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Abstract

This paper proposes multiple techniques to im-001
prove runtime efficiency of Japanese tokeniza-002
tion based on the Pointwise Linear Classifica-003
tion (PLC) framework, which formulates the004
whole tokenization process as a sequence of005
linear classification problems. Our techniques006
are optimized by leveraging the characteristics007
of the PLC framework and the task definition008
itself. Specifically, we introduce (1) composing009
multiple classifications into array-based opera-010
tions, (2) efficient feature lookup with memory-011
optimized automata, and (3) three orthogonal012
preprocessing to reduce actual score calcula-013
tion. Combining these techniques, our imple-014
mentation works 5.7 times faster than the exist-015
ing tokenizer based on the same model without016
any loss of tokenization accuracy.1017

1 Introduction018

In languages without explicit word boundaries such019

as Japanese and Chinese, natural language process-020

ing systems are required to determine these bound-021

aries from unsegmented texts before any types of022

word-based analyses. In Japanese processing, two023

major linguistic2 tokenization methods have been024

proposed: lattice methods and pointwise methods.025

The lattice methods (Hisamitsu and Nitta, 1990)026

generate a lattice of possible tokenizations over the027

input text and determines the path on the lattice028

that minimizes a given cost function. In contrast,029

pointwise methods (Shinnou, 2000; Sassano, 2002;030

Neubig et al., 2011; Kitagawa and Komachi, 2018;031

Tolmachev et al., 2019) utilize a binary classifier032

to predict whether a particular character boundary033

becomes a word boundary or not, as in Figure 1.034

A thorough analysis revealed that both methods035

1Our implementation is available as an open source soft-
ware at https://example.com/ (MIT or Apache-2.0)

2There are also unsupervised tokenization methods such as
SentencePiece (Kudo and Richardson, 2018) but we focused
on linguistic tokenization which is still important for word
sensitive methods such as information retrieval.
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Figure 1: An example of Japanese tokenization with the
pointwise method. The bottom box contains character
n-gram features described in Section 2.1.

are comparable in terms of tokenization accuracy 036

(Mori et al., 2011). 037

Although the pointwise methods could work in 038

a linear time of input lengths as described in Sec- 039

tion 2, it requires careful designs of the overall 040

algorithm to reduce unnecessary bottlenecks which 041

cause a main concern of runtime efficiency. Particu- 042

larly, comparing well-known tools of both methods, 043

we can see that KyTea (Neubig et al., 2011) (point- 044

wise) is almost 2.1 times slower than MeCab (Kudo 045

et al., 2004) (lattice), meaning that there are still 046

rooms for improvements. 047

In this paper, we focus on designing an efficient 048

algorithm of the pointwise methods with linear clas- 049

sifiers, which we call Pointwise Linear Classifica- 050

tion (PLC), without changing the model structure. 051

Our algorithm works as the same as KyTea, but is 052

extremely faster than the original implementation. 053

To this end, we (1) formulate the whole PLC al- 054

gorithm as a set of array manipulations (Section 055

2.3), (2) introduce an efficient pattern matching al- 056

gorithm to look up features from the text (Section 057

3.1), and (3) propose three preprocessing methods 058

to reduce runtime score calculation (Sections 3.2 to 059

3.4). Experiments show that all of our approaches 060

improve the overall tokenization speed and eventu- 061

ally runs 5.7 times faster than KyTea in a controlled 062

environment. We also provide thorough analyses 063

of the proposed methods to capture the tendency of 064

their behavior from different perspectives. 065
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2 Pointwise Linear Classification066

2.1 Algorithm Overview067

Pointwise methods predict whether a particular068

character boundary becomes a word boundary or069

not using a binary classifier with context features070

(Shinnou, 2000). Sassano (2002) and Neubig071

et al. (2011) introduce an SVM with three types072

of context features: character n-grams, type n-073

grams, and dictionary features. These features are074

generated within a sliding window of width W075

which contains a sequence of surrounding charac-076

ters around the boundary. Since the classifier is077

defined independently from the context features,078

we can employ off-the-shelf binary classification079

models for this purpose. KyTea introduced a lin-080

ear SVM as the classification model and utilized081

LIBLINEAR (Fan et al., 2008) for training the082

model parameters. According to this characteris-083

tics, KyTea models can be considered as a variant084

of the PLC. As we discussed later, PLC models are085

capable of many optimization techniques.086

A single classification in a PLC model is formu-087

lated as follows:088

yi(w, xi) := wTϕ(xi) + b, (1)089

where xi is the i-th input data corresponding to the090

i-th character boundary, ϕ(xi) is a binary vector091

representing a set of available features extracted092

from xi , w is a weight vector corresponding to093

all features, and b is a scalar bias. The resulting094

value yi suggests how likely the character boundary095

becomes a word boundary: the higher the more096

likely it becomes a word boundary. yi = 0 is the097

decision boundary of this formulation: the classifier098

determines the word boundary where yi is positive.099

2.2 Context Features100

In Figure 1, we input a piece of Japanese text,101

and the model is predicting whether the charac-102

ter boundary “界-の” is a word boundary or not.103

Figure 1 shows available character n-gram features104

in this prediction. Character n-gram features are105

defined as a pair of character n-grams and their106

relative positions from the boundary.107

Similarly to character n-grams, the type n-gram108

features are defined as a pair of character type109

n-grams and their relative positions. Character110

types are defined as a function t(a) which assigns111

a character a to one of 6 categories: H (Hira-112

gana), T (Katakana), K (Kanji), D (Digit), R (Ro-113

man), and O (Other). For example, the character114

は 、 全 世 界 の 国 ⺠ が 、
は 、 全 世 界 の 国 ⺠ が 、

ら は 、 全 世 界 の 国 ⺠ が 
ら は 、 全 世 界 の 国 ⺠ が

ら は 、 全 世 界 の 国 ⺠ が 

(�の�, L)

ra wa zen se kai no koku min ga

(�の�, R)

(“世界”, L)

(“世界”, I)

(“世界”, R)

Figure 2: Examples of dictionary features of two words
“の” and “世界” with different positions. The I feature
is repeated for all intermediate character boundaries.

n-gram “世界の” is mapped to the type n-gram 115

[t(‘世’), t(‘界’), t(‘の’)] = [‘K’,‘K’,‘H’]. 116

If a character boundary is overlapped by some 117

dictionary words, dictionary features correspond- 118

ing to the word are additionally introduced to en- 119

hance the confidence of the prediction.3 Each dic- 120

tionary word has at most 3 types of features: L (the 121

leftmost side of the word), R (the rightmost side of 122

the word), and I (any boundaries inside the word). 123

Figure 2 shows an example of dictionary features. 124

2.3 PLC with Pattern Matching 125

In Equation (1), we need to extract the features 126

ϕ(xi) and calculate an inner product for every char- 127

acter boundary. Since consecutive classifications 128

in PLC requires similar features, this process can 129

be composed into a unified routine in Algorithm 1. 130

Figure 3 shows an example of this algorithm 131

with character n-gram features. First, the input 132

text of N characters is decomposed into a character 133

sequence a = (a0, a1, . . . , aN−1) and analyzed by 134

the pattern matching function Match(a) to look up 135

all character n-grams with nonzero weights. The 136

score array wpattern(q) is defined for each n-gram 137

pattern q and formulated as follows: 138

wpattern(q) 139

:= (w(q,W−n), w(q,W−n−1), ..., w(q,−W )), (2) 140

where w(q,·) is a weight corresponding to the n- 141

gram feature (q, ·) described in Section 2.2 and 142

n is the length of the n-gram. Each score array 143

contains 2W − n + 1 elements corresponding to 144

all relative positions. For each q, a corresponding 145

score array is integrated to the appropriate span of 146

3According to Neubig et al. (2011), word features are
shared among all words with the same number of characters.
Our definition is more general as well as covering the original
definition.
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Algorithm 1 Pointwise linear classification using
n-gram pattern matching.

Input: Text: a, Weights: w
Output: Result array: (y1, y2, . . . , yN−1)

1: (y1, y2, . . . , yN−1)←− 0
2: for [j, k) ∈Match(a) do
3: q ←− (aj , aj+1, . . . , ak−1)
4: w′ ←− wpattern(q)
5: p←− k −W
6: for i = 0 to 2W − n do
7: if p+ i ∈ [1, N − 1] then
8: yp+i ←− yp+i + w′

i

9: end if
10: end for
11: end for
12: return (y1, y2, . . . , yN−1)

the result array (y1, y2, ..., yN−1), representing a147

sequence of classification results.148

Although Algorithm 1 does not show any im-149

provements in terms of complexity, the calculation150

of yi is decomposed into elementwise summing151

between multiple arrays that has ability to bring152

high hardware-level throughput.4 Algorithm 1 also153

involves several bottlenecks that can be improved154

as discussed in Section 3.155

Note that a similar approach to Algorithm 1 has156

also been adopted in KyTea, but there are several157

rooms for improvement about the entire efficiency158

of the algorithm. In our implementation, we fo-159

cused on adjusting the whole algorithm to maxi-160

mize the actual utilization in modern processors.161

3 Improving Efficiency of PLC162

3.1 Efficient Pattern Matching163

The Match function runs over the whole input164

text a, and discovers all available substrings reg-165

istered in the pattern set of the function. We need166

three Match functions to achieve the whole feature167

lookup: character n-grams, type n-grams, and dic-168

tionary. The character n-grams and dictionary need169

to match over the raw characters a, while the type170

n-grams need to match over the sequence of charac-171

ter types t(a) := [t(a0), t(a1, ), ..., t(aN−1)]. This172

pattern matching is solved efficiently by so-called173

Aho-Corasick (AC) algorithm (Aho and Corasick,174

4Specifically, arithmetic with sequential access is benefi-
cial for (i) accurate branch prediction, (ii) high availability of
hardware caches, and (iii) high availability of SIMD optimiza-
tions.

Result array

ら は 、 全 世 界 の 国 ⺠ が
Matched positions

wa , se kai no koku min gazen

Score arrays

Input text

世界

界

zen se

ra

kai

kai

全世界
zen se kai

se

Figure 3: Integrating character n-gram scores to the
result array y. W = 3. wpattern(“界”) has 6 weights,
wpattern(“世界”) has 5 weights, and wpattern(“全世界”)
has 4 weights as formulated in the Equation (2). Each
score array is integrated to the position k −W on y,
where k is the rightmost position of the pattern.

1975; Maruyama, 1994) which is also used in 175

KyTea. The AC algorithm employs an automaton 176

called Pattern Matching Automaton (PMA) that 177

performs in O(N + occ) time in the most efficient 178

cases, where occ is the number of pattern occur- 179

rences in the text. 180

The complexity of the AC algorithm additionally 181

depends on the data structure of the inner PMA 182

(Nieminen and Kilpeläinen, 2007). KyTea employs 183

a binary search to discover state transitions of the 184

PMA due to the large alphabet size of Japanese 185

characters, which actually requires O(N log σ + 186

occ) where σ is the expected number of possible 187

transitions. To mitigate this problem, we employ 188

compacted double-arrays (CDAs) (Aoe, 1989; Yata 189

et al., 2007). CDAs adjust the assignment of state 190

IDs to share the memory space of their transition 191

mappings as much as possible, which enables direct 192

lookup of state transitions by character IDs so that 193

the whole performance of the PMA becomes back 194

O(N + occ). 195

3.2 Merging Character n-gram Scores 196

PLC models usually introduce character n-grams 197

with different n-s to capture a variety of contexts 198

around the boundary. In this case, a longer n-gram 199

overlaps several substring n-grams and the PMA 200

may report all possible n-grams sharing the same 201

suffix as well as the longest n-gram. 202

Figure 3 shows an example of summing three 203

score arrays of “界” (domain), “世界” (the world) 204

and “全世界” (overall the world). Since these pat- 205

terns are suffixes of the longest one, summing the 206
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界
世 界

世 界全
zen

kai
kai

kaise

se

界

世界

全世界

Figure 4: A PMA built from three patterns (“界”, “世
界”, “全世界”). Balloons indicate patterns reported at
corresponding states. Dotted lines indicate failure edges
to non-root states.

score array wpattern(“全世界”) always involves207

summing wpattern(“世界”) and wpattern(“界”).208

Figure 4 shows a PMA built from “界”, “世界”,209

and “全世界”. When the PMA reaches the state210

s, it yields a list of all possible suffixes collected211

by tracing a chain of failure edges from s, and the212

Algorithm 1 eventually aggregates all score arrays213

corresponding to the yielded suffixes. Since each214

state in the PMA yields always the same list of215

possible suffixes, we can calculate a partial sum of216

the score arrays wstate(s) in advance by summing217

over all possible wpattern(·):218

wstate(s) :=
∑

q∈S(s)

wpattern(q), (3)219

where S(s) is the set of possible suffixes at s. Us-220

ing wstate(·) instead of wpattern(·) improves the221

runtime efficiency by allowing the Algorithm 1 to222

aggregate score arrays only once for each character223

boundary.224

3.3 Integrating Dictionary Words225

As we discussed in Section 3.1, PMAs of the char-226

acter n-grams and the dictionary run over the same227

sequence a and some of their patterns may be over-228

lapped each other. This suggests that we can fur-229

ther integrate score arrays of dictionary words into230

the partial sum of the character n-gram scores to231

reduce certain amount of burdens caused by match-232

ing dictionary words. To this end, we propose233

two methods to integrate dictionary features as dis-234

cussed in the following sections.235

3.3.1 Integrating Short Dictionary Words236

As we can see in Figure 3, the score arrays of char-237

acter n-grams at the position k start with always238

the position k −W , and dictionary features of any239

words of lengths l ≤W can be integrated into the240

Dictionary words
⺠
min

(Short)

国⺠
kokumin

全世界の国⺠
se kai nokokuminzen

(All)

Result array

は 、 全 世 界 の 国 ⺠ が 、 ひ
Matched positions

wa , se kai no koku min ga ,zen hi

Score arrays
Character n-grams

Input text

国⺠

⺠

kokumin

min

L I I I I I R

I R

R

L

L

0

0 0

Figure 5: The difference of adding positions of character
n-gram scores and dictionary word scores. W = 3. L,
I, and R indicate types of the dictionary feature. 0
indicates a padding.

partial sums of character n-grams without introduc- 241

ing any extra treatment. Based on this observation, 242

it may be reasonable to integrate only words with 243

short lengths while long words (of lengths l > W ) 244

are remained in the separate PMA. We call this 245

method Short. 246

3.3.2 Integrating All Dictionary Words 247

We can further consider to integrate every dictio- 248

nary word into the partial sums to get rid of the 249

PMA of dictionary words completely. Since score 250

arrays of long words cover beyond the range of 251

character n-gram scores (as in the last case of Fig- 252

ure 5), we need to prepare additional arrays to store 253

partial sums for all long words. We also need to 254

determine the correct starting positions of the score 255

summation, which may cause an additional cost of 256

the calculation. We call this method All. 257

3.4 Caching Type n-gram Scores 258

Type n-gram scores are calculated similarly to that 259

of character n-grams, but its alphabet size is lim- 260

ited. As described in Section 2.1, KyTea models 261

distinguish only 6 character types. Since the sliding 262

window of size W contains a sequence of character 263

types of length 2W , the number of possible type n- 264

gram sequences is only 62W . This is small enough 265

to store all resulting scores of possible sequences at 266

initialization for a reasonable value of W , which is 267

typically W = 3.5 This approach allows to achieve 268

the score calculation of type n-grams by looking 269

5According to the analysis in Appendix A.4.
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Char types

1  0  1  1  0  1  0  0  1  1  0  1  1  0  1  0  0  1

1  0  1  0  0  1  1  0  1  1  0  1  0  0  1  1  1  0

1  0  1  1  0  1  1  0  1  0  0  1  1  0  1  1  0  1  0  0  1  1  1  0  0  0  1

= 101101001101101001(2) = 185193

= (101101001101101001(2) << 3 | 110(2)) & 3FFFF(16) 
= 101001101101001110(2) = 170830

全 世 界 の 国 ⺠ が 、 ひInput
zen se kai no koku min ga hi,

Figure 6: Calculating sequence IDs of character types
with W = 3. Binary sequences under character types
indicate codes related to each character type: for exam-
ple, Cd(H) = 001(2). Sequence ID of the next sliding
window can be calculated by the current sequence ID
and the incoming character type.

up only one integrated score and avoid both the270

PMA of type n-grams and summing corresponding271

score arrays.272

Specifically, we assign a binary code of 3 bits273

Cd(t) ∈ [1, 6] for each character type t, and defines274

the sequence ID Id(i) as follows:275

Id(i) :=
2W−1∑
k=0

23(2W−1−k)c(i−W + k), (4)276

c(i) :=

{
Cd(ti) if i ∈ [0, N − 1],
0 otherwise,

(5)277

for each sliding window at position i, where ti :=278

t(ai). Id(i) is a 6W bit integer which is used as279

the address of the integrated type n-gram score.280

Since Id(i) shares most of its subsequence with281

the neighboring window Id(i + 1) as shown in282

Figure 6, we can induce Id(·) values recurrently283

as follows:284

Id(−W ) := 0, (6)285

Id(i+ 1) := (23Id(i) + c(i+W ))%26W , (7)286

where % indicates the modulo operation. This cal-287

culation can be performed by only a few bit opera-288

tions and requires a constant time complexity for289

each character boundary.290

4 Experiments291

4.1 Setup292

We evaluate tokenization speed of our methods293

with multiple combinations and compared them294

with conventional tokenization tools. We use 295

short unit words (SUW) in BCCWJ 1.1 corpus 296

(Maekawa et al., 2014)6 to train PLC models. The 297

corpus consists of 60k Japanese sentences with 298

manually annotated SUW boundaries. We also 299

use 667k words for dictionary features extracted 300

from UniDic 3.1.0 (Den et al., 2007)7 with manual 301

filtering.8 Our methods are implemented in Rust 302

and compiled by rustc 1.60.0 with optimization 303

flag opt-level=3. Other tools are compiled by 304

GCC 11.2.0 or the same rustc with their recom- 305

mended configuration. For each experiment, we 306

performed 10-fold cross validation: 9 fractions are 307

used in training, and the remaining one is used 308

for test. The PLC model is trained by the LIB- 309

LINEAR with L1 regularization (Tibshirani, 1996). 310

The same PLC model is used in both KyTea and 311

our methods. We fixed several hyperparameters to 312

obtain representative metrics of each method: the 313

penalty parameter C to 1, the window size W to 3, 314

and the maximum length of n-grams to 3, accord- 315

ing to the analysis in Appendix A.2 and Mori et al. 316

(2011). 317

In our experiments, we are especially targeting to 318

compare the performance of the systems on a long- 319

lived server service. To this end, we aim to measure 320

only the computing overhead imposed by the actual 321

tokenization processes. Specifically, model initial- 322

ization (loading the parameters and preprocessing 323

integrated scores) are omitted from the resulting 324

measure because these are performed only once 325

during the runtime. In addition, all test sentences 326

are loaded onto the memory in advance to avoid 327

constant disk access. 328

We perform all experiments in a single thread 329

process on a dedicated machine with Intel Core 330

i7-8086K CPU (4GHz, 6 cores, 32KiB L1, 256KiB 331

L2, 12MiB L3) and 64GiB DDR4 RAM. 332

4.2 Baseline systems 333

We introduced following tools as our baselines: 334

KyTea9 The original implementation of the PLC 335

method. Since we use the same model in both 336

KyTea and our methods, tokenization accuracy of 337

both systems are exactly the same. 338

6https://clrd.ninjal.ac.jp/bccwj/en/
7https://clrd.ninjal.ac.jp/unidic/en/

(GPL-2 or LGPL-2.1 or BSD-3)
8We removed all words including whitespaces.
9https://github.com/neubig/kytea (Apache-

2.0)
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Table 1: Average time elapsed to tokenize the test data. [ms]

Tokenizer Time Time − (a) SD
KyTea (2020-04-03) 136.6 5.6
Our methods

(a): §3.1 Efficient Pattern Matching 33.2 (0) 0.5
(b): (a) + §3.2 Merging Character n-gram Scores 31.2 -2.0 0.6
(c): (a) + §3.3 Integrating Dictionary Scores (All) 29.4 -3.8 0.5
(d): (a) + §3.4 Caching Type n-gram Scores 30.2 -3.0 0.5
(e): (a) + §3.2 + §3.3 (All) + §3.4 23.8 -9.4 0.4

MeCab (2020-09-14)
IPADic 65.4 1.9
UniDic 161.5 7.3

sudachi.rs (0.6.4-a1) 169.5 3.4

Table 2: Average number of score arrays aggregated during tokenizing the test data. [×103]

Subroutine (a) (b) (a)+Short (a)+All (b)+Short (b)+All
Character n-grams 360. 203. 386. 392 204. 204.
Dictionary words 307. 307. 6. – 6. –
Total 667. 509. 392. 392 210. 204.

MeCab10 A major Japanese tokenizer based on339

the lattice method. We used IPADic dictionary340

(Asahara and Matsumoto, 2003) as well as Uni-341

Dic.11342

sudachi.rs12 An efficient implementation of Su-343

dachi (Takaoka et al., 2018) which is also based on344

the lattice method. We picked up Sudachi because345

it is widely used as an internal tokenizer of larger346

systems such as spaCy.13 We used SudachiDict-347

core 20210802 model and disabled all postprocess-348

ing.349

4.3 Overall Speed Comparison350

Table 1 shows average time elapsed to tokenize the351

test data. The results in KyTea and our methods352

include only time elapsed by the boundary classi-353

fication, while MeCab and sudachi.rs involves the354

whole analysis which is hard to be separated due355

to the model formulation.14356

First, we focus on 5 different settings (a) to (e)357

of our methods described in Section 3. The settings358

10https://github.com/taku910/mecab (GPL-2
or LGPL-2.1 or BSD-3)

11We provide a reference performance of MeCab with a
typical configuration (IPADic) for a fair comparison of speeds.

12https://github.com/WorksApplications/
sudachi.rs (Apache-2.0)

13https://spacy.io/
14Lattice methods are designed to consider a joint distribu-

tion of tokenization and morphology.

(b), (c), and (d) run faster than (a), demonstrating 359

that these preprocessing approaches are effective 360

to suppress computation time. We can also see 361

that applying the all preprocessing (e) achieves 362

the fastest result and the overall improvement is 363

comparable with the sum of (b), (c), and (d). This 364

suggests that these techniques are orthogonal and 365

improves different part of computation in the whole 366

algorithm. 367

Comparing (e) and other tools, our method 368

achieves 5.7 times faster performance than KyTea, 369

6.8 times faster than MeCab with the same dictio- 370

nary,15 and 7.1 times faster than sudachi.rs. 371

4.4 Performance of Subroutines 372

Table 2 shows the average number of score arrays 373

aggregated during score calculation of all test ex- 374

amples. We focused on the number of arrays rather 375

than the number of actual scores because most 376

score arrays can be aggregated by at most a few 377

SIMD instructions. We do not show corresponding 378

metrics of type n-grams because its calculation can 379

be removed completely by the method described in 380

Section 3.4. 381

15PLC models rely on word boundary labels annotated in
the training corpus (BCCWJ) and the word unit of the dictio-
nary must be compatible with the corpus’ standard to avoid
unnecessary lacking of tokenization accuracy. Since the word
unit of IPADic is not compatible with BCCWJ, we did not
prepare the results of PLC models with IPADic.

6
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Table 3: Average time elapsed to process character n-grams and dictionary. [ms]

Subroutine (a) (b) (a)+Short (a)+All (b)+Short (b)+All
Character n-grams

Pattern matching 6.15 5.99 7.68 9.65 7.35 9.09
All 7.46 6.75 10.96 17.75 9.60 15.88

Dictionary words
Pattern matching 8.28 8.26 5.82 – 5.74 –
All 13.63 13.56 6.27 – 6.36 –

All subroutines 23.67 22.82 20.77 17.75 19.40 15.88

We can see that merging character n-gram scores382

(b) reduces 44% of array summations involved by383

character n-gram features, and integrating short384

dictionary words (a)+Short reduces 98% of ar-385

ray summations involved by dictionary features.386

(a)+Short also increases the number of array sum-387

mations in character n-grams slightly due to intro-388

ducing unseen character n-grams derived from the389

dictionary.390

On the other hand, combining both methods391

(b)+Short successfully reduced the calculation of392

character n-gram scores to a comparable range of393

(b). This tendency shows that even if the dictio-394

nary contains unseen character n-grams, they can395

be integrated to the partial sums of other patterns in396

most cases. Comparing methods Short and All in397

both (a) and (b), there was no significant difference398

of the number of score summations by integrating399

long words.400

Table 3 shows the average time elapsed during401

each subroutine. We measured each metric by sim-402

ply disabling other subroutines from the whole pro-403

cess. The last row shows the time with all sub-404

routines, which should be longer than the sum of405

all individual metrics due to the lack of caching406

efficiency. We can see that the time of character n-407

grams in (b)+All is longer than that in (b)+Short408

nevertheless the numbers of score summations in409

Table 2 are almost the same. This is expected be-410

cause the method All introduces an additional com-411

plexity as discussed in Section 3.3.2. However,412

we can also see that the whole process of (b)+All413

achieved faster performance than (b)+Short be-414

cause (b)+All eventually removes the whole pro-415

cess of dictionary features completely.416

4.5 Effect of Model Size417

We analysed the impact of model sizes against tok-418

enization efficiency by varying the penalty parame-419

ter C of L1 regularization (Tibshirani, 1996) during420

10-3 10-2 10-1 100 101 102
100

101

102

Ti
m

e 
[m

s]

Penalty parameter C

w/o Dictionary
w/ Dictionary

Method (e)

KyTea

Figure 7: Effect of the penalty parameter C against the
elapsed time of each method.

training SVMs.16 L1 regularization squashes cer- 421

tain number of weights into 0 and such weights can 422

be removed from the model (Gao et al., 2007). 423

Figure 7 shows the whole processing time of the 424

method (e) and KyTea with varying C. Intuitively, 425

both models achieve faster processing speed with 426

small C (strong regularization), and our method 427

achieves better processing speed against KyTea for 428

every values of C. 429

Considering the gradient of each plot in Figure 430

7, we can also see that C brings larger exponen- 431

tial effect against processing speed of the method 432

(e) than KyTea. This tendency is reasonable be- 433

cause our methods heavily rely on the CPU archi- 434

tecture: large models may cause many disruption 435

of efficient computing. Here we provide several 436

observations of this tendency in detail. 437

We hypothesized first that this tendency is simply 438

caused by increasing the number of array summa- 439

tions because a larger model may discover more 440

patterns on the same input. As Figure 8 shows, this 441

16We followed the same definition of C in Fan et al. (2008):
the smaller the stronger regularization. The actual relation
between model sizes and C is shown in Appendix A.3.
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hypothesis is not correct because merging character442

n-grams ((b) and (b)+All) effectively suppressed443

the number of array summations under a certain444

upper bound even when C was large (weak regu-445

larization). This means that the speed reduction446

on large C is not caused by the complexity of the447

algorithm itself.448

We also investigated hardware level efficiency449

of each method. As clearly shown in Figure 9, the450

number of CPU cache misses17 grows significantly451

by increasing C despite maintaining the number452

of summation operations. This phenomenon is ex-453

plained by observing access frequency of score454

17Counted by the perf_event_open system call on
Linux.
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Figure 10: Entropy of access frequency distribution of
character n-gram score arrays by the method (e).

arrays. Figure 10 summarizes the access frequency 455

distribution of score arrays as an entropy, and 456

shows that large models tend to require more var- 457

ied score arrays than small models to calculate the 458

final scores. Since the CPU cache can remember 459

only the neighboring contents around the memory 460

accessed recently, requiring varied parts of memory 461

lacks utilization of the cache, resulting in overall 462

speed reduction of the algorithm. 463

5 Conclusion and Future Work 464

We introduced multiple techniques to improve ef- 465

ficiency of the Japanese tokenizer based on Point- 466

wise Linear Classification (PLC) models. Exper- 467

iments clearly showed substantial improvements 468

brought by our methods compared with the baseline 469

implementation (KyTea) and other tokenization 470

tools in terms of tokenization speed. Although we 471

focused especially on the tokenization task, some 472

of the techniques presented in this paper is generic 473

and can also be applied to other tasks if it can be 474

decomposed into a sequence of multiple problems 475

in the same manner. 476

We improved only the tokenization speed in this 477

paper because it is the most essential part of practi- 478

cal use-cases of tokenizers. Improving the whole 479

efficiency of the PLC based lexical analysis is also 480

challenging; it is one of the main focus of our fu- 481

ture work. Especially, PLC based part-of-speech 482

tagging requires much larger alphabet size (set of 483

words rather than characters) and further improve- 484

ment of the PMA architecture is required. 485
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Figure 11: Effect of penalty parameter C against mean
error rate.

A Appendix601

A.1 Accuracy Metrics602

To measure the tokenization accuracy, we choose603

two metrics: boundary error rate which is the ratio604

of false classifications for all character boundaries,605

and the word-wise F1 measure introduced by Na-606

gata (1994).607

A.2 Relation Between Penalty Parameter and608

Accuracy609

We investigated the effect of the strength of the610

L1 regularization against the tokenization accuracy.611

Figure 11 shows the tendency of the boundary error612

rate with varying the penalty parameter C. As we613

discussed in the section 4.2, all of our methods and614

KyTea shares the same accuracy. We can see that615

the error rate becomes the minimum around C = 1616

with and without employing a dictionary.617

A.3 Relation Between Penalty Parameter and618

Model Size619

We investigated the effect of the strength of the620

L1 regularization on the model size. Figure 12621

shows the tendency of the number of n-grams in622

the model, and Figure 13 shows the number of623

states in the PMA with varying C. We can see that624

lager C (weak regularization) yields more n-grams625

with nonzero weights, and hence it requires more626

PMA states. We can also see that C has different627

effects for n-grams with different n-s.628
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Figure 12: Effect of penalty parameter C against the
number of n-grams in the model. (w/o Dictionary)
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Figure 13: Effect of penalty parameter C against the
number of PMA states in the model. (w/o Dictionary)

A.4 Relation Between Window Size and 629

Accuracy 630

We investigated the effect of the window size W 631

and the maximum length of n-grams against tok- 632

enization speed and accuracy. We did not use any 633

dictionary for this experiment because the dictio- 634

nary feature is independent from both W and n. 635

For models with W ≥ 4, we did not introduce 636

caching type n-gram scores discussed in Section 637

3.4 because it requires a large amount of memory. 638

Table 4 shows the comparison of the tokeniza- 639

tion accuracy and the speed. We can see that the 640

tokenization accuracy is saturated with a certain 641

value of W and n (3 for SUW and 5 for LUW), 642

although the tokenization speed drops when we 643

selected larger W and n. 644
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Table 4: Effect of window size W and n-gram size n on elapsed time [ms] and accuracy.

W,n
SUW LUW

Time F1 Error rate Time F1 Error rate
1,1 7.7 0.8265 0.0887 7.6 0.8207 0.0749
2,2 11.3 0.9810 0.0093 11.1 0.9608 0.0155
3,3 13.3 0.9867 0.0066 13.3 0.9779 0.0088
4,4 15.7 0.9867 0.0066 15.9 0.9805 0.0078
5,5 20.1 0.9862 0.0069 20.5 0.9807 0.0077
6,6 23.3 0.9857 0.0071 24.2 0.9804 0.0078
7,7 25.6 0.9850 0.0074 27.1 0.9799 0.0080
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