint positions on the real robot. As shown
in Fig. 10, our real robots successfully transfer the walking
policy learned in simulation to the real world and achieve
sufficient performance in locomotion and speed. This further

Fig. 8: Optimization Based on Preference with Diverse
Robot Species. The scaled reward represents the fitness
score evolutionary loop. It consists of the original reward
received by the robots during inner loop training and the
scaled contribution based on energy or velocity, depending
on the user’s preference. The best-performing robots are
marked with dark blue, and the rest of the top 100 robots
are marked with light blue in the figure.

Fig. 9: Rough Terrain Optimization. (A) The selected robot
traversing rough terrain. (B) Robots optimized for flat terrain
(left and middle) evolve to have larger arcs for feet, while
the robot evolved for rough terrain (right) has smaller, simple
rounded feet.

Fig. 10: Real Robot Performance. We play the best robot
policy in simulation with a goal speed of 0.1 m/s in a straight
direction, and the real robot executes the same position
command in the real world.

validates the practicability and robustness of our design from
our Text2Robot pipeline. More examples can be found in our
supplementary videos.

V. CONCLUSION, LIMITATION AND FUTURE WORK

We introduce Text2Robot, which generates a physical
quadrupedal walking robot from text prompts to match user-
specified aesthetic and performance preferences. Text2Robot
leverages generative models for stronger initialization than
traditional methods, while converting visual meshes to mov-
able robots with considerations in electronics and real-world
manufacturability. Both simulated and physical experiments
show Text2Robot’s ability to co-optimize morphology and
control to produce physically functional machines.

Limitations and Future Work Text2Robot presents several
opportunities for improvement in future research. While our
current focus is on quadrupedal robots which are already
challenging to design for humans, future work can extend
the scope to robots with varying numbers of joints or
other types of electromechanical machines. One possible
solution is to combine the strong initialization of Text2Robot
with existing robot design methods such as RoboGrammer.
Additionally, the current framework still requires manual
assembly. Integrating our method with automated assembly
algorithms to construct physical robots would be a significant
advancement. Furthermore, our text prompts remain fixed
once optimization begins. Exploring a feedback mechanism
to refine mesh generation from the text-to-3D model based
on reward signals could offer greater flexibility.



REFERENCES

[1] H. Lipson and J. B. Pollack, “Automatic design and
manufacture of robotic lifeforms,” Nature, vol. 406, no.
6799, pp. 974–978, 2000.

[2] G. S. Hornby, H. Lipson, and J. B. Pollack, “Generative
representations for the automated design of modular
physical robots,” IEEE transactions on Robotics and
Automation, vol. 19, no. 4, pp. 703–719, 2003.

[3] D. Matthews, A. Spielberg, D. Rus, S. Kriegman, and
J. Bongard, “Efficient automatic design of robots,”
Proceedings of the National Academy of Sciences, vol.
120, no. 41, p. e2305180120, 2023.

[4] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph
evolution: Towards efficient automatic robot design,”
arXiv preprint arXiv:1906.05370, 2019.

[5] C. Gehring, S. Coros, M. Hutter, M. Bloesch, M. A.
Hoepflinger, and R. Siegwart, “Control of dynamic gaits
for a quadrupedal robot,” in 2013 IEEE international
conference on Robotics and automation. IEEE, 2013,
pp. 3287–3292.

[6] J. Carpentier and P.-B. Wieber, “Recent progress in
legged robots locomotion control,” Current Robotics
Reports, vol. 2, no. 3, pp. 231–238, 2021.

[7] Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W.
Park, “Representation-free model predictive control for
dynamic motions in quadrupeds,” IEEE Transactions
on Robotics, vol. 37, no. 4, pp. 1154–1171, 2021.

[8] G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M.
Wensing, and S. Kim, “Mit cheetah 3: Design and
control of a robust, dynamic quadruped robot,” in
2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 2245–
2252.

[9] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and
J. Buchli, “An efficient optimal planning and control
framework for quadrupedal locomotion,” in 2017 IEEE
International Conference on Robotics and Automation
(ICRA), 2017, pp. 93–100.

[10] S. Wang, W. Chaovalitwongse, and R. Babuska, “Ma-
chine learning algorithms in bipedal robot control,”
IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 42, no. 5, pp.
728–743, 2012.

[11] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and
M. Hutter, “Learning quadrupedal locomotion over
challenging terrain,” Science robotics, vol. 5, no. 47,
p. eabc5986, 2020.

[12] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and
M. Hutter, “Deepgait: Planning and control of
quadrupedal gaits using deep reinforcement learning,”
IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 3699–3706, 2020.

[13] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor,
and S. Levine, “How to train your robot with deep
reinforcement learning: lessons we have learned,” The
International Journal of Robotics Research, vol. 40, no.

4-5, pp. 698–721, 2021.
[14] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun,

and M. Hutter, “Learning robust perceptive locomotion
for quadrupedal robots in the wild,” Science Robotics,
vol. 7, no. 62, p. eabk2822, 2022.

[15] L. Strgar, D. Matthews, T. Hummer, and S. Kriegman,
“Evolution and learning in differentiable robots,” arXiv
preprint arXiv:2405.14712, 2024.

[16] A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes,
A. Spielberg, D. Rus, and W. Matusik, “Robogrammar:
graph grammar for terrain-optimized robot design,”
ACM Transactions on Graphics (TOG), vol. 39, no. 6,
pp. 1–16, 2020.

[17] A. Gupta, S. Savarese, S. Ganguli, and L. Fei-
Fei, “Embodied intelligence via learning and
evolution,” Nature Communications, vol. 12,
no. 1, p. 5721, 2021. [Online]. Available:
https://doi.org/10.1038/s41467-021-25874-z

[18] N. Cheney, R. MacCurdy, J. Clune, and H. Lipson,
“Unshackling evolution: Evolving soft robots with mul-
tiple materials and a powerful generative encoding,”
SIGEVOLUTION, vol. 7, pp. 11–23, 2014.

[19] N. Cheney, J. Bongard, and H. Lipson, “Evolving
soft robots in tight spaces,” in Proceedings of the
2015 annual conference on Genetic and Evolutionary
Computation, 2015, pp. 935–942.

[20] T. Bäck and H. Schwefel, “An overview of evolutionary
algorithms for parameter optimization,” Evolutionary
Computation, vol. 1, no. 1, pp. 1–23, 1993.

[21] D. Thierens, “Scalability problems of simple genetic
algorithms,” Evolutionary Computation, vol. 7, no. 4,
pp. 331–352, 1999.

[22] N. Cheney, V. Sunspiral, J. Bongard, and H. Lipson,
“On the difficulty of co-optimizing morphology and
control in evolved virtual creatures,” Artificial Life
Conference Proceedings, vol. 13, pp. 226–233, 2016.

[23] L. Regenwetter, A. H. Nobari, and F. Ahmed, “Deep
generative models in engineering design: A review,”
Journal of Mechanical Design, vol. 144, no. 7, p.
071704, 2022.

[24] T. O. Akande, O. O. Alabi, and J. B. Oyinloye, “A
review of generative models for 3d vehicle wheel gen-
eration and synthesis,” Journal of Computing Theories
and Applications, vol. 1, no. 4, pp. 368–385, 2024.

[25] L. Makatura, M. Foshey, B. Wang, F. HähnLein, P. Ma,
B. Deng, M. Tjandrasuwita, A. Spielberg, C. E. Owens,
P. Y. Chen, et al., “How can large language models help
humans in design and manufacturing?” arXiv preprint
arXiv:2307.14377, 2023.

[26] S. Feuerriegel, J. Hartmann, C. Janiesch, and
P. Zschech, “Generative ai,” Business & Information
Systems Engineering, vol. 66, no. 1, pp. 111–126, 2024.

[27] R. H. Kazi, T. Grossman, H. Cheong, A. Hashemi,
and G. W. Fitzmaurice, “Dreamsketch: Early stage
3d design explorations with sketching and generative
design.” in UIST, vol. 14, 2017, pp. 401–414.

[28] B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse

https://doi.org/10.1038/s41467-021-25874-z


molecular design using machine learning: Generative
models for matter engineering,” Science, vol. 361, no.
6400, pp. 360–365, 2018.

[29] F. Buonamici, M. Carfagni, R. Furferi, Y. Volpe,
L. Governi, et al., “Generative design: an explo-
rative study,” Computer-Aided Design and Applications,
vol. 18, no. 1, pp. 144–155, 2020.

[30] V. Liu, J. Vermeulen, G. Fitzmaurice, and J. Matejka,
“3dall-e: Integrating text-to-image ai in 3d design work-
flows,” ACM Transactions on Graphics, vol. 41, pp.
1955–1977, 2023.

[31] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai,
“Generative model for the inverse design of metasur-
faces,” Nano letters, vol. 18, no. 10, pp. 6570–6576,
2018.

[32] S. Oh, Y. Jung, S. Kim, I. Lee, and N. Kang, “Deep
generative design: Integration of topology optimization
and generative models,” Journal of Mechanical Design,
vol. 141, no. 11, p. 111405, 2019.

[33] S. Luo, Y. Su, X. Peng, S. Wang, J. Peng, and
J. Ma, “Antigen-specific antibody design and optimiza-
tion with diffusion-based generative models for protein
structures,” Advances in Neural Information Processing
Systems, vol. 35, pp. 9754–9767, 2022.

[34] L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao,
W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models:
A comprehensive survey of methods and applications,”
ACM Computing Surveys, vol. 56, no. 4, pp. 1–39,
2023.

[35] R. Wu, C. Xiao, and C. Zheng, “Deepcad: A deep gen-
erative network for computer-aided design models,” in
Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 6772–6782.

[36] Y. Siddiqui, A. Alliegro, A. Artemov, T. Tommasi,
D. Sirigatti, V. Rosov, A. Dai, and M. Nießner,
“Meshgpt: Generating triangle meshes with decoder-
only transformers,” arXiv preprint arXiv:2311.15475,
2023.

[37] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A
survey on domain-specific languages in robotics,” in
International conference on simulation, modeling, and
programming for autonomous robots. Springer, 2014,
pp. 195–206.

[38] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O.
Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph,
G. Brockman, et al., “Evaluating large language models
trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[39] H. Abdullah and J. Kamara, “Parametric design proce-
dures: a new approach to generative-form in the con-
ceptual design phase,” in AEI 2013: Building Solutions
for Architectural Engineering, 2013, pp. 334–343.

[40] G. S. Hornby and J. B. Pollack, “The advantages of
generative grammatical encodings for physical design,”
in Proceedings of the 2001 congress on evolutionary
computation (ieee cat. no. 01th8546), vol. 1. IEEE,
2001, pp. 600–607.

[41] J. Liu, X. Huang, T. Huang, L. Chen, Y. Hou, S. Tang,
Z. Liu, W. Ouyang, W. Zuo, J. Jiang, et al., “A
comprehensive survey on 3d content generation,” arXiv
preprint arXiv:2402.01166, 2024.

[42] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng,
X. Huang, K. Kreis, S. Fidler, M.-Y. Liu, and T.-
Y. Lin, “Magic3d: High-resolution text-to-3d content
creation,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023, pp.
300–309.

[43] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall,
“Dreamfusion: Text-to-3d using 2d diffusion,” arXiv
preprint arXiv:2209.14988, 2022.

[44] S. Babu, R. Liu, A. Zhou, M. Maire, G. Shakhnarovich,
and R. Hanocka, “Hyperfields: Towards zero-shot
generation of nerfs from text,” arXiv preprint
arXiv:2310.17075, 2023.

[45] K. Chen, C. B. Choy, M. Savva, A. X. Chang,
T. Funkhouser, and S. Savarese, “Text2shape: Gener-
ating shapes from natural language by learning joint
embeddings,” in Computer Vision–ACCV 2018: 14th
Asian Conference on Computer Vision, Perth, Australia,
December 2–6, 2018, Revised Selected Papers, Part III
14. Springer, 2019, pp. 100–116.

[46] R. Chen, Y. Chen, N. Jiao, and K. Jia, “Fantasia3d: Dis-
entangling geometry and appearance for high-quality
text-to-3d content creation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, 2023, pp. 22 246–22 256.

[47] J.-H. Park and H. Asada, “Concurrent design optimiza-
tion of mechanical structure and control for high speed
robots,” Journal of Dynamic Systems, Measurement,
and Control, vol. 116, no. 3, pp. 344–356, 1994.

[48] C. Paul and J. Bongard, “The road less travelled: mor-
phology in the optimization of biped robot locomotion,”
in Proceedings 2001 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Expanding the
Societal Role of Robotics in the the Next Millennium
(Cat. No.01CH37180), vol. 1, 2001, pp. 226–232 vol.1.

[49] T. Geijtenbeek, M. Van De Panne, and A. F. Van
Der Stappen, “Flexible muscle-based locomotion for
bipedal creatures,” ACM Transactions on Graphics
(TOG), vol. 32, no. 6, pp. 1–11, 2013.

[50] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane,
“Computational co-optimization of design parameters
and motion trajectories for robotic systems,” The In-
ternational Journal of Robotics Research, vol. 37, no.
13-14, pp. 1521–1536, 2018.

[51] C. Schaff, A. Sedal, and M. R. Walter, “Soft
robots learn to crawl: Jointly optimizing design
and control with sim-to-real transfer,” arXiv preprint
arXiv:2202.04575, 2022.

[52] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter,
“Jointly learning to construct and control agents using
deep reinforcement learning,” in 2019 international
conference on robotics and automation (ICRA). IEEE,
2019, pp. 9798–9805.



[53] T. Chen, Z. He, and M. Ciocarlie, “Hardware as
policy: Mechanical and computational co-optimization
using deep reinforcement learning,” arXiv preprint
arXiv:2008.04460, 2020.

[54] J. Xu, T. Chen, L. Zlokapa, M. Foshey, W. Matusik,
S. Sueda, and P. Agrawal, “An End-to-End Differen-
tiable Framework for Contact-Aware Robot Design,” in
Proceedings of Robotics: Science and Systems, Virtual,
July 2021.

[55] H. Zhanpeng and C. Matei, “Morph: Design co-
optimization with reinforcement learning via a differ-
entiable hardware model proxy,” IEEE Robotics and
Automation, 2024.

[56] S. Doncieux, N. Bredeche, J.-B. Mouret, and A. E.
Eiben, “Evolutionary robotics: what, why, and where
to,” Frontiers in Robotics and AI, vol. 2, p. 4, 2015.

[57] R. J. Alattas, S. Patel, and T. M. Sobh, “Evolutionary
modular robotics: Survey and analysis,” Journal of
Intelligent & Robotic Systems, vol. 95, pp. 815–828,
2019.

[58] J. Lehman, J. Clune, D. Misevic, C. Ofria, K. O. Ellef-
sen, J.-B. Mouret, and A. Bernatskiy, “The surprising
creativity of digital evolution: A collection of anecdotes
from the evolutionary computation and artificial life
research communities,” Artificial Life, vol. 26, pp. 274–
306, 2020.

[59] Meshy. [Online]. Available: https://www.meshy.ai/
[60] Autodesk fusion 360. [Online]. Available: https:

//www.autodesk.com/products/fusion-360
[61] T. Kitamura, “Fusion2urdf,” https://github.com/

syuntoku14/fusion2urdf, 2020.
[62] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[63] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning
to walk in minutes using massively parallel deep rein-
forcement learning,” in Conference on Robot Learning.
PMLR, 2022, pp. 91–100.

[64] D. Makoviichuk and V. Makoviychuk, “rl-games: A
high-performance framework for reinforcement learn-
ing,” https://github.com/Denys88/rl games, May 2021.

[65] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu,
K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. All-
shire, A. Handa, et al., “Isaac gym: High performance
gpu-based physics simulation for robot learning,” arXiv
preprint arXiv:2108.10470, 2021.

https://www.meshy.ai/
https://www.autodesk.com/products/fusion-360
https://www.autodesk.com/products/fusion-360
https://github.com/syuntoku14/fusion2urdf
https://github.com/syuntoku14/fusion2urdf
https://github.com/Denys88/rl_games


SUPPLEMENTARY MATERIAL

A. Single Species Optimization

We show performance optimization results for single-
species robot banks, ’Bug’, ’Frog’, and ’Dog,’ and compare
performance to that of the diverse bank. As in our diverse
bank performance optimization experiment, we adjusted the
fitness score calculation with an additional velocity reward
or energy cost through 50 generations of evolution to demon-
strate the effect of an input performance preference on
final designs. As shown in Fig. 12, our results show a
large correlation between the selected bot and the prioritized
performance criteria. Fig. 11 shows the visualization of the
selected robots, their average final rewards, and physical
characteristics.

Fig. 11: (A)The morphology of the best robot in the last gen-
eration from the eight experiments with energy or velocity
prioritize. Yellow color represents the robots that prioritize
energy contribution and red color represents the robots that
prioritize velocity contributions. (B) The unscaled reward of
the eight best robots. The average length, width, height and
weight of the eight robots.

B. Reinforcement Learning Details

We show the detailed training parameters of the inner
reinforcement learning loop in Tab. I , and the definition
of symbols and baseline reward in Tab. II and Tab. III.

C. Full Hardware Specifications

We manufacture our robots using Creality CR-10 Smart
Pro 3D printers. Robots are assembled using the 3D printed
parts, as well as various electronic components which are
easily inserted in the design. A comprehensive list of ma-
terials used in the construction of our robot is outlined in
Table IV.

Fig. 12: The scaled reward is used as the fitness metric in the
EA loop. It consists of the original reward received by the
robots during inner loop training summed with the requested
priority: (A) Scaled energy contribution, (B) Scaled velocity
contribution. The best-performing robots are marked with
dark blue, and the rest of the top 100 robots are marked
with light blue in the figure.

Hyper-parameters Values

Dense network shape [512, 256, 128]
Dense network activation elu

Discount factor 0.99
GAE discount factor 0.95
PPO loss clip range 0.2
Entropy coefficient 0.001

Learning rate α adaptive
Batch size 98304 (4096x24)

Mini-batch size 16384 (4096x4)
Mini epochs 5

Critic loss coefficient 2
KL-divergence threshold 0.008

TABLE I: PPO hyper parameters



Base linear velocity v
Base angular velocity ω

Commanded base linear velocity v∗

Commanded base angular velocity ω∗

Joint positions q
Joint velocities q̇

Joint accelerations q̈
Target joint positions q∗

Joint torques τ
Number of joints n

Number of feet nf

Feet air time tair
Feet stance time tstance

Base gravity gb

Environment time step dt

TABLE II: Definition of symbols.

baseline reward terms definition weight [∗dt]

Linear velocity tracking e
−0.25

∥∥∥v∗
xy−vxy

∥∥∥2

1

Angular velocity tracking e−0.25∥ω∗
z−ωz∥2

0.5
Linear velocity penalty v2z −4

Angular velocity penalty ∥ωxy∥2 −0.05

Joint acceleration penalty ∥q̈∥2 −5−7

Joint torque penalty ∥τ∥2 −2−5

Action rate penalty ∥ȧ∥2 −5−5

orientation
∥∥gb,xy

∥∥2 -0.5
Feet air time

∑nf

k=0(tair,k − 0.5) 0.1

Feet stance time
∑nf

k=0(tstance,k − 0.5) 0.1

TABLE III: Definition of baseline reward (rbaseline) terms.
The baseline reward contains base velocity and orientation
tracking terms, action rate penalty, and joint torque penalty;
the air time and stance time reward encourages longer air
time and stand time to promote a more natural and fluid
walking gait.

Component Model Quantity per robot

Microcontroller Raspberry Pi 4 Model B 1
Battery Povway 5200 mA Lipo 3S 11.1V 50C 1

Servo Motor Hiwonder HTD − 45H High Voltage Serial Bus Servo 45 KG 8
DC to DC Power Converter DROK 10A Synchronous Step-Down Voltage Regulator DC-DC 4− 30V to 1.2− 30V 12V 1

PLA Filament Ender PLA 3D Printer PLA Filament 1.75 mm 1KG (2.2 lbs) Spool PLA White 1
Motor Controller Hiwonder TTL / USB Debugging Board 1

TABLE IV: List of hardware component.


	Introduction
	Related Work
	Approach
	Mesh Generation from Text Prompts
	Kinetic Robot Model from Static Meshes
	Co-Optimization of Morphology and Policy
	Physical Assembly

	Experiment
	Aesthetic Specification Matching
	Advantages of Incorporating Text-to-3D Models
	Morphology and Walking Policy Co-optimization
	Co-optimization with Preferences
	Co-optimization for Rough Terrain
	Physical Walking Robot

	Conclusion, Limitation and Future Work

