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Abstract

Code Sensitivity refers to the ability of Code001
LLMs to recognize and respond to details002
changes in problem descriptions, serving as003
an important dimension for evaluating Code004
LLM’s ability. While current code bench-005
marks and instruction tuning methods primar-006
ily focus on difficulty and diversity, sensitiv-007
ity is overlooked. We first introduce the CTF-008
Code benchmark, constructed using counterfac-009
tual perturbations—minimizing input changes010
while maximizing output changes. The evalua-011
tion shows that many models have a more than012
10% performance drop in performance on CTF-013
Code. To fully utilize sensitivity, we propose014
the CTF-Instruct incremental instruction fine-015
tuning framework, which extends on existing016
data and uses a selection mechanism to meet017
the three dimensions of difficulty, diversity, and018
sensitivity. Experiments show that models fine-019
tuned with CTF-Instruct data achieve over a020
2% improvement on CTF-Code, and more than021
a 10% performance boost on LiveCodeBench,022
validating the feasibility of enhancing LLMs023
sensitivity to improve performance.024

1 Introduction025

Code Large Language Models (LLMs) are LLMs026

pre-trained on extensive code corpora, demonstrat-027

ing remarkable capabilities in code generation, de-028

bugging, translation and so on (Hui et al., 2024;029

DeepSeek-AI et al., 2024). Not only do they signif-030

icantly improve software development efficiency,031

but also their ability to tackle complex program-032

ming tasks is a key indicator of their thinking abili-033

ties (OpenAI, 2024). Notably, as a logically com-034

plete symbolic system (MacLennan, 1986), code035

requires LLMs to accurately map between require-036

ments and algorithmic logic during the generation037

process (Pressman, 2005), a small mismatch will038

cause the whole task to fail. In Figure 1, changing039

the description from ‘add one’ to ‘double one’ al-040

ters the underlying algorithmic logic entirely. As041

Sensitivety

Diversity

Difficulty

… add one to exactly 
one of number, make 
the biggest product of 
an array possible… 

prod = math.prod(nums)

… double one of 
number, make the 
biggest product of an 
array possible… 

prod = math.prod(nums)

add double 

min_num = min(nums)
ans = prod + prod/
min_num

Original Problem

Solution

ans = prod * 2

Conterfactual Problem

Solution

Figure 1: Code LLMs have many studies on diversity
and difficulty, but sensitivity to problem details remains
underexplored. For example, changing a single word
in a problem can completely alter the algorithmic logic.
In the original problem, we should increase the small-
est number, whereas in the counterfactual version, no
matter which number is modified, the result remains the
same—double the cumulative sum.

such, the model’s sensitivity to detail becomes a 042

crucial measure of its ability. However, the abil- 043

ity of Code LLMs to capture and address such 044

fine-grained differences remains unclear. Currently, 045

code generation benchmarks mainly focus on dif- 046

ficulty and diversity. The difficulty levels range 047

from simple functions to more complex classes and 048

competition-level algorithms (Liu et al., 2023; Du 049

et al., 2024; Jain et al., 2024). Diversity spans do- 050

mains like data science, system development, and 051

interdisciplinary applications (Zhuo et al., 2024; 052

Lai et al., 2023a; Hu et al., 2024; Liu et al., 2024). 053

However, these benchmarks are often discrete, eval- 054

uating the model’s ability to solve isolated prob- 055

lems, without assessing its sensitivity to subtle dif- 056
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ferences in requirement details.057

This limitation is also present in current ap-058

proaches to code instruction fine-tuning. Difficulty059

and diversity are mainstream to import data qual-060

ity (Wang et al., 2024b): first, by incrementally061

introducing constraints to create high-difficulty062

datasets (Luo et al., 2024b; Wang et al., 2024a),063

though these manually designed iterative rules and064

inherent biases may cause data distributions to di-065

verge from real-world scenarios (Wei et al., 2024b);066

second, by rewriting or inspiring from real code067

to generate diverse data, enhancing domain cov-068

erage (Wei et al., 2024b; Luo et al., 2024a; Wei069

et al., 2024a; Yu et al., 2024). There is a lack of070

work targeted at improving the model’s sensitivity071

to crucial details.072

Take difficulty and diversity as two evaluated073

and improved dimensions, a critical dimension re-074

mains underexplored: sensitivity. Unlike difficulty,075

changes in details do not necessarily change algo-076

rithmic complexity; unlike diversity, little change077

does not constitute a new task scenario. In NLP,078

counterfactuals (CTF) involve making minimal079

changes to inputs to produce outputs that differ080

substantially (Chen et al., 2023; Sachdeva et al.,081

2024; Wang et al., 2024c). Inspired by this, we pro-082

pose the CTF-Code benchmark and CTF-Instruct083

pipeline. By introducing minimal semantic pertur-084

bations such as altering key conditions or replac-085

ing critical constraints, we modify the algorithmic086

logic while maintaining superficial task similarity,087

thereby assessing the model’s sensitivity to require-088

ment details. Experiments reveal that state-of-the-089

art models like GPT-4o and Qwen2.5-Coder (Hurst090

et al., 2024; Hui et al., 2024) experience perfor-091

mance drops exceeding 10% on CTF-Code com-092

pared to original problems, highlighting significant093

‘blind spots’ in detail sensitivity.094

To address this, starting from one existing di-095

mension of data, CTF pairs are generated to cover096

the sensitivity dimension and then through a se-097

lection mechanism to enhance the last dimen-098

sion. Lastly, by merging selected data and existing099

one-dimensional data, CTF-Instruct data is three-100

dimensions-completed. Experiments show that101

LLMs fine-tuned with CTF-Instruct data achieve102

a 2.6% improvement on CTF-Code, and also103

gains on other benchmarks such as HumanEval+104

(+4.2%), BigCodeBench-hard (+5.2%), and Live-105

CodeBench (+11.6%) (Liu et al., 2023; Zhuo et al.,106

2024; Jain et al., 2024), confirming the help of107

sensitivity to instruction tuning.108

Our contribution is summarized below: 109

• We propose CTF-Code, the first benchmark fo- 110

cused on sensitivity, and the evaluation results 111

expose the shortcomings of mainstream Code 112

LLMs in understanding requirement details. 113

• We design a three-dimensional-completed 114

data generation framework, starting from one 115

dimension, completing sensitivity by genera- 116

tion and the last dimension by selection. 117

• LLMs trained with CTF-Instruct data achieve 118

substantial performance improvements across 119

CTF-Code and other benchmarks compared 120

to existing methods. 121

2 Related Work 122

Code Benchmark Existing code generation 123

benchmarks primarily include two dimensions: (1) 124

Difficulty: from function-level like HumanEval 125

and MBPP (Austin et al., 2021; Chen et al., 2021), 126

to class-level like ClassEval (Du et al., 2023), 127

and contest-level like LiveCodeBench (Jain et al., 128

2024); (2) Diversity: BigCodeBench (Zhuo et al., 129

2024) focuses on Python package usage, while DS- 130

1000 (Lai et al., 2023b) targets on data science. The 131

existing evaluation paradigm is limited to solving 132

isolated problems. In this work, the first sensitivity 133

benchmark, CTF-Code is introduced. 134

Code Instruction Tuning Datasets With the de- 135

velopment of Self-Instruct (Wang et al., 2023), 136

methods on Code LLMs mainly focus on diffi- 137

culty enhancement and diversity expansion. In- 138

spired by Evol-Instruct (Xu et al., 2023), Luo et al. 139

(2024b) increases the difficulty of data by adding 140

constraints based on seed data CodeAlpaca (Chaud- 141

hary, 2023). Muennighoff et al. (2024) collects 142

nearly 4TB Git commits data and constructs a 2GB 143

instruction tuning dataset based on the commits 144

data. While Evol-Instruct requires seed data, which 145

limits the diversity of generated instruction tuning 146

data, Oss-Instruct (Wei et al., 2024b) and CodeO- 147

cean (Yu et al., 2024) rewrite real-world data to bet- 148

ter align real distributions, thereby avoiding model 149

bias and enhancing the diversity. While these meth- 150

ods have achieved significant success in their re- 151

spective dimensions, they overlook the usage and 152

combination of sensitivity. 153

Counterfactual in NLP Counterfactuals in NLP 154

is to explore the model’s output variation patterns 155
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through minimal semantic perturbations (Robeer156

et al., 2021; Nguyen et al., 2024; Sachdeva et al.,157

2024; Wang et al., 2024c). Existing studies in the158

code domain mainly focus on local modifications159

to code (Hooda et al.), testing the model’s abil-160

ity to differentiate and understand counterfactual161

code (Gu et al., 2024; Cito et al., 2022). These162

approaches remain limited to perturbations to code163

and fail to address the core challenge of code gener-164

ation tasks—the precise mapping between require-165

ment details and algorithmic implementations. We166

fill this gap by constructing a new benchmark and167

dataset based on counterfactuals.168

3 CTF-Code Benchmark169

3.1 Formal Definition170

Evaluation for code tasks is test-driven, with its ba-
sic unit formalized as a tupleP = (Q,T, S), where
Q is the problem description (requirement), T =
{ti}ni=1 is a set of test cases ti = (inputi, outputi),
and S is a solution satisfying

∀ti ∈ T, S(inputi) = outputi.

Based on this, the goal of constructing CTF-Code171

can be formulated as an optimization problem:172

given the original problem P , generate P ′ =173

(Q′, T ′, S′) such that174

maximize
Q′,S′

DS(S, S
′)

subject to DQ(Q,Q
′) ≤ ϵ

(1)175

whereDQ : Q×Q′ → [0, 1] is the problem similar-176

ity function, DS : S×S′ → N is a code difference177

function, and ϵ is the similarity threshold. This opti-178

mization objective ensures that Q′ is highly similar179

to Q, while S′ and S differ significantly. After180

obtaining Q′ and S′, T ′ is generated for evaluation.181

3.2 Benchmark Construction182

As shown in Figure 2, the construction of CTF-183

Code follows a three-phase paradigm: First, select184

problems that have large semantic space as original185

data. Then, semantic perturbations are performed186

to generate CTF data and derive CTF pairs based187

on the optimization objective. Finally, construct the188

CTF testcases while ensuring no data interference.189

Origianl Data Selection The first step is to ob-190

tain the original data Q, S, and T . LiveCodeBench191

(LCB) (Jain et al., 2024), which collects problems192

designed by algorithmic experts from three online193

Acc. Problems Length Expl

Humaneval 96.3 164 71.6 ✗
LCB-Easy 95.6 15 210.5 ✓

Table 1: Comparison between HumanEval and Live-
CodeBench (LCB) -Easy. Acc. represents the Pass@1
score of o1-mini on both benchmarks. Problems indi-
cates the number of problems, Length represents the av-
erage word count per problem, and Expl shows whether
including example explanations.

judges—LeetCode, Codeforces, and AtCoder, are 194

selected. First, problem descriptions in LCB are 195

much clearer for the inclusion of input/output for- 196

mat and example explanations. Second, their av- 197

erage problem length is 210.5 words compared to 198

71.6 words for Humaneval in Table 1. The longer 199

context gives them more semantic space for per- 200

turbations. Third, complex problems require the 201

model to process multi-dimensional information 202

while maintaining contextual consistency. Last, 203

algorithmic competition problems require partic- 204

ipants to meticulously consider every detail and 205

boundary condition, where even small deviations 206

can lead to wrong answers. This aligns perfectly 207

with our goal of assessing LLMs’ sensitivity to de- 208

tails. Since the original benchmark only provides 209

Q and T , we supplement it with S and finally get 210

complete original data. 211

CTF Pair Generation This step aims to gener- 212

ate Q′ and S′. Given the complexity of solving the 213

bi-objective optimization problem defined in Equa- 214

tion 1 in the discrete semantic spaces of language, a 215

heuristic generation-selection strategy is proposed 216

to approximate the optimal solution. Based on Q, a 217

collection of LLMs parallelly sampleK candidates 218

{Q̂′
k}Kk=1. However, Q̂′ may be unsolvable or too 219

difficult, so several algorithm experts are invited for 220

annotation, retaining only the candidates that sat- 221

isfy the requirements. Next, the similarity between 222

each (Q̂′, Q) is assessed, and exclude candidates 223

where DQ(Q, Q̂
′
k) ≥ ϵ, ensuring that Q̂′ only dif- 224

fers from the original problem in key conditions, 225

i.e., only a single sentence or a few words. After 226

completing Ŝ′
k, we select the perturbation pair that 227

maximizes the objective function: 228

(Q′, S′) = argmax
(Q̂′

k,Ŝ
′
k)

[
DS(S, Ŝ

′
k)− λDQ(Q, Q̂

′
k)
]

(2) 229

where λ is a scaling factor that ensures DS and 230

DQ can compute. The annotation documents are 231
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Choose an index i in the string, and let c be
the character in position i. 

Delete the closest occurrence of c to the left
of i (if any) and the closest occurrence of c to
the right of i (if any).

…minimize the length of s by performing the
above operation any number of times.

Delete all occurrences
of all c from the string.

…minimize the length
of s by performing the
above operation once.

Delete the closest
occurrence of a different
character to the left of i
(if any) and ...

Original Problem

Counterfactual Problems

...Delete the farthest
occurrence of c...

Check & Fix

Original Solution
class Solution:
    def minimizedStringLength(self, s: str) -> int:
        # The minimized string will have at most one occurrence of each character.
        # So, we can simply return the number of unique characters in the string.
            return len(set(s))

Counterfactual Solutions
from collections import Counter
freq = Counter(s)
return min(freq.values())

is unsolvable / too difficult/ ... 

return len(set(s))

from collections 
import Counter
freq = Counter(s)
max_c = max(freq.va
lues())
return len(s) - max_c

Original Testcase

Calculate
Similarity

Input
"aaabc"

"cbbd"

"dddaaa"

Output
"3"

"3"

"2"

Counterfactual 
Testcase

Output
"1"

"1"

"3"

Figure 2: The pipeline of CTF-Code benchmark construction. First, original problems are selected and then sent to
LLMs to sample semantic permutations on the problem description. Algorithmic experts will carefully check the
CTF problems and decide to drop or fix them to generate CTF solutions. After selecting the most suitable CTF
problem, its testcases are constructed by executing its solution on the inputs from the original testcases.

provided in Appendix C. Through this heuristic232

rule, we obtain an approximate optimal Q′ and S′.233

CTF Testcase Completion To ensure the per-234

formance shake of LLMs latter only from details235

change between (Q,Q′), a dual-constraint test case236

generation mechanism is designed to avoid the in-237

fluence from (T, T ′): Input Space Inheritance:238

We retain the original testcases’ input distribution,239

i.e., T ′
input = Tinput = {inputi}ni=1. Output Space240

Reconstruction: The expected output is gener-241

ated based on the new solution S′, i.e., for each242

inputi ∈ Tinput, output′i = S′(inputi). Finally,243

T ′ = {(inputi, output′i)}ni=1 is constructed. The244

data distribution interference is eliminated by fix-245

ing the input variables, and the correctness of the246

test case is ensured by the correctness of S′. Addi-247

tionally, fixed inputs enable backtracking when the248

LLM behavior differs between Q,Q′.249

Compared to the traditional code benchmarks250

that evaluate isolated problems, CTF-Code intro-251

duces paired data with only details differences to252

enable analysis of sensitivity firstly.253

4 CTF-Instruct254

Existing instruction datasets have effectively ad-255

dressed the challenges of data difficulty and di-256

versity (Lai et al., 2023b; Jain et al., 2024; Zhuo257

et al., 2024). However, the detail sensitivity hasn’t258

been explored. We assume that sensitivity, diffi-259

culty and diversity are orthogonal and propose an260

incremental data construction approach. Starting261

with datasets that satisfy a single dimension, we 262

generate sensitivity data through counterfactual per- 263

turbations. Then, a selection algorithm is designed 264

based on the third dimension, ultimately construct- 265

ing a dataset that satisfies all three dimensions’ 266

requirements efficiently. An example of the data 267

distribution of the process is in Figure 7. 268

4.1 Generation 269

Sensitivity inherently requires a paired format, as 270

only through comparison can the subtle differences 271

in details be effectively highlighted. Generating 272

paired sensitivity data from scratch is challeng- 273

ing. When using Self-Instruct (Wang et al., 2023), 274

LLMs tend to generate simpler, regular data. More- 275

over, the inherent limitations of LLM’s context win- 276

dow prevent it from recognizing previously gener- 277

ated data, leading to huge repetition. As the assume 278

that sensitivity is orthogonal to other dimensions, 279

incrementally expanding the data becomes a more 280

efficient approach. The existing single-dimensional 281

dataset Dbase serves as high-quality seed data. For 282

each sample (Q,S), counterfactual perturbations 283

are applied to generate sensitivity pair (Q′, S′). 284

This process generates the sensitivity dimension 285

data Dsens. 286

After generation, some filtering rules are per- 287

formed, such as removing duplicates from bench- 288

marks to avoid data leakage and eliminate data with 289

generation failures like noise samples. 290
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Algorithm 1 K-Center Greedy Selection

1: Input: Sensitivity data Dsens, needed data
amount τ , original data Dbase

2: Output: Set Dsub ⊆ Dsens of τ data
3: C ← Dbase ▷ Initialize centers
4: for i = 1 to k do
5: distx ← miny∈Dbase∪Dsub

||ϕ(x)−ϕ(y)||2
6: x← argmaxx∈Dsens distx ▷ Select the

farthest data x
7: Dsub ← Dsub ∪ {x} ▷ Update centers
8: Dsens ← Dsens − {x} ▷ Update data
9: end for

10: Return Dsub ▷ Return the set of τ data

4.2 Selection291

After obtaining Dbase and Dsens, the original di-292

mensions and sensitivity are already addressed.293

Since the three dimensions are orthogonal, directly294

merging them would amplify the shortcomings of295

Dbase in the third dimension. Conversely, by filter-296

ing subsets, the distribution ofDsens can be shifted297

towards the third dimension, thereby covering all298

three dimensions. Specifically, the dimension pro-299

jection function is defined as:300

Ψ(D) = [ψdiff, ψdive, ψsens] (3)301

where ψdiff reflects data difficulty, ψdive measures302

semantic space coverage, and ψsens evaluates the303

quantity of sensitivity data. The filtering process is304

equivalent to solving:305

max
Dsub⊆Dsens

ψtarget(Dbase ∪ Dsub)

s.t. ψsens(Dsub) ≥ τ.
(4)306

where ψtarget represents the dimension to be com-307

pleted. This optimization problem ensures that308

the selected subset Dsub not only fills the target309

dimension but also retains the original sensitivity310

advantage. Since ψsens(Dsub) = |Dsub|, ψsens is311

sampled multiple times and the optimal value is312

selected based on experimental results.313

The data is mapped into the semantic space314

through a small LLM. To make it familiar with315

the data distribution, it is lightly fine-tuned. Then316

(Q,S) is fed in the extractor, and the average hid-317

den state vectors of all tokens in S from the fi-318

nal layer are taken as the semantic vector. When319

Dbase’s dimension is the difficulty, the diversity320

needs to be filled. The K-Center Greedy algorithm321

is used to select the samples most distant from322

Dbase in semantic space ϕ(·). The objective func- 323

tion is: 324

maxψdive(Dsub) = max
Dsub

min
x∈Dsub
y∈Dbase

||ϕ(x)− ϕ(y)||2

(5) 325

The detailed algorithm is shown in Algorithm 1. 326

Since ψdive(Dsub) is clearly a monotonically non- 327

increasing function with respect to |Dsub|, the final 328

|Dsub| = τ , since the sensitivity should be retained. 329

When Dbase is dominated by diversity, difficulty 330

needs to be completed. A fine-tuned LLM is used 331

as a scorer. ψdiff is simplified as minx∈Dbase
φ(x), 332

where φ(·) represents the difficulty score of the 333

data. When sorting by φ(·), ψdiff is also a mono- 334

tonically non-increasing function with respect to 335

|Dsub|. Thus, the subset Dsub of size τ is selected 336

to satisfy the difficulty dimension. Based on the ex- 337

isting data, the sensitivity data has been expanded; 338

then, filtering algorithms are designed to select 339

sensitivity data that fill the missing dimensions. 340

Regardless of the original dimension, data that sat- 341

isfies diversity, difficulty, and sensitivity simultane- 342

ously are ultimately obtained. 343

5 Experiment 344

5.1 CTF-Code Benchmark 345

Setup During calculating the similarity between 346

the original data (Q,S) and CTF data (Q′, S′),DQ 347

and DS are (1-BLUE) and (1-CodeBLUE), respec- 348

tively. For generating Q̂′, we sample five times 349

from each of the models gpt-4o-2024-08-06, 350

gpt-4-turbo-2024-04-09, and o1-mini (Ope- 351

nAI, 2024) to enhance diversity. Four competition 352

programmers are invited to annotate considering 353

the task difficulty, each of whom has represented 354

their university in at least one ICPC 1 competition 355

and earned at least a bronze medal. During the con- 356

struction of the benchmark, problems that fail to 357

meet any of the required criteria are discarded. Ul- 358

timately, CTF-Code curated a set of 186 problems. 359

Models evaluated are in Appendix B. 360

Evaluation As shown in Figure 3, almost all 361

of the mainstream models show some degree of 362

degradation on CTF-Code compared to the original 363

dataset. This suggests that existing models still 364

have some difficulty in understanding the details of 365

the input problem. It is worth noting that only the 366

Claude model still shows some performance gains 367

under the CTF-Code, which is a good proof of it’s 368

1International Collegiate Programming Contest
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Figure 3: The evaluation results of Code LLMs on CTF-Code.

Base Model
EvalPlus LiveCodeBench BigCodeBench CTF-Code

HumanEval (+) All Easy Full Hard Ori CTF

DeepSeek
Coder 6.7B

DC-6.7B-Instruct 74.4 (71.3) 18.9 45.3 35.5 10.1 45.8 38.1
Wavecoder 75.0 (69.5) 18.9 46.0 33.9 12.8 47.7 39.2

Inversecoder 76.2 (72.0) 18.1 43.1 35.9 10.8 47.8 39.1
Magicoder 76.8 (71.3) 19.2 46.6 36.2 13.5 48.8 43.4
CTFCoder 78.7 (75.0) 21.4 53.3 37.6 14.2 52.8 44.5

CTFCodeross 71.3 (65.9) 18.3 46.6 37.0 12.2 51.4 43.1

Qwen2.5
Coder 14B

Evol 85.4 (79.3) 23.9 71.5 43.7 14.2 76.3 59.9
CTF 88.4 (80.5) 24.6 74.1 44.1 17.6 79.5 60.8

w/o select 85.4 (78.0) 24.1 72.8 44.2 16.2 76.4 60.2

Oss 84.1 (77.4) 20.6 61.8 42.0 12.2 75.5 58.6
CTFoss 86.0 (79.9) 22.3 67.9 42.5 18.9 78.2 60.0

w/o select 86.6 (80.5) 20.8 67.2 42.5 14.9 76.8 59.2

Table 2: Performance comparison of CTFCoder with other models. To avoid environmental discrepancies, the
official leaderboard results are presented. Only when results are missing, local testing are conducted. CTFCoder
represents for CTF-Instruct based on Evol-Instruct while CTFCodeross represents based on Oss-Instruct. For Qwen
2.5 Coder 14B, Model represents the instruction datasets they finetuned on. ‘w/o select’ means original data mix
random selected CTF-Instruct without methods in Section 4.2.

capabilities of coding. Specifically, by analyzing369

the error cases we find that the models are most370

likely to make mistakes when confronted with de-371

tails such as modified boundary conditions. This372

is because detailed modifications to code problems373

usually directly change the boundary cases of the374

original problem or add some additional restric-375

tions that lead to incorrect model judgments.376

5.2 Instruction Tuning377

Setup Evol-Instruct (Luo et al., 2024b) and Oss-378

Instruct (Wei et al., 2024b) are selected as the origi-379

nal datasets for difficulty (110k samples) and diver-380

sity(75k samples), respectively. Sensitivity data are381

generated using gpt-4-turbo-2024-04-09, with382

failed data removed, resulting in 108k and 73k 383

sensitivity samples. During data filtering, the open- 384

source model XCoder-Complexity-Scorer (Wang 385

et al., 2024b) is used to score difficulty, and se- 386

mantic vectors are extracted using Deepseek Coder 387

1.3B Base (Guo et al., 2024) after one epoch of 388

SFT on the code-feedback (Zheng et al., 2024) 389

dataset. After selection, 30k sensitivity samples 390

are added to Evol-Instruct and 10k to Oss-Instruct, 391

named CTF and CTFoss, respectively. After SFT 392

with Deepseek Coder 6.7B base, CTFCoder and 393

CTFCodeross are obtained. Qwen 2.5 Coder 14B 394

Base (Hui et al., 2024) is also tuned. During train- 395

ing, the batch size is 512 and the sequence length 396

is 2048. The initial learning rate is 2e-5 with 10 397
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warmup steps and the learning rate scheduler is co-398

sine. A100-80GB is used to finetune for 3 epochs.399

Baseline & Benchmark CTFCoder is compared400

with other well-known models tuned on Deepseek401

Coder 6.7B Base, including Deepseek Coder 6.7B402

Instruct (Guo et al., 2024), Magicoder (Wei et al.,403

2024b), Wavecoder (Yu et al., 2024), and Inversec-404

oder (Wu et al., 2024). Magicoder first trains for 2405

epochs using oss-instruct to enhance diversity, then406

uses 1 epoch of evol-instruct to improve difficulty;407

Wavecoder rewrites function code docstrings into408

instruct format and uses LLMs to increase diffi-409

culty; Inversecoder generates instructions based on410

evol-instruct output and filters them using a fine-411

tuned model. All models address both difficulty412

and diversity dimensions. For Qwen 2.5 Coder, the413

original Evol-Instruct and Oss-Instruct are used for414

SFT, serving as the baseline.415

For the benchmarks, Humaneval, Humaneval (+),416

and LiveCodeBench are selected to cover various417

difficulty levels. Humaneval+ from Evalplus (Liu418

et al., 2023) extends Humaneval by adding a large419

number of test cases to cover corner cases. Live-420

CodeBench includes three difficulty levels: easy,421

medium, and hard (with easy being more chal-422

lenging than Humaneval). Since GPT-4-turbo’s423

training data ends in December 2023, we test Live-424

CodeBench questions from January 2024 onwards.425

For diversity, BigCodeBench, which specializes in426

Python package usage, is selected to complement427

the tests. Additionally, BigCodeBench selects high-428

difficulty sub-data to form a Hard subset.429

5.3 Results430

Table 2 shows the performance comparison be-431

tween CTFCoder and other models. CTFCoder432

demonstrates consistent performance improve-433

ments across all benchmarks. Although previous434

models already cover difficulty and diversity and435

achieve strong performance, the addition of sen-436

sitivity acts like a further ‘activation’. CTFCoder437

shows significant improvements across all three438

dimensions. It has a nearly 3% improvement on439

CTF-Code, indicating that CTF indeed helps the440

model pay more attention to details. On harder441

benchmarks, Humaneval+, BigCodeBench-Hard,442

and LiveCodeBench, CTFCoder achieves over 4%,443

5%, and 11% performance improvements, respec-444

tively. CTF, building upon the difficulty dimension445

of Evol-Instruct, results in further enhancement.446

This illustrates that generating sensitivity data us-447

0 1 2 3 4 5
Sensitivity Data Amount (10k)

66

68

70

72

74

76

78

80

82

Pe
rfo

rm
an

ce
 (%

)

HumanEval HumanEval+ MBPP MBPP+

Figure 4: The change in model performance as sensitiv-
ity data joined into Evol-Instruct.

ing existing data as seeds not only preserves the 448

original data dimensions but can even trigger fur- 449

ther improvements. 450

Even though CTFCodeross has a relatively small 451

amount of SFT data, CTFoss helps it outper- 452

form other models on LiveCodeBench-Easy and 453

BigCodeBench-Full, reflecting the ‘activation’ ef- 454

fect on diversity works, too. On Qwen 2.5 Coder 455

14B, compare the baseline, random selection of 456

CTF-Instruct data (‘w/o select’) and CTF generally 457

shows a progressive performance improvement, 458

highlighting the effectiveness of sensitivity data 459

and the importance of data selection. 460

6 Discussion 461

There exists an optimal range for the amount of 462

sensitivity data. Figure 4 shows the performance 463

trend when sensitivity data is gradually mixed into 464

Evol-Instruct (110K), with the performance evolv- 465

ing in three stages: an initial decline, a mid-stage 466

increase, and a final decline. The initial drop in- 467

dicates that a certain amount of sensitivity data 468

is required to have an effect, which verifies the 469

assumption in Equation 4, where a threshold τ en- 470

sures a minimum quantity of sensitivity data. The 471

subsequent rise followed by a decline suggests that 472

there is an upper limit for sensitivity data, confirm- 473

ing our observation that directly merging sensitivity 474

and original data dimensions exacerbates the lack 475

of the third dimension. Figure 8 in Appendix B 476

also shows the results for Oss-Instruct (75k). 477

Influence of sensitive data mount The effective- 478

ness of the selection strategy is universal. Table 2 479

and Figure 5 compare the performance of differ- 480

ent models and data using the selection strategy 481

7



HumanEval LCB HumanEval LCB
0

10

20

30

40

50

60

70

80
Pe

rfo
rm

an
ce

 (%
)

Evol Oss Ori
CTF
w/o select
CTF

Figure 5: The performance change brought by the selec-
tion strategy on Evol-Instruct and Oss-Instruct. The
darker shade in Humaneval represents Humaneval+,
while in LCB, the darker shade represents LCB-All,
and the lighter shade represents LCB-Easy.

versus not using it (‘w/o select’) with the same482

amount of data. Regardless of the original data or483

base model, the strategy generally leads to perfor-484

mance improvement. Figure 5 shows that, with485

Evol-Instruct, performance on LiveCodeBench im-486

proved by over 17%, while for OSS-Instruct, per-487

formance on Humaneval increased by more than488

7% compared to ‘w/o select’. This validates our489

hypothesis that data offset can effectively address490

the third dimension.491

Epoch Strategy HE (+) LCB (Easy)

2

2+0 74.4 (69.5) 18.5 (46.8)
1+1 79.9 (75.0) 21.0 (51.8)

2+0 65.9 (61.0) 16.0 (40.4)
1+1 66.5 (61.6) 18.8 (46.9)

3

3+0 76.8 (72.6) 18.6 (46.4)
2+1 76.8 (73.2) 20.7 (51.3)

3+0 65.2 (59.8) 17.0 (42.5)
2+1 68.3 (62.2) 19.0 (47.2)

Table 3: The results of continual training with CTF.
Epoch is the total number of training epochs, and ‘x+y’
indicates that the model is first trained for x epochs
on the original data, followed by y epochs on CTF-
Instruct. HE represents Humaneval, and LCB refers to
LiveCodeBench-All, with ‘Easy’ inside the parentheses.

Since the amount of data used for training the492

open-source models in the main experiment differs,493

we designed a controlled experiment to verify the494

independent gain from the sensitivity dimension.495

In Figure 6, when the total training data volume is496

fixed, replacing 40% of the original Oss-instruct497

data with randomly selected CTF data led to a 20%498

40

42

44

46

48

0.6 0.8 1.0
16

18

20

Data Composition

Pe
rfo

rm
an

ce
 (%

)

LCB All (Oss Only)
LCB All (CTF Mixed)

LCB Easy (Oss Only)
LCB Easy (CTF Mixed)

Figure 6: Performance changes with the increase in
diversity data (Oss only) and the gradual injection of
sensitivity into the diversity data (CTF Mixed).

improvement on LCB-All, whereas simply increas- 499

ing the Oss-instruct data volume caused a 9.5% 500

performance drop. This suggests that when the 501

diversity dimension is saturated, and sensitivity 502

can be considered a new ‘performance engine’. 503

Sensitivity can be directly used for contin- 504

ual training. Inspired by Magicoder (Wei et al., 505

2024b), in Table 3, after training on the original 506

data for 1 or 2 epochs, an additional epoch of CTF- 507

Instruct is added. Compared to continuing training 508

with the original data alone, this approach shows 509

a significant performance improvement. Particu- 510

larly on LiveCodeBench, every setup achieves a 511

10% gain. This further demonstrates the orthogo- 512

nality of the sensitivity dimension with the other 513

two dimensions, as its benefit does not depend on 514

joint training, allowing for efficient and convenient 515

continual training to achieve gains. 516

7 Conclusion 517

Beyond diversity and difficulty, we introduced sen- 518

sitivity as a key dimension for evaluating and im- 519

proving Code LLMs. By constructing the CTF- 520

Code benchmark, we revealed the shortcomings 521

of existing Code LLMs in understanding details. 522

To futher utilize sensitivity, we propose the CTF- 523

Instruct framework, which generates sensitivity 524

data based on existing dimensions to cover sen- 525

sitivity and employs a filtering algorithm to shift 526

towards the third dimension. Experiments show 527

that CTF-Instruct data fine-tuned LLMs improves 528

performance on CTF-Code and outperform exist- 529

ing open-source models on general code generation 530

benchmarks, validating the universal benefits of 531

sensitivity optimization for Code LLMs. 532
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Limitation533

Due to constraints in training resources and man-534

power, our work was limited to constructing a rela-535

tively modest set of CTF-Code problems, without536

exploring the potential for more complex or chal-537

lenging examples. Additionally, the CTF-Instruct538

framework was not tested with multi-round genera-539

tion, nor was it evaluated on larger, more advanced540

LLMs. While our experiments demonstrate the ef-541

fectiveness of the proposed approach on the models542

tested, we acknowledge that the full potential of543

CTF-Instruct could be realized by scaling up the544

dataset and conducting more extensive fine-tuning545

experiments, particularly on models with greater546

capacity. Furthermore, the impact of training on547

larger models with more rounds of fine-tuning re-548

mains an open question and is a promising direction549

for future work.550
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Appendix811

A Example812

B Experiment Results813

Models A range of LLMs with a size of814

>7B (mainly focusing on Code LLMs) are se-815

lected for testing, including Qwen 2.5 Coder,816

Deepseek Coder v1 & v2, and OpenCoder. Some817

general-purpose LLMs with strong code capa-818

bilities, such as Qwen 2.5, Llama 3.1 & 3.3819

are also tested. All of these models are tested820

on the Instruct version. Additionally, we tested821

closed-source models via APIs, including GPT-822

4o (gpt-4o-2024-08-06) and Claude-3.5-Sonnet823

(claude-3-5-sonnet-20240620). Finally, think-824

capable LLMs, o1-mini, and o1-preview are also825

tested.826

BLEU Score827

C Annotation Process828

C.1 Mission Background829

Today, large language models (LLMs) demonstrate830

remarkable capabilities in code generation. How-831

ever, it remains unclear how well LLMs can cap-832

ture the nuances of programming problem details,833

such as the distinction between "swapping any two834

characters" and "swapping two adjacent charac-835

ters". Can LLMs accurately capture the differences836

between these two concepts? To investigate this,837

we propose to modify a set of original problems838

(LeetCode Easy Level) to construct a new set of839

counterfactual (CTF) problems. These CTF prob-840

lems are designed to have minor textual differences841

from the original problems while yielding signifi-842

cantly different solutions. To minimize the effort843

required to construct this benchmark, we aim to844

ensure that CTF problems can utilize the test cases845

of the original problems without the need for re-846

construction.847

C.2 Annotation Content848

The annotation process does not involve modifying849

the problem itself, as this task has already been850

done by the LLMs. Instead, the annotator’s role is851

simply to evaluate whether the modified problem852

is correct and aligns with our requirements.853

C.3 Annotator Requirements854

The annotator requirements are summarized below.855

• The annotator is required to have a solid foun- 856

dation in algorithms and the ability to quickly 857

solve LeetCode Easy-level problems. 858

• The annotator needs to have one hour of free 859

time per day for one month. 860

• This mission requires 3 to 6 annotators. 861

C.4 Construction Workflow 862

To illustrate the construction workflow in detail, we 863

will supplement it with an example. 864

1. Read the original problem and briefly explain 865

the meaning of the original problem. As 866

shown in Figure 10, the meaning of the orig- 867

inal problem is: "Given a string consisting 868

of three letters ’abc’ in any order, can ’abc’ 869

appear after swapping any two characters at 870

most once?" 871

2. Read and understand the newly automatically 872

generated problem. If there are errors in the 873

Sample Input/Output or in the Test Cases, 874

correct them. 875

3. In comparison with the original problem, clas- 876

sify the new problem into three types (Bad, 877

Robust, CTF) and explain what changes have 878

been made. 879

• Bad. The new problem has a signifi- 880

cant vulnerability (logical vulnerability 881

or conflict) and can not be a complete 882

problem. 883

• Robust. The new problem has only a 884

different wording from the original ques- 885

tion, i.e. the algorithm used by the new 886

problem and the answer is exactly the 887

same. As shown in Figure 11, this is a 888

robust version of the original problem. 889

After understand the meaning of the new 890

problem, we can tell that the change is 891

"any substring can be reversed". 892

For the new problem, the total length 893

of cards is 3. Reversing a substring of 894

length 3 is equivalent to swapping the let- 895

ters in positions 1 and 3, and position 2 896

will not be changed during the reversing 897

process; reversing a substring of length 2 898

is equivalent to swapping adjacent letters 899

in the original question. The operation 900

of the original problem and the opera- 901

tion of the new problem are exactly the 902
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same. Therefore, the answers are com-903

pletely consistent and do not need to be904

modified.905

• CTF. The new problem has only a small906

difference from the original problem, but907

it changes the meaning of the original908

problem, making the answers not exactly909

the same as the original problem (With910

not too much variation in difficulty, the911

more variation in answers the better).912

Figure 12 and Figure 13 are two exam-913

ple of CTF problems. The change of914

the former problem is "only two adjacent915

characters can be exchanged", and the916

change of the latter problem is "cards917

become abcd".918

4. Determine whether new test cases need to be919

added to the CTF problem. For example, the920

annotator should determine whether the range921

of data of the new problem is fully consistent922

with the original problem, and whether the923

input of test cases of the original problem can924

be directly executed by the CTF problem.925

For the first CTF problem, there is no need926

to add new test cases, while for the second927

CTF problem, some new test cases should be928

added.929

C.5 Annotation Tabular 930

As shown in Table 4, we provide an example of the 931

annotation table that the annotator should fill in. 932

D Prompt 933

This section shows the prompt used to instruct 934

LLMs to generate desired counterfactual question 935

and instruction tuning data. 936
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Figure 9: The left frequency histogram shows the BLEU score between the original problems and the CTF problems.
The right one shows the Code BLEU score between the solutions corresponding to the original problems and the
CTF problems.

Original
Problem

Index

Original Problem
Meaning Model

New
Problem

Index

New Problem
Statement

Error

New
Problem

Type
Modification Add New

Test Cases

0 Given a string com-
posed of letters ’abc’
in any order, ex-
change any two char-
acters to see if string
’abc’ can occur.

o1-mini 0-0 Robust No

0 Given a string com-
posed of letters ’abc’
in any order, ex-
change any two char-
acters to see if string
’abc’ can occur.

o1-mini 0-1 CTF Only two adjacent
characters can be ex-
changed

No

1 Add 1 to a number
in an array of posi-
tive numbers, how to
maximise the array
product

o1-mini 1-1 CTF Replace a number in
an array with a num-
ber from 0-9, how to
make the array prod-
uct maximum

No

4 A string with a
phone number in
front and 2 digits in
the middle indicating
age. Find those over
60 years old

o1-mini 4-0 CTF How many people
are over 60 years
old and have unique
phone numbers?

Yes

4 A string with a
phone number in
front and 2 digits in
the middle indicating
age. Find those over
60 years old

o1-mini 4-1 CTF Age is hexadecimal No

Table 4: An example of the annotation table.
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## Question Content:

There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in
some order. You can do the following operation at most once:

- Pick two cards, and swap them. Is it possible that the row becomes $\texttt{abc}$ after the
operation? Output "YES" if it is possible, and "NO" otherwise.

Input

The first line contains a single integer $t$ ($1 \leq t \leq 6$) the number of test cases.

The only line of each test case contains a single string consisting of each of the three
characters $\texttt{a}$, $\texttt{b}$, and $\texttt{c}$ exactly once, representing the
cards.

Output

For each test case, output "YES" if you can make the row $\texttt{abc}$ with at most one
operation, or "NO" otherwise.

You can output the answer in any case (for example, the strings "yEs", "yes", "Yes" and "YES"
will be recognized as a positive answer).Sample Input 1:

6

abc

acb

bac

bca

cab

cba

Sample Output 1:

YES
YES
YES
NO
NO
YES

Note

In the first test case, we don't need to do any operations, since the row is already
$\texttt{abc}$.

In the second test case, we can swap $\texttt{c}$ and $\texttt{b}$: $\texttt{acb} \to
\texttt{abc}$.

In the third test case, we can swap $\texttt{b}$ and $\texttt{a}$: $\texttt{bac} \to
\texttt{abc}$.

In the fourth test case, it is impossible to make $\texttt{abc}$ using at most one operation.

## Starter Code:

## Test Cases:

"[{\"input\": \"6\\nabc\\nacb\\nbac\\nbca\\ncab\\ncba\\n\", \"output\":
\"YES\\nYES\\nYES\\nNO\\nNO\\nYES\\n\", \"testtype\": \"stdin\"}]"

Figure 10: An example of the original problem.
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## Question Content:

There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in
some order. You can perform the following operation at most once:

- Choose any substring of the cards and reverse it.

Is it possible that the row becomes $\texttt{abc}$ after the operation? Output "YES" if it is
possible, and "NO" otherwise.

...

Figure 11: An example of the robust version of the original problem.

## Question Content:
There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in

some order. You can perform the following operation at most once:

- Pick two **adjacent** cards and swap them.

Is it possible that the row becomes $\texttt{abc}$ after the operation? Output "YES" if it is
possible, and "NO" otherwise.

...

Figure 12: The first example of the CTF version of the original problem.

## Question Content:

There are four cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$, $\texttt{d}$ placed
in a row in some order. You can do the following operation at most once:

- Pick two cards, and swap them. Is it possible that the row becomes $\texttt{abcd}$ after the
operation? Output "YES" if it is possible, and "NO" otherwise.

...

Figure 13: The second example of the CTF version of the original problem.

Please create a **counterfactual** version of the given original python programming problem.
Your goal is to **make a minimal change to the problem that leads to a significant change
in the solution**. Follow these detailed steps:

1. Carefully read and comprehend the original problem's context, conditions, constraints, and
requirements.

2. Identify a critical point in the original problem and think about a modification. **The
modification should be slight but cause a substantial change in the solution approach**.

3. Consider the influence of the modification. Ask yourself: Would it change data structures or
algorithms? Explain the influence before output the counterfactual problem. If the
influence does not impact the solution approach significantly, rethink another critical
point to modify. Repeat Step 2 and Step 3 until you find a point that satisfies the
requirement.

4. Modify the original problem based on the most influential point. The modified problem must
be consistent, clear, and requires a significantly different solution approach. Update the
sample inputs and outputs to match the new problem condition.

5. Output the counterfactual problem, ensuring the following format:
- Before the JSON format, include a section marker "###Counterfactual Problem".
- After the section marker, provide the counterfactual problem in the same JSON format as
the original, including "question_content", "starter_code", "public_test_cases", and
"metadata".

### Original Problem

Figure 14: The prompt used to generate CTF-Code Problem.
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Refine a code generation task, initially presented as #Original_Sample#, which is a JSON dict
including three keys: a task instruction, and the output generated from the instruction.

Your task is to produce a #Modified_Sample# by altering the original task instruction in a way
that significantly changes the output, yet with minimal adjustments to the instruction
itself.

## Requirements:
1. **Minimal Instruction Change**: Achieve the code change with minimal alterations to the

instruction. The difference will be assessed through evaluated by the Rouge score,
indicating the high similarity in wording, sentence structure, and length to the original.

2. **No Trival Changes to Instruction**: Ensure the modification to the instruction is
semantic-relevant. Do not make trivial changes like adding or removing a word, changing the
order of words, or replacing synonyms.

3. **Maximal Code Change**: Your adjustments should lead to considerable changes in the output,
impacting aspects like algorithms, data structures, data and control flows, or boundary
conditions. The difference will be assessed through both the Rouge score and AST score,
indicating the output's functionality, implementation, and naming should substantially
diverge from the original.

4. **Encourage Trival Code Change**: The code output should be significantly different. Change
every aspect of the code, including the function name, variable names.

## Format:
1. Your output should be a #Modified_Sample# dict in **JSON format** as the #Original_Sample#

is.
2. Using **markdown code snippet syntax** in the instruction and the output.
3. Ensure all characters are **properly escaped** in the JSON string.

## Examples:
{seeds}

## Question:
- Original_Sample:

Figure 15: The prompt used to generate CTF-Instruct data.
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