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Abstract

We propose to implicitly learn a set of continuous face-varying dimensions, with-
out ever asking an annotator to explicitly categorize a person. We uncover the
dimensions by learning on a novel dataset of 638,180 human judgments of face
similarity (FAX). We demonstrate the utility of our learned embedding space for
predicting face similarity judgments, collecting continuous face attribute values,
and attribute classification. Moreover, using a novel conditional framework, we
show that an annotator’s demographics influences the importance they place on
different attributes when judging similarity, underscoring the need for diverse
annotator groups to avoid biases.

1 Introduction

Most human-centric image datasets are web-scraped, lacking ground-truth information about the
data subjects. Moreover, data protection legislation considers demographic attributes to be personal
information and limits their collection and use [4, 3]. Even when labels are known, evaluating diversity
by examining counts across subgroups fails to reflect the continuous nature of human phenotypic
diversity (e.g., skin tone is often reduced to light vs. dark). Furthermore, such an approach often
denies multi-group membership [60] (e.g., erasing multi-ethnic and intersex individuals).

When labels are unknown, researchers typically choose certain attributes they consider to be relevant
for human diversity and use human annotators to infer them [32, 66, 77]. In practice, this is difficult for
ill-defined and highly changeable social constructs such as race and gender [22, 34, 9]. Observational
labels from annotators risk not only encoding stereotypes, but reifying and propagating them beyond
“their cultural context” [35, 18]. Furthermore, discrepancies between, e.g., observed and self-identified
race, gender, or other sensitive attributes can induce psychological distress [11] by invalidating an
individual’s self-image and identity [59].

Contributions. As an image subject can exhibit certain traits to a greater or lesser extent than others,
even within the same subpopulation, the goal of our work is to learn a similarity function, which
measures the similarity between two faces in a way that is aligned with human perception. We aim to
do so without using categorical labels.

Concretely, we present a model of conditional decision-making for learning continuous, human-
interpretable face embeddings directly from human judgments of face similarity. Underlying our
approach is FAX, a novel dataset of 638,180 judgments over 4,921 faces, where each judgment
corresponds to the odd-one-out (i.e., least similar) face in a triplet of faces. Such contextual similarity
judgments have been shown to offer a window into the dimensions (i.e., factors of variation) of
object categories [27, 84] and reachspace environments [31] in the human mind. Distinct from other
computer vision datasets, each judgment in FAX is accompanied by the identifier and demographic
attributes of the annotator who made the judgment.
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Figure 1: Model of Conditional Decision-Making.

Fig. 1 illustrates our
method, which concur-
rently learns an embed-
ding space and the im-
portance distinct annota-
tors place on each of the
embedding dimensions
when determining simi-
larity. By learning im-
portance scores, we in-
duce subspaces that en-
code each annotator’s no-
tion of similarity. We
show that predicting similarity judgments from an annotator in their respective subspace increases
predictive accuracy. Significantly, we find that annotator subspaces are not interchangeable, but can
be grouped wrt the sociocultural backgrounds (e.g., nationality, ancestry) of the annotators. Our
results underscore the need for diverse annotator groups to avoid biases.

Additionally, we show that our embeddings are highly correlated with the human mental representa-
tional space of faces, as compared to face embeddings induced by learning to predict face identity
or face attributes. Importantly, we find that the individual embedding dimensions are: related to
concepts of gender, race, age, as well as face and hair morphology. We demonstrate the utility of
such dimensions for: (i) collecting continuous (as opposed to discrete) face attribute values for novel
faces from annotators; and, (ii) binary attribute classification.

1.1 Background

Disentangled Representation Learning. Learning interpretable representations through seman-
tically labeled concepts and prototypes has recently gained attention [2, 38, 43]. Others reveal
meaningful directions inside generative models, where directional distances estimate the magnitude
of attributes [53]. However, the identification of interpretable directions is performed post-hoc, requir-
ing potentially biased labeled examples and/or pretrained models [81, 47], self-supervision [57, 30],
or paired images sharing at least one factor of variation [48]. Our approach is similar in spirit
to wholly unsupervised approaches [23, 55, 68, 79]. Rather than modeling the data generating
distribution, our representations are trained to predict human similarity judgments, reflecting the
human mental representational space of faces. Our baselines primarily center on embeddings induced
by training on facial analysis datasets, since in the face domain, post-hoc interpretation of latent
dimensions [69, 53, 81, 47] predominantly rely on datasets such as CelebA [46].

Psychological Embeddings. Multidimensional scaling (MDS) is often used to learn psychological
embeddings from pairwise similarities [72, 84, 27, 58, 73, 31]. Zheng et al. [84] developed an MDS
approach for learning psychological object embeddings from odd-one-out judgments based on three
assumptions. First, embeddings can be learned solely from odd-one-judgments, where representations
are constrained to be continuous, non-negative, and sparse. Such properties support interpretability
such that dimensions indicate both feature presence and feature magnitude. Second, odd-one-out
judgments are a function of sim(i, j), sim(i, k), and sim(j, k), where x ∈ X and sim : (xi,xj) →
sim(i, j) ∈ R denote a face image and similarity function, resp. Third, odd-one-out judgments are
stochastic, where the probability of selecting xk as the odd-one-out is p(k) ∝ exp(sim(i, j)). As
MDS cannot embed data outside of the training set, researchers have used pretrained models to
predict MDS representations [64] or directly infer similarity judgments [56, 6]. Rather than relying
on pretrained models which can introduce implicit biases [39, 71], we perform end-to-end learning
from scratch. Further, unlike recent work [27, 31], we focus on human perception of naturalistic face
images, evidenced to be processed differently to objects in the human visual system [70].

Annotator Bias. Categorization by observation depends not only on the subject being categorized, but
also on the annotator’s sociocultural background, perception of the subject, and contextual cues [67, 7,
29, 59]. For instance, a subject’s clothing can influence their racial categorization [19]. Despite this,
annotator positionality has only recently entered into discourse in computer vision [16, 83, 65], albeit
predominantly in the context of natural language processing [1, 78, 80, 10, 62]. However, in order
to mitigate bias, one must first measure bias [41]. Unlike previous works, our model of conditional
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decision-making elucidates the importance distinct annotators place on different attributes when
judging similarity, thus permitting the mitigation of bias. Veit et al. [74] employ a similar procedure
to learn subspaces which encode different notions of similarity (e.g., font style, character type).

2 Method

To learn a similarity function aligned with human perception, we collect a large-scale dataset, FAX,
of odd-one-out similarity judgments. An odd-one-out judgment corresponds to the least similar face
in a triplet of face images, representing a three alternative forced choice task.

Data. The benefits of odd-one-out judgments are threefold. Most significantly, the judgments do not
require an annotator to categorize people. Thus, we do not encode, reify, or propagate stereotypes.
Second, for a triplet of faces (xi,xj ,xk), repeatedly varying xk permits the identification of the
relevant dimensions that contribute to sim(i, j). That is, w.l.o.g., xk provides context for which
sim(i, j) is determined, making the task easier than explicit pairwise similarity tasks (i.e., “Is xi

similar to xj?”). This is because it is not always apparent to an annotator which dimensions are
relevant when determining sim(i, j), especially when xi and xj are perceptually different. Finally,
there is no need to prespecify attribute lists hypothesized as relevant for comparison (e.g., “Is xi

older than xj?”). The odd-one-task instead implicitly uncovers salient attributes.

For our proof of concept, the 4,921 faces were sampled from the CC-BY licensed dataset FFHQ [33].
The subset was obtained by first splitting FFHQ into 56 partitions based on estimated intersectional
group labels, and then randomly sampling from each partition with equal probability. All faces are
near-frontal with little to no eye occlusions and an apparent age > 19 years old.

FAX contains 638,180 quality-controlled triplets over the 4,921 faces, representing 0.003% of all
possible triplets. Each triplet is labeled with an odd-one-out judgment and the identifier of the
annotator who made the judgment. As in previous non-facial odd-one-out datasets [31, 28], there is a
single judgment per triplet. In total, 1,645 annotators contributed to FAX over Amazon Mechanical
Turk (AMT), providing their consent, age, nationality, ancestry, and gender identity. Compensation
was 15 USD per hour. Additional details regarding FAX are provided in Appendix A

Model of Conditional Decision-Making. At a high-level, we want to apply Zheng et al.’s MDS
approach (Section 1.1) to learn face embeddings. However, MDS cannot embed images outside of
the training set, limiting its utility. Moreover, MDS pools all judgments, disregarding intra- and
inter-annotator stochasticity. To resolve these issues, we propose to learn a conditional convolutional
neural network (CNN).

Let {({xiℓ,xjℓ,xkℓ}, kℓ, a)}nℓ=1 denote a training set of n (triplet, judgment, annotator) tuples,
where a ∈ A. To simplify notation, we assume that judgments always correspond to the index kℓ.
Suppose f : x 7→ f(x) = w ∈ Rd is a CNN, parametrized by Θ, where w ∈ Rd is an embedding
of x. We model the probability of annotator a selecting kℓ as p(kℓ | a) ∝ exp(sima(iℓ, jℓ)), where
sima(·, ·) denotes the internal similarity function of a. Given two images xi and xj , we define their
similarity according to a as: sima(i, j) = (σ(ϕa)⊙ ReLU(wi))

⊤ · (σ(ϕa)⊙ ReLU(wj)), where
σ(·) and ReLU(·) denote the sigmoid and ReLU functions, resp. Note that σ(ϕa) ∈ [0, 1]d is a
mask associated with a. Each mask plays the role of an element-wise gating function, encoding the
importance a places on each of the possible d embedding dimensions when determining similarity.
By conditioning prediction on annotator identifiers, we induce subspaces that encode each annotator’s
notion of similarity. This allows us to study whether per-dimensional importance scores differ
between annotators.

Let Φ = [ϕ⊤
1 , . . . ,ϕ

⊤
|A|] ∈ Rd×|A| denote a trainable weight matrix, where each column vector ϕ⊤

a

corresponds to annotator a’s mask prior to applying σ(·). In our conditional framework, we jointly
optimize Θ and Φ by minimizing:

−
∑
ℓ

log [p̂(kℓ | a)] + λ1

∑
i

∥ReLU(wi)∥1 + λ2

∑
ij

ReLU(−wi)j + λ3

∑
a

∥ϕa∥22, (1)

where p̂(kℓ | a) = exp(sima(iℓ,jℓ))
exp(sima(iℓ,jℓ))+exp(sima(iℓ,kℓ))+exp(sima(jℓ,kℓ))

is the predicted probability that
kℓ is the odd-one-out conditioned on a. The first term in Eq. 1 encourages similar face pairs to
result in large dot products. The second term (modulated by λ1 ∈ R) promotes sparsity. The third

3



term (modulated by λ2 ∈ R) supports interpretability by penalizing negative values. The last term
(modulated by λ3 ∈ R) penalizes large weights.

When λ3 = 0 and σ(ϕa) = [1, . . . , 1] (∀a), Eq. 1 corresponds to the unconditional MDS objective
proposed by Zheng et al. [84]. In what follows, we refer to unconditional and conditional models
trained on FAX as FAX-U and FAX-C, resp. In addition, we refer to conditional models whose masks
are learned post hoc as FAX-C-PH. A FAX-C-PH model uses a fixed unconditional model (i.e., FAX-U)
to obtain face embeddings such that only Φ is trainable.

Significantly, our conditional decision-making framework is generally applicable to any task that
involves mapping from inputs to human decisions; it only requires record-keeping during data
collection such that each judgment (or annotation) is associated with the annotator who generated it.

Implementation. All models have ResNet18 [25] architectures and output 128-dimensional em-
beddings. We use the Adam [37] optimizer with default parameters, reserving 10% of FAX for
validation. Based on grid search, we empirically set λ1 = 5 × 10−5 and λ2 = 1 × 10−2. For
FAX-C and FAX-C-PH, we additionally set λ3 = 1× 10−5. Across independent runs, we find that: (i)
only a fraction of the 128 dimensions are needed; and (ii) individual dimensions are reproducible.
Post-optimization, we remove dimensions with maximal values close to zero. For FAX-U, this results
in 22 dimensions (61.9% validation accuracy). Further details are in Appendix B.

3 Experiments

We demonstrate the utility of FAX induced embedding spaces for predicting face similarity judgments,
revealing annotator bias, collecting continuous face attribute values, and attribute classification.
Throughout this paper, statistical tests correspond to Mann-Whitney U -tests (p-value < 0.05).

For comparison, we consider embeddings extracted from pretrained face recognition and facial
analysis models. In particular, an ArcFace [17] face recognition model trained on CASIA-Webface
(CWF) [82]; and analysis models trained on CelebA (CA) [46] (40 binary face attribute labels), Fair-
Face (FF) [32] (perceived binary gender expression, age, and race labels), and FFHQ (binary gender
expression, age, and race labels). All models have ResNet18 architectures and output 128-dimensional
embeddings. For the analysis models, we also consider unnormalized class logit representations, as
well as the logit representations converted to one-hot encodings. All representations are normalized
to unit-length, and the dot product of two representations determines their similarity. Additional
details and experimental results are in Appendix C.

Predicting Human Similarity Judgments. The utility of any face embedding method is typically
determined by measuring whether similar faces are closer together in feature space than dissimilar
faces. We therefore employ two evaluation protocols, evaluating odd-one-out predictive accuracy.

In Protocol 1, we test whether our embeddings are predictive of human judgments not observed during
learning. This is a typical MDS test setting, as MDS cannot embed images outside of the training set.
Using images from the stimulus set of 4,921 faces, we generate 1,000 novel triplets and collect 22–25
unique judgments on AMT per triplet (24,060 judgments). In addition to predictive accuracy, we
compute Spearman’s r correlation between the entropy in human- and model-generated triplet odd-
one-out probabilities. Human-generated odd-one-out probabilities are of the form: (ni, nj , nk)/n,
where, w.l.o.g., nk/n corresponds to the fraction of n odd-one-out votes for k.

As we have 22–25 judgments per triplet in Protocol 1, we can reliably estimate odd-one-out proba-
bilities. The Bayes optimal classifier accuracy corresponds to the best possible accuracy any model
could achieve given the stochasticity in the human judgments. The classifier makes the most probable
prediction, i.e., the majority judgment. Its accuracy is equal to the mean majority judgment probability
over the 1,000 triplets, corresponding to 65.5±1% (95% CI).

In Protocol 2, we sample 56 novel face images from FFHQ not contained in the stimulus set. We
then generate all

(
56
3

)
possible triplets and collect 2–3 unique judgments on AMT per triplet (80,300

judgments). As an additional performance measure, we compute Spearman’s r between the strictly
upper triangular model- and human-generated similarity matrices. Entry (i, j) in the human-generated
similarity matrix corresponds to the fraction of triplets containing (i, j), where neither was judged as
the odd-one-out. Entry (i, j) in a model-generated similarity matrix corresponds to the mean p̂(i, j)
over all triplets containing (i, j).
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Table 1: (Protocol 1) Accuracy over 24,060 judg-
ments and Spearman’s r between the entropy in
human- and model-generated triplet odd-one-out
probabilities. (Protocol 2) Accuracy over 80,300
judgments and Spearman’s r between the entropy
in human- and model-generated similarity matri-
ces.

Protocol 1 Protocol 2

Model Loss/Method Acc. r Acc. r

FF Cross-entropy 55.9 0.41 51.9 0.67
CA Cross-entropy 52.1 0.25 48.9 0.56
FFHQ Cross-entropy 55.2 0.38 51.8 0.68
CWF ArcFace 51.6 0.29 46.1 0.40

FAX-C Conditional eq. (1) 67.4 0.68 61.7 0.82
FAX-C-PH Conditional eq. (1) 66.5 0.68 61.4 0.82
FAX-U Unconditional eq. (1) 62.0 0.65 57.5 0.86
FAX-U·1/2 Unconditional eq. (1) 61.3 0.61 55.8 0.81
FAX-U·1/4 Unconditional eq. (1) 60.6 0.56 55.3 0.80
FAX-U·1/8 Unconditional eq. (1) 58.6 0.47 55.0 0.79

Results for Protocol 1 and Protocol 2 are shown
in Tbl. 1. First, embeddings trained on FAX
outperform the baselines across all metrics. In
particular, as evidenced by the correlation tests,
the human mental representational space is bet-
ter represented by embedding spaces induced
by learning on FAX. This even holds for our
FAX-U model trained on only 72K judgments.
Second, FAX-C and FAX-C-PH have increased
performance over their unconditional counter-
parts. This shows that the learned annotator-
specific masks generalize, i.e., the encoded im-
portance an annotator places on each dimension
extends to novel judgments. Most significantly,
in Protocol 1, our conditional models attain a
predictive accuracy at or above the upper bound
of the Bayes optimal classifier.

Annotator Bias. Conditioning prediction on
annotator identifiers provides the best predictive accuracy, evidencing that knowledge of the annotator
determining similarity assists in informing the outcome. However, annotators are often framed as
interchangeable [51, 14]. To test the validity of this assumption, in Protocol 2, we randomly swap
the annotator associated with each judgment and then recompute the predictive accuracy of FAX-C.
Repeating this process 100 times results in a performance drop from 61.7% to 52.8% ± 0.02% (95%
CI) on average. This shows that annotator subspaces are not interchangeable.

Table 2: Results for linear SVMs trained
to discriminate between binary annotator
demographic groups.

Annotator Groups #Masks AUC

30–39 / 40–49 393 / 121 0.59 ± 0.05
Male / Female 523 / 473 0.65 ± 0.05
American / Indian 530 / 204 0.86 ± 0.03
European / Asian 407 / 243 0.86 ± 0.03
West European / South Asian 173 / 107 0.88 ± 0.05

An interesting question relates to whether an annota-
tor’s sociocultural background influences their decision
making. To evaluate this, we create sets {(σ(va), y)},
where σ(va) and y ∈ Y are annotator a’s learned mask
and self-identified demographic attribute, resp. For
a particular annotator attribute (e.g., nationality), we
limit the dataset to annotators who contributed ≥ 200
judgments and belong to one of the two largest groups
wrt the attribute. Using 10-fold cross validation, we
train linear support vector machines (SVMs) [26] with balanced class weights to predict y from σ(va).
Tbl. 2 shows the average area under the receiver operating characteristic (AUC) for each attribute.
Most significantly, none of the AUC confidence intervals include chance performance. Moreover, the
linear SVMs are able to discriminate between binary groups wrt nationality, regional ancestry, and
subregional ancestry with high probability (86–88%).

Interpretability. Since we aim to replace the explicit collection of problematic categorical labels,
we evaluate whether the individual FAX-U (and FAX-C-PH) dimensions are human-interpretable
through a (qualitative) dimension labeling task and a (quantitative) dimension rating task [84,
27, 31].

For the dimension labeling task, we task annotators with writing descriptions about each of the
22 dimensions using continuous dimensional scales. A dimensional scale corresponds to the the
stimulus set sorted in descending order based on their values in the dimension. Consistent descriptions
evidence that a dimension is meaningful. We collect 25–62 descriptions per dimension. Based on
the descriptions, we observe distinct dimensions coinciding with commonly defined demographic
attribute concepts, i.e., Male, Female, Black, White, East Asian, South Asian, and Elderly.
In addition, there are separate dimensions for face and hair morphology, i.e., Wide Face, Long
Face, Smiling Expression, Neutral Expression, Balding, Facial Hair, and Dyed Hair.
(See Fig. 2.)

For the dimension rating task, we task annotators with placing 20 novel faces on each of the 22
dimensional scales. We collect 20 unique judgments per dimension for each face. Separately for each
face, we average the judgments per dimension such that we obtain human-generated embeddings.
Using the human-generated embeddings, we create a human-generated similarity matrix and compare
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Wide Face
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Dimension Labeling Task. We show a subset of the 22 FAX-U (and FAX-C-PH) dimensions. Each dimension is shown with the top 8 faces from
the stimulus set with the highest dimensional values.

Figure 2: Dimension labeling task.

it to a model-generated similarity matrix. The model-generated similarity matrix is created using
model-generated embeddings. Spearman’s r correlation between the strictly upper triangular model-
and human-generated similarity matrices is 0.83 and 0.86 for FAX-U and FAX-C-PH embeddings, resp.
This shows that: (i) dimensional values correspond to the feature magnitude; and (ii) dimensional
scales can be used to directly collect continuous attribute values for faces, sidestepping the limits of
categorical definitions [34, 9, 35]. Note that the use of a dimensional scale is not restricted to any
particular embedding method, as long as the dimension is human-interpretable.

Table 3: Using attribute values from relevant model
dimensions to perform binary attribute classifica-
tion.

AUC

Dataset Attribute FAX-U CA FF FFHQ

CC > 70 y.o.⋆ 0.800 0.936 0.959 0.962
FFHQ > 70 y.o. 0.905 0.959 0.971 0.980
CFD Male⋆ 0.991 0.997 0.996 0.998
CC Male⋆ 0.971 0.986 0.990 0.981
CA Male 0.990 0.999 0.994 0.995
COCO Male 0.893 0.926 0.963 0.958
MIAP Male 0.924 0.942 0.945 0.938
FFHQ Male 0.933 0.959 0.988 0.996
CA Smiling 0.895 0.982 — —
CFD Open mouth 0.969 0.992 — —
CFD Neutral 0.731 — — —
CFD East Asian⋆ 0.969 — 0.955 0.938
CFD Black⋆ 0.992 — 0.992 0.988
CFD White⋆ 0.972 0.889 0.990 0.988
CFD Indian⋆ 0.960 — 0.848 0.883
CC Light skin 0.930 0.830 0.965 0.960
COCO Light skin 0.889 0.771 0.927 0.931
CA Balding 0.963 0.995 — —

Binary Attribute Classification. Facial anal-
ysis models are trained for classification, there-
fore we test the utility of FAX-U dimensions for
discriminating between binary-valued attributes.
For labeled face data, we use COCO [44],
OpenImages MIAP (MIAP) [66], CFD, FFHQ,
CelebA (CA) [46], and Casual Conversations
(CC) [24]. Tbl. 3 shows that FAX-U dimensions
are competitive with the baselines, even in chal-
lenging unconstrained settings as represented
by COCO and MIAP. Therefore, training on
FAX results in interpretable dimensions that can
serve as classifiers. Notably, FAX-U dimensions
have the highest AUC for self-identified CFD
attributes Black, East Asian, and Indian.

4 Conclusion

Motivated by issues inherent to categorization
by observation, we proposed a method for im-
plicitly learning continuous face-varying dimensions, without ever asking an annotator to explicitly
categorize a person. We uncovered the face embedding space by learning on a novel dataset of
human judgments of face similarity (FAX). We showed that the individual dimensions are human-
interpretable and related to concepts of gender, race, age, as well as face and hair morphology
categories. We demonstrated the utility of our learned embedding space for predicting face simi-
larity judgments, collecting continuous face attribute values, and attribute classification. Moreover,
using our novel conditional framework, we showed that an annotator’s demographics influences
the importance they place on different attributes when judging similarity, underscoring the need for
diverse annotator groups to avoid biases. We hope that our work inspires others to pursue unorthodox
tasks for learning face-varying dimensions, which do not encode, reify, and propagate stereotypes, or
invalidate the self-image and identity of image subjects.

Future Work. As our dataset represents 0.003% of all possible triplets that can be sampled from
4,921 images. To go one step further, triplets should be sampled selectively so as to learn additional
face attribute dimensions. That is, FAX can be extended using active learning approaches, e.g.,
focusing on triplets composed of faces that are close in embedding space whose similarity judgments
are unlikely to be based on gender, skin color, or race, but rather finer-grained attributes such as hair
color, eye color, nose shape, etc.
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A Data

A.1 Face image stimuli

Table 4: Apparent age
group, binary gender ex-
pression group, and eth-
nicity group counts for
the stimuli of 4,921 repre-
sentative examples in the
face image stimuli set

Age Count

20–29 1400
30–39 1351
40–49 1181
50–120 989

Ethnicity Count

White 998
East Asian 801
Latino Hispanic 788
Black 729
Indian 556
Middle Eastern 538
Southeast Asian 511

Gender Count

Male 2607
Female 2314

The stimulus set was sampled from the publicly available FFHQ
dataset [33] of 70,000 permissively licensed face images. The FFHQ
dataset which includes JSON metadata and documentation is avail-
able from the following repository: https://github.com/NVlabs/
ffhq-dataset.

For face detection, as in [33], we used the dlib mmod human face
detector [36] (https://github.com/davisking/dlib-models). To
align the detected faces, we followed the same procedure as detailed
in [54], which uses the dlib 68 landmark shape predictor [36] (https:
//github.com/davisking/dlib-models).

As stated in the main text, we used FFHQ-Aging annotations [54], ob-
tained using Face++, for absolute head yaw angle, absolute head pitch
angle, eyewear, and eye occlusion annotations to prune the dataset. The
purpose of these constraints was to reduce the influence of head pose on
human behavior and to better allow for eye comparisons. The stimulus set
of 4,921 representative examples were then sampled from the remaining
images such that each intersectional subgroup based on perceived binary
gender expression, age group, and ethnicity would be included. We only
considered face images with an apparent age greater than 19 years old in
an attempt to exclude images of minors. Ethnicity was estimated using a
FairFace [32] trained model (implementation details are in Appendix B.2).
Perceived binary gender expressions and apparent age groups were ob-
tained from FFHQ-Aging crowdsourced annotations. To mitigate biasing
our set toward stereotypical faces, we randomly sampled images from
the 56 possible intersectional subgroups rather than selecting the most
confidently predicted or annotated.

Table 4 shows the group counts at the level of age, gender, and ethnicity, whereas Table 6 reports the
counts at the finer intersectional subgroup level. Exact balancing was not possible due to the skewed
composition of FFHQ. Ideally, we would have sampled images from a dataset with self-reported
attributes. However, while such datasets do exist, they are typically small, tightly constrained, and
largely unrepresentative.

A.2 Collection of human behavioral judgments

All participants were recruited on AMT and were required to have previously completed a minimum
of 100 human intelligence tasks (HITs) on AMT with a 95% approval rating. Eligibility was further
determined through a prescreening survey (nominal fee of 0.01 USD), which included a short multiple-
choice English language proficiency test. Since we placed no restriction on participant location,
in order to be eligible, we required participants to answer at least two out of three multiple-choice
English language proficiency questions correctly.

Collection of human behavioral odd-one-out similarity judgments for training and validation.
Based on estimated face image labels, a triplet can comprise 1–2 binary gender expression group(s), 1–
3 age group(s), and 1–3 ethnicity group(s) resulting in 18 triplet types which were uniformly sampled.
We sampled 703,300 unique triplets in total. Participants were presented with triplets alongside the
following minimal instructions: “Choose the person that looks least similar to the two other people.

Table 5: Participant exclusion policies and criteria
Policy Criteria Min. # of judgments

Fast #1 > 25% of judgments generated in < 0.8 s 100
Fast #2 > 50% of judgments generated in < 1.1 s 100
Deterministic > 40% of judgments correspond to a single triplet position 200
Incomplete Submission of an empty judgment 1
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Table 6: The 56 intersectional subgroup counts for the stimuli of 4,921 representative examples
Age Ethnicity Gender Count

50–120 White Male 140
20–29 White Female 135
40–49 White Male 133
20–29 White Male 127
30–39 Latino Hispanic Female 126
30–39 White Male 125
50–120 White Female 118
20–29 East Asian Female 118
30–39 East Asian Female 115
30–39 White Female 112
30–39 East Asian Male 111
40–49 White Female 108
20–29 East Asian Male 107
20–29 Latino Hispanic Male 106
40–49 Black Male 105
40–49 Latino Hispanic Female 105
20–29 Latino Hispanic Female 104
30–39 Black Male 104
40–49 East Asian Female 102
30–39 Middle Eastern Male 100
20–29 Black Male 99
40–49 Latino Hispanic Male 98
50–120 Middle Eastern Male 97
40–49 Middle Eastern Male 97
20–29 Middle Eastern Male 96
30–39 Black Female 95
20–29 Indian Female 95
30–39 Indian Female 94
40–49 Black Female 93
30–39 Latino Hispanic Male 93
20–29 Black Female 92
40–49 East Asian Male 91
30–39 Indian Male 91
50–120 East Asian Male 88
50–120 Black Male 86
20–29 Southeast Asian Female 86
20–29 Indian Male 83
20–29 Southeast Asian Male 82
50–120 Latino Hispanic Female 81
50–120 Latino Hispanic Male 75
30–39 Southeast Asian Male 75
30–39 Southeast Asian Female 72
20–29 Middle Eastern Female 70
50–120 East Asian Female 69
40–49 Indian Male 66
50–120 Southeast Asian Female 58
40–49 Indian Female 58
50–120 Black Female 55
40–49 Southeast Asian Male 54
40–49 Southeast Asian Female 47
50–120 Indian Male 41
30–39 Middle Eastern Female 38
50–120 Southeast Asian Male 37
50–120 Indian Female 28
40–49 Middle Eastern Female 24
50–120 Middle Eastern Female 16

Focus your judgment on the people depicted, ignoring differences in head position/direction, facial
expression/emotion, lighting, accessories, and background/objects”. Each HIT consisted of 20 unique
triplets, where each triplet was presented separately and in succession. We collected 703,300 unique
triplet similarity judgments (i.e., one judgment per triplet) on AMT from 1,887 eligible participants.
Each triplet was judged once by a single participant, resulting in a single judgment per triplet. To
control for quality, according to the criteria outlined in Table 5, we excluded triplet judgments
obtained from any participant who provided overly fast, deterministic, or incomplete judgments. This
left 638,180 judgments from 1,645 participants. Irrespective of estimated quality, all participants
were compensated at a rate of 15 USD per hour. Table 7 shows the age, ancestry, gender identity, and
nationality group counts of the 1,645 participants.

Collection of human behavioral odd-one-out similarity judgments for testing: Same images,
novel triplets. We sampled an additional 1,000 triplets (images were sampled from the stimulus set
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Table 7: Age, ancestry, gender identity, and nationality group counts for the 1,645 eligible participants
who passed our quality checks and contributed 638,180 triplet judgments

Age Count

30–39 612
40–49 373
50–120 333
20–29 327

Ancestry Count

Europe 711
Asia 331
Americas 256
Americas and Europe 175
Africa 50
Africa and Americas 21
Asia and Europe 21
Africa, Americas, and Europe 20
Africa, Europe 16
Americas and Asia 15
Americas, Asia, and Europe 6
Europe and Oceania 6
Africa, Americas, Asia, Europe, and Oceania 5
Africa, Americas, Asia, and Europe 3
Africa, Asia, and Europe 3
Africa and Asia 2
Oceania 2
Americas, Europe, and Oceania 1
Asia, Europe, and Oceania 1

Gender identity Count

Male 849
Female 788
Other gender identity 8

Nationality Count Nationality Count

American 981 Thai 2
Indian 260 Greek 2
Brazilian 74 Colombian 2
Canadian 44 Pakistani 2
Italian 42 Bulgarian 2
English 39 Japanese 1
British 37 Puerto Rican 1
German 21 Liberian 1
French 15 Moldovan 1
Spanish 13 South Korean 1
Australian 7 Northern Irish 1
Romanian 5 Serbian 1
Venezuelan 5 Nepalese 1
Nigerian 4 Scottish 1
Chinese 4 Lithuanian 1
Welsh 4 Slovenian 1
Filipino 4 Somali 1
Armenian 4 Russian 1
Vietnamese 4 South African 1
Polish 3 Belizean 1
Irish 3 Sri Lankan 1
Turkish 3 Cameroonian 1
Portuguese 3 Belgian 1
Dutch 3 Trinidadian 1
Mexican 3 Argentine 1
Ukrainian 3 Latvian 1
Macedonian 2 Austrian 1
Brasileiro 2 Icelandic 1
Estonian 2 Vincentian 1
Jamaican 2 Tunisian 1
Kenyan 2 Taiwanese 1
Jordanian 2 Hong Konger 1
Malaysian 2 Ethiopian 1
Indonesian 2 Afghan 1
Czech 2

of 4,921 images). We collected 25 unique judgments per triplet on AMT (total: 25,000 judgments).
After excluding responses based on the quality control criteria outlined in Table 5, we were left with
22–25 unique judgments per triplet (total: 24,060 judgments) obtained from 355 participants. Table 8
shows the age, ancestry, gender identity, and nationality group counts of the 355 participants.

Collection of human behavioral odd-one-out similarity judgments for testing: Novel images,
novel triplets. We sampled all possible triplets from 56 novel images (sampled from FFHQ, but
disjoint from the stimulus set) and collected 3 unique judgments per triplet on AMT (total: 83,160
judgments). After excluding responses based on the quality control criteria outlined in Table 5,
we were left with 2–3 unique judgments per triplet (total: 80,300 judgments) obtained from 632
participants. Table 9 shows the age, ancestry, gender identity, and nationality group counts of the 632
participants.

Collection of dimension labels. For each of the 22 dimensions, we constructed a scale (measure-
ment units corresponded to dimensional values which were converted to percentiles) and tasked
participants with providing up to three labels (minimum one label) using words only. Note that
participants were not restricted to entering single word labels, they were provided with free-text
boxes. Participants were presented with a scale and were asked: “Which visual characteristics do
you think the people at the high end of the scale have in common compared to the people at the low
end of the scale?”. In addition, participants were asked to view and interact with the entire scale
before providing any labels. Figure 5 shows an example of a scale and a novel face image shown to
participants. After quality control, there were 25–62 labels per dimension. Quality control roughly
entailed removing responses that did not correspond to words and those that were derogatory in
nature. The filtered labels were then converted into 35 broad topic categories: “Age”, “Age related”,
“Ancestry”, “Ear shape”, “Eye color”, “Eye related”, “Eye shape”, “Eyebrow related”, “Eyebrow
shape”, “Face related”, “Face shape”, “Facial expression”, “Facial hair”, “Forehead shape”, “Gender

14



Table 8: Age, ancestry, gender identity, and nationality group counts for the 355 eligible participants
who passed our quality checks and contributed 24,060 triplet judgments in the “same images, novel
triplets” test setting

Age Count

30–39 143
40–49 77
50–120 76
20–29 59

Ancestry Count

Europe 131
Asia 92
America 62
America and Europe 35
Africa and Europe 8
Africa 7
America and Asia 4
Africa, America, and Europe 4
America, Asia, and Europe 3
Africa, America, Asia, Europe, and Oceania 3
Africa and America 3
Asia and Europe 2
Africa and Asia 1

Gender identity Count

Male 184
Female 166
Other gender identity 5

Nationality Count Nationality Count

American 211 Venezuelan 1
Indian 65 German 1
Brazilian 20 Swedish 1
Canadian 12 Filipino 1
Italian 8 Estonian 1
English 6 Malaysian 1
British 6 Colombian 1
French 4 Pakistani 1
Armenian 3 Cameroonian 1
Vietnamese 2 Polish 1
Brasileiro 2 Vincentian 1
Kenyan 1 South African 1
Jamaican 1 Thai 1
Welsh 1

expression”, “Hair color”, “Hair length”, “Hair related”, “Hair texture”, “Hairstyle”, “Head shape”,
“Lip related”, “Lip shape”, “Mouth related”, “Mouth shape”, “Neck related”, “Nose related”, “Nose
shape”, “Skin color”, “Skin related”, “Skin texture”, “Teeth related”, and “Weight related”.

Figure 4 provides evidence of the interpretability of the FAX-U (and FAX-C-PH) dimensions. There is
clear relationship between the dimension topics obtained from annotator descriptions and dimension
labels generated using CelebA and FairFace models.

Table 10 shows the age, ancestry, gender identity, and nationality group counts of the 102 participants.

Collection of Dimension Ratings. We tasked participants with placing 20 novel face images along
each of the 22 dimensions using the unlabeled scales from the dimension labeling task. We collected
8,800 judgments in total (20 per image-dimension tuple). Participants were presented with a scale
and a novel face image above the scale, and were asked: “Decide where on the scale you would
place the person shown based on their similarity to the people shown beneath the scale”. In addition,
participants were asked to view and interact with the entire scale before making their decision.
Figure 6 shows an example of a scale and a novel face image shown to participants. Table 11 shows
the age, ancestry, gender identity, and nationality group counts of the 164 participants.

B Implementation Details

B.1 FAX Models

All images were resized to 128× 128 and normalized to [−1, 1]. Standard data augmentation was
used (horizontal mirroring and 112× 112 random crops). For the unconditional FAX models, guided
by the validation loss, we empirically set λ1 = 5×10−5 and λ2 = 1×10−2. (The conditional models
used the same hyperparameters with the additional loss term’s weight set to λ3 = 1 × 10−4.) All
models were optimized for 40 epochs with Adam [37] (default parameters), learning rate 1×10−3, and
batch size 128 on a single Tesla T4 GPU. Post-optimization, we obtained our core set of dimensions
by dispensing with those whose maximal value was close to zero, resulting in a low-dimensional
space. (For the FAX trained model, this resulted in 22 dimensions.) The threshold for all models was
determined based on maximizing accuracy on the validation set. Across five independent runs, the

15



Table 9: Age, ancestry, gender identity, and nationality group counts for the 632 eligible participants
who passed our quality checks and contributed 80,300 triplet judgments in the “novel images, novel
triplets” test setting

Age Count

30–39 252
40–49 141
20–29 126
50–120 109
18–19 4

Ancestry Count

Europe 231
Asia 194
America 88
America and Europe 62
Africa 12
Africa, America and Europe 10
America and Asia 8
Africa and Europe 7
Africa and America 7
Asia and Europe 6
America, Asia, and Europe 2
Africa, America, Asia, and Europe 2
Asia, Europe, and Oceania 1
Africa, Asia, and Europe 1
Africa, America, Asia, Europe, and Oceania 1

Gender identity Count

Male 350
Female 279
Other gender identity 3

Nationality Count Nationality Count

American 291 Mexican 2
Indian 164 Cameroonian 1
Brazilian 51 Chinese 1
Italian 19 Filipino 1
Canadian 17 Colombian 1
English 14 Austrian 1
British 10 Estonian 1
French 8 Jamaican 1
Spanish 5 Indonesian 1
German 4 Irish 1
Vietnamese 3 Japanese 1
Venezuelan 3 Latvian 1
Kenyan 3 Lithuanian 1
Macedonian 2 Malaysian 1
Greek 2 Nigerian 1
Welsh 2 Slovenian 1
Brasileiro 2 South African 1
Bulgarian 2 Sri Lankan 1
Romanian 2 Ukrainian 1
Thai 2 Vincentian 1
Turkish 2 Afghan 1
Armenian 2

Figure 3: Left: Validation accuracy as a function of the number of dimensions retained over five
independent runs (95% CI), empirically evidencing that the judgments can be encapsulated using
a limited number of dimensions. Middle and Right: Pearson and Spearman r between each of
the 22 dimensions and the best “matching” dimension from each of the other four runs (95% CI),
empirically evidencing the replicability of dimensions

95% confidence interval (CI) for the number of dimensions and validation accuracy were 27.4±5.8
and 61.9±0.1%, respectively. Figure 3 shows that the judgments can be encapsulated using a limited
number of the available dimensions and that the 22 dimensions are approximately replicated across
the independent runs.

Note that we discovered some redundancy in the dimensions, in particular 8 dimensions have a
Pearson r > 0.9 with another dimension. The number of (near) nonzero dimensions depends on
the L1 sparsity penalty, which must be carefully chosen: Too high of a penalty will result in the
entanglement of distinct factors of variation, whereas too low of a penalty will result in repeated
dimensions. We erred on the side of caution (lower penalty), since it is more difficult to localize the
source of bias when factors are merged, i.e., since our main aim is auditing datasets and models.

B.2 Baseline models

All images were resized to 128× 128 and normalized to [−1, 1]. Standard data augmentation was
used (horizontal mirroring and 112× 112 random crops). For preprocessing, we used the same
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Table 10: Age, ancestry, gender identity, and nationality group counts for the 102 eligible participants
who contributed labels in the dimension naming task

Age Count

30–39 36
40–49 26
20–29 23
50–120 16
18–19 1

Ancestry Count

Europe 40
Asia 31
America 14
America and Europe 9
Africa 3
Asia and Europe 1
America and Asia 1
Africa and Europe 1
Africa, America, and Europe 1
Africa and America 1

Gender identity Count

male 52
female 50

Nationality Count Nationality Count

American 43 Ethiopian 1
Indian 25 Chinese 1
Brazilian 7 Vietnamese 1
English 7 Venezuelan 1
Italian 4 Icelandic 1
Spanish 2 Lithuanian 1
Canadian 2 Tunisian 1
German 2 Greek 1
French 2

Table 11: Age, ancestry, gender identity, and nationality group counts for the 164 eligible participants
who contributed 8,800 triplet judgments in the dimension rating task

Age Count

30–39 55
20–29 37
40–49 36
50–120 35
18–19 1

Ancestry Count

Europe 67
Asia 40
America 26
America and Europe 13
Africa and America 4
Africa 4
America, Asia 3
Africa, America, and Europe 3
Europe and Oceania 2
Asia and Europe 1
Africa and Europe 1

Gender identity Count

Female 86
Male 77
Other gender identity 1

Nationality Count Nationality Count

American 70 Estonian 1
Indian 35 Vietnamese 1
Brazilian 12 Venezuelan 1
English 12 Icelandic 1
Canadian 8 Israeli 1
British 4 Japanese 1
Italian 4 Kenyan 1
German 3 Spanish 1
French 3 Thai 1
Australian 1 Trinidadian 1
Colombian 1 Greek 1

alignment procedure as in [54] to produce 128× 128 face crops. Image values were normalized to
[−1, 1].

CelebA model. Training was performed using a batch size of 512 (across 4 Tesla T4 GPUs) with
SGD for 45 epochs. The initial learning rate 0.1 was divided by 10 at epoch 15, 30, and 40. L2 weight
decay and SGD momentum were set to 0.0005 and 0.9, respectively. Standard data augmentation
was used (horizontal mirroring and 112× 112 random crops).
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Table 12: Predicting human similarity judgments. (Protocol 1) Accuracy over 24,060 judgments and
Spearman’s r between the entropy in human- and model-generated triplet odd-one-out probabilities.
(Protocol 2) Accuracy over 80,300 judgments and Spearman’s r between the entropy in human-
and model-generated similarity matrices. Note: #Labels is an approximate of the number of labels
collected to create a dataset accounting for consensus.

Protocol 1 Protocol 2

Model Loss/Method #Images #Labels Arch. Acc. r Acc. r

ImageNet-1K Cross-entropy 1.28M >1.28M RG-32Gf 46.6 0.09 41.7 0.32
FF Cross-entropy 62K 186K–372K R18 55.9 0.41 51.9 0.67
CA Cross-entropy 178K 7.12M R18 52.1 0.25 48.9 0.56
FFHQ Cross-entropy 70K 140K R18 50.5 0.16 47.3 0.49
CWF ArcFace 404K 404K R18 51.6 0.29 46.1 0.40
CWF Cross-entropy 404K 404K R18 48.6 0.21 43.2 0.34
CWF SphereFace 404K 404K R18 48.3 0.25 43.8 0.35
CWF CosFace 404K 404K R18 44.0 0.12 40.8 0.23

FAX-C Conditional ?? 5K 574K R18 67.4 0.68 61.7 0.82
FAX-C-PH Conditional ?? 5K 574K R18 66.5 0.68 61.4 0.82
FAX-U Unconditional ?? 5K 574K R18 62.0 0.65 57.5 0.86
FAX-U·1/2 Unconditional ?? 5K 287K R18 61.3 0.61 55.8 0.81
FAX-U·1/4 Unconditional ?? 5K 144K R18 60.6 0.56 55.3 0.80
FAX-U·1/8 Unconditional ?? 5K 72K R18 58.6 0.47 55.0 0.79
FAX-Triplet Triplet margin with distance swap [8] 5K 574K R18 60.2 0.46 52.8 0.64

ImageNet-1K SwAV 1.28M 0 RN50-w5 43.8 0.08 41.0 0.30
IG-1B SwAV 1B 0 RG-32Gf 47.2 0.18 44.7 0.45
IG-1B SwAV 1B 0 RG-64Gf 48.1 0.16 44.4 0.45
IG-1B SwAV 1B 0 RG-128Gf 46.8 0.15 42.8 0.40
IG-1B SwAV 1B 0 RG-256Gf 47.8 0.17 43.1 0.41
PASS MoCo-v2 1.28M 0 R50 42.3 0.09 40.5 0.27
PASS SwAV 1.28M 0 R50 42.4 0.12 40.4 0.27
PASS DINO 1.28M 0 ViTS-16 43.2 0.10 41.8 0.32

FairFace model. Training was performed using a batch size of 512 (across 4 Tesla T4 GPUs) with
SGD for 45 epochs. The initial learning rate 0.1 was divided by 10 at epoch 15, 30, and 40. L2 weight
decay and SGD momentum were set to 0.0005 and 0.9, respectively. Standard data augmentation
was used (horizontal mirroring and 112× 112 random crops).

CASIA-WebFace models. We experimented with several face recognition models that differed only
in terms of the loss function minimized: Softmax, ArcFace [17], CosFace [76], and SphereFace [45].
Training was performed using a batch size of 512 (across 4 Tesla T4 GPUs) with SGD for 55 epochs.
The initial learning rate 0.1 was divided by 10 at epoch 15, 30, and 40. L2 weight decay and SGD
momentum were set to 0.0005 and 0.9, respectively. Standard data augmentation was used (horizontal
mirroring and 112× 112 random crops).

C Additional experiments

Predicting human similarity judgments. When appropriate, as baselines, we compare to super-
vised and self-supervised representation learning methods. Supervised models minimize a cross-
entropy, ArcFace [17], CosFace [76], SphereFace [45], or triplet margin with distance swap [8]
loss. Self-supervised approaches correspond to MoCo-v2 [15], SwAV [12], or DINO [13]. For data,
supervised methods train on CASIA-Webface [82], CelebA [46], FairFace [32], FFHQ [33, 54], or
ImageNet-1K [61]. Self-supervised approaches learn on IG-1B [21], ImageNet-1K [61], or PASS [5].
As is standard, baseline representations are extracted from the final encoder layer of a model and then
normalized to unit-length. The dot product of two representations determines their similarity. Results
for Protocol 1 and Protocol 2 are shown in Tbl. 12.

C.1 Prototypicality

To test whether dimensional values represent the typicality of faces, we use face images from Chicago
Face Database (CFD) [49, 40, 50] labeled with prototypicality ratings. The ratings (obtained from
human annotators) correspond to the average prototypicality of a face wrt a race category from one
(less typical) to five (very typical), considering skin color, hair, eyes, nose, cheeks, lips, and other
physical features. For gender expression, ratings correspond to the typicality of the face relative
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Figure 4: Dimension labeling. The top 8 faces from the stimulus set with the highest dimension
embedding values for each of the 22 FAX-U (and FAX-C-PH) dimensions. Word clouds generated
from annotator labels (transformed into topics) are shown above each set of 8 faces. Word clouds
generated using CelebA and FairFace models are shown below each set of 8 faces. The CelebA and
FairFace labels were obtained by labeling the entire stimulus set (using the CelebA and FairFace
models) and determining the attributes with the highest AUC.

to others of the same race and gender in the United States from one (not at all typical) to seven
(extremely typical).

Tbl. 13 shows that relevant FAX-U dimensions are positively correlated with the typicality ratings
according to Spearman’s r. Although the odd-one-task does not require an annotator to explicitly
categorize any person, category typicality appears to manifest from the similarity judgments for
concepts related to race and gender.
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Figure 5: Dimension labeling task. Example scale shown to participants (dimension 1)

Table 13: Prototypicality. Spearman’s r between human ratings of face attribute prototypicality and
model-generated dimensional values.

Attribute

Model Masculine Feminine East Asian Black White

FAX-U 0.813 0.840 0.747 0.683 0.644
CA 0.858 0.855 — — 0.123
FF 0.836 0.827 0.806 0.653 0.645
FFHQ 0.812 0.829 0.794 0.587 0.688

Comparative Dataset Diversity Auditing. Drawing inspiration from biodiversity measures [42],
we propose to use our learned dimensions for comparative dataset diversity auditing. Given a set
of candidate datasets {ck}nk=1, we aim to find ck⋆ = argminck sim(ck), where sim(ck) measures
the similarity of the faces in x ∼ ck. We denote by qk ∈ [0, 0.01, . . . , 0.99, 1] and 1 − qk the
proportion of images in ck from D0 = {(xi, y0)}i and D1 = {(xj , y1)}j , resp., where D0 ∩D1 = ∅.
Here y0, y1 ∈ {0, 1} are sensitive attribute labels. Let ŷ ∈ R denote a proxy continuous attribute
value. We define the similarity between (xi, xj) ∼ ck as zij = abs(ŷi − ŷj)

−1. Further, let
Zk = (zij) ∈ R|ck|×|ck| denote ck’s similarity matrix. In biodiversity terms, the average ordinariness
of faces in ck is ∝

∑
i

∑
j zij (∀i). This quantity is large when most faces in ck are concentrated into

a few very similar faces. Importantly, concentration is inversely connected to diversity. Therefore,
we can interpret the mean of Zk as a diversity score, which we denote by divscore(Zk). Note that
divscore(Zk) → 0 for homogeneous sets of faces.

Auditing Model Behavior. Beyond dataset auditing, as an example, we study the disparate impact
of the face image restoration model PULSE [52]. We select PULSE due to its much discussed
racial bias [63, 52, 75]. Let R : xL 7→ R(xL) = x′

H denote the PULSE model, which maps
a low-resolution face image to a high-resolution face image. We denote by xH the ground-truth
high-resolution face image. Suppose zH and z′H denote face attribute representations of xH and
x′
H , resp. Disparate outcomes in attribute changes due to R across demographic groups may be an

indicator of data and/or algorithmic bias. For face data, we use CFD [49], centering our analysis
on self-identified sensitive labels: Black, White, Indian, and (East) Asian. We create low-
resolution faces by downsampling from 1024× 1024 to 32× 32. For each group, we calculate
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Figure 6: Dimension rating task. Example scale shown to participants (dimension 1)

Table 14: Attribute disparity. Using attribute values from relevant model dimensions to find the most
diverse candidate dataset wrt an attribute of interest.

Model (Disparity ∆ / Spearman’s r)

Dataset Attribute FAX-U CA FF FFHQ

CC > 70 y.o.⋆ 0.22 / 0.96 0.06 / 0.99 0.06 / 0.95 0.08 / 0.99
CC Male⋆ 0.06 / 0.97 0.02 / 0.99 0.02 / 1.00 0.04 / 0.99
CC Light skin 0.06 / 0.94 0.3 / 0.65 0.18 / 0.85 0.06 / 0.99
CFD Happy open mouth 0.12 / 0.99 0.06 / 0.95 — —
CFD Male⋆ 0.00 / 1.00 0.08 / 0.99 0.02 / 1.00 0.02 / 1.00
CFD East Asian⋆ 0.06 / 1.00 — 0.02 / 0.98 0.02 / 1.00
CFD Black⋆ 0.10 / 0.98 — 0.14 / 0.97 0.00 / 1.00
CFD White⋆ 0.04 / 1.00 0.02 / 0.99 0.04 / 0.97 0.04 / 0.99
CFD Indian⋆ 0.08 / 1.00 — 0.30 / 0.73 0.08 / 0.87

the mean cosine similarity between each (zH , z′H) pair and report the min-max group ratio, i.e.,
worst-case scenario [20]. For the CelebA and FairFace models, attribute representations correspond
to unnormalized classifier predictions (logits), whereas for the FAX and CASIA-WebFace-AF models
we use the face embeddings.

The min-max ratio for the FAX, CelebA, FairFace, and CASIA-WebFace-AF attribute representations
are 0.78, 0.88, 0.58, and 0.98, resp. All attribute representations result in the same min-max pair,
i.e., Black-White. Using FAX, CelebA, and FairFace attribute representations, we find statistically
significant differences in 22/22, 36/40, and 18/18, resp., for Black individuals, whereas for White
individuals, we find statistically significant differences in 16/22, 26/40, and 12/18, resp. All methods
show that Black individuals undergo more significant attribute changes. Fig. 7 plots the mean of
z′H − zH , highlighting FAX-model attribute changes per group. To ease presentation, we combined
FAX-model dimensions measuring the same attribute. First, Black individuals have highly reduced
values in the Black dimension and magnified values in the White dimension, corroborating previous
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Figure 7: FAX dimensions depicting changes due to the PULSE restoration process on self-identified
Black and White groups

qualitative findings [75]. Second, the impact of PULSE on White individuals largely centers on
changes in face width and length, representing a novel insight. While neither type of modification
is desirable, the inadvertent erasure of minority groups is extremely harmful. FAX dimensions are
therefore useful as a tool for gaining insight into the behavior of face-based models.
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