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Abstract

We propose to implicitly learn a set of continuous face-varying dimensions, with-
out ever asking an annotator to explicitly categorize a person. We uncover the
dimensions by learning on a novel dataset of 638,180 human judgments of face
similarity (FAX). We demonstrate the utility of our learned embedding space for
predicting face similarity judgments, collecting continuous face attribute values,
and attribute classification. Moreover, using a novel conditional framework, we
show that an annotator’s demographics influences the importance they place on
different attributes when judging similarity, underscoring the need for diverse
annotator groups to avoid biases.

1 Introduction

Most human-centric image datasets are web-scraped, lacking ground-truth information about the
data subjects. Moreover, data protection legislation considers demographic attributes to be personal
information and limits their collection and use [4, 3]. Even when labels are known, evaluating diversity
by examining counts across subgroups fails to reflect the continuous nature of human phenotypic
diversity (e.g., skin tone is often reduced to 1ight vs. dark). Furthermore, such an approach often
denies multi-group membership [60] (e.g., erasing multi-ethnic and intersex individuals).

When labels are unknown, researchers typically choose certain attributes they consider to be relevant
for human diversity and use human annotators to infer them [32, 66, 77]. In practice, this is difficult for
ill-defined and highly changeable social constructs such as race and gender [22, 34, 9]. Observational
labels from annotators risk not only encoding stereotypes, but reifying and propagating them beyond
“their cultural context” [35, 18]. Furthermore, discrepancies between, e.g., observed and self-identified
race, gender, or other sensitive attributes can induce psychological distress [11] by invalidating an
individual’s self-image and identity [59].

Contributions. As an image subject can exhibit certain traits to a greater or lesser extent than others,
even within the same subpopulation, the goal of our work is to learn a similarity function, which
measures the similarity between two faces in a way that is aligned with human perception. We aim to
do so without using categorical labels.

Concretely, we present a model of conditional decision-making for learning continuous, human-
interpretable face embeddings directly from human judgments of face similarity. Underlying our
approach is FAX, a novel dataset of 638,180 judgments over 4,921 faces, where each judgment
corresponds to the odd-one-out (i.e., least similar) face in a triplet of faces. Such contextual similarity
judgments have been shown to offer a window into the dimensions (i.e., factors of variation) of
object categories [27, 84] and reachspace environments [31] in the human mind. Distinct from other
computer vision datasets, each judgment in FAX is accompanied by the identifier and demographic
attributes of the annotator who made the judgment.
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show that predicting similarity judgments from an annotator in their respective subspace increases
predictive accuracy. Significantly, we find that annotator subspaces are not interchangeable, but can
be grouped wrt the sociocultural backgrounds (e.g., nationality, ancestry) of the annotators. Our
results underscore the need for diverse annotator groups to avoid biases.
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Figure 1: Model of Conditional Decision-Making.

Additionally, we show that our embeddings are highly correlated with the human mental representa-
tional space of faces, as compared to face embeddings induced by learning to predict face identity
or face attributes. Importantly, we find that the individual embedding dimensions are: related to
concepts of gender, race, age, as well as face and hair morphology. We demonstrate the utility of
such dimensions for: (i) collecting continuous (as opposed to discrete) face attribute values for novel
faces from annotators; and, (ii) binary attribute classification.

1.1 Background

Disentangled Representation Learning. Learning interpretable representations through seman-
tically labeled concepts and prototypes has recently gained attention [2, 38, 43]. Others reveal
meaningful directions inside generative models, where directional distances estimate the magnitude
of attributes [53]. However, the identification of interpretable directions is performed post-hoc, requir-
ing potentially biased labeled examples and/or pretrained models [81, 47], self-supervision [57, 30],
or paired images sharing at least one factor of variation [48]. Our approach is similar in spirit
to wholly unsupervised approaches [23, 55, 68, 79]. Rather than modeling the data generating
distribution, our representations are trained to predict human similarity judgments, reflecting the
human mental representational space of faces. Our baselines primarily center on embeddings induced
by training on facial analysis datasets, since in the face domain, post-hoc interpretation of latent
dimensions [69, 53, 81, 47] predominantly rely on datasets such as CelebA [46].

Psychological Embeddings. Multidimensional scaling (MDS) is often used to learn psychological
embeddings from pairwise similarities [72, 84, 27, 58, 73, 31]. Zheng et al. [84] developed an MDS
approach for learning psychological object embeddings from odd-one-out judgments based on three
assumptions. First, embeddings can be learned solely from odd-one-judgments, where representations
are constrained to be continuous, non-negative, and sparse. Such properties support interpretability
such that dimensions indicate both feature presence and feature magnitude. Second, odd-one-out
judgments are a function of sim(z, j), sim(¢, k), and sim(3, k), where x € X and sim : (x;,x;) —
sim(Z, j) € R denote a face image and similarity function, resp. Third, odd-one-out judgments are
stochastic, where the probability of selecting x;, as the odd-one-out is p(k) o exp(sim(i, j)). As
MDS cannot embed data outside of the training set, researchers have used pretrained models to
predict MDS representations [64] or directly infer similarity judgments [56, 6]. Rather than relying
on pretrained models which can introduce implicit biases [39, 71], we perform end-to-end learning
from scratch. Further, unlike recent work [27, 31], we focus on human perception of naturalistic face
images, evidenced to be processed differently to objects in the human visual system [70].

Annotator Bias. Categorization by observation depends not only on the subject being categorized, but
also on the annotator’s sociocultural background, perception of the subject, and contextual cues [67, 7,
29, 59]. For instance, a subject’s clothing can influence their racial categorization [19]. Despite this,
annotator positionality has only recently entered into discourse in computer vision [16, 83, 65], albeit
predominantly in the context of natural language processing [1, 78, 80, 10, 62]. However, in order
to mitigate bias, one must first measure bias [41]. Unlike previous works, our model of conditional



decision-making elucidates the importance distinct annotators place on different attributes when
judging similarity, thus permitting the mitigation of bias. Veit et al. [74] employ a similar procedure
to learn subspaces which encode different notions of similarity (e.g., font style, character type).

2 Method

To learn a similarity function aligned with human perception, we collect a large-scale dataset, FAX,
of odd-one-out similarity judgments. An odd-one-out judgment corresponds to the least similar face
in a triplet of face images, representing a three alternative forced choice task.

Data. The benefits of odd-one-out judgments are threefold. Most significantly, the judgments do not
require an annotator to categorize people. Thus, we do not encode, reify, or propagate stereotypes.
Second, for a triplet of faces (x;, x;, Xy ), repeatedly varying x;, permits the identification of the
relevant dimensions that contribute to sim(z, 7). That is, w.l.0.g., x; provides context for which
sim(%, j) is determined, making the task easier than explicit pairwise similarity tasks (i.e., “Is x;
similar to x;7”). This is because it is not always apparent to an annotator which dimensions are
relevant when determining sim(4, j), especially when x; and x; are perceptually different. Finally,
there is no need to prespecify attribute lists hypothesized as relevant for comparison (e.g., “Is x;
older than x;?”). The odd-one-task instead implicitly uncovers salient attributes.

For our proof of concept, the 4,921 faces were sampled from the CC-BY licensed dataset FFHQ [33].
The subset was obtained by first splitting FFHQ into 56 partitions based on estimated intersectional
group labels, and then randomly sampling from each partition with equal probability. All faces are
near-frontal with little to no eye occlusions and an apparent age > 19 years old.

FAX contains 638,180 quality-controlled triplets over the 4,921 faces, representing 0.003% of all
possible triplets. Each triplet is labeled with an odd-one-out judgment and the identifier of the
annotator who made the judgment. As in previous non-facial odd-one-out datasets [31, 28], there is a
single judgment per triplet. In total, 1,645 annotators contributed to FAX over Amazon Mechanical
Turk (AMT), providing their consent, age, nationality, ancestry, and gender identity. Compensation
was 15 USD per hour. Additional details regarding FAX are provided in Appendix A

Model of Conditional Decision-Making. At a high-level, we want to apply Zheng et al.’s MDS
approach (Section 1.1) to learn face embeddings. However, MDS cannot embed images outside of
the training set, limiting its utility. Moreover, MDS pools all judgments, disregarding intra- and
inter-annotator stochasticity. To resolve these issues, we propose to learn a conditional convolutional
neural network (CNN).

Let {({xi¢,Xj¢,Xpe}, k€, a)},_, denote a training set of n (triplet, judgment, annotator) tuples,
where a € A. To simplify notation, we assume that judgments always correspond to the index k?.
Suppose f : x — f(x) = w € R? is a CNN, parametrized by ®, where w € R? is an embedding
of x. We model the probability of annotator a selecting k¢ as p(k¢ | a) o exp(sim, (i¢, j¢)), where
simg (-, -) denotes the internal similarity function of a. Given two images x; and x;, we define their
similarity according to a as: sim, (i, j) = (0(¢a) ©® ReLU(W;)) " - (0(ha) ® ReLU(w;)), where
o(-) and ReLU(-) denote the sigmoid and ReLU functions, resp. Note that o(¢,) € [0,1]¢ is a
mask associated with a. Each mask plays the role of an element-wise gating function, encoding the
importance a places on each of the possible d embedding dimensions when determining similarity.
By conditioning prediction on annotator identifiers, we induce subspaces that encode each annotator’s
notion of similarity. This allows us to study whether per-dimensional importance scores differ
between annotators.

Let® = [¢],..., ¢‘T4|] € R4l denote a trainable weight matrix, where each column vector ¢,

corresponds to annotator a’s mask prior to applying o(-). In our conditional framework, we jointly
optimize ® and ® by minimizing:

=D log[p(kt | )] + A1) IReLU(Wi)[li + A2 Y ReLU(=wy); + X3 D llgally, (D)
¢ i ij a
~ exp(simg (i€,5¢ . . e
where p(kl | @) = o argm +ex§((sima((7i T 232 Toxpm. ek i the predicted probability that
k¢ is the odd-one-out conditioned on a. The first term in Eq. 1 encourages similar face pairs to
result in large dot products. The second term (modulated by A; € R) promotes sparsity. The third




term (modulated by Ay € R) supports interpretability by penalizing negative values. The last term
(modulated by A3 € R) penalizes large weights.

When A3 = 0and o(¢,) = [1,...,1] (Va), Eq. 1 corresponds to the unconditional MDS objective
proposed by Zheng et al. [84]. In what follows, we refer to unconditional and conditional models
trained on FAX as FAX-U and FAX-C, resp. In addition, we refer to conditional models whose masks
are learned post hoc as FAX-C-PH. A FAX-C-PH model uses a fixed unconditional model (i.e., FAX-U)
to obtain face embeddings such that only @ is trainable.

Significantly, our conditional decision-making framework is generally applicable to any task that
involves mapping from inputs to human decisions; it only requires record-keeping during data
collection such that each judgment (or annotation) is associated with the annotator who generated it.

Implementation. All models have ResNet18 [25] architectures and output 128-dimensional em-
beddings. We use the Adam [37] optimizer with default parameters, reserving 10% of FAX for
validation. Based on grid search, we empirically set A\; = 5 x 107° and Ay = 1 x 1072, For
FAX-C and FAX-C-PH, we additionally set A3 = 1 x 10~°. Across independent runs, we find that: (i)
only a fraction of the 128 dimensions are needed; and (ii) individual dimensions are reproducible.
Post-optimization, we remove dimensions with maximal values close to zero. For FAX-U, this results
in 22 dimensions (61.9% validation accuracy). Further details are in Appendix B.

3 Experiments

We demonstrate the utility of FAX induced embedding spaces for predicting face similarity judgments,
revealing annotator bias, collecting continuous face attribute values, and attribute classification.
Throughout this paper, statistical tests correspond to Mann-Whitney U-tests (p-value < 0.05).

For comparison, we consider embeddings extracted from pretrained face recognition and facial
analysis models. In particular, an ArcFace [17] face recognition model trained on CASIA-Webface
(CWF) [82]; and analysis models trained on CelebA (CA) [46] (40 binary face attribute labels), Fair-
Face (FF) [32] (perceived binary gender expression, age, and race labels), and FFHQ (binary gender
expression, age, and race labels). All models have ResNet18 architectures and output 128-dimensional
embeddings. For the analysis models, we also consider unnormalized class logit representations, as
well as the logit representations converted to one-hot encodings. All representations are normalized
to unit-length, and the dot product of two representations determines their similarity. Additional
details and experimental results are in Appendix C.

Predicting Human Similarity Judgments. The utility of any face embedding method is typically
determined by measuring whether similar faces are closer together in feature space than dissimilar
faces. We therefore employ two evaluation protocols, evaluating odd-one-out predictive accuracy.

In Protocol 1, we test whether our embeddings are predictive of human judgments not observed during
learning. This is a typical MDS test setting, as MDS cannot embed images outside of the training set.
Using images from the stimulus set of 4,921 faces, we generate 1,000 novel triplets and collect 22-25
unique judgments on AMT per triplet (24,060 judgments). In addition to predictive accuracy, we
compute Spearman’s 7 correlation between the entropy in human- and model-generated triplet odd-
one-out probabilities. Human-generated odd-one-out probabilities are of the form: (n;, n;, ng)/n,
where, w.l.o.g., nx /n corresponds to the fraction of n odd-one-out votes for k.

As we have 22-25 judgments per triplet in Protocol 1, we can reliably estimate odd-one-out proba-
bilities. The Bayes optimal classifier accuracy corresponds to the best possible accuracy any model
could achieve given the stochasticity in the human judgments. The classifier makes the most probable
prediction, i.e., the majority judgment. Its accuracy is equal to the mean majority judgment probability
over the 1,000 triplets, corresponding to 65.5+1% (95% CI).

In Protocol 2, we sample 56 novel face images from FFHQ not contained in the stimulus set. We
then generate all (536) possible triplets and collect 2—-3 unique judgments on AMT per triplet (80,300
judgments). As an additional performance measure, we compute Spearman’s r between the strictly
upper triangular model- and human-generated similarity matrices. Entry (¢, §) in the human-generated
similarity matrix corresponds to the fraction of triplets containing (¢, j), where neither was judged as
the odd-one-out. Entry (4, j) in a model-generated similarity matrix corresponds to the mean p(, j)
over all triplets containing (i, 7).



Results for Protocol 1 and Protocol 2 are shown  Table 1: (Protocol 1) Accuracy over 24,060 judg-
in Tbl. 1. FiI'St, embeddings trained on FAX ments and Spearman’s r between the entropy in
outperform the baselines across all metrics. In human- and model_generated trip]et odd-one-out
particular, as evidenced by the correlation tests, probabilities. (Protocol 2) Accuracy over 80,300
the human mental representational space is bet- judgments and Spearman’s r between the entropy
ter represented by embedding spaces induced in human- and model-generated similarity matri-
by learning on FAX. This even holds for our ces,

FAX-U model trained on only 72K judgments.

Second, FAX-C and FAX-C-PH have increased Protocol | Protocol 2
performance over their unconditional counter-  Model Loss/Method Acc. T Ac r
parts. This shows that the learned annotator- FF Cross-entropy 559 041 519 067
: 3 3 L cA Cross-entropy 52.1 0.25 48.9 0.56
specific masks generalize, i.e., the enc'oded im PrHG Cross-entrony P S
portance an annotator places on each dimension CWF ArcFace 516 029 461 040
extends to novel judgments. Most significantly, FAX-C Conditional eq. (1) 674 068 617 082
in Protocol 1, our conditional models attain a FAX-C-PH  Conditional eq. (1) 665 068 614 082
.. FAX-U Unconditional eq. (1) 62.0 0.65 57.5 0.86
predictive accuracy at or above the upper bound ~ Fax-v-1/2  Unconditionaleq. (1) ~ 613  0.61 558 0381
: : FAX-U-1/4 Unconditional eq. (1) 60.6 0.56 553 0.80
of the Bayes optimal classifier. FAX-U-1/8  Unconditionaleq (1) 586 047 550  0.79

Annotator Bias. Conditioning prediction on

annotator identifiers provides the best predictive accuracy, evidencing that knowledge of the annotator
determining similarity assists in informing the outcome. However, annotators are often framed as
interchangeable [51, 14]. To test the validity of this assumption, in Protocol 2, we randomly swap
the annotator associated with each judgment and then recompute the predictive accuracy of FAX-C.
Repeating this process 100 times results in a performance drop from 61.7% to 52.8% =+ 0.02% (95%
CI) on average. This shows that annotator subspaces are not interchangeable.

An interesting question relates to whether an annota- Table 2: Results for linear SVMs trained
tor’s sociocultural background influences their decision to discriminate between binary annotator
making. To evaluate this, we create sets {(o(va),y)}, demographic groups.

where o(v,) and y € ) are annotator a’s learned mask

and self-identified demographic attribute, resp. For  Amotator Groups #Masks AUC
a particular annotator attribute (e.g., nationality), we  30-39/40-49 3937121 059 £ 005

CR . Male /Female 523/473 0.65 &+ 0.05
!Hmt the dataset to annotators who contributed > 200 2> "™ < 5307201 0.86 £ 0.03
judgments and belong to one of the two largest groups  European/Asian 407/243 086 +0.03

West European/South Asian 1737107 0.88 £ 0.05

wrt the attribute. Using 10-fold cross validation, we
train linear support vector machines (SVMs) [26] with balanced class weights to predict y from o (v, ).
Tbl. 2 shows the average area under the receiver operating characteristic (AUC) for each attribute.
Most significantly, none of the AUC confidence intervals include chance performance. Moreover, the
linear SVMs are able to discriminate between binary groups wrt nationality, regional ancestry, and
subregional ancestry with high probability (86-88%).

Interpretability. Since we aim to replace the explicit collection of problematic categorical labels,
we evaluate whether the individual FAX-U (and FAX-C-PH) dimensions are human-interpretable
through a (qualitative) dimension labeling task and a (quantitative) dimension rating task [84,
27, 31].

For the dimension labeling task, we task annotators with writing descriptions about each of the
22 dimensions using continuous dimensional scales. A dimensional scale corresponds to the the
stimulus set sorted in descending order based on their values in the dimension. Consistent descriptions
evidence that a dimension is meaningful. We collect 25-62 descriptions per dimension. Based on
the descriptions, we observe distinct dimensions coinciding with commonly defined demographic
attribute concepts, i.e., Male, Female, Black, White, East Asian, South Asian, and Elderly.
In addition, there are separate dimensions for face and hair morphology, i.e., Wide Face, Long
Face, Smiling Expression, Neutral Expression, Balding, Facial Hair, and Dyed Hair.
(See Fig. 2.)

For the dimension rating task, we task annotators with placing 20 novel faces on each of the 22
dimensional scales. We collect 20 unique judgments per dimension for each face. Separately for each
face, we average the judgments per dimension such that we obtain human-generated embeddings.
Using the human-generated embeddings, we create a human-generated similarity matrix and compare



Dim. 1/22

4 ‘

South Asian Female Smiling Wide Face Elderly Balding
Dimension Labeling Task. We show a subset of the 22 FAX-U (and FAX-C-PH) dimensions. Each dimension is shown with the top 8 faces from
the stimulus set with the highest dimensional values.

Figure 2: Dimension labeling task.

it to a model-generated similarity matrix. The model-generated similarity matrix is created using
model-generated embeddings. Spearman’s r correlation between the strictly upper triangular model-
and human-generated similarity matrices is 0.83 and 0.86 for FAX-U and FAX-C-PH embeddings, resp.
This shows that: (i) dimensional values correspond to the feature magnitude; and (ii) dimensional
scales can be used to directly collect continuous attribute values for faces, sidestepping the limits of
categorical definitions [34, 9, 35]. Note that the use of a dimensional scale is not restricted to any
particular embedding method, as long as the dimension is human-interpretable.

Binary Attribute Classification. Facial anal- Table 3: Using attribute values from relevant model
ysis models are trained for classification, there- - dimensions to perform binary attribute classifica-
fore we test the utility of FAX-U dimensions for tjon.

discriminating between binary-valued attributes.

For labeled face data, we use COCO [44], AUC
Openlmages MIAP (MIAP) [66], CFD, FFHQ, Dataset  Auribute FAX-U ca FF  FFHQ
CelebA (CA) [46], and Casual Conversations cc > 70y.0.* 0800 0936 0959 0962
_ : 3 FFHQ > 70y.o. 0.905 0.959 0.971 0.980
(CC) [24]. Tbl 3 §h0ws that F‘AX U d1me_:ns1ons Py e 0901 0997 0906 0998
are competitive with the baselines, even in chal- cc Male* 0971 098 0990 0981
3 . 3 CA Male 0.990 0.999 0.994 0.995
lenging unconstrained settings as represented COCO  Male 0893 0926 0963 0938
by COCO and MIAP. Therefore, training on MIAP  Male 0924 0942 0945 0938
FAX 1 .. bl d . h FFHQ Male 0.933 0.959 0.988 0.996
results 1n interpretable dimensions that can CA Smiling 0895 005 _ _
serve as classifiers. Notably, FAX-U dimensions glﬁg gpen Touth 3323 0.992 — —
. . . eutral 3 —_— —_— —_—
have the highest AUC for self-identified CFD CED East Asian* 0,969 0955 0938
s s 3 CFD Black* 0.992 — 0.992 0.988
attributes Black, East Asian, and Indian. o e ok s oss
CFD Indian* 0.960 — 0.848 0.883
CcC Light skin 0.930 0.830 0.965 0.960
COCO Light skin 0.889 0.771 0.927 0.931

CA Balding 0.963 0.995 — —

4 Conclusion

Motivated by issues inherent to categorization

by observation, we proposed a method for im-

plicitly learning continuous face-varying dimensions, without ever asking an annotator to explicitly
categorize a person. We uncovered the face embedding space by learning on a novel dataset of
human judgments of face similarity (FAX). We showed that the individual dimensions are human-
interpretable and related to concepts of gender, race, age, as well as face and hair morphology
categories. We demonstrated the utility of our learned embedding space for predicting face simi-
larity judgments, collecting continuous face attribute values, and attribute classification. Moreover,
using our novel conditional framework, we showed that an annotator’s demographics influences
the importance they place on different attributes when judging similarity, underscoring the need for
diverse annotator groups to avoid biases. We hope that our work inspires others to pursue unorthodox
tasks for learning face-varying dimensions, which do not encode, reify, and propagate stereotypes, or
invalidate the self-image and identity of image subjects.

Future Work. As our dataset represents 0.003% of all possible triplets that can be sampled from
4,921 images. To go one step further, triplets should be sampled selectively so as to learn additional
face attribute dimensions. That is, FAX can be extended using active learning approaches, e.g.,
focusing on triplets composed of faces that are close in embedding space whose similarity judgments
are unlikely to be based on gender, skin color, or race, but rather finer-grained attributes such as hair
color, eye color, nose shape, etc.



References

[1] Hala Al Kuwatly, Maximilian Wich, and Georg Groh. Identifying and measuring annotator bias
based on annotators’ demographic characteristics. In Proceedings of the Fourth Workshop on
Online Abuse and Harms, pages 184-190, 2020.

[2] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
neural networks. Advances in neural information processing systems, 31, 2018.

[3] McKane Andrus, Elena Spitzer, and Alice Xiang. Working to address algorithmic bias?
don’t overlook the role of demographic data. Partnership on Al. Retrieved from https://www.
partnershiponai. org/demographic-data, 2020.

[4] McKane Andrus, Elena Spitzer, Jeffrey Brown, and Alice Xiang. What we can’t measure, we
can’t understand: Challenges to demographic data procurement in the pursuit of fairness. In
Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pages
249-260, 2021.

[5] Yuki M Asano, Christian Rupprecht, Andrew Zisserman, and Andrea Vedaldi. Pass:
An imagenet replacement for self-supervised pretraining without humans. arXiv preprint
arXiv:2109.13228, 2021.

[6] Maria Attarian, Brett D Roads, and Michael C Mozer. Transforming neural network visual
representations to predict human judgments of similarity. arXiv preprint arXiv:2010.06512,
2020.

[7] P Balaresque and TE King. Human phenotypic diversity: An evolutionary perspective. Current
topics in developmental biology, 119:349-390, 2016.

[8] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning local feature
descriptors with triplets and shallow convolutional neural networks. In Bmvc, volume 1, page 3,
2016.

[9] Sebastian Benthall and Bruce D Haynes. Racial categories in machine learning. In Proceedings
of the conference on fairness, accountability, and transparency, pages 289-298, 2019.

[10] Reuben Binns, Michael Veale, Max Van Kleek, and Nigel Shadbolt. Like trainer, like bot?
inheritance of bias in algorithmic content moderation. In International conference on social
informatics, pages 405-415. Springer, 2017.

[11] Mary E Campbell and Lisa Troyer. The implications of racial misclassification by observers.
American Sociological Review, 72(5):750-765, 2007.

[12] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems, 33:9912-9924, 2020.

[13] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 9650-9660, 2021.

[14] Stevie Chancellor, Eric PS Baumer, and Munmun De Choudhury. Who is the" human" in
human-centered machine learning: The case of predicting mental health from social media.
Proceedings of the ACM on Human-Computer Interaction, 3(CSCW):1-32, 2019.

[15] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[16] Yunliang Chen and Jungseock Joo. Understanding and mitigating annotation bias in facial
expression recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 14980-14991, 2021.

[17] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4690-4699, 2019.



[18] Alessandro Fabris, Stefano Messina, Gianmaria Silvello, and Gian Antonio Susto. Algorithmic
fairness datasets: the story so far. arXiv preprint arXiv:2202.01711, 2022.

[19] Jonathan B Freeman, Andrew M Penner, Aliya Saperstein, Matthias Scheutz, and Nalini
Ambady. Looking the part: Social status cues shape race perception. PloS one, 6(9):¢25107,
2011.

[20] Avijit Ghosh, Lea Genuit, and Mary Reagan. Characterizing intersectional group fairness with
worst-case comparisons. In Artificial Intelligence Diversity, Belonging, Equity, and Inclusion,
pages 22-34. PMLR, 2021.

[21] Priya Goyal, Quentin Duval, Isaac Seessel, Mathilde Caron, Mannat Singh, Ishan Misra, Levent
Sagun, Armand Joulin, and Piotr Bojanowski. Vision models are more robust and fair when
pretrained on uncurated images without supervision. arXiv preprint arXiv:2202.08360, 2022.

[22] Alex Hanna, Emily Denton, Andrew Smart, and Jamila Smith-Loud. Towards a critical race
methodology in algorithmic fairness. In Proceedings of the 2020 conference on fairness,
accountability, and transparency, pages 501-512, 2020.

[23] Erik Hédrkonen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
interpretable gan controls. Advances in Neural Information Processing Systems, 33:9841-9850,
2020.

[24] Caner Hazirbas, Joanna Bitton, Brian Dolhansky, Jacqueline Pan, Albert Gordo, and Cris-
tian Canton Ferrer. Towards measuring fairness in ai: the casual conversations dataset. IEEE
Transactions on Biometrics, Behavior, and Identity Science, 2021.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[26] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support
vector machines. IEEE Intelligent Systems and their applications, 13(4):18-28, 1998.

[27] Martin N Hebart, Charles Y Zheng, Francisco Pereira, and Chris I Baker. Revealing the multidi-
mensional mental representations of natural objects underlying human similarity judgements.
Nature human behaviour, 4(11):1173-1185, 2020.

[28] Martin N Hebart, Oliver Contier, Lina Teichmann, Adam Rockter, Charles Y Zheng, Alexis
Kidder, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I Baker. Things-data: A multi-
modal collection of large-scale datasets for investigating object representations in brain and
behavior. bioRxiv, 2022.

[29] Mark E Hill. Race of the interviewer and perception of skin color: Evidence from the multi-city
study of urban inequality. American Sociological Review, pages 99—-108, 2002.

[30] Ali Jahanian, Lucy Chai, and Phillip Isola. On the" steerability" of generative adversarial
networks. In International Conference on Learning Representations, 2019.

[31] Emilie L Josephs, Martin N Hebart, and Talia Konkle. Emergent dimensions underlying human
perception of the reachable world. Journal of Vision, 21(9):2154-2154, 2021.

[32] Kimmo Kirkkidinen and Jungseock Joo. Fairface: Face attribute dataset for balanced race,
gender, and age. arXiv preprint arXiv:1908.04913, 2019.

[33] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4401-4410, 2019.

[34] Os Keyes. The misgendering machines: Trans/hci implications of automatic gender recognition.
Proceedings of the ACM on human-computer interaction, 2(CSCW):1-22, 2018.

[35] Zaid Khan and Yun Fu. One label, one billion faces: Usage and consistency of racial categories
in computer vision. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, pages 587-597, 2021.



[36] Davis E King. Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research,
10:1755-1758, 20009.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[38] Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been
Kim, and Percy Liang. Concept bottleneck models. In International Conference on Machine
Learning, pages 5338-5348. PMLR, 2020.

[39] Arvindkumar Krishnakumar, Viraj Prabhu, Sruthi Sudhakar, and Judy Hoffman. Udis: Unsuper-
vised discovery of bias in deep visual recognition models. In British Machine Vision Conference
(BMVC), volume 1, page 3, 2021.

[40] Anjana Lakshmi, Bernd Wittenbrink, Joshua Correll, and Debbie S Ma. The india face set:
International and cultural boundaries impact face impressions and perceptions of category
membership. Frontiers in psychology, 12:161, 2021.

[41] Tai Le Quy, Arjun Roy, Vasileios losifidis, Wenbin Zhang, and Eirini Ntoutsi. A survey on
datasets for fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, page 1452, 2022.

[42] Tom Leinster and Christina A Cobbold. Measuring diversity: the importance of species
similarity. Ecology, 93(3):477-489, 2012.

[43] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

[44] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740-755. Springer, 2014.

[45] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface:
Deep hypersphere embedding for face recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 212-220, 2017.

[46] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In International Conference on Computer Vision (ICCV), 2015.

[47] Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rétsch, Bernhard Scholkopf,
and Olivier Bachem. Disentangling factors of variations using few labels. In International
Conference on Learning Representations, 2019.

[48] Francesco Locatello, Ben Poole, Gunnar Ritsch, Bernhard Scholkopf, Olivier Bachem, and
Michael Tschannen. Weakly-supervised disentanglement without compromises. In International
Conference on Machine Learning, pages 6348-6359. PMLR, 2020.

[49] Debbie S Ma, Joshua Correll, and Bernd Wittenbrink. The chicago face database: A free
stimulus set of faces and norming data. Behavior research methods, 47(4):1122-1135, 2015.

[50] Debbie S Ma, Justin Kantner, and Bernd Wittenbrink. Chicago face database: Multiracial
expansion. Behavior Research Methods, 53(3):1289-1300, 2021.

[51] Nicolas Malevé. On the data set’s ruins. AI & SOCIETY, pages 1-15, 2020.

[52] Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. Pulse: Self-
supervised photo upsampling via latent space exploration of generative models. In Proceedings
of the ieee/cvf conference on computer vision and pattern recognition, pages 2437-2445, 2020.

[53] Yotam Nitzan, Rinon Gal, Ofir Brenner, and Daniel Cohen-Or. Large: Latent-based regression
through gan semantics. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19239-19249, 2022.



[54] Roy Or-El, Soumyadip Sengupta, Ohad Fried, Eli Shechtman, and Ira Kemelmacher-Shlizerman.
Lifespan age transformation synthesis. In European Conference on Computer Vision, pages
739-755. Springer, 2020.

[55] William Peebles, John Peebles, Jun-Yan Zhu, Alexei Efros, and Antonio Torralba. The hessian
penalty: A weak prior for unsupervised disentanglement. In European Conference on Computer
Vision, pages 581-597. Springer, 2020.

[56] Joshua C Peterson, Joshua T Abbott, and Thomas L Griffiths. Evaluating (and improving) the

correspondence between deep neural networks and human representations. Cognitive science,
42(8):2648-2669, 2018.

[57] Antoine Plumerault, Hervé Le Borgne, and Céline Hudelot. Controlling generative models
with continuous factors of variations. In International Conference on Learning Representations,
2019.

[58] Brett D Roads and Bradley C Love. Enriching imagenet with human similarity judgments and
psychological embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3547-3557, 2021.

[59] Wendy D Roth. The multiple dimensions of race. Ethnic and Racial Studies, 39(8):1310-1338,
2016.

[60] Myron Rothbart and Marjorie Taylor. Category labels and social reality: Do we view social
categories as natural kinds? 1992.

[61] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

[62] Joni Salminen, Fabio Veronesi, Hind Almerekhi, Soon-Gvo Jung, and Bernard J Jansen. Online
hate interpretation varies by country, but more by individual: A statistical analysis using
crowdsourced ratings. In 2018 Fifth International Conference on Social Networks Analysis,
Management and Security (SNAMS), pages 88-94. IEEE, 2018.

[63] Joni Salminen, Soon-gyo Jung, Shammur Chowdhury, and Bernard J Jansen. Analyzing
demographic bias in artificially generated facial pictures. In Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems, pages 1-8, 2020.

[64] Craig A Sanders and Robert M Nosofsky. Training deep networks to construct a psychological
feature space for a natural-object category domain. Computational Brain & Behavior, 3(3):
229-251, 2020.

[65] Morgan Klaus Scheuerman, Alex Hanna, and Emily Denton. Do datasets have politics?
disciplinary values in computer vision dataset development. Proceedings of the ACM on
Human-Computer Interaction, 5(CSCW?2):1-37, 2021.

[66] Candice Schumann, Susanna Ricco, Utsav Prabhu, Vittorio Ferrari, and Caroline Rebecca
Pantofaru. A step toward more inclusive people annotations for fairness. In Proceedings of the
AAAI/ACM Conference on Al, Ethics, and Society (AIES), 2021.

[67] Marshall H Segall, Donald Thomas Campbell, and Melville Jean Herskovits. The influence of
culture on visual perception. Bobbs-Merrill Indianapolis, 1966.

[68] Yujun Shen and Bolei Zhou. Closed-form factorization of latent semantics in gans. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1532-1540, 2021.

[69] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for

semantic face editing. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9243-9252, 2020.

10



[70] Pawan Sinha, Benjamin Balas, Yuri Ostrovsky, and Richard Russell. Face recognition by
humans: Nineteen results all computer vision researchers should know about. Proceedings of
the IEEE, 94(11):1948-1962, 2006.

[71] Ryan Steed and Aylin Caliskan. Image representations learned with unsupervised pre-training
contain human-like biases. In Proceedings of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency, pages 701-713, 2021.

[72] Warren S Torgerson. Theory and methods of scaling. 1958.

[73] Laurens Van Der Maaten and Kilian Weinberger. Stochastic triplet embedding. In 2012 IEEE
International Workshop on Machine Learning for Signal Processing, pages 1-6. IEEE, 2012.

[74] Andreas Veit, Serge Belongie, and Theofanis Karaletsos. Conditional similarity networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 830-838,

2017.

[75] James Vincent. What a machine learning tool that turns obama white can
(and can’t) tell us about ai bias. https://www.theverge.com/21298762/
face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias,
2020. Accessed May 16, 2022.

[76] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 5265-5274, 2018.

[77] Mei Wang, Weihong Deng, Jiani Hu, Xunqgiang Tao, and Yaohai Huang. Racial faces in the
wild: Reducing racial bias by information maximization adaptation network. In Proceedings of
the ieee/cvf international conference on computer vision, pages 692-702, 2019.

[78] Zeerak Waseem. Are you a racist or am i seeing things? annotator influence on hate speech
detection on twitter. In Proceedings of the first workshop on NLP and computational social
science, pages 138—142, 2016.

[79] Yuxiang Wei, Yupeng Shi, Xiao Liu, Zhilong Ji, Yuan Gao, Zhongqin Wu, and Wangmeng Zuo.
Orthogonal jacobian regularization for unsupervised disentanglement in image generation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 6721-6730,
2021.

[80] Maximilian Wich, Hala Al Kuwatly, and Georg Groh. Investigating annotator bias with a
graph-based approach. In Proceedings of the Fourth Workshop on Online Abuse and Harms,
pages 191-199, 2020.

[81] Zongze Wu, Dani Lischinski, and Eli Shechtman. Stylespace analysis: Disentangled controls
for stylegan image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12863—12872, 2021.

[82] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from scratch.
arXiv preprint arXiv:1411.7923, 2014.

[83] Dora Zhao, Angelina Wang, and Olga Russakovsky. Understanding and evaluating racial biases
in image captioning. In International Conference on Computer Vision (ICCV), 2021.

[84] Charles Y Zheng, Francisco Pereira, Chris I Baker, and Martin N Hebart. Revealing inter-
pretable object representations from human behavior. In International Conference on Learning
Representations, 2018.

11


https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias
https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias

A Data

A.1 Face image stimuli

The stimulus set was sampled from the publicly available FFHQ Table 4: Apparent age
dataset [33] of 70,000 permissively licensed face images. The FFHQ group, binary gender ex-
dataset which includes JSON metadata and documentation is avail- pression group, and eth-
able from the following repository: https://github.com/NVlabs/ nicity group counts for

ffhq-dataset. the stimuli of 4,921 repre-
For face detection, as in [33], we used the dlib mmod human face sentative examples in the

detector [36] (https://github.com/davisking/dlib-models). To face image stimuli set
align the detected faces, we followed the same procedure as detailed

in [54], which uses the dlib 68 landmark shape predictor [36] (https: Age Count
//github.com/davisking/dlib-models). ggjg igg?
As stated in the main text, we used FFHQ-Aging annotations [54], ob- ‘518:‘1130 121);1)
tained using Face++, for absolute head yaw angle, absolute head pitch
angle, eyewear, and eye occlusion annotations to prune the dataset. The
purpose of these constraints was to reduce the influence of head pose on Ethnicity Count
human behavior and to better allow for eye comparisons. The stimulus set White 998
of 4,921 representative examples were then sampled from the remaining East Asian 801
images such that each intersectional subgroup based on perceived binary ]l;‘l‘i‘f Hispanic ;gg
gender expression, age group, and ethnicity would be included. We only Indian 556
considered face images with an apparent age greater than 19 years old in Middle Eastern 538
an attempt to exclude images of minors. Ethnicity was estimated using a Southeast Asian 511
FairFace [32] trained model (implementation details are in Appendix B.2).
Perceived binary gender expressions and apparent age groups were ob-

. . . .. .. Gender Count
tained from FFHQ-Aging crowdsourced annotations. To mitigate biasing
our set toward stereotypical faces, we randomly sampled images from pae o

the 56 possible intersectional subgroups rather than selecting the most
confidently predicted or annotated.

Table 4 shows the group counts at the level of age, gender, and ethnicity, whereas Table 6 reports the
counts at the finer intersectional subgroup level. Exact balancing was not possible due to the skewed
composition of FFHQ. Ideally, we would have sampled images from a dataset with self-reported
attributes. However, while such datasets do exist, they are typically small, tightly constrained, and
largely unrepresentative.

A.2 Collection of human behavioral judgments

All participants were recruited on AMT and were required to have previously completed a minimum
of 100 human intelligence tasks (HITs) on AMT with a 95% approval rating. Eligibility was further
determined through a prescreening survey (nominal fee of 0.01 USD), which included a short multiple-
choice English language proficiency test. Since we placed no restriction on participant location,
in order to be eligible, we required participants to answer at least two out of three multiple-choice
English language proficiency questions correctly.

Collection of human behavioral odd-one-out similarity judgments for training and validation.
Based on estimated face image labels, a triplet can comprise 1-2 binary gender expression group(s), 1-
3 age group(s), and 1-3 ethnicity group(s) resulting in 18 triplet fypes which were uniformly sampled.
We sampled 703,300 unique triplets in total. Participants were presented with triplets alongside the
following minimal instructions: “Choose the person that looks least similar to the two other people.

Table 5: Participant exclusion policies and criteria

Policy Criteria Min. # of judgments
Fast #1 > 25 % of judgments generated in < 0.8's 100
Fast #2 > 50 % of judgments generated in < 1.1s 100
Deterministic > 40 % of judgments correspond to a single triplet position 200
Incomplete Submission of an empty judgment 1
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Table 6: The 56 intersectional subgroup counts for the stimuli of 4,921 representative examples

Age Ethnicity Gender  Count
50-120 White Male 140
20-29 White Female 135
40-49 White Male 133
20-29 White Male 127
30-39 Latino Hispanic Female 126
30-39 White Male 125
50-120 White Female 118
20-29 East Asian Female 118
30-39 East Asian Female 115
30-39 White Female 112
30-39 East Asian Male 111
40-49 White Female 108
20-29 East Asian Male 107
20-29 Latino Hispanic Male 106
40-49 Black Male 105

40-49 Latino Hispanic ~ Female 105
20-29 Latino Hispanic Female 104

30-39 Black Male 104
40-49 East Asian Female 102
30-39 Middle Eastern Male 100
20-29 Black Male 99
40-49 Latino Hispanic Male 98
50-120 Middle Eastern Male 97
40-49 Middle Eastern Male 97
20-29 Middle Eastern Male 96
30-39 Black Female 95
20-29 Indian Female 95
30-39 Indian Female 94
40-49 Black Female 93
30-39 Latino Hispanic ~ Male 93
20-29 Black Female 92
40-49 East Asian Male 91
30-39 Indian Male 91
50-120 East Asian Male 88
50-120  Black Male 86
20-29 Southeast Asian Female 86
20-29 Indian Male 83
20-29 Southeast Asian ~ Male 82
50-120  Latino Hispanic Female 81
50-120  Latino Hispanic =~ Male 75
30-39 Southeast Asian ~ Male 75
30-39 Southeast Asian ~ Female 72
20-29 Middle Eastern Female 70
50-120 East Asian Female 69
40-49 Indian Male 66
50-120 Southeast Asian ~ Female 58
40-49 Indian Female 58
50-120 Black Female 55
40-49 Southeast Asian Male 54
40-49 Southeast Asian ~ Female 47
50-120 Indian Male 41
30-39 Middle Eastern Female 38
50-120 Southeast Asian Male 37
50-120 Indian Female 28
40-49 Middle Eastern Female 24
50-120 Middle Eastern Female 16

Focus your judgment on the people depicted, ignoring differences in head position/direction, facial
expression/emotion, lighting, accessories, and background/objects”. Each HIT consisted of 20 unique
triplets, where each triplet was presented separately and in succession. We collected 703,300 unique
triplet similarity judgments (i.e., one judgment per triplet) on AMT from 1,887 eligible participants.
Each triplet was judged once by a single participant, resulting in a single judgment per triplet. To
control for quality, according to the criteria outlined in Table 5, we excluded triplet judgments
obtained from any participant who provided overly fast, deterministic, or incomplete judgments. This
left 638,180 judgments from 1,645 participants. Irrespective of estimated quality, all participants
were compensated at a rate of 15 USD per hour. Table 7 shows the age, ancestry, gender identity, and
nationality group counts of the 1,645 participants.

Collection of human behavioral odd-one-out similarity judgments for testing: Same images,
novel triplets. We sampled an additional 1,000 triplets (images were sampled from the stimulus set

13



Table 7: Age, ancestry, gender identity, and nationality group counts for the 1,645 eligible participants
who passed our quality checks and contributed 638,180 triplet judgments

Age Count Nationality Count  Nationality Count
30-39 612 American 981 Thai 2
40-49 373 Indian 260  Greek 2
50-120 333 Brazilian 74 Colombian 2
20-29 327 Canadian 44 Pakistani 2
Italian 42 Bulgarian 2
English 39  Japanese 1
Ancestry Count British 37  Puerto Rican 1
German 21 Liberian 1
EuArope i1 French 15 Moldovan 1
Asia 331 .
. Spanish 13 South Korean 1
Americas 256 . .
. Australian 7 Northern Irish 1
Americas and Europe 175 . .
. Romanian 5 Serbian 1
Africa 50
L e Venezuelan 5  Nepalese 1
Africa and Americas 21 o .
. Nigerian 4 Scottish 1
Asia and Europe 21 - . .
. - Chinese 4 Lithuanian 1
Africa, Americas, and Europe 20 .
. Welsh 4 Slovenian 1
Africa, Europe 16 s .
o . Filipino 4 Somali 1
Americas and Asia 15 X X
. B Armenian 4 Russian 1
Americas, Asia, and Europe 6 X .
. Vietnamese 4 South African 1
Europe and Oceania 6 . .
. g . . Polish 3 Belizean 1
Africa, Americas, Asia, Europe, and Oceania 5 X !
. . . . Irish 3 Sri Lankan 1
Africa, Americas, Asia, and Europe 3 . .
. . Turkish 3 Cameroonian 1
Africa, Asia, and Europe 3 .
. . Portuguese 3 Belgian 1
Africa and Asia 2 B
. Dutch 3 Trinidadian 1
Oceania 2 . N
. . Mexican 3 Argentine 1
Americas, Europe, and Oceania 1 L .
Asia, Europe, and Oceania 1 Ukrainian 3 Latvian 1
? . Macedonian 2 Austrian 1
Brasileiro 2 Icelandic 1
Gender identity Count Estonian 2 Vincentian 1
Jamaican 2 Tunisian 1
Male 849 Kenyan 2 Taiwanese 1
Female 788 Jordanian 2 Hong Konger 1
Other gender identity 8 Malaysian 2 Ethiopian 1
Indonesian 2 Afghan 1
Czech 2

of 4,921 images). We collected 25 unique judgments per triplet on AMT (total: 25,000 judgments).
After excluding responses based on the quality control criteria outlined in Table 5, we were left with
22-25 unique judgments per triplet (total: 24,060 judgments) obtained from 355 participants. Table 8
shows the age, ancestry, gender identity, and nationality group counts of the 355 participants.

Collection of human behavioral odd-one-out similarity judgments for testing: Novel images,
novel triplets. We sampled all possible triplets from 56 novel images (sampled from FFHQ, but
disjoint from the stimulus set) and collected 3 unique judgments per triplet on AMT (total: 83,160
judgments). After excluding responses based on the quality control criteria outlined in Table 5,
we were left with 2—-3 unique judgments per triplet (total: 80,300 judgments) obtained from 632
participants. Table 9 shows the age, ancestry, gender identity, and nationality group counts of the 632
participants.

Collection of dimension labels. For each of the 22 dimensions, we constructed a scale (measure-
ment units corresponded to dimensional values which were converted to percentiles) and tasked
participants with providing up to three labels (minimum one label) using words only. Note that
participants were not restricted to entering single word labels, they were provided with free-text
boxes. Participants were presented with a scale and were asked: “Which visual characteristics do
you think the people at the high end of the scale have in common compared to the people at the low
end of the scale?”. In addition, participants were asked to view and interact with the entire scale
before providing any labels. Figure 5 shows an example of a scale and a novel face image shown to
participants. After quality control, there were 25—-62 labels per dimension. Quality control roughly
entailed removing responses that did not correspond to words and those that were derogatory in
nature. The filtered labels were then converted into 35 broad topic categories: “Age”, “Age related”,
“Ancestry”, “Ear shape”, “Eye color”, “Eye related”, “Eye shape”, “Eyebrow related”, “Eyebrow
shape”, “Face related”, “Face shape”, “Facial expression”, “Facial hair”, “Forehead shape”, “Gender
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Table 8: Age, ancestry, gender identity, and nationality group counts for the 355 eligible participants
who passed our quality checks and contributed 24,060 triplet judgments in the “same images, novel
triplets” test setting

Age Count Nationality Count  Nationality Count
30-39 143 American 211 Venezuelan 1
40-49 77 Indian 65 German 1
50-120 76 Brazilian 20  Swedish 1
20-29 59 Canadian 12 Filipino 1
Italian 8 Estonian 1
English 6 Malaysian 1
Ancestry Count British 6  Colombian 1
E French 4 Pakistani 1
urope 131 . .
. Armenian 3 Cameroonian 1
Asia 92 X .
. Vietnamese 2 Polish 1
America 62 o X .
. Brasileiro 2 Vincentian 1
America and Europe 35 .
. Kenyan 1 South African 1
Africa and Europe 8 . .
. Jamaican 1 Thai 1
Africa 7 Welsh 1
America and Asia 4 e
Africa, America, and Europe 4
Anmerica, Asia, and Europe 3
Africa, America, Asia, Europe, and Oceania 3
Africa and America 3
Asia and Europe 2
Africa and Asia 1
Gender identity Count
Male 184
Female 166
Other gender identity 5

expression”, “Hair color”, “Hair length”, “Hair related”, “Hair texture”, “Hairstyle”, “Head shape”,
“Lip related”, “Lip shape”, “Mouth related”, “Mouth shape”, “Neck related”, “Nose related”, “Nose
shape”, “Skin color”, “Skin related”, “Skin texture”, “Teeth related”, and “Weight related”.

Figure 4 provides evidence of the interpretability of the FAX-U (and FAX-C-PH) dimensions. There is
clear relationship between the dimension topics obtained from annotator descriptions and dimension
labels generated using CelebA and FairFace models.

Table 10 shows the age, ancestry, gender identity, and nationality group counts of the 102 participants.

Collection of Dimension Ratings. We tasked participants with placing 20 novel face images along
each of the 22 dimensions using the unlabeled scales from the dimension labeling task. We collected
8,800 judgments in total (20 per image-dimension tuple). Participants were presented with a scale
and a novel face image above the scale, and were asked: “Decide where on the scale you would
place the person shown based on their similarity to the people shown beneath the scale”. In addition,
participants were asked to view and interact with the entire scale before making their decision.
Figure 6 shows an example of a scale and a novel face image shown to participants. Table 11 shows
the age, ancestry, gender identity, and nationality group counts of the 164 participants.

B Implementation Details

B.1 FAX Models

All images were resized to 128 x 128 and normalized to [—1, 1]. Standard data augmentation was
used (horizontal mirroring and 112 x 112 random crops). For the unconditional FAX models, guided
by the validation loss, we empirically set A\; = 5x 107° and Ay = 1 x 1072, (The conditional models
used the same hyperparameters with the additional loss term’s weight set to A3 = 1 x 107%.) All
models were optimized for 40 epochs with Adam [37] (default parameters), learning rate 1 x 10~2, and
batch size 128 on a single Tesla T4 GPU. Post-optimization, we obtained our core set of dimensions
by dispensing with those whose maximal value was close to zero, resulting in a low-dimensional
space. (For the FAX trained model, this resulted in 22 dimensions.) The threshold for all models was
determined based on maximizing accuracy on the validation set. Across five independent runs, the
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Table 9: Age, ancestry, gender identity, and nationality group counts for the 632 eligible participants
who passed our quality checks and contributed 80,300 triplet judgments in the “novel images, novel
triplets” test setting

Age Count Nationality Count  Nationality Count
30-39 252 American 291 Mexican 2
40-49 141 Indian 164  Cameroonian 1
20-29 126 Brazilian 51 Chinese 1
50-120 109 Italian 19  Filipino 1
18-19 4 Canadian 17 Colombian 1
English 14 Austrian 1
British 10 Estonian 1
Ancestry Count French 8  Jamaican 1
Europe 231 Spanish 5 Inflonesmn 1
. German 4 Irish 1
Asia 194 .
. Vietnamese 3 Japanese 1
America 88 .
. Venezuelan 3 Latvian 1
America and Europe 62 . .
. Kenyan 3 Lithuanian 1
Africa 12 . .
. . Macedonian 2 Malaysian 1
Africa, America and Europe 10 A
. . Greek 2 Nigerian 1
America and Asia 8 .
. ‘Welsh 2 Slovenian 1
Africa and Europe 7 L .
. . Brasileiro 2 South African 1
Africa and America 7 . .
. Bulgarian 2 SriLankan 1
Asia and Europe 6 . L
. R Romanian 2 Ukrainian 1
America, Asia, and Europe 2 X . X
. . . Thai 2 Vincentian 1
Africa, America, Asia, and Europe 2 .
. . Turkish 2 Afghan 1
Asia, Europe, and Oceania 1 A . 5
Africa, Asia, and Europe 1 rmentan
Africa, America, Asia, Europe, and Oceania 1
Gender identity Count
Male 350
Female 279
Other gender identity 3
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Figure 3: Left: Validation accuracy as a function of the number of dimensions retained over five
independent runs (95 % CI), empirically evidencing that the judgments can be encapsulated using
a limited number of dimensions. Middle and Right: Pearson and Spearman r between each of
the 22 dimensions and the best “matching” dimension from each of the other four runs (95 % CI),
empirically evidencing the replicability of dimensions

95% confidence interval (CI) for the number of dimensions and validation accuracy were 27.4+£5.8
and 61.9£0.1%, respectively. Figure 3 shows that the judgments can be encapsulated using a limited
number of the available dimensions and that the 22 dimensions are approximately replicated across
the independent runs.

Note that we discovered some redundancy in the dimensions, in particular 8 dimensions have a
Pearson > 0.9 with another dimension. The number of (near) nonzero dimensions depends on
the L1 sparsity penalty, which must be carefully chosen: Too high of a penalty will result in the
entanglement of distinct factors of variation, whereas too low of a penalty will result in repeated
dimensions. We erred on the side of caution (lower penalty), since it is more difficult to localize the
source of bias when factors are merged, i.e., since our main aim is auditing datasets and models.

B.2 Baseline models

All images were resized to 128 x 128 and normalized to [—1, 1]. Standard data augmentation was
used (horizontal mirroring and 112 x 112 random crops). For preprocessing, we used the same
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Table 10: Age, ancestry, gender identity, and nationality group counts for the 102 eligible participants
who contributed labels in the dimension naming task

Age Count Nationality Count  Nationality Count

30-39 36 American 43 Ethiopian 1

40-49 26 Indian 25 Chinese 1

20-29 23 Brazilian 7 Vietnamese 1

50-120 16 English 7 Venezuelan 1

18-19 1 Italian 4 Icelandic 1
Spanish 2 Lithuanian 1
Canadian 2 Tunisian 1

Ancestry Count German 2 Greek 1

Europe 40 French 2

Asia 31

America 14

America and Europe 9

Africa 3

Asia and Europe 1

America and Asia 1

Africa and Europe 1

Africa, America, and Europe 1

Africa and America 1

Gender identity Count
male 52
female 50

Table 11: Age, ancestry, gender identity, and nationality group counts for the 164 eligible participants
who contributed 8,800 triplet judgments in the dimension rating task

Age Count Nationality =~ Count  Nationality Count

30-39 55 American 70  Estonian 1

20-29 37 Indian 35 Vietnamese 1

40-49 36 Brazilian 12 Venezuelan 1

50-120 35 English 12 Icelandic 1

18-19 1 Canadian 8 Israeli 1
British 4 Japanese 1
Italian 4 Kenyan 1

Ancestry Count German 3 Spanish 1

Europe 67 French ) 3 Th_ai_ ) 1

Asia 40 Australlfm 1 Trinidadian 1

America 26 Colombian 1 Greek 1

America and Europe 13

Africa and America 4

Africa 4

America, Asia 3

Africa, America, and Europe 3

Europe and Oceania 2

Asia and Europe 1

Africa and Europe 1

Gender identity Count
Female 86
Male 71
Other gender identity 1

alignment procedure as in [54] to produce 128 x 128 face crops. Image values were normalized to
[—1,1].

CelebA model. Training was performed using a batch size of 512 (across 4 Tesla T4 GPUs) with
SGD for 45 epochs. The initial learning rate 0.1 was divided by 10 at epoch 15, 30, and 40. L? weight
decay and SGD momentum were set to 0.0005 and 0.9, respectively. Standard data augmentation
was used (horizontal mirroring and 112 x 112 random crops).
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Table 12: Predicting human similarity judgments. (Protocol 1) Accuracy over 24,060 judgments and
Spearman’s r between the entropy in human- and model-generated triplet odd-one-out probabilities.
(Protocol 2) Accuracy over 80,300 judgments and Spearman’s r between the entropy in human-
and model-generated similarity matrices. Note: #Labels is an approximate of the number of labels
collected to create a dataset accounting for consensus.

Protocol 1 Protocol 2
Model Loss/Method #Images #Labels Arch. Acc. s Acc. T
ImageNet-1K Cross-entropy 1.28M >1.28M RG-32Gf 46.6 0.09 41.7 0.32
FF Cross-entropy 62K 186K-372K RI18 559 0.41 51.9 0.67
CA Cross-entropy 178K 7.12M RI18 52.1 0.25 489 0.56
FFHQ Cross-entropy 70K 140K R18 50.5 0.16 473 0.49
CWF ArcFace 404K 404K RI18 516 0.29 46.1 0.40
CWF Cross-entropy 404K 404K R18 48.6 0.21 432 0.34
CWF SphereFace 404K 404K R18 48.3 0.25 438 0.35
CWF CosFace 404K 404K RI18 44.0 0.12 40.8 0.23
FAX-C Conditional ?? 5K 574K RI18 67.4 0.68 61.7 0.82
FAX-C-PH Conditional ?? 5K 574K RI8 66.5 0.68 61.4 0.82
FAX-U Unconditional ?? 5K 574K RI18 62.0 0.65 57.5 0.86
FAX-U-1/2 Unconditional ?? 5K 287K R18 61.3 0.61 55.8 0.81
FAX-U-1/4 Unconditional 2? 5K 144K R18 60.6 0.56 553 0.80
FAX-U-1/8 Unconditional 2? 5K 72K RI8 58.6 0.47 55.0 0.79
FAX-Triplet Triplet margin with distance swap [8] 5K 574K R18 60.2 0.46 52.8 0.64
ImageNet-1K SwWAV 1.28M 0 RN50-w5 43.8 0.08 41.0 0.30
IG-1B SwAV 1B 0 RG-32Gf 472 0.18 447 0.45
IG-1B SwAV 1B 0 RG-64Gf 48.1 0.16 444 0.45
IG-1B SwAV 1B 0 RG-128Gf 46.8 0.15 42.8 0.40
IG-1B SwAV 1B 0 RG-256Gf 47.8 0.17 43.1 0.41
PASS MoCo-v2 1.28M 0 R50 42.3 0.09 40.5 0.27
PASS SwAV 1.28M 0 RS0 424 0.12 40.4 0.27
PASS DINO 1.28M 0 ViTS-16 432 0.10 41.8 0.32

FairFace model. Training was performed using a batch size of 512 (across 4 Tesla T4 GPUs) with
SGD for 45 epochs. The initial learning rate 0.1 was divided by 10 at epoch 15, 30, and 40. L? weight
decay and SGD momentum were set to 0.0005 and 0.9, respectively. Standard data augmentation
was used (horizontal mirroring and 112 x 112 random crops).

CASIA-WebFace models. We experimented with several face recognition models that differed only
in terms of the loss function minimized: Softmax, ArcFace [17], CosFace [76], and SphereFace [45].
Training was performed using a batch size of 512 (across 4 Tesla T4 GPUs) with SGD for 55 epochs.
The initial learning rate 0.1 was divided by 10 at epoch 15, 30, and 40. L? weight decay and SGD
momentum were set to 0.0005 and 0.9, respectively. Standard data augmentation was used (horizontal
mirroring and 112 x 112 random crops).

C Additional experiments

Predicting human similarity judgments. When appropriate, as baselines, we compare to super-
vised and self-supervised representation learning methods. Supervised models minimize a cross-
entropy, ArcFace [17], CosFace [76], SphereFace [45], or triplet margin with distance swap [8]
loss. Self-supervised approaches correspond to MoCo-v2 [15], SWAV [12], or DINO [13]. For data,
supervised methods train on CASIA-Webface [82], CelebA [46], FairFace [32], FFHQ [33, 54], or
ImageNet-1K [61]. Self-supervised approaches learn on IG-1B [21], ImageNet-1K [61], or PASS [5].
As is standard, baseline representations are extracted from the final encoder layer of a model and then
normalized to unit-length. The dot product of two representations determines their similarity. Results
for Protocol 1 and Protocol 2 are shown in Tbl. 12.

C.1 Prototypicality

To test whether dimensional values represent the typicality of faces, we use face images from Chicago
Face Database (CFD) [49, 40, 50] labeled with prototypicality ratings. The ratings (obtained from
human annotators) correspond to the average prototypicality of a face wrt a race category from one
(less typical) to five (very typical), considering skin color, hair, eyes, nose, cheeks, lips, and other
physical features. For gender expression, ratings correspond to the typicality of the face relative

18



facial expressu)n
hair color ape

ancestry
skin color

== bushy eyebrows

< skin color fead shape

ances!
eye shapery age related

gender expressmn
E

sideburns.

mustache b gues

gfeatee m a e

50 clock shadow ™

< ancestry
hair color facial expression

age related

ength skin color €ye shape

X,

50-59 6

eyeglasses

more tha

wearing necktie double chin

ncestry

nnsesﬂiveage related Texu:

face shape

skin color

facial expression

2800,
2002

mustache

big “prlg nose

" bald
chubb‘/ bl k

double chin " recedmghauhne

facial expresswn

age related

face shape

-ancestry e

bby

=" smiling

double chin
high cheekbones

facial expression

skin color nose shape

face shape

ANCESTIY gender expression

attractive

young 5 o clock shadow

pointy nose

20-29 “middle eastern

= skin color
facnal expression

e 1DES
Bl /65

2220 beardblack hair

sright har bushy

wearing ne ktie
gray hair male

eye shape hair length

ancestry
skin color.>

Q 9=
X720

southeast asian
stralght halrno beard

east asian

naroweyes  pale skin_bangs

gender expression
i facial hair

yebrow related

facial expression

ll 2

goateemustache

~middle

sideburns

s 50 clock shadow

- age related
ancestry “r...hair color

I o fac a\e)uess n I

middle eastern POINty noSe atracive

age relateder elaed

ancestry

sKin COIOr. .
Lo peh
o foky =

southeast asian
stralght} halrno beard

male pale skin_bangs

facial expression
haw length skln co\or

est
olor oge 2hee Y

everelated hgjr Iength

eye color - skin color

estry

eyebrow related -

er e)'(pressm”n

60-69
eyeglasses

chutby wearmg necktie

%age related
halr lengm facial expression

wearing lipstick

osy cheeks ™Y

emale

no beard heavy makeup

ancestry:

facial expression” e
age related

skin oI'or

big Iipsm&““ﬁ'ffs”é

™ pald mustache
wnplack™

o receding hmrhne

o dfacial hair
age relates
ancestry hair length

eyegwassesgray “hair
60-69 sideburns
I mustache
goatee

... wearing necktie =

faCIaI expresswn

ancestry
skin color.~..

e o] 8 |
southeast asian
,pale Sklnslra\ght hai

east aS|an

Naltow &¥es. 1o beard brow

skin color

ances(ry °

faC|aI expressmn

SN 5
S8

= rosy cheeks )

mouth slightly open

smiling

high cheek,‘t‘)o’nesp

facial expressmn

face shape

weight related.,

double chins="
smlllngChUbbY
high cheekbones

ancestry. .

gender expression <,

age ‘related

face shape

@1 )f’% (1
pale skin0-2:7%

b Iamacllva

wearing lipstick _ros

son ancestry
gender expression

age related

A0
B

gray hair «, bags under eyes

50-59 ©(0-H9Qviarose

eyeglasses ~ male

more than 70

wearing hat "' mystache

= facial expresston
it o

ancestry
skin color

BFE
ORI
blond hair_

brown hair
eyeglasses
gray hair * pginty nose e

Figure 4: Dimension labeling. The top 8 faces from the stimulus set with the highest dimension
embedding values for each of the 22 FAX-U (and FAX-C-PH) dimensions. Word clouds generated
from annotator labels (transformed into topics) are shown above each set of 8 faces. Word clouds
generated using CelebA and FairFace models are shown below each set of 8 faces. The CelebA and
FairFace labels were obtained by labeling the entire stimulus set (using the CelebA and FairFace

models) and determining the attributes with the highest AUC.

to others of the same race and gender in the United States from one (not at all typical) to seven

(extremely typical).

Tbl. 13 shows that relevant FAX-U dimensions are positively correlated with the typicality ratings
according to Spearman’s . Although the odd-one-task does not require an annotator to explicitly
categorize any person, category typicality appears to manifest from the similarity judgments for
concepts related to race and gender.
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SCROLL right to see more people closer to the LOW end of the scale

Please wait for the entire scale to load (columns numbered 100 to 1)

Figure 5: Dimension labeling task. Example scale shown to participants (dimension 1)

Table 13: Prototypicality. Spearman’s r between human ratings of face attribute prototypicality and
model-generated dimensional values.

Attribute

Model Masculine Feminine East Asian Black White

FAX-U 0.813 0.840 0.747 0.683 0.644
CA 0.858 0.855 — — 0.123
FF 0.836 0.827 0.806 0.653 0.645
FFHQ 0.812 0.829 0.794 0.587 0.688

Comparative Dataset Diversity Auditing. Drawing inspiration from biodiversity measures [42],
we propose to use our learned dimensions for comparative dataset diversity auditing. Given a set
of candidate datasets {c };_,, we aim to find cy» = argmin,, sim(cy), where sim(c) measures
the similarity of the faces in  ~ c¢;. We denote by ¢, € [0,0.01,...,0.99,1] and 1 — ¢ the
proportion of images in ¢, from Dy = {(z;,y0)}: and D1 = {(z;,v1)};, resp., where Dy N Dy = 0.
Here yo,y1 € {0, 1} are sensitive attribute labels. Let § € R denote a proxy continuous attribute
value. We define the similarity between (z;,7;) ~ cj as z;; = abs(f; — §;)'. Further, let
Zy, = (2i5) € RlerxIexl denote c¢;,’s similarity matrix. In biodiversity terms, the average ordinariness
of faces in cj isoc ), Y ; #ij (V1). This quantity is large when most faces in ¢, are concentrated into
a few very similar faces. Importantly, concentration is inversely connected to diversity. Therefore,
we can interpret the mean of Zj, as a diversity score, which we denote by divscore(Zy). Note that
divscore(Zy) — 0 for homogeneous sets of faces.

Auditing Model Behavior. Beyond dataset auditing, as an example, we study the disparate impact
of the face image restoration model PULSE [52]. We select PULSE due to its much discussed
racial bias [63, 52, 75]. Let R : z;, — R(xy) = z; denote the PULSE model, which maps
a low-resolution face image to a high-resolution face image. We denote by z the ground-truth
high-resolution face image. Suppose zy and z}; denote face attribute representations of xy and
xy, resp. Disparate outcomes in attribute changes due to R across demographic groups may be an
indicator of data and/or algorithmic bias. For face data, we use CFD [49], centering our analysis
on self-identified sensitive labels: Black, White, Indian, and (East) Asian. We create low-
resolution faces by downsampling from 1024 x 1024 to 32 x 32. For each group, we calculate
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Figure 6: Dimension rating task. Example scale shown to participants (dimension 1)

Table 14: Attribute disparity. Using attribute values from relevant model dimensions to find the most
diverse candidate dataset wrt an attribute of interest.

Model (Disparity A / Spearman’s )

Dataset Attribute FAX-U CA FF FFHQ
cc > 70y.0.* 0.22/0.96 0.0610.99 0.06 /0.95 0.08/0.99
cc Male* 0.06/0.97 0.02/0.99 0.02/1.00 0.04/0.99
cc Light skin 0.06/0.94 0.3/0.65 0.18/0.85 0.06 /0.99
CFD Happy open mouth 0.12/0.99 0.06/0.95 — —
CFD Male* 0.00/1.00 0.08/0.99 0.02/1.00 0.02/1.00
CFD East Asian* 0.06/1.00 — 0.02/0.98 0.02/1.00
CFD Black* 0.10/0.98 — 0.14/0.97 0.00/1.00
CFD White* 0.04/1.00 0.02/0.99 0.04/0.97 0.04/0.99
CFD Indian* 0.08/1.00 — 0.30/0.73 0.0810.87

the mean cosine similarity between each (zy, z%;) pair and report the min-max group ratio, i.e.,
worst-case scenario [20]. For the CelebA and FairFace models, attribute representations correspond
to unnormalized classifier predictions (logits), whereas for the FAX and CASIA-WebFace-AF models
we use the face embeddings.

The min-max ratio for the FAX, CelebA, FairFace, and CASIA-WebFace-AF attribute representations
are 0.78, 0.88, 0.58, and 0.98, resp. All attribute representations result in the same min-max pair,
i.e., Black-White. Using FAX, CelebA, and FairFace attribute representations, we find statistically
significant differences in 22/22, 36/40, and 18/18, resp., for Black individuals, whereas for White
individuals, we find statistically significant differences in 16/22, 26/40, and 12/18, resp. All methods
show that Black individuals undergo more significant attribute changes. Fig. 7 plots the mean of
2y — zm, highlighting FAX-model attribute changes per group. To ease presentation, we combined
FAX-model dimensions measuring the same attribute. First, Black individuals have highly reduced
values in the Black dimension and magnified values in the White dimension, corroborating previous
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Figure 7: FAX dimensions depicting changes due to the PULSE restoration process on self-identified
Black and White groups

qualitative findings [75]. Second, the impact of PULSE on White individuals largely centers on
changes in face width and length, representing a novel insight. While neither fype of modification
is desirable, the inadvertent erasure of minority groups is extremely harmful. FAX dimensions are
therefore useful as a tool for gaining insight into the behavior of face-based models.
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