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ABSTRACT

Online Action Detection (OAD) tackles the challenge of recognizing actions as
they unfold, relying solely on current and past frames. However, most OAD mod-
els are trained offline and assume static environments, limiting their adaptability
to the dynamic, user-specific contexts typical of wearable devices. To address
these limitations, we propose Continuous Online Action Detection (COAD), a
novel task formulation in which models not only perform online action detection
but also continuously learn and adapt on-the-fly from streaming videos, without
storing data or requiring multiple training passes. This paradigm naturally fits
egocentric vision on wearable devices, given its highly dynamic, personalized,
and resource-constrained characteristics. We introduce a large-scale egocentric
OAD benchmark dataset (Ego-OAD) and develop training strategies that enhance
both adaptation to individual users and generalization to unseen environments.
Our results on Ego-OAD demonstrate continuous learning from streaming videos
improves adaptation to the user’s environment by up to 20% in top-5 accuracy, and
improves generalization to new scenarios by up to 7%, advancing the development
of personalized egocentric Al systems.

1 INTRODUCTION

Wearable egocentric devices, such as smart glasses, hold promise for a wide range of real-time
applications, including assistive technologies (Mucha et al., 2024) and personal Al assistants (Cai
et al., [2025). A key capability for these systems is the ability to understand human actions as they
unfold, directly from first-person video. Despite its importance, the majority of existing research in
egocentric action understanding has focused on offline settings. In these scenarios, models are given
access to the entire video sequence, including future frames, before making a prediction. While this
setup is useful for post-hoc analysis or activity summarization, it is not suitable for applications that
require immediate feedback. By contrast, Online Action Detection (OAD) poses a more challenging
and realistic problem. In this setting, the system must recognize actions in real time, using only the
current and previously observed frames, without access to future information. This constraint makes
the task significantly harder, as the model must infer intent and context from partial observations,
often before the action has fully unfolded.

While OAD models operate in an online manner at inference time, they are trained offline. These
models are then expected to generalize properly to unpredictable input streams after deployment,
but this might fail, especially in applications on wearable devices, where users, environments, and
tasks vary significantly and evolve over time. Indeed, reliance on purely offline training can lead
to systems that do not adapt to novel situations or personalized behaviors. To bridge this gap, we
argue that OAD models must be capable of learning on-the-fly from continuous video streams as
they are encountered in the wild, enabling real-time adaptation directly on resource-constrained de-
vices. This capability aligns with the emerging paradigm of on-device training, where models con-
tinuously update using local data without relying on cloud connectivity or extensive computational
resources (Zhu et al.| [2024).

In this work, we introduce Continuous Online Action Detection (COAD), a new task formulation
that enables models to not only detect actions in real time, but also train and adapt directly on con-
tinuous video streams. While COAD is broadly applicable, egocentric (first-person) video offers
a particularly compelling and natural fit for this paradigm. The highly dynamic, user-centric na-
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ture of egocentric video, with personalized activity patterns and constant interaction with diverse
environments, demands models that can learn and adapt continuously after deployment. Moreover,
the hardware constraints of wearable devices, which typically capture egocentric streams, limit the
ability to store large amounts of data or to transfer those and perform costly offline retraining. These
factors combine to make egocentric videos an ideal testbed for COAD.

Building on recent advances in continuous video learning (Carreira et al., 2024b; Han et al.|, [2025),
we adapt its key principles to the OAD setting and introduce OAD-specific training strategies that
enhance both adaptation to the user’s environment and generalization to unseen ones. To study the
COAD problem from an egocentric data perspective, we also curate a new benchmark for egocentric
OAD based on the Ego4D Moment Queries (MQ) split (Grauman et al., [2022)), offering a diverse
and large-scale testbed for evaluating OAD models in realistic first-person settings.

In summary, our key contributions are:

¢ We introduce Countinuous Online Action Detection (COAD), a new task formulation that
enables models to adapt online from continuous egocentric video streams using single-pass
training without the need to store data;

* We curate Ego-OAD, a new large-scale benchmark for egocentric OAD based on the
Ego4D dataset (Grauman et al., [2022), providing a diverse and realistic evaluation plat-
form for future research in this direction;

* We propose effective training strategies tailored to COAD, allowing models to specialize
to individual users’ environments while retaining robust generalization to new scenarios;

* We show the proposed method for COAD improves adaptation to the user’s environment
by up to 20% in top-5 accuracy, and boosts generalization to new scenarios by up to 7%,
advancing the development of truly responsive and personalized egocentric Al systems.

2 RELATED WORKS

Online Action Detection Models. Early research on OAD primarily focused on modeling se-
quential dynamics using recurrent neural networks (RNNs) (An et al.|[2023;|De Geest & Tuytelaars,
2018} [Eun et al., 2020; |Gao et al.l 2017; [Li et al., 2016 [Xu et al., [2021a). While RNNs are ef-
ficient and well-suited for streaming video, they often struggle to capture long-range temporal de-
pendencies, leading to degraded performance in actions that unfold over extended time windows.
To address these limitations, various architectural enhancement have been proposed. Two-stream
architectures (De Geest & Tuytelaars, 2018) incorporate motion cues to complement appearance
features, while models such as IDN (Eun et al., [2020) and GateHub (Chen et al., |2022)) introduce
gating mechanisms to better control temporal information flow. Other approaches decompose the
OAD task into separate modules for action recognition and action start detection, improving preci-
sion on action boundaries (Gao et al., |2017;12019; |Shou et al., 2018). More recent efforts aim to
unify detection and anticipation, using either enhanced RNNs (Kim et al.l [2021}; |Xu et al} [2021a)
or Transformer-based models (Wang et al., [2021}; [2023)). Transformers, such as LSTR (Xu et al.,
2021b) and TeSTra (Zhao & Krihenbiihl, 2022), have advanced the state of the art by jointly model-
ing both short-term dynamics and long-term memory, enabling more accurate predictions in tempo-
rally complex scenarios (Guermal et al., [2024} [Wang et al., [2023)). Transformer-based models offer
strong performance but incur high computational and memory costs due to their attention mecha-
nisms, making them less suitable for real-time deployment on resource-constrained devices.

To target wearable devices deployment, in this paper, we revisit RNNs as a lightweight yet effective
backbone for OAD (An et al.||2023)). We demonstrate that, when equipped with an appropriate adap-
tation mechanism tailored for continuous video streams, RNNs achieve competitive performance in
the Continuous OAD setting.

Online Action Detection Datasets. Most existing benchmarks for OAD focus on exocen-
tric video, where actions are observed from a third-person viewpoint. Datasets such as THU-
MOS 14 (Jiang et al.,2014)) and TV Series (De Geest et al.,[2016)) have played a key role in advancing
the field, offering challenging scenarios with diverse subjects and activity types. Nevertheless, ego-
centric videos are central to real-world applications involving wearable devices, such as assistive
technologies and personal Al assistants. Yet, publicly available egocentric OAD datasets remain
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Figure 1: Examples from Ego-OAD. Videos sampled from the Ego-OAD, along with their corre-
sponding multi-label, temporally grounded action annotations.

scarce, and those that do exist are often limited in either scale, diversity, or task relevance. For ex-
ample, EPIC-KITCHENS (Damen et al} [2022) is a widely used egocentric dataset, but its focus on
kitchen environments restricts its applicability to broader, more varied egocentric scenarios.

To bridge this gap, we introduce a new large-scale egocentric benchmark specifically designed for
online action detection), curated from the Ego4D Moment Queries split (Grauman et al.,[2022). Our
proposed dataset captures streaming video from first-person perspectives, reflecting the temporal
continuity and dynamic conditions of real-world deployment on wearable devices. It provides a
more realistic testbed for evaluating models in continuous, online, and user-specific environments.

3 THE EGO-OAD DATASET

In this section, we detail how we curated the proposed Ego-OAD dataset from videos and annota-
tions of the Ego4D (Grauman et al [2022)) dataset. Indeed, Ego4D (Grauman et al.,[2022) contains
untrimmed egocentric videos totaling 3,670 hours, collected from 8 non-US countries and 5 US
states. These videos capture a wide variety of daily life scenarios (e.g., playing cards, cooking,
fixing a car). The Ego4D Moment Queries (MQ) Benchmark evaluates temporal localization of
events in long-form egocentric videos. Given a natural language query, models must retrieve the
most relevant temporal segment. The MQ split covers diverse everyday scenarios with fine-grained
temporal annotations and free-form query descriptions. For example, the query “When does the
person pour milk into the bowl?” is paired with the segment from 00:01:23 to 00:01: 36,
annotated with the free-form action description pour_milk. Although originally intended for re-
trieval tasks, the MQ benchmark offers rich temporal annotations that make it a strong candidate for
building an OAD benchmark, enabling the study of egocentric action understanding in a realistic
setting.

Dataset Curation. To construct our benchmark for OAD, we curated a dataset from the untrimmed
videos in the Ego4D MQ split. We treated all temporally annotated action segments as foreground
instances, while unannotated intervals were considered background. Each video includes multiple
annotation passes from independent annotators, who may disagree on the precise temporal bound-
aries or even on the action labels, reflecting the inherent ambiguity of egocentric, real-world record-
ings. To address this diversity, we merged all annotation passes, assigning to each frame the union
of all overlapping action labels. While this strategy captures a richer range of human interpreta-
tions, it also amplifies label ambiguity: the same underlying action may be described using multi-
ple, fine-grained categories that differ slightly (e.g., clean_/_wipe_kitchen_appliance vs.
clean_/_wipe_other_surface_or_object). To mitigate this ambiguity and ensure more
robust recognition, we manually grouped semantically similar free-form action descriptions into
unified action classes (see Appendix [A).

Dataset Annotations. Ego-OAD comprises 87 fine-grained action classes and a total of 22,991
labeled action instances across 263h of egocentric video. Videos are segmented into short clips,
averaging 472s in duration, with every frame annotated in a multi-label, temporally grounded man-
ner. This allows for the presence of overlapping actions, i.e., 36 % of action instances partially or
fully overlap with at least one other, with an average overlap duration of 9.90s. Figure [T] shows
example clips and their corresponding multi-label action annotations. We assess whether our Con-
tinuous OAD approach can enable training of an OAD model from a continuous video stream in
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a deployment setting. To do this, we measure both the generalization and adaptation performance.
Following the protocol proposed in|Carreira et al.|(2024a), we divide the data into three disjoint sub-
sets: a pretraining set, an in-stream set, and an out-of-stream set, each serving a distinct role in
our evaluation. Further details and statistics on the splits are described in the experimental section.

4 COAD: CoNTINUOUS OAD

We propose an extended formulation of the standard Online Action Detection (OAD) protocol,
namely Continuous OAD (CODA). This extension bridges the gap between standard offline train-
ing and real-world deployment by enabling continuous model adaptation on a video stream. The
following is a description of the standard OAD protocol and the key characteristics of the proposed
Continuous OAD task. An overview of the method is shown in Fig. 2]

4.1 ONLINE ACTION DETECTION

Let V = {x1,x2,...,z7} denote an untrimmed video consisting of 7' frames, where x; €
RAXWX3 iq the frame observed at time step t. The goal of Online Action Detection (OAD) is to
predict a multi-label action vector §; € [0, 1]‘3’ | for each frame x4, where ) is the set of labels,
using only visual information available up to and including time ¢. The OAD setting is subject to
a strict causality constraint: the model has no access to future frames {x¢41,...,z7}, but it may
leverage the temporal context from the beginning of the video up to frame ¢, i.e., {x1,...,2:}, to
predict the current, potentially overlapping, action labels:

O = f(z1.4), where f: (RHXWX3)t — [0, 1)V,

The overall OAD framework consists of two stages, which are described in the following.

4.2 STAGE 1: BACKBONE PRE-TRAINING

A video backbone & is pre-trained to extract local representations from short video segments. The
backbone operates on temporally trimmed clips # C V" and produces a feature embedding:

z=®(%), where z¢€R

While different learning objectives may be used to learn useful spatiotemporal features, a common
strategy is to train ¢ on an offline action recognition task, where temporally trimmed input clips are
labeled with action classes y € Y.

4.3  STAGE 2: OFFLINE OAD TRAINING

After pre-training, the backbone @ is frozen and used to extract local features independently for
each frame or segment:
Zt:q)(lft), t:1,...,T,

producing a sequence {21, zs, ..., 27}, with z; € R%.

The temporal detection model, typically a recurrent neural network (RNN), is then trained on sliding
windows of length 7 sampled from the feature sequences. During training, these windows are shuf-
fled to obtain independent identically distributed (IID) data. For each window, the RNN predicts the
action label of the last frame:

Ut = fae(Zt—ri1,-- -, Zt)~
Critically, when training on independent shuffled samples, the RNN hidden state is reset at the start
of each window.

4.4 STAGE 3: ONLINE INFERENCE

At test time, the model performs action detection under a causal constraint. The backbone ® extracts
features z; from incoming video segments, and the detection head f4e; produces a prediction §; based
on current and past observations:

Ut = fae(21, -+, 2t)-
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Figure 2: Overview of COAD. Standard offline OAD training relies on shuffled windows from the
input video, resulting in IID samples. In contrast, COAD operates on a continuous video stream,
handling state continuity and gradient decorrelation to enable effective training in the same stream-
ing setting used at inference time.

Differently from training, the RNN hidden state is maintained continuously across time steps without
resetting, allowing the model to leverage long-term temporal context.

4.5 CoNTINUOUS OAD (COAD) TRAINING

We introduce an intermediate training stage between offline OAD training and online inference,
enabling the model to continuous video streams.

Single-Pass Training. Unlike offline OAD training that relies on shuffled data, multiple epochs,
and repeated access to samples, COAD operates under strict causal, single-pass constraints on tem-
porally ordered windows. Given a continuous video stream {x1, xo, ..., 2}, the model receives
sequential windows of frames {x;_1,...,2+} at each time step ¢, where 7 is the window length.
Each window is processed exactly once and in temporal order. At time step ¢, the model produces
a prediction ¢, for the last frame in the window and updates its parameters using only information
from the current and previous windows. No future frames {z¢;1,...,z7} are accessible, and no
replay or storage of past data is permitted. Training proceeds with batch size one over a single
pass through the stream, enforcing causality and operating under tight memory and computational
constraints suitable for real-time deployment.

State Continuity. To capture long-range dependencies from the streaming video, the temporal
model maintains its hidden state continuously across frames during COAD. Using a recurrent archi-
tecture such as an RNN, the hidden state h; generally evolves as

hi = RNN(z, hy—1), G = f(he),

where z; is the frame-level feature from the frozen backbone. Unlike the offline training stage,
which resets hidden states between shuffled windows, COAD preserves memory across all time
steps. This consistency between training and inference memory states improves temporal coherence
and enables effective long-term reasoning.

Orthogonal Gradient. Training on a continuous video stream faces the challenge of strong tem-
poral correlations between consecutive windows, which can cause redundant or biased gradient
updates. To address this, we apply an orthogonal gradient projection technique |[Han et al.| (2025)),
where at each step the current gradient g; is projected to be orthogonal specifically to the gradient
from the immediately preceding window g;_1:

<gt7 gt71>
lgi ]2 9"

This targeted decorrelation reduces interference between consecutive updates, allowing the model
to integrate new information robustly while maintaining generalization.

gtl:gt_

Non-uniform Loss. In offline OAD training, RNN-based models are usually trained using sliding
windows, with loss computed at each time step. Following prior work |An et al.| (2023)), we adopt
a non-uniform loss weighting strategy that computes the loss only at the final step of each win-
dow. Originally introduced to reduce the mismatch between training and inference dynamics, this
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approach proves especially effective within the COAD framework, as further shown in the exper-
imental section. Another benefit is improved label efficiency: COAD requires supervision only at
each window’s final step, allowing training with sparse instead of dense frame-level annotations.

5 EXPERIMENTS

We first evaluate models under our COAD task formulation on Ego-OAD and on the EPIC-
KITCHENS dataset, which we adapt to our setting. We then present an extensive ablation analysis
of COAD on Ego-OAD.

5.1 EXPERIMENTAL PROTOCOL

Following the protocol proposed in |Carreira et al.| (2024a), we divide the data into three disjoint
subsets, each serving a distinct role: (1) the pretraining set, used for initial offline OAD training
on shuffled windows with IID sampling, providing a weak initialization under limited supervision
before any adaptation; (2) the in-stream set, used for COAD training, where the model processes
continuous video in a single causal pass and updates incrementally without access to future frames or
replay, simulating realistic online deployment; and (3) the out-of-stream set, held-out data reserved
for evaluation only. On the in-stream split, we evaluate adaptation by measuring performance at each
optimization step. On the out-stream split, we assess generalization after training on the in-stream
data.

Baselines. We compare our method (COAD) against two reference baselines: (1) Pretrained Only:
the model after OAD training on the pretraining set with standard IID sampling and without any
further adaptation. This serves as a lower bound and reflects the model’s initial performance under
limited supervision. (2) w/o COAD: The same model trained on in-stream data without applying any
of the proposed strategies, namely, orthogonal gradient regularization, non-uniform loss weighting,
or state continuity.

Datasets and Metrics. We evaluate our approach on our proposed Ego-OAD dataset, which is
designed to represent diverse scenarios of everyday activities from the egocentric perspective. We
also validate our findings on the EPIC-KITCHENS-100 dataset (Damen et al.,2022), a widely-used
benchmark for egocentric action understanding which focuses solely on cooking activities. For Ego-
OAD, the splits consist of 186 videos for pretraining, 1,177 for the in-stream set, and 519 for the
out-of-stream test, which correspond to the original Ego4D MQ validation split. We allocate the
majority of training data to the in-stream split to better assess the impact of continuous learning
on this data under the COAD scheme. For EPIC-KITCHENS, we evaluate COAD performance on
verb, noun and action categories proposed in the original dataset (Damen et al., 2022). We split the
dataset into 293 videos for pretraining, 202 for in-stream set, and 137 for the out-of-stream set. As
for the evaluation metrics, we follow prior works (Zhao & Krihenbiihl, 2022} Xu et al.| 2021aj |An
et al.,2023) and report per-frame mean Average Precision (mAP), computed over all action classes,
and the Top-5 Recall, which is conventionally used on EPIC.

5.2 IMPLEMENTATION DETAILS

Experiments on Ego-OAD use the TimeSformer backbone (Patrick et al.| |2021), comparing models
pretrained on either egocentric or exocentric data. For the exocentric variant, we use Kinetics-
400 checkpoints (Carreira & Zisserman), [2017); for the egocentric counterpart, we use EgoVLP
features (Lin et al.| |2022), which apply strong egocentric pretraining on TimeSformer. Exocentric
features are extracted from 8-frame clips with a stride of 2, yielding an effective rate of 1.87 FPS
in both cases. We also include ablations using a TSN backbone with ResNet-50 (He et al., [2016),
which processes 6-frame chunks at 24 FPS for an effective 4 FPS. For EPIC-KITCHENS, we use the
official TSN features which were finetuned on the same dataset, thus reflecting egocentric pretraining
only. The online detection head follows |An et al|(2023)), using an embedding layer, a GRU(Cho
et al.,|2014), and a final classifier. Training is performed in a single pass using 128-frame sliding
windows with stride 16 and a learning rate of 2e-5.
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Table 1: Results on Ego-OAD. Comparison of models with exocentric (Exo) and egocentric (Ego)
pretraining for both out-of-stream and in-stream settings. The Adaptation column marks rows with
the proposed continuous adaptation (v'). A represents improvements relative to the Pretrained Only
baseline.

Stream Pretrain Method Adaptation mAP Top-5Recall A mAP A Top-5 Recall
Pretrained Only X 20.1 69.1 — —
Ego w/o COAD v 255 71.6 5.4 2.5
COAD v 26.0 76.0 5.9 6.9
Out-of-stream
Pretrained Only X 15.8 55.5 — e
Exo w/o COAD v 19.0 57.8 32 2.3
COAD v 20.5 62.0 4.7 6.5
Pretrained Only X 24.1 73.3 — —
Ego w/o COAD v 39.0 86.7 14.9 134
COAD v 36.8 89.3 12.7 16.0
In-stream
Pretrained Only X 15.3 57.5 — —
Exo w/o COAD v 31.0 76.2 15.7 18.7
COAD v 31.0 80.0 15.7 22.5

Table 2: Results on EPIC-KITCHENS. In-stream and out-of-stream performance (out/in) on
EPIC-KITCHENS. Results report mAP and Top-5 Recall for verb, noun, and action. Adaptation
denotes use of our proposed COAD method (v').

Method Adaptation Verb Noun Action

mAP Top-5 Recall mAP Top-5 Recall mAP Top-5 Recall
Pretrained Only X 114/29.0 155/459 314/38 375/147 8.6/9.6 21.9/229
w/o COAD v 10.7/16.6  14.0/30.5 257/33 36.6/11.0 93/49 17.7/144
COAD v 11.8/29.0 17.0/459 371/39 502/139 99/79 21.9/205

5.3 RESULTS

Table[T]|shows the results of our COAD method on the proposed Ego-OAD benchmark, evaluated on
both the in-stream and out-of-stream splits. To assess the impact of pretraining on adaptation perfor-
mance, we conduct experiments using backbones pretrained on either egocentric (ego) or exocentric
(exo) data (see implementation details). The results demonstrate that egocentric pretraining signifi-
cantly outperforms exocentric pretraining in both in-stream and out-of-stream settings, highlighting
the critical role of egocentric representations for the Ego-OAD benchmark. COAD consistently
outperforms the baseline (w/o COAD) on out-of-stream generalization, providing the largest gains
relative to the Pretrained Only model before any adaptation to the continuous video stream occurs.
For instance, in the egocentric setting, COAD achieves a 6.9% improvement in Top-5 Recall, com-
pared to just 2.5% from the baseline. In the in-stream setting, the baseline (w/o COAD) achieves
competitive results, but this often comes at the cost of reduced generalization. In contrast, COAD
maintains robust performance across both domains, effectively balancing adaptation to the current
stream and generalization to new, unseen data.

We also evaluate COAD on the EPIC-KITCHENS benchmark. The results in Table [I] confirm the
trends observed for Ego-OAD: COAD consistently achieves the best generalization performance
across all categories (Verb, Noun, and Action). On the other side, the baseline (w/o COAD) occa-
sionally underperforms the Pretrained Only model, exhibiting signs of overfitting. In the in-stream
setting, both COAD and the w/o COAD baseline struggle to adapt effectively. We attribute this to
the fine-grained nature of the actions and annotations in EPIC-KITCHENS, which limit the model’s
ability to detect and exploit recurring patterns in the stream.

5.4 ABLATIONS

Out-Stream vs In-Stream Trade-Off.  To better understand the trade-off between adaptation and
generalization to unseen data, we analyze how performance varies in both in-stream and out-stream
settings under different training hyperparameters, specifically the window stride and learning rate,
as shown in Fig. [3| Higher learning rates lead the model to overfit the in-stream data, resulting in
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Table 3: Ablation on the components in COAD. We report mAP and Top-5 Recall for both out-
stream | in-stream domains. A denotes performance gain over the Pretrained Only configuration
(last row).

State Cont. Orth. Grad. Non-uniform Adapt mAP 1 Top-5 Recall T A mAP (OUT/IN) A Recall (OUT/IN)

v v v v 26.0/36.8 76.0/89.3 +5.9/+12.7 +6.9 / +16.0
v v X v 21.8/42.4 67.7/88.0 +1.7/+18.3 -1.4/+14.7
v X v v 253/374 71.5/81.9 +5.2/+13.3 +2.4/+14.6
X v v v 25.9/36.7 75.8/89.2 +5.8/+12.6 +6.7/+15.9
X X X v 25.5/39.0 71.6/86.7 +5.4/+14.9 +2.5/+13.4
X X X X 20.1/24.1 69.1/73.3 —/— —/—

Table 4: Different Backbones on Ego-OAD. We compare of frame-level and clip-level backbones
under pretraining on both ego and exo datasets.

Model Type Pretrain mAP 7 Top-5 Recall 1
Kinetics (exo) 17.7 54.5

TSN Frame b 04D MQ (ego)  19.5 61.8
Kinetics (exo) 26.4 72.8

TimeSformer - Clip g0 45 (ego) 30.0 82.9

reduced generalization capability. Conversely, increasing the window stride reduces the frequency
of optimization steps performed during in-stream training, leading to degraded in-stream adaptation
performance. Despite this, at higher stride values the model suffers minimal degradation in out-
stream performance. Notably, at a stride of 128, the model computes the loss using a ground-truth
label only once approximately every 68 seconds. This demonstrates that, under the COAD setting,
the model can effectively improve performance on continuous video streams even with minimal
supervision.

COAD Components.  Table [3] presents an ablation of COAD’s components, each contributing
to performance. The full COAD configuration achieves the best generalization in the out-of-stream
setting. Notably, uniform loss, effective alone, underperforms when combined with other compo-
nents, while non-uniform loss boosts mAP by 4.2% and Top-5 Recall by 8.3%. Orthogonal gradient
updates improve out-of-stream recall by 4.5%, highlighting the importance of gradient decorrela-
tion in continuous video learning. State continuity provides a smaller but consistent gain, enhancing
overall performance.

Performance over Training. COAD operates in a continuous setting: as more in-stream data is
processed, the model improves generalization. Figure ] shows performance evolution in the out-of-
stream setting over time. For comparison, we include an IID Training baseline, where the model is
trained offline with multiple passes over the combined pretraining and in-stream data, representing
an upper bound under full supervision. COAD steadily narrows the gap to this upper bound, despite
being limited to a single pass and online updates. Ablated variants of COAD show significantly
lower performance, highlighting the importance of the full method for effective continuous learning.

Feature Extractors. = We compare two widely used feature extractors on the Ego-OAD bench-
mark: TSN (frame-based) and TimeSformer (clip-based). Both are trained offline on IID samples
from the combined pretraining and in-stream sets. TSN processes individual frames with late fu-
sion, while TimeSformer captures spatio-temporal context via short clips. TimeSformer benefits
from EgoVLP (Lin et al.| 2022)) for egocentric pretraining; since no standard egocentric checkpoint
exists for TSN, we pretrain it on Ego-OAD using a standard offline action recognition setup. As
shown in Table 4] egocentric pretraining improves both models, with TimeSformer significantly
outperforming TSN, highlighting the value of temporal modeling in egocentric video. These results
underscore the importance of adopting modern clip-based architectures for online action detection,
a direction largely overlooked in prior work that has focused on frame-based models like TSN.
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Figure 5: Qualitative Results. Models are trained using COAD and the w/o COAD baseline, and
tested on out-of-stream data. For visualization purposes, only the class with the highest predicted
probability is shown.

Qualitative Results. Fig. [5| presents per-frame predictions from COAD and the w/o COAD on
two Ego-OAD videos from the out-of-stream set. As shown, COAD training on in-stream data leads
to significantly better generalization.

6 CONCLUSIONS

We introduced Continuous Online Action Detection (COAD), a new task formulation that enables
egocentric Al systems to not only recognize actions in real time, but also learn from streaming
video after deployment. To support this task, we curated Ego-OAD, a large-scale benchmark de-
rived from Ego4D featuring long-form activities in diverse environments. Our method introduces
training strategies tailored for OAD from continuous video streams, aligning training with the con-
straints faced at inference time, and yielding significant gains in both adaptation and generalization.
Experiments on Ego-OAD and EPIC-KITCHENS validate the effectiveness of COAD, establishing
a foundation for responsive and adaptive first-person Al systems.
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Figure 6: Qualitative Results. Models are trained using COAD and the w/o COAD baseline, and
tested on in-stream data. For visualization purposes, only the class with the highest predicted prob-
ability is shown.

A EGO0-OAD DATASET DETAILS

The Ego-OAD dataset is derived from the annotations of the Ego4D Moments Queries (MQ)
split (Grauman et al.| (2022). To generate frame-level annotations for OAD, we treated each
annotated segment as a foreground instance and assigned to each frame the union of all
overlapping action labels across multiple annotation passes. To address the ambiguities in-
troduced by multiple annotation passes and fine-grained action categories with subtle differ-
ences, we manually grouped semantically similar labels, as shown in Table [f] This aggre-
gation resolves issues such as overlapping labels that describe supersets of each other (e.g.,
arrange_/_organize_items_in_fridge vs. arrange_/_organize_other_items), as
well as near-duplicate actions (e.g., cut _tree branchvs. trim_hedges_or_branches). Our
guiding principle is that while the original fine-grained labels suit the MQ task, where the model is
given a class and asked to retrieve matching segments, they are less suitable for OAD, where the
model must assign labels in real time without prior hints. In this setting, subtle label distinctions can
cause confusion and degrade performance, while our aggregation reduces this ambiguity making the
task more robust.

Across the resulting 87 action classes, we visualize the distribution of action instances in Figure[7}
The dataset exhibits significant class imbalance: while most common classes contain several thou-
sand instances, others have only a few dozen. Figure [§ shows the average duration of action in-
stances. Ego-OAD captures a diverse range of activities of different nature, with some spanning
longer periods, such as repairing equipment or trimming grass, and others being shorter and more
fine-grained, like removing food from the oven or climbing a ladder.

B ABLATION ON WINDOW SIZE

In our COAD framework, the model is trained on temporally ordered windows of visual features
extracted from the video stream. While COAD maintains state continuity across windows, the win-
dow size determines how much temporal structure can be captured within each backpropagation
step. Table 3] reports results on Ego-OAD using different window sizes during training. We find that
larger windows consistently improve performance, with the best results at a size of 128, equivalent
to approximately 68 seconds of video at the TimeSformer’s effective rate of 1.87 FPS. This high-
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Window Size

75.9/89.3
75.1/88.6
75.5/89.1
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26.0/36.8
25.2/36.5
25.0/38.2
24.6/36.7
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64

32

16

We report mAP and Top-5 Recall on out-stream / in-stream
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Table 5: Varying sl

settings.

lights the importance of long-term temporal context for the Ego-OAD benchmark, which reflects the

real-world complexity of egocentric activity streams.

C ADDITIONAL QUALITATIVE RESULTS

Figure [6] shows additional qualitative results of COAD compare to the w/o COAD baseline on in-
stream data. The predictions generated with COAD are markedly more stable and temporally coher-

COAD sustains the label browse through items on rack/shelf (light green) over an extended sequence
with minimal fragmentation, whereas the model without COAD exhibits erratic switching between

ent, closely aligning with the ground truth annotations. For instance, during the shopping activity,
unrelated classes such as stand in the queue and cut using scissors, despite no visual justification in

the video. Notably, the transition into the activity enter a supermarket/shop (pink) is sharply and

correctly localized by COAD, while the w/o COAD model makes a mistake in predicting this event.
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Similarly, in the cooking sequence, COAD maintains a consistent prediction for knead/shape/roll-
out dough (blue), even under variations in hand motion and illumination, unlike the baseline which
fluctuates among multiple unrelated classes such as mark item with pencil and converse with some-
one. These results demonstrate COAD’s effectiveness in suppressing noisy predictions, respecting
temporal boundaries, and improving semantic fidelity, especially critical in egocentric scenarios with
rapid viewpoint changes and frequent occlusions.

Table 6: Ego-OAD label mapping. Correspondence between original annotations in Ego4D MQ
and labels defined for Ego-OAD using our semantic label aggregation.

Ego-OAD Label

Ego4D MQ Label (s)

arrange./_organize_items

arrange_/_organize_clothes_in_closet/dresser
arrange_/_organize_items_in_fridge

arrange_/_organize_other_items

arrange_pillows_on_couch_/_chair

arrange_pillows.on_couch./_chair

browse_through-items_on.rack_/_shelf

browse_through_accessories_on.rack._/_shelf

browse_through_clothing_items_on_rack_/_shelf_
/_hanger

browse_through_groceries_or_food_items_on_rack_
/_shelf

browse_through_other_items_on.rack./_shelf

chop-/_cut_wood_pieces_using_tool

chop./_cut_wood-pieces_using_tool

clean_/_repair_small_equipment

clean_/_repair_small_equipment_ (mower, _trimmer_
etc.)

clean./.sweep_floor_.with_broom

clean./_sweep_-floor_.with_broom

clean_/_wipe_surface_or_object

clean./ wipe_/_oilmetallic_item
clean./.wipe_a_-table_or_kitchen_counter
clean./_.wipe_kitchen_.appliance

clean./_wipe_other_surface_or_object

climb_up-/-down_a-ladder

climb_up-/-down.a-ladder

collect./.rake.dry.leaves_on_.ground

collect_/_rake_dry-leaves_on_ground

compare_two_clothing_.items

compare_two_clothing.items

converse_/_interact_with_someone

converse_/_interact_with_someone

count _money before_paying

count_money_before_paying

cut./_chop./_slice_a.vegetable, _fruit, or_meat

cut./_chop./_slice_a_vegetable, fruit, or_.meat

cut_/_trim_.grass

cut_/_trimgrass_with_a_lawnmower

cut_/_trimgrass_with_other_tools

cut-/_trim_hedges_or_branches

cut_tree_branch

trim_hedges_or_branches

cut_dough

cut_dough

cut_using.scissors_/_knife_/_cutter

cut_open.a_package_(e.g..with_scissors)
cut_other_item_using_tool

cut_thread_/_paper_/_cardboard_using_scissors_
/_knife_/_cutter

dig_or_till_the_soil by_hand.or_other_tool

dig-or-till_the_soil_by-hand

dig-or_till_the_soil_.with_a_-hoe.or_other_tool

dismantle_other_item

dismantle_other_item

do_some_exercise

do_some_exercise

drill_intowall./_wood-/_-floor./.metal

drill_into.wall./_-wood./_.floor_./metal

drink_beverage

drink_beverage

drive_a.vehicle

drive_a_vehicle

eat_a_snack

eat_a_snack

enter_a_supermarket._/_shop

enter_a_supermarket_/_shop

exit_a_supermarket_/_shop

exit_a.supermarket_/_shop
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Ego—OAD Label

Ego4D MQ Label (s)

fill_a-pot-/bottle./_.container_with.water

fill_a-pot-/Jbottle./_.container.with_water

fix_item

fix./_-remove./_replace._a-tire_or_wheel
fix_ bonnet_/_engine_of_car
fix_other_item

fix_pipe./_plumbing

fixwiring

fold-clothes_/_sheets

fold-clothes_/_sheets

fry_food_item

fry_dough

fry_-other_food-item

hang.clothes

hang.clothes_in_closet_/_on-hangers

hang.clothes_to.dry

harvest_vegetables./_fruits./_crops

harvest_vegetables_/_fruits_/_crops_from_
plants_on_the_ground

interact-or_play-with_pet_/_animal

interact.orplay-with_pet_/_animal

iron_clothes_or_sheets

iron._clothes_or_sheets

knead-/_shape./_roll-out_dough

knead-/_shape./.roll-out._dough

level_ground-/_soil

level_ground-/_soil_(eg..using.-rake, _shovel, _etc)

load-/-unload.a.washing.machine_or_dryer

load-/-unload.a.washing.machine_or_dryer

look_at_clothes_in.themirror

look_at_clothes_in_themirror

make_coffee_or_tea./_use_a_.coffeemachine

make_coffee_or_tea./_use_a.coffeemachine

make_the bed./_arrange_pillows,_sheets_etc._onbed

make_the bed./_arrange_pillows, _sheets_etc._onbed

mark-item.with.pencil_/_pen./_marker

mark-item-with-pencil./_pen./marker

measure.-wooden-item_using-tape./_-ruler

measure_wooden_item-using-tape./_ruler

move_/_shift_constructionmaterial_or_small_tools

move./_shift_/_arrange_small_tools

move./_shift_around-constructionmaterial

pack-items_into._bags./boxes

pack-food-items./_groceries_intobags./_-boxes

pack_other_items_into_bags_./ boxes

pack_soil_into_the_ground.or_a_pot./_container

pack_soil_into_the_ground.or_a_pot./_container

paint_using-paint._brush./_roller

paint_using-paint_brush_/_roller

pay-at_-billing.-counter

pay-at-billing_counter

peel_a_fruit_or_vegetable

peel_a_-fruit_or_vegetable

place_items_in_shopping.cart

place_items_in_shopping._cart

plant_seeds./_plants_/_flowers_into_ground

plant_seeds./_plants_./_flowers_into_ground

plaster.wall_/_surface

plaster.wall_/_surface

play-a_video_game

play-a_.video_game

play.-board.game_or_card_game

play.-board.game.or_card_game

prepare_or_apply._cement./_concrete./ mortar

prepare_or_apply._cement._/_concrete_/mortar

put_away-(or_-take_out)_dishes_/_utensils_in_storage

put_away-(or_-take.out)_dishes./_.utensils.in_storage

put_away-(or-take_out)_food-items_in_the_fridge

put-away-(or_take_out) _-food-items_in_the_fridge

put_away-(or_take_out)_ingredients_in_storage

put_away-(or_take_out)_-ingredients_in_storage

put_food-into_-the_oven_to_bake

put_food-into_the_oven_to_bake

put_on_safety_equipment

put_on_safety_equipment_(e.g._gloves, _helmet,
_safety_goggles)

read-a_-book./magazine_/_shopping-list_etc.

read-a-book_/_magazine_/_shopping-list_etc.

remove_food_-from.the_oven

remove_food_from_the_oven

remove_weeds_from_ground

remove._weeds_from_.ground

rinse_/_drain_other_food_item_in_sieve_/_colander

rinse_/_drain_other_food.item_in_sieve_/_colander

serve_food_onto_a_plate

serve_food.onto.a.plate

smoke_cigar.-/_cigarette./_vape

smoke_cigar./.cigarette./_vape

smooth-wood-using.sandpaper-/_sander./_-tool

smooth-wood-using-sandpaper-/-sander./_-tool

stand-in_-the_queue_/_line_at_a_shop./_supermarket

stand-in_-the_queue_/_line_at_a_shop-/_supermarket

stir_/mix_food
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stir_./mix_food.while_cooking
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Ego4D MQ Label (s)

stir_/_mix_ingredients_in_a_bowl_or_pan_
(before_cooking)

take_photo./_record.video.with_a_camera

take_photo./_record.video_with_a_camera

taste_-food-while_cooking

taste_food-while_cooking

throw-away-trash./_put_trash_in_trash_can

throw.away-trash./_put_-trash_in_trash.can

tie_up-branches./_plants_with_string

tie_up-branches./_plants_with_string

try-out./_.wear_.clothing_items

try-out./_wear_accessories_(e.g._tie, belt,_scarf)

try-out_/_wear_clothing_items_(e.g._shirt,
_jeans, _sweater)

turn-on./_light_the_stove_burner

turn-on-/_light_the_stove_burner

use_a-laptop-/.computer

use.a-laptop-/_computer

use_a-vacuum.cleaner_to.clean

use_a.vacuum.cleaner_to_clean

use_hammer_/_nail-gun_to_fix_nail

use_hammer_/_nail-gun_to_.fix_nail

use_phone

use_phone

walk_down_stairs_/_walk_up_stairs

walk_down_stairs_/_walk_up_stairs

wash_dishes_/_utensils_/_bakeware_etc.

wash_-dishes_/_utensils_/_bakeware_etc.

wash_hands

wash_hands

wash_vegetable_/_fruit_/_food_.item

wash_vegetable_/_fruit_/_food.item

watch_television

watch_television

water_soil./_plants_./_crops

water_soil_/_plants./_crops

weigh_food-/_ingredient_using.a.weighing.scale

weigh_food-/_ingredient_using.a.weighing.scale

withdrawmoney_from_atm./_operate_atm

withdrawmoney_from_atm./_operate_atm

writenotes_in_a_paper_/_book

write_notes_in_a_paper./_book

D USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) were used as an assistive tool to revise the writing of this
manuscript (e.g., grammar, phrasing). The research ideas, experiments, and conclusions are entirely
our own, and the authors take full responsibility for the scientific content.
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