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Abstract

Code Sensitivity refers to the ability of Code
LLMs to recognize and respond to details
changes in problem descriptions, serving as
an important dimension for evaluating Code
LLM’s ability. While current code bench-
marks and instruction tuning methods primar-
ily focus on difficulty and diversity, sensitiv-
ity is overlooked. We first introduce the CTF-
Code benchmark, constructed using counterfac-
tual perturbations—minimizing input changes
while maximizing output changes. The evalua-
tion shows that many models have a more than
10% performance drop in performance on CTF-
Code. To fully utilize sensitivity, we propose
the CTF-Instruct incremental instruction fine-
tuning framework, which extends on existing
data and uses a selection mechanism to meet
the three dimensions of difficulty, diversity, and
sensitivity. Experiments show that models fine-
tuned with CTF-Instruct data achieve over a
2% improvement on CTF-Code, and more than
a 10% performance boost on LiveCodeBench,
validating the feasibility of enhancing LLMs
sensitivity to improve performance.

1 Introduction

Code Large Language Models (LLMs) are LLMs
pre-trained on extensive code corpora, demonstrat-
ing remarkable capabilities in code generation, de-
bugging, translation and so on (Hui et al., 2024;
DeepSeek-Al et al., 2024). Not only do they signif-
icantly improve software development efficiency,
but also their ability to tackle complex program-
ming tasks is a key indicator of their thinking abili-
ties (OpenAl, 2024). Notably, as a logically com-
plete symbolic system (MacLennan, 1986), code
requires LLMs to accurately map between require-
ments and algorithmic logic during the generation
process (Pressman, 2005), a small mismatch will
cause the whole task to fail. In Figure 1, changing
the description from ‘add one’ to ‘double one’ al-
ters the underlying algorithmic logic entirely. As

Sensitivety

[ Original Problem \‘ \/ Conterfactual Problem \‘
| 1L |
| ... add one to exactly | | ... double one of |
| one of number, make 1 ! number, make the w

0 | o |
i the biggest product of |1 biggest product of an |
| o | o
. an array possible... |i array possible... l
! iy I
! Solution L Solution \
[ [ |
I prod = math.prod(nums) : I prod = math.prod(nums)
: min_num = min(nums) ‘ : ans = prod x 2 !
, ans = prod + prod/ K :
| min_num : | |
\-_ 1\ J

CODEFORCES

Difficulty

Figure 1: Code LLMs have many studies on diversity
and difficulty, but sensitivity to problem details remains
underexplored. For example, changing a single word
in a problem can completely alter the algorithmic logic.
In the original problem, we should increase the small-
est number, whereas in the counterfactual version, no
matter which number is modified, the result remains the
same—double the cumulative sum.

such, the model’s sensitivity to detail becomes a
crucial measure of its ability. However, the abil-
ity of Code LLMs to capture and address such
fine-grained differences remains unclear. Currently,
code generation benchmarks mainly focus on dif-
ficulty and diversity. The difficulty levels range
from simple functions to more complex classes and
competition-level algorithms (Liu et al., 2023; Du
et al., 2024; Jain et al., 2024). Diversity spans do-
mains like data science, system development, and
interdisciplinary applications (Zhuo et al., 2024;
Lai et al., 2023a; Hu et al., 2024; Liu et al., 2024).
However, these benchmarks are often discrete, eval-
uating the model’s ability to solve isolated prob-
lems, without assessing its sensitivity to subtle dif-



ferences in requirement details.

This limitation is also present in current ap-
proaches to code instruction fine-tuning. Difficulty
and diversity are mainstream to import data qual-
ity (Wang et al., 2024b): first, by incrementally
introducing constraints to create high-difficulty
datasets (Luo et al., 2024b; Wang et al., 2024a),
though these manually designed iterative rules and
inherent biases may cause data distributions to di-
verge from real-world scenarios (Wei et al., 2024b);
second, by rewriting or inspiring from real code
to generate diverse data, enhancing domain cov-
erage (Wei et al., 2024b; Luo et al., 2024a; Wei
et al., 2024a; Yu et al., 2024). There is a lack of
work targeted at improving the model’s sensitivity
to crucial details.

Take difficulty and diversity as two evaluated
and improved dimensions, a critical dimension re-
mains underexplored: sensitivity. Unlike difficulty,
changes in details do not necessarily change algo-
rithmic complexity; unlike diversity, little change
does not constitute a new task scenario. In NLP,
counterfactuals (CTF) involve making minimal
changes to inputs to produce outputs that differ
substantially (Chen et al., 2023; Sachdeva et al.,
2024; Wang et al., 2024c¢). Inspired by this, we pro-
pose the CTF-Code benchmark and CTF-Instruct
pipeline. By introducing minimal semantic pertur-
bations such as altering key conditions or replac-
ing critical constraints, we modify the algorithmic
logic while maintaining superficial task similarity,
thereby assessing the model’s sensitivity to require-
ment details. Experiments reveal that state-of-the-
art models like GPT-40 and Qwen2.5-Coder (Hurst
et al., 2024; Hui et al., 2024) experience perfor-
mance drops exceeding 10% on CTF-Code com-
pared to original problems, highlighting significant
‘blind spots’ in detail sensitivity.

To address this, starting from one existing di-
mension of data, CTF pairs are generated to cover
the sensitivity dimension and then through a se-
lection mechanism to enhance the last dimen-
sion. Lastly, by merging selected data and existing
one-dimensional data, CTF-Instruct data is three-
dimensions-completed. Experiments show that
LLMs fine-tuned with CTF-Instruct data achieve
a 2.6% improvement on CTF-Code, and also
gains on other benchmarks such as HumanEval+
(+4.2%), BigCodeBench-hard (+5.2%), and Live-
CodeBench (+11.6%) (Liu et al., 2023; Zhuo et al.,
2024; Jain et al., 2024), confirming the help of
sensitivity to instruction tuning.

Our contribution is summarized below:

* We propose CTF-Code, the first benchmark fo-
cused on sensitivity, and the evaluation results
expose the shortcomings of mainstream Code
LLMSs in understanding requirement details.

* We design a three-dimensional-completed
data generation framework, starting from one
dimension, completing sensitivity by genera-
tion and the last dimension by selection.

* LLMs trained with CTF-Instruct data achieve
substantial performance improvements across
CTF-Code and other benchmarks compared
to existing methods.

2 Related Work

Code Benchmark Existing code generation
benchmarks primarily include two dimensions: (1)
Difficulty: from function-level like HumanEval
and MBPP (Austin et al., 2021; Chen et al., 2021),
to class-level like ClassEval (Du et al., 2023),
and contest-level like LiveCodeBench (Jain et al.,
2024); (2) Diversity: BigCodeBench (Zhuo et al.,
2024) focuses on Python package usage, while DS-
1000 (Lai et al., 2023b) targets on data science. The
existing evaluation paradigm is limited to solving
isolated problems. In this work, the first sensitivity
benchmark, CTF-Code is introduced.

Code Instruction Tuning Datasets With the de-
velopment of Self-Instruct (Wang et al., 2023),
methods on Code LLMs mainly focus on diffi-
culty enhancement and diversity expansion. In-
spired by Evol-Instruct (Xu et al., 2023), Luo et al.
(2024b) increases the difficulty of data by adding
constraints based on seed data CodeAlpaca (Chaud-
hary, 2023). Muennighoff et al. (2024) collects
nearly 4TB Git commits data and constructs a 2GB
instruction tuning dataset based on the commits
data. While Evol-Instruct requires seed data, which
limits the diversity of generated instruction tuning
data, Oss-Instruct (Wei et al., 2024b) and CodeO-
cean (Yu et al., 2024) rewrite real-world data to bet-
ter align real distributions, thereby avoiding model
bias and enhancing the diversity. While these meth-
ods have achieved significant success in their re-
spective dimensions, they overlook the usage and
combination of sensitivity.

Counterfactual in NLP Counterfactuals in NLP
is to explore the model’s output variation patterns



through minimal semantic perturbations (Robeer
et al., 2021; Nguyen et al., 2024; Sachdeva et al.,
2024; Wang et al., 2024c). Existing studies in the
code domain mainly focus on local modifications
to code (Hooda et al.), testing the model’s abil-
ity to differentiate and understand counterfactual
code (Gu et al., 2024; Cito et al., 2022). These
approaches remain limited to perturbations to code
and fail to address the core challenge of code gener-
ation tasks—the precise mapping between require-
ment details and algorithmic implementations. We
fill this gap by constructing a new benchmark and
dataset based on counterfactuals.

3 CTF-Code Benchmark

3.1 Formal Definition

Evaluation for code tasks is test-driven, with its ba-
sic unit formalized as a tuple P = (Q, T, S), where
@ is the problem description (requirement), T =
{ti}7_, is a set of test cases t; = (input,, output;),
and S is a solution satisfying

Vt; € T, S(input;) = output,.

Based on this, the goal of constructing CTF-Code
can be formulated as an optimization problem:
given the original problem P, generate P’ =
(Q',T',S") such that

maximize Dg(S,S )
o (1)
subjectto D (Q,Q") <€

where Dg : Q x Q" — [0, 1] is the problem similar-
ity function, Dg : S x S” — Nis a code difference
function, and ¢ is the similarity threshold. This opti-
mization objective ensures that Q’ is highly similar
to Q, while S’ and S differ significantly. After
obtaining @’ and S’, T" is generated for evaluation.

3.2 Benchmark Construction

As shown in Figure 2, the construction of CTF-
Code follows a three-phase paradigm: First, select
problems that have large semantic space as original
data. Then, semantic perturbations are performed
to generate CTF data and derive CTF pairs based
on the optimization objective. Finally, construct the
CTF testcases while ensuring no data interference.

Origianl Data Selection The first step is to ob-
tain the original data (), S, and T". LiveCodeBench
(LCB) (Jain et al., 2024), which collects problems
designed by algorithmic experts from three online

Acc. Problems Length Expl
Humaneval  96.3 164 71.6 X
LCB-Easy  95.6 15 210.5

Table 1: Comparison between HumanEval and Live-
CodeBench (LCB) -Easy. Acc. represents the Pass@ 1
score of ol-mini on both benchmarks. Problems indi-
cates the number of problems, Length represents the av-
erage word count per problem, and Expl shows whether
including example explanations.

judges—LeetCode, Codeforces, and AtCoder, are
selected. First, problem descriptions in LCB are
much clearer for the inclusion of input/output for-
mat and example explanations. Second, their av-
erage problem length is 210.5 words compared to
71.6 words for Humaneval in Table 1. The longer
context gives them more semantic space for per-
turbations. Third, complex problems require the
model to process multi-dimensional information
while maintaining contextual consistency. Last,
algorithmic competition problems require partic-
ipants to meticulously consider every detail and
boundary condition, where even small deviations
can lead to wrong answers. This aligns perfectly
with our goal of assessing LLMs’ sensitivity to de-
tails. Since the original benchmark only provides
@ and T', we supplement it with .S and finally get
complete original data.

CTF Pair Generation This step aims to gener-
ate Q" and S’. Given the complexity of solving the
bi-objective optimization problem defined in Equa-
tion 1 in the discrete semantic spaces of language, a
heuristic generation-selection strategy is proposed
to approximate the optimal solution. Based on ), a
collection of LLMs parallelly sample K candidates
{QA}€ le. However, Q’ may be unsolvable or too
difficult, so several algorithm experts are invited for
annotation, retaining only the candidates that sat-
isfy the requirements. Next, the similarity between
each (Q’ , Q) is assessed, and exclude candidates
where Dg(Q, QA;) > ¢, ensuring that Q' only dif-
fers from the original problem in key conditions,
i.e., only a single sentence or a few words. After
completing S we select the perturbation pair that
maximizes the objective function:

(@', 8") = arg max [DS(S, S1) — ADo(Q, Q;C)]
(@>5%)
(@)

where A is a scaling factor that ensures Dg and
D¢ can compute. The annotation documents are
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Figure 2: The pipeline of CTF-Code benchmark construction. First, original problems are selected and then sent to
LLMs to sample semantic permutations on the problem description. Algorithmic experts will carefully check the
CTF problems and decide to drop or fix them to generate CTF solutions. After selecting the most suitable CTF
problem, its testcases are constructed by executing its solution on the inputs from the original testcases.

provided in Appendix C. Through this heuristic
rule, we obtain an approximate optimal @’ and S’.

CTF Testcase Completion To ensure the per-
formance shake of LLMs latter only from details
change between (@, '), a dual-constraint test case
generation mechanism is designed to avoid the in-
fluence from (7',7”): Input Space Inheritance:
We retain the original testcases’ input distribution,
i.e., Tjpu = Tinpue = {input;};;. Output Space
Reconstruction: The expected output is gener-
ated based on the new solution S’, i.e., for each
input; € Tippu, output; = S’(input;). Finally,
T' = {(input;, output,)}? , is constructed. The
data distribution interference is eliminated by fix-
ing the input variables, and the correctness of the
test case is ensured by the correctness of S’. Addi-
tionally, fixed inputs enable backtracking when the
LLM behavior differs between @, @’.

Compared to the traditional code benchmarks
that evaluate isolated problems, CTF-Code intro-
duces paired data with only details differences to
enable analysis of sensitivity firstly.

4 CTF-Instruct

Existing instruction datasets have effectively ad-
dressed the challenges of data difficulty and di-
versity (Lai et al., 2023b; Jain et al., 2024; Zhuo
et al., 2024). However, the detail sensitivity hasn’t
been explored. We assume that sensitivity, diffi-
culty and diversity are orthogonal and propose an
incremental data construction approach. Starting

with datasets that satisfy a single dimension, we
generate sensitivity data through counterfactual per-
turbations. Then, a selection algorithm is designed
based on the third dimension, ultimately construct-
ing a dataset that satisfies all three dimensions’
requirements efficiently. An example of the data
distribution of the process is in Figure 7.

4.1 Generation

Sensitivity inherently requires a paired format, as
only through comparison can the subtle differences
in details be effectively highlighted. Generating
paired sensitivity data from scratch is challeng-
ing. When using Self-Instruct (Wang et al., 2023),
LLMs tend to generate simpler, regular data. More-
over, the inherent limitations of LLM’s context win-
dow prevent it from recognizing previously gener-
ated data, leading to huge repetition. As the assume
that sensitivity is orthogonal to other dimensions,
incrementally expanding the data becomes a more
efficient approach. The existing single-dimensional
dataset Dy serves as high-quality seed data. For
each sample (@, S), counterfactual perturbations
are applied to generate sensitivity pair (Q’,5’).
This process generates the sensitivity dimension
data Dyeps.

After generation, some filtering rules are per-
formed, such as removing duplicates from bench-
marks to avoid data leakage and eliminate data with
generation failures like noise samples.



Algorithm 1 K-Center Greedy Selection

1: Input: Sensitivity data Dg,s, needed data
amount 7, original data Dj .
Output: Set D, C Dy of T data
C <+ Dyyse > Initialize centers
for; =1to k do
disty <= minyep,,, D, |10(2) = d(y)]]2
T 4— arg maxyep,.,, disty > Select the
farthest data x
Dsub <~ Dsub U {:L'}
Dsens < Dsens — {l‘}
9: end for
10: Return D,

AN AN

> Update centers
> Update data

[ BN

> Return the set of 7 data

4.2 Selection

After obtaining Dy,se and Dgeys, the original di-
mensions and sensitivity are already addressed.
Since the three dimensions are orthogonal, directly
merging them would amplify the shortcomings of
Dyase in the third dimension. Conversely, by filter-
ing subsets, the distribution of Dgey, s can be shifted
towards the third dimension, thereby covering all
three dimensions. Specifically, the dimension pro-
jection function is defined as:

v (D) = [¢diff s Ydives wsens] 3)

where q4ig reflects data difficulty, v¢ive measures
semantic space coverage, and s evaluates the
quantity of sensitivity data. The filtering process is
equivalent to solving:

DSuIanaDXs Ens7ybtarget(,Dbase U Dsub) @)

s.t. wsens(Dsub) > T.

where 1argec represents the dimension to be com-
pleted. This optimization problem ensures that
the selected subset D,,; not only fills the target
dimension but also retains the original sensitivity
advantage. Since Ysens(Dsup) = |Dsub|> Usens 18
sampled multiple times and the optimal value is
selected based on experimental results.

The data is mapped into the semantic space
through a small LLM. To make it familiar with
the data distribution, it is lightly fine-tuned. Then
(@, S) is fed in the extractor, and the average hid-
den state vectors of all tokens in S from the fi-
nal layer are taken as the semantic vector. When
Drase’s dimension is the difficulty, the diversity
needs to be filled. The K-Center Greedy algorithm
is used to select the samples most distant from

Dyase in semantic space ¢(-). The objective func-
tion is:
max wdive(Dsub) = max min H‘b(w) - (b(y)H?

Dsub TEDsup
yEDbase

)
The detailed algorithm is shown in Algorithm 1.
Since Ygive (Dsup) is clearly a monotonically non-
increasing function with respect to |Dgyp|, the final
|Dgup| = T, since the sensitivity should be retained.
When Dy, is dominated by diversity, difficulty
needs to be completed. A fine-tuned LLM is used
as a scorer. Vs is simplified as mingep, . ¢(z),
where ¢(-) represents the difficulty score of the
data. When sorting by ¢(+), ¥gist is also a mono-
tonically non-increasing function with respect to
|Dsup|. Thus, the subset Dg,;, of size T is selected
to satisfy the difficulty dimension. Based on the ex-
isting data, the sensitivity data has been expanded;
then, filtering algorithms are designed to select
sensitivity data that fill the missing dimensions.
Regardless of the original dimension, data that sat-
isfies diversity, difficulty, and sensitivity simultane-
ously are ultimately obtained.

S Experiment

5.1 CTF-Code Benchmark

Setup During calculating the similarity between
the original data (Q, S) and CTF data (@', S’), Dg
and Dg are (1-BLUE) and (1-CodeBLUE), respec-
tively. For generating (', we sample five times
from each of the models gpt-40-2024-08-06,
gpt-4-turbo-2024-04-09, and ol1-mini (Ope-
nAl, 2024) to enhance diversity. Four competition
programmers are invited to annotate considering
the task difficulty, each of whom has represented
their university in at least one ICPC ' competition
and earned at least a bronze medal. During the con-
struction of the benchmark, problems that fail to
meet any of the required criteria are discarded. Ul-
timately, CTF-Code curated a set of 186 problems.
Models evaluated are in Appendix B.

Evaluation As shown in Figure 3, almost all
of the mainstream models show some degree of
degradation on CTF-Code compared to the original
dataset. This suggests that existing models still
have some difficulty in understanding the details of
the input problem. It is worth noting that only the
Claude model still shows some performance gains
under the CTF-Code, which is a good proof of it’s

'International Collegiate Programming Contest


https://icpc.global/

100

Ori

CTF
901

80

704 68.5

60

Performance (%)
o
2
o
I
S

50 4 49.7

401 38.6

30

. < - o ~ < . <
‘\006$ \(Coﬁ o o
o® ! Qc,e"/ [

Cad 4
oe? OeeQ OeeQ N

e

> )
3 @ X > S Qs
@ <, C < e @ iey X
1° 0w v’ O e c\?’;’go“e‘ G ® o oq@\)ve; R
Q v

S SIS I R |t S

iy @ f N O e e 0% oo% e

29 A (R Q(;e?’ (\”L-c’ $° AV avy® OOX"(\\ O(Pﬂ\e
o o »®

Figure 3: The evaluation results of Code LLMs on CTF-Code.

B | EvalPlus | LiveCodeBench | BigCodeBench | CTF-Code
ase Model

‘ HumanEval (+) ‘ All Easy ‘ Full Hard ‘ Ori CTF

DC-6.7B-Instruct | 74.4(71.3) | 189 453 |355 101 | 458 38.1

Wavecoder 75.0(69.5) | 189 460 |339 128 | 477 392

DeepSeek Inversecoder 76.2 (72.0) 18.1 43.1 35.9 10.8 47.8 39.1

Coder 6.7B Magicoder 76.8 (71.3) | 192 466 | 362 135 | 488 434

CTECoder 78.7(75.0) | 214 533 |[37.6 142 | 528 445

CTECoder,s 713(65.9) | 183 466 |37.0 122 |514 43.1

Evol 85.4(79.3) | 239 715 |437 142 | 763 599

CTF 88.4(80.5 |246 741 |441 176 | 795 608

Qwen2.5 w/o select 854 (78.0) | 241 728 | 442 162 | 764 602

Coder 14B Oss 84.1(77.4) |206 618 |420 122 |755 586

CTFoss 86.0(79.9) | 223 679 |425 189 | 782 60.0

w/o select 86.6(80.5) | 208 672 |425 149 | 768 592

Table 2: Performance comparison of CTFCoder with other models. To avoid environmental discrepancies, the
official leaderboard results are presented. Only when results are missing, local testing are conducted. CTFCoder
represents for CTF-Instruct based on Evol-Instruct while CTFCoder, represents based on Oss-Instruct. For Qwen
2.5 Coder 14B, Model represents the instruction datasets they finetuned on. ‘w/o select’ means original data mix
random selected CTF-Instruct without methods in Section 4.2.

capabilities of coding. Specifically, by analyzing
the error cases we find that the models are most
likely to make mistakes when confronted with de-
tails such as modified boundary conditions. This
is because detailed modifications to code problems
usually directly change the boundary cases of the
original problem or add some additional restric-
tions that lead to incorrect model judgments.

5.2 Instruction Tuning

Setup Evol-Instruct (Luo et al., 2024b) and Oss-
Instruct (Wei et al., 2024b) are selected as the origi-
nal datasets for difficulty (110k samples) and diver-
sity(75k samples), respectively. Sensitivity data are
generated using gpt-4-turbo-2024-04-09, with

failed data removed, resulting in 108k and 73k
sensitivity samples. During data filtering, the open-
source model XCoder-Complexity-Scorer (Wang
et al., 2024b) is used to score difficulty, and se-
mantic vectors are extracted using Deepseek Coder
1.3B Base (Guo et al., 2024) after one epoch of
SFT on the code-feedback (Zheng et al., 2024)
dataset. After selection, 30k sensitivity samples
are added to Evol-Instruct and 10k to Oss-Instruct,
named CTF and CTF,g, respectively. After SFT
with Deepseek Coder 6.7B base, CTFCoder and
CTFCoder,gs are obtained. Qwen 2.5 Coder 14B
Base (Hui et al., 2024) is also tuned. During train-
ing, the batch size is 512 and the sequence length
is 2048. The initial learning rate is 2e-5 with 10



warmup steps and the learning rate scheduler is co-
sine. A100-80GB is used to finetune for 3 epochs.

Baseline & Benchmark CTFCoder is compared
with other well-known models tuned on Deepseek
Coder 6.7B Base, including Deepseek Coder 6.7B
Instruct (Guo et al., 2024), Magicoder (Wei et al.,
2024b), Wavecoder (Yu et al., 2024), and Inversec-
oder (Wu et al., 2024). Magicoder first trains for 2
epochs using oss-instruct to enhance diversity, then
uses 1 epoch of evol-instruct to improve difficulty;
Wavecoder rewrites function code docstrings into
instruct format and uses LLMs to increase diffi-
culty; Inversecoder generates instructions based on
evol-instruct output and filters them using a fine-
tuned model. All models address both difficulty
and diversity dimensions. For Qwen 2.5 Coder, the
original Evol-Instruct and Oss-Instruct are used for
SFT, serving as the baseline.

For the benchmarks, Humaneval, Humaneval (+),
and LiveCodeBench are selected to cover various
difficulty levels. Humaneval+ from Evalplus (Liu
et al., 2023) extends Humaneval by adding a large
number of test cases to cover corner cases. Live-
CodeBench includes three difficulty levels: easy,
medium, and hard (with easy being more chal-
lenging than Humaneval). Since GPT-4-turbo’s
training data ends in December 2023, we test Live-
CodeBench questions from January 2024 onwards.
For diversity, BigCodeBench, which specializes in
Python package usage, is selected to complement
the tests. Additionally, BigCodeBench selects high-
difficulty sub-data to form a Hard subset.

5.3 Results

Table 2 shows the performance comparison be-
tween CTFCoder and other models. CTFCoder
demonstrates consistent performance improve-
ments across all benchmarks. Although previous
models already cover difficulty and diversity and
achieve strong performance, the addition of sen-
sitivity acts like a further ‘activation’. CTFCoder
shows significant improvements across all three
dimensions. It has a nearly 3% improvement on
CTF-Code, indicating that CTF indeed helps the
model pay more attention to details. On harder
benchmarks, Humaneval+, BigCodeBench-Hard,
and LiveCodeBench, CTFCoder achieves over 4%,
5%, and 11% performance improvements, respec-
tively. CTF, building upon the difficulty dimension
of Evol-Instruct, results in further enhancement.
This illustrates that generating sensitivity data us-
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Figure 4: The change in model performance as sensitiv-
ity data joined into Evol-Instruct.

ing existing data as seeds not only preserves the
original data dimensions but can even trigger fur-
ther improvements.

Even though CTFCoder,s has a relatively small
amount of SFT data, CTF,g helps it outper-
form other models on LiveCodeBench-Easy and
BigCodeBench-Full, reflecting the ‘activation’ ef-
fect on diversity works, too. On Qwen 2.5 Coder
14B, compare the baseline, random selection of
CTF-Instruct data (‘w/o select’) and CTF generally
shows a progressive performance improvement,
highlighting the effectiveness of sensitivity data
and the importance of data selection.

6 Discussion

There exists an optimal range for the amount of
sensitivity data. Figure 4 shows the performance
trend when sensitivity data is gradually mixed into
Evol-Instruct (110K), with the performance evolv-
ing in three stages: an initial decline, a mid-stage
increase, and a final decline. The initial drop in-
dicates that a certain amount of sensitivity data
is required to have an effect, which verifies the
assumption in Equation 4, where a threshold 7 en-
sures a minimum quantity of sensitivity data. The
subsequent rise followed by a decline suggests that
there is an upper limit for sensitivity data, confirm-
ing our observation that directly merging sensitivity
and original data dimensions exacerbates the lack
of the third dimension. Figure 8 in Appendix B
also shows the results for Oss-Instruct (75k).

Influence of sensitive data mount The effective-
ness of the selection strategy is universal. Table 2
and Figure 5 compare the performance of differ-
ent models and data using the selection strategy
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Figure 5: The performance change brought by the selec-
tion strategy on Evol-Instruct and Oss-Instruct. The
darker shade in Humaneval represents Humaneval+,
while in LCB, the darker shade represents LCB-All,
and the lighter shade represents LCB-Easy.

versus not using it (‘w/o select’) with the same
amount of data. Regardless of the original data or
base model, the strategy generally leads to perfor-
mance improvement. Figure 5 shows that, with
Evol-Instruct, performance on LiveCodeBench im-
proved by over 17%, while for OSS-Instruct, per-
formance on Humaneval increased by more than
7% compared to ‘w/o select’. This validates our
hypothesis that data offset can effectively address
the third dimension.

Epoch Strategy HE (+) LCB (Easy)
2+0 74.4 (69.5) 18.5(46.8)

) 1+1 79.9 (75.0) 21.0 (51.8)
240 65.9 (61.0) 16.0(40.4)

1+1 66.5 (61.6) 18.8 (46.9)

3+0 76.8 (72.6) 18.6(46.4)

3 2+1 76.8 (73.2) 20.7 (51.3)
3+0 65.2(59.8) 17.0(42.5)

2+1 68.3(62.2) 19.0(47.2)

Table 3: The results of continual training with CTFE.
Epoch is the total number of training epochs, and ‘x+y’
indicates that the model is first trained for x epochs
on the original data, followed by y epochs on CTF-
Instruct. HE represents Humaneval, and LCB refers to
LiveCodeBench-All, with ‘Easy’ inside the parentheses.

Since the amount of data used for training the
open-source models in the main experiment differs,
we designed a controlled experiment to verify the
independent gain from the sensitivity dimension.
In Figure 6, when the total training data volume is
fixed, replacing 40% of the original Oss-instruct
data with randomly selected CTF data led to a 20%

LCB All (Oss Only) LCB Easy (Oss Only)
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Figure 6: Performance changes with the increase in
diversity data (Oss only) and the gradual injection of
sensitivity into the diversity data (CTF Mixed).

improvement on LCB-All, whereas simply increas-
ing the Oss-instruct data volume caused a 9.5%
performance drop. This suggests that when the
diversity dimension is saturated, and sensitivity
can be considered a new ‘performance engine’.

Sensitivity can be directly used for contin-
ual training. Inspired by Magicoder (Wei et al.,
2024b), in Table 3, after training on the original
data for 1 or 2 epochs, an additional epoch of CTF-
Instruct is added. Compared to continuing training
with the original data alone, this approach shows
a significant performance improvement. Particu-
larly on LiveCodeBench, every setup achieves a
10% gain. This further demonstrates the orthogo-
nality of the sensitivity dimension with the other
two dimensions, as its benefit does not depend on
joint training, allowing for efficient and convenient
continual training to achieve gains.

7 Conclusion

Beyond diversity and difficulty, we introduced sen-
sitivity as a key dimension for evaluating and im-
proving Code LLMs. By constructing the CTF-
Code benchmark, we revealed the shortcomings
of existing Code LLMs in understanding details.
To futher utilize sensitivity, we propose the CTF-
Instruct framework, which generates sensitivity
data based on existing dimensions to cover sen-
sitivity and employs a filtering algorithm to shift
towards the third dimension. Experiments show
that CTF-Instruct data fine-tuned LLMs improves
performance on CTF-Code and outperform exist-
ing open-source models on general code generation
benchmarks, validating the universal benefits of
sensitivity optimization for Code LLMs.



Limitation

Due to constraints in training resources and man-
power, our work was limited to constructing a rela-
tively modest set of CTF-Code problems, without
exploring the potential for more complex or chal-
lenging examples. Additionally, the CTF-Instruct
framework was not tested with multi-round genera-
tion, nor was it evaluated on larger, more advanced
LLMs. While our experiments demonstrate the ef-
fectiveness of the proposed approach on the models
tested, we acknowledge that the full potential of
CTF-Instruct could be realized by scaling up the
dataset and conducting more extensive fine-tuning
experiments, particularly on models with greater
capacity. Furthermore, the impact of training on
larger models with more rounds of fine-tuning re-
mains an open question and is a promising direction
for future work.
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Appendix
A Example
B Experiment Results

Models A range of LLMs with a size of
>7B (mainly focusing on Code LLMs) are se-
lected for testing, including Qwen 2.5 Coder,
Deepseek Coder v1 & v2, and OpenCoder. Some
general-purpose LLMs with strong code capa-
bilities, such as Qwen 2.5, Llama 3.1 & 3.3
are also tested. All of these models are tested
on the Instruct version. Additionally, we tested
closed-source models via APIs, including GPT-
40 (gpt-40-2024-08-06) and Claude-3.5-Sonnet
(claude-3-5-sonnet-20240620). Finally, think-
capable LLLMs, ol-mini, and ol-preview are also
tested.

BLEU Score

C Annotation Process

C1

Today, large language models (LLMs) demonstrate
remarkable capabilities in code generation. How-
ever, it remains unclear how well LLMs can cap-
ture the nuances of programming problem details,
such as the distinction between "swapping any two
characters" and "swapping two adjacent charac-
ters". Can LLMs accurately capture the differences
between these two concepts? To investigate this,
we propose to modify a set of original problems
(LeetCode Easy Level) to construct a new set of
counterfactual (CTF) problems. These CTF prob-
lems are designed to have minor textual differences
from the original problems while yielding signifi-
cantly different solutions. To minimize the effort
required to construct this benchmark, we aim to
ensure that CTF problems can utilize the test cases
of the original problems without the need for re-
construction.

Mission Background

C.2 Annotation Content

The annotation process does not involve modifying
the problem itself, as this task has already been
done by the LLMs. Instead, the annotator’s role is
simply to evaluate whether the modified problem
is correct and aligns with our requirements.

C.3 Annotator Requirements

The annotator requirements are summarized below.
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* The annotator is required to have a solid foun-
dation in algorithms and the ability to quickly
solve LeetCode Easy-level problems.

* The annotator needs to have one hour of free
time per day for one month.

* This mission requires 3 to 6 annotators.

C.4 Construction Workflow

To illustrate the construction workflow in detail, we
will supplement it with an example.

1. Read the original problem and briefly explain
the meaning of the original problem. As
shown in Figure 10, the meaning of the orig-
inal problem is: "Given a string consisting
of three letters ’abc’ in any order, can ’abc’
appear after swapping any two characters at
most once?"

Read and understand the newly automatically
generated problem. If there are errors in the
Sample Input/Output orinthe Test Cases,
correct them.

. In comparison with the original problem, clas-
sify the new problem into three types (Bad,
Robust, CTF) and explain what changes have
been made.

* Bad. The new problem has a signifi-
cant vulnerability (logical vulnerability
or conflict) and can not be a complete
problem.

* Robust. The new problem has only a
different wording from the original ques-
tion, i.e. the algorithm used by the new
problem and the answer is exactly the
same. As shown in Figure 11, this is a
robust version of the original problem.
After understand the meaning of the new
problem, we can tell that the change is
"any substring can be reversed".

For the new problem, the total length
of cards is 3. Reversing a substring of
length 3 is equivalent to swapping the let-
ters in positions 1 and 3, and position 2
will not be changed during the reversing
process; reversing a substring of length 2
is equivalent to swapping adjacent letters
in the original question. The operation
of the original problem and the opera-
tion of the new problem are exactly the



Figure 7: The data distribution change trace during the CTF-Instruct pipeline.
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As shown in Table 4, we provide an example of the
//\‘\ annotation table that the annotator should fill in.
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LLM:s to generate desired counterfactual question
and instruction tuning data.
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Figure 8: The performance varies with the amount of
sensitivity data.

same. Therefore, the answers are com-
pletely consistent and do not need to be
modified.

* CTF. The new problem has only a small
difference from the original problem, but
it changes the meaning of the original
problem, making the answers not exactly
the same as the original problem (With
not too much variation in difficulty, the
more variation in answers the better).
Figure 12 and Figure 13 are two exam-
ple of CTF problems. The change of
the former problem is "only two adjacent
characters can be exchanged", and the
change of the latter problem is "cards
become abcd".

4. Determine whether new test cases need to be
added to the CTF problem. For example, the
annotator should determine whether the range
of data of the new problem is fully consistent
with the original problem, and whether the
input of test cases of the original problem can
be directly executed by the CTF problem.
For the first CTF problem, there is no need
to add new test cases, while for the second
CTF problem, some new test cases should be
added.
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Figure 9: The left frequency histogram shows the BLEU score between the original problems and the CTF problems.
The right one shows the Code BLEU score between the solutions corresponding to the original problems and the
CTF problems.

Original . New New Problem New
Problem Original Problem Model | Problem Statement Problem Modification Add New
Meaning Test Cases
Index Index Error Type
0 Given a string com- | ol-mini 0-0 Robust No

posed of letters "abc’
in any order, ex-
change any two char-
acters to see if string
*abc’ can occur.

0 Given a string com- | ol-mini 0-1 CTF Only two adjacent No
posed of letters "abc’ characters can be ex-
in any order, ex- changed

change any two char-
acters to see if string
*abc’ can occur.

1 Add 1 to a number | ol-mini 1-1 CTF Replace a number in No
in an array of posi- an array with a num-
tive numbers, how to ber from 0-9, how to
maximise the array make the array prod-
product uct maximum

4 A string with a | ol-mini 4-0 CTF How many people Yes
phone number in are over 60 years
front and 2 digits in old and have unique
the middle indicating phone numbers?
age. Find those over
60 years old

4 A string with a | ol-mini 4-1 CTF Age is hexadecimal No

phone number in
front and 2 digits in
the middle indicating
age. Find those over
60 years old

Table 4: An example of the annotation table.
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Question Content:

re are three cards with letters $\texttt{al}$, $\texttt{b}$, $\texttt{c}$ placed in a row in
some order. You can do the following operation at most once:

Pick two cards, and swap them. Is it possible that the row becomes $\texttt{abc}$ after the
operation? Output "YES" if it is possible, and "NO" otherwise.

ut

first line contains a single integer $t$ ($1 \leq t \leq 6%$) the number of test cases.
only line of each test case contains a single string consisting of each of the three
characters $\texttt{a}$, $\texttt{b}$, and $\texttt{c}$ exactly once, representing the
cards.

put

each test case, output "YES" if you can make the row $\texttt{abc}$ with at most one
operation, or "NO" otherwise.

can output the answer in any case (for example, the strings "yEs"”, "yes"”, "Yes” and "YES"
will be recognized as a positive answer).Sample Input 1:
ple Output 1:
e
the first test case, we don't need to do any operations, since the row is already

$\texttt{abc}$.

the second test case, we can swap $\texttt{c}$ and $\texttt{b}$: $\texttt{acbh} \to
\texttt{abc}$.

the third test case, we can swap $\texttt{b}$ and $\texttt{a}$: $\texttt{bac} \to
\texttt{abc}$.

the fourth test case, it is impossible to make $\texttt{abc}$ using at most one operation.
Starter Code:
Test Cases:

\"input\"”: \"6\\nabc\\nacb\\nbac\\nbca\\ncab\\ncba\\n\", \"output\”:
\"YES\\NYES\\NYES\\nNO\\NNON\NYES\\n\", \"testtype\”: \"stdin\"}]1"

Figure 10: An example of the original problem.

15




## Question Content:

There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in
some order. You can perform the following operation at most once:

- Choose any substring of the cards and reverse it.

Is it possible that the row becomes $\texttt{abc}$ after the operation? Output "YES" if it is
possible, and "NO" otherwise.

Figure 11: An example of the robust version of the original problem.

## Question Content:
There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in
some order. You can perform the following operation at most once:

- Pick two **adjacentx* cards and swap them.

Is it possible that the row becomes $\texttt{abc}$ after the operation? Output "YES" if it is
possible, and "NO" otherwise.

Figure 12: The first example of the CTF version of the original problem.

## Question Content:

There are four cards with letters $\texttt{al}$, $\texttt{b}$, $\texttt{c}$, $\texttt{d}$ placed
in a row in some order. You can do the following operation at most once:

- Pick two cards, and swap them. Is it possible that the row becomes $\texttt{abcd}$ after the
operation? Output "YES" if it is possible, and "NO" otherwise.

Figure 13: The second example of the CTF version of the original problem.

Please create a **counterfactual*x version of the given original python programming problem.
Your goal is to **make a minimal change to the problem that leads to a significant change
in the solutionx*. Follow these detailed steps:

1. Carefully read and comprehend the original problem's context, conditions, constraints, and
requirements.

2. Identify a critical point in the original problem and think about a modification. *xThe
modification should be slight but cause a substantial change in the solution approach*x.

3. Consider the influence of the modification. Ask yourself: Would it change data structures or
algorithms? Explain the influence before output the counterfactual problem. If the
influence does not impact the solution approach significantly, rethink another critical
point to modify. Repeat Step 2 and Step 3 until you find a point that satisfies the
requirement.

4. Modify the original problem based on the most influential point. The modified problem must
be consistent, clear, and requires a significantly different solution approach. Update the
sample inputs and outputs to match the new problem condition.

5. Output the counterfactual problem, ensuring the following format:
- Before the JSON format, include a section marker "###Counterfactual Problem”.
- After the section marker, provide the counterfactual problem in the same JSON format as
the original, including "question_content”, "starter_code”, "public_test_cases"”, and
"metadata”.

### Original Problem

Figure 14: The prompt used to generate CTF-Code Problem.
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Refine a code generation task, initially presented as #0riginal_Sample#, which is a JSON dict
including three keys: a task instruction, and the output generated from the instruction.

Your task is to produce a #Modified_Sample# by altering the original task instruction in a way
that significantly changes the output, yet with minimal adjustments to the instruction
itself.

## Requirements:

1. **Minimal Instruction Changex*: Achieve the code change with minimal alterations to the
instruction. The difference will be assessed through evaluated by the Rouge score,
indicating the high similarity in wording, sentence structure, and length to the original.

2. *xNo Trival Changes to Instruction**: Ensure the modification to the instruction is
semantic-relevant. Do not make trivial changes like adding or removing a word, changing the
order of words, or replacing synonyms.

3. **Maximal Code Changex*: Your adjustments should lead to considerable changes in the output,
impacting aspects like algorithms, data structures, data and control flows, or boundary
conditions. The difference will be assessed through both the Rouge score and AST score,
indicating the output's functionality, implementation, and naming should substantially
diverge from the original.

4. xxEncourage Trival Code Changex*: The code output should be significantly different. Change
every aspect of the code, including the function name, variable names.

## Format:
1. Your output should be a #Modified_Sample# dict in **JSON formatx* as the #Original_Sample#
is.

2. Using x*markdown code snippet syntaxx* in the instruction and the output.
3. Ensure all characters are **properly escaped*x in the JSON string.

## Examples:
{seeds?}

## Question:
- Original_Sample:

Figure 15: The prompt used to generate CTF-Instruct data.
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