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Abstract

Action recognition is an important research field that

has many applications in surveillance, video search, au-

tonomous vehicles, etc. However, current state-of-the-art

action classifiers are still not widely adopted in embedded

applications yet. The major reason is that action recog-

nition needs to process both spatial and temporal stream-

ing data to precisely identify actions, which is compute-

intensive and power hungry. To solve this issue, researchers

start using FPGA to run action recognition models with

minimum power. In this paper, we propose a new hardware

architecture of action recognition on FPGA. Our model is

based on the popular two-stream neural network. By op-

timizing the optical flow and convolution operations in the

temporal domain, our method can achieve similar accuracy

with one order of magnitude less operations than other C3D

baseline models. We have implemented our model on Xilinx

Ultrascale+ ZCU102 and released the source code.

1. Introduction

Human action recognition has a wide range of applica-

tions including intelligent video surveillance [1, 29], video

storage and retrieval [20, 26], intelligent human–machine

interfaces [14, 15]. However, unlike other deep learning ap-

plications, such as image classification and object detection,

which have been adopted in many industry applications.

The development of action recognition is still behind and

cannot meet the industry standard. This is because that hu-

man action is complex and diverse. Moreover, compared to

images that have only spatial data, videos have both spatial

and temporal data and require several order of magnitude

more computation resources than images. Therefore, dedi-

cated hardware is necessary to accelerate the inference time.

One solution is Field-Programmable Gate Array (FPGA),

which can achieve real-time performance while consuming

less energy than GPU [13]. By leveraging the efficiency and

flexibility of FPGA, researchers can fulfill real-time action

recognition with minimum cost.

Figure 1. Block diagram of the proposed two-stream architecture

for action recognition on FPGA.

There are several existing FPGA solutions for action

recognition. Fan et al. [5] proposed to employ the 3D CNN

[19] for video analysis. However, 3D CNN (C3D) requires

a large number of operations. Later studies focused on im-

proving the efficiency of 3D convolutions [4, 11].

In this paper, we proposed a new efficient FPGA model

for action recognition, which is based on the two-stream

model. Our method uses much less operations while main-

taining similar accuracy to other C3D-based counterparts.

The major advantages of our method are:

• Utilizing only 2D CNN operations, which have much

less operations than 3D CNN.

• Processing both spatial and temporal streams paral-

lelly. Temporal data can increase overall accuracy.

• Reducing the high latency of traditional optical flow by

using Lucas-Kanade algorithm with slightly accuracy

drop (< 2%).

Fig. 1 illustrates our architecture. Our model has been

implemented and tested on Xilinx ZCU102 platform. The

source code has been published on GitHub1. Experiment

results on UCF101 [18] show that our model has around 10

times less operations than other C3D-based FPGA systems

while keeping similar accuracy.

1https://github.com/NetDBFPGA/ecv2021_demo



2. Related Work

In this section, we briefly review related works of action

recognition and corresponding implementations on edge de-

vices.

Action recognition. There are two main research direc-

tions in CNN-based action recognition: two-stream models

[8, 22, 21, 6] and 3D CNNs [7, 19, 17]. The first approach

processes RGB frames (spatial stream) and pre-computed

optical flow (temporal stream) using two 2D CNNs inde-

pendently, Late fusion is then applied to obtain final pre-

dictions. The second approach jointly learns spatiotempo-

ral features from RGB frames by using 3D CNN. However,

both approaches are still not widely deployed on edge de-

vices. The two-stream based models require accurate op-

tical flow as input, which is time-consuming and becomes

the bottleneck. On the other hand, the 3D convolutions also

have large computation cost and are too heavy to be de-

ployed on edge devices.

In order to alleviate the inefficiency of optical flow com-

putation, several recent works attempt to speed up the pro-

cess by using specifically-designed CNN models. Hid-

den two-stream [27] and ActionFlowNet [12] use encoder-

decoder network to compute optical flow. Those networks

can be jointly trained with the action recognition model.

But the encoder-decoder architecture also has expensive

computation cost.

Another line of research proposed to utilize difference

between consecutive frames (RGBDiff [21]) or consecutive

feature maps [24]. The advantage of RGBDiff lies in that

only subtractions are involved for computing temporal in-

formation, which can be computed on the fly. However it

lacks the important information of motion directions and

has lower accuracy. For more deep action recognition algo-

rithms, a comprehensive review can be found in [28].

Action recognition on edge devices. Recently, re-

searchers have designed new hardware architecture for ac-

tion recognition on edge devices [5, 4, 25, 11]. Fan et al.

[5, 4] implemented C3D model on FPGA, and designed

specific data layout and memory hierarchy to optimize the

throughput. Sun et al. [11] exploited the sparsity of 3D

CNN, and reduced computational cost by skipping zero

values in 3D convolution kernel. Nevertheless, the com-

putation cost of 3D CNN is still too high. Thus, several

works have started to investigate new methods to model

temporal relationship between frames, such as the Tempo-

ral Shift Module (TSM) [9] proposed by Lin et al. TSM

is an efficient model that needs zero multiply-accumulate

(MAC) operation to process temporal features. However,

experiments have showed that temporal stream can increase

the accuracy. For example, an experiment made by TSM

authors showed that TSMRGB+Flow is higher than single

TSMRGB by 5.4% on something-to-something dataset.

3. Efficient Two-Stream Action Recognition

The bottleneck of the two-stream model is the compu-

tation of optical flow [28]. In this section, we first present

our design of optical flow accelerator, and introduce the 2D

ConvNet accelerator and the concurrent CNN inferences ar-

chitecture. Finally, we present the details of our prototype

implementation on Xilinx Ultrascale+ ZCU102.

3.1. Temporal Stream Accelerator

Our accelerator architecture of temporal stream is based

on Lucas-Kanade algorithm [10, 2], which is used to com-

pute dense optical flow and denoted as LK-OF.

LK-OF. There are four stages in our accelerator, as

shown in Fig. 2. The details of each stage are elaborated

below:

• Stage 1: Smoothing the input images by a noise reduc-

tion filter of size 5 × 5, and complexity of processing

one pixel is 52.

• Stage 2: Computing spatial derivative with a filter of

size 5 × 5. The temporal derivative is the difference

between two input images. Complexity of this stage is

52 + 1 to output one pixel.

• Stage 3: Lucas-Kanade algorithm assumes that mo-

tion vectors are all the same in a N × N window, so

the problem can be translated to the least square prob-

lem. This stage computes the coefficients of the 2× 2
matrix. We can reduce the complexity of O(N2) to

O(N) by caching intermediate results from previous

window. The complexity of this stage is 4N .

• Stage 4: Computing one (u, v) pair by 2 × 2 matrix-

vector multiplication and scaling to integers in [0, 255]
range. The complexity of this stage is 6.

The above stages are implemented in a pipeline manner, so

the storage complexity is negligible, and the total computa-

tional complexity is

(52 + 52 + 1 + 4N + 6)×Ximg × Yimg. (1)

In addition to LK-OF, we have studied another optical

flow algorithm TV-L1 [16]. Table 1 compares the accu-

racy and latency of TV-L1 and LK-OF. We implemented the

LK-OF algorithm on FPGA at 200MHz clock rate and the

latency is 2ms with 6.24% accuracy gain against single spa-

tial stream on UCF101. We did not have enough time to im-

plement TV-L1, so we run the model on Nvidia GTX1080.

TV-L1 has 85ms latency on GPU. Therefore, our LK-OF

hardware module can achieve at least 40 times speedup. Al-

though TV-L1 has slightly higher accuracy gain (8.5%) on

UCF101, the slow inference speed makes it hard to be ap-

plied to real-time applications on embedded devices.



Figure 2. Block diagram of our optical flow architecture.

OF Algorithm Accuracy Latency(ms)

TV-L1 +8.5% 85

LK-OF +6.24% 2

Table 1. Accuracy gain on UCF101 by adding temporal streams

into single spatial stream. LK-OF has shorter latency than TV-L1.

The backbone model is ResNet18 pretrained on ImageNet.

3.2. Architecture of 2D Convolution Accelerator

We consider a flexible design for convolutional neural

network accelerator [23, 3], which can be easily configured

to any filter size and stride with negligible resource. There-

fore, our architecture can easily process various data and

scale up to concurrent inferences of multiple streams. The

loop optimization techniques for 2D-convolutions in our ar-

chitecture are elaborated below:

Tiling. For large feature maps that can not be fully

loaded into on-chip memory, we cache small portion of the

data in on-chip memory by tiling the loop along row, col-

umn and channel directions of the input and output feature

maps.

Unrolling. To speed up the 2D-convolution in CNN, we

choose to parallelize the computations of output channels

since they are independent with each other. To output one

pixel in a channel, the corresponding data in all the input

channels are element-wise multiplied by filter weights and

then summed together. We choose to parallelize a portion

of multiplications along input channel for saving resource

consumption.

In our accelerator design, the feature map and weight

data are quantized to 8-bit unsigned integer while accumu-

lator and partial sum are represented by 32-bit unsigned in-

teger.

3.3. Two­Stream Action Recognition System

We have implemented a prototype system on FPGA. Fig.

3 demonstrates a screenshot of our output, in which the left

part is the RGB frame and the right part is the computed

optical flow. The throughput is around 10 to 15 FPS and the

predictions are showed in the bottom, where the class text

Figure 3. A detection result of our two-stream model on FPGA.

The extracted optical flow is shown at right side.

is yellow if the prediction is correct. The implementation

details of system implementation are elaborated below:

Hardware. We implemented the system of our two-

stream action recognition model on Xilinx Ultrascale+

ZCU102 by using Vivado HLS 2019.1. As shown in Fig.

1, there are one module of LK-OF accelerator and two in-

dependent modules of 2D-Convolution accelerator. All the

modules are connected by AXI interconnection. The work-

ing frequency is 200 MHz. Feature maps and weights are

stored in DRAM and accessed through two high perfor-

mance ports. Table 2 shows the resource utilization of the

system.

Resources LK-OF CNN Accel Total

DSP 97 (4%) 1293 (50%) 1390 (54%)

BRAM 46 (2%) 426 (11%) 472 (13%)

LUT 9.2K (3%) 218K (78%) 227.8 (81%)

Table 2. FPGA resource utilization of our two-stream action recog-

nition model.

Software. We have implemented the whole two-stream

action recognition system on Xilinx PYNQ framework. For

an input video, the optical flow frame is computed by feed-

ing every two consecutive frames into our module, and then

stacking the most recent five optical flow frames in DRAM.

We also implemented an online action recognition process,

in which we define a time window on the temporal dimen-

sion of input video and sample one frame I from each win-

dow for spatial stream inference. The stacked optical flow

data are then sent into temporal stream module. The spatial

and temporal stream are processed simultaneously by the

corresponding convolution accelerators. To process longer

temporal features, we perform average pooling for the most

recently 8 outputs of each stream. Finally we fuse the out-

puts of the two modules.

Scalability. Regarding the DRAM used in this work,

the theoretical peak bandwidth is 12.8 GB/s (single mem-

ory port). The largest required bandwidth for our two 2D-



Figure 4. Our two-stream model has been optimized for the

DRAM bandwidth and the latency increase is less than 5%.

ConvNet accelerators is 128×4×0.2 = 102.4 Kb/s = 12.8
GB/s, which exactly matches the theoretical peak of the

DRAM on-board. We have also conducted an experiment

to verify and the workload of a customized CNN architec-

ture with 5 layers of standard convolution, then each one

accelerator is assigned with one inference task. As shown

in Fig. 4, our two-stream architecture has been optimized

for the on-board DRAM bandwidth and has a little higher

latency than single RGB stream (< 5%).

4. Experiment Results

4.1. Experiment Setup

Datasets. We conducted experiments on the most popu-

lar action recognition dataset, UCF101, which contains 101
action classes and 13, 320 video clips. We adopt the orig-

inal three training/testing splits for evaluation. The Lucas-

Kanade optical flow is computed from the OpenCV toolbox

by setting iteration number to one and integral window size

to 11 × 11. To reduce the storage requirements, we rescale

the horizontal and vertical components of the flow linearly

to integers in [0, 255].

Training & Testing. We choose the ResNet18 as our

backbone for each stream, and the models are both pre-

trained on ImageNet. We employ the common train-

ing techniques including regularization, data augmenta-

tion, partial batch normalization, corner cropping and scale-

jittering to avoid overfitting. With regard to testing, we

make a small change of setting in TSN [21]. We sample

8 snippets, one central cropping and stack 5 optical flow

frames for the input of temporal stream. We then use aver-

age pooling to aggregate the prediction from snippets and

fuse the predictions from both streams by using the weights

(spatial : temporal) = (1 : 1.5).

4.2. Comparison of Two­stream Methods

Table 3 shows the comparison with previous two-stream

methods in terms of accuracy gained by temporal stream

and model complexity. For fairness, the comparison is on

video level and uses protocol adopted by TSN [21]. But

as mentioned in section 4.1, the input data for a temporal

stream inference is 5-stacked optical flow frames and 8 time

windows for a video. From the equation 1, we can calculate

the complexity of optical flow computation for one video,

and the total complexity is obtained by adding the CNN

model complexity. Note that, RGBDiff uses the difference

between RGB frames and does not have information of mo-

tion directions.

Architecture Acc. Gain GOPs Backbone

TV-L1 [21] 8.5% - ResNet50

Y. Zhu [27] 10% 356 VGG16

RGBDiff [21] 4.6% 0.007 ResNet50

PAN [24] 5.7% 2.8 BN-Inception

Ours 6.24% 0.52 ResNet18

Table 3. Comparing with other two-stream models on UCF101.

4.3. Comparison of Hardware Accelerated Action
Recognition

Table 4 shows the comparison of our model with previ-

ous hardware accelerators of action recognition. Our work

is based on 2D convolution, and has less computational

complexity than others C3D based models while having

comparable accuracy.

Architecture Accuracy GOPs Size (MB) Backbone

F-C3D [5] 79% 76 321 C3D

F-E3D [4] 85% 12.2 8.6 E3DNet

Sun et al. [11] 88% 26.13 126 (2+1)D

Ours 86% 4.12 22.3 ResNet18

Table 4. Comparison of hardware accelerated action recognition.

5. Conclusion and Future Work

In this paper, we propose a new hardware design for ac-

tion recognition different on FPGA. Our implementation is

based on two-stream network with 2D-convolutional filters,

which need much less computations than 3D CNN based

models. We further optimize the hardware architecture to

shorten the latency of temporal stream and perform effi-

cient two-stream computation on FPGA. Experiment results

show that our model can achieve up to 40 times speedup

with slightly accuracy drop (< 2%).

For future work, we will investigate end-to-end trainable

two-stream models and run experiments on latest action

datasets. Additionally, we can extend two-stream model to

triple-stream by adding audio data for detecting more di-

verse actions.
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