Efficient Japanese Tokenization Based on Improved Pointwise Linear Classification

Anonymous ACL submission

Abstract

This paper proposes multiple techniques to improve runtime efficiency of Japanese tokenization based on the Pointwise Linear Classification (PLC) framework, which formulates the whole tokenization process as a sequence of linear classification problems. Our techniques are optimized by leveraging the characteristics of the PLC framework and the task definition itself. Specifically, we introduce (1) composing multiple classifications into array-based operations, (2) efficient feature lookup with memory-optimized automata, and (3) three orthogonal preprocessing to reduce actual score calculation. Combining these techniques, our implementation works 5.7 times faster than the existing tokenizer based on the same model without any loss of tokenization accuracy.1

1 Introduction

In languages without explicit word boundaries such as Japanese and Chinese, natural language processing systems are required to determine these boundaries from unsegmented texts before any types of word-based analyses. In Japanese processing, two major linguistic2 tokenization methods have been proposed: lattice methods and pointwise methods. The lattice methods (Hisamitsu and Nitta, 1990) generate a lattice of possible tokenizations over the input text and determines the path on the lattice that minimizes a given cost function. In contrast, pointwise methods (Shinnou, 2000; Sassano, 2002; Neubig et al., 2011; Kitagawa and Komachi, 2018; Tolmachev et al., 2019) utilize a binary classifier to predict whether a particular character boundary becomes a word boundary or not, as in Figure 1. A thorough analysis revealed that both methods are comparable in terms of tokenization accuracy (Mori et al., 2011).

Although the pointwise methods could work in a linear time of input lengths as described in Section 2, it requires careful designs of the overall algorithm to reduce unnecessary bottlenecks which cause a main concern of runtime efficiency. Particularly, comparing well-known tools of both methods, we can see that KyTea (Neubig et al., 2011) (pointwise) is almost 2.1 times slower than MeCab (Kudo et al., 2004) (lattice), meaning that there are still rooms for improvements.

In this paper, we focus on designing an efficient algorithm of the pointwise methods with linear classifiers, which we call Pointwise Linear Classification (PLC), without changing the model structure. Our algorithm works as the same as KyTea, but is extremely faster than the original implementation. To this end, we (1) formulate the whole PLC algorithm as a set of array manipulations (Section 2.3), (2) introduce an efficient pattern matching algorithm to look up features from the text (Section 3.1), and (3) propose three preprocessing methods to reduce runtime score calculation (Sections 3.2 to 3.4). Experiments show that all of our approaches improve the overall tokenization speed and eventually runs 5.7 times faster than KyTea in a controlled environment. We also provide thorough analyses of the proposed methods to capture the tendency of their behavior from different perspectives.

\[\text{Figure 1: An example of Japanese tokenization with the pointwise method. The bottom box contains character } \ n \text{-gram features described in Section 2.1.} \]
2 Pointwise Linear Classification

2.1 Algorithm Overview

Pointwise methods predict whether a particular character boundary becomes a word boundary or not using a binary classifier with context features (Shinnou, 2000), Sassano (2002) and Neubig et al. (2011) introduce an SVM with three types of context features: character n-grams, type n-grams, and dictionary features. These features are generated within a sliding window of width W which contains a sequence of surrounding characters around the boundary. Since the classifier is defined independently from the context features, we can employ off-the-shelf binary classification models for this purpose. KyTea introduced a linear SVM as the classification model and utilized LIBLINEAR (Fan et al., 2008) for training the model parameters. According to this characteristics, KyTea models can be considered as a variant of the PLC. As we discussed later, PLC models are capable of many optimization techniques.

A single classification in a PLC model is formulated as follows:

$$y_i(w, x_i) := w^T \phi(x_i) + b,$$
(1)

where x_i is the i-th input data corresponding to the i-th character boundary, $\phi(x_i)$ is a binary vector representing a set of available features extracted from x_i, w is a weight vector corresponding to all features, and b is a scalar bias. The resulting value y_i suggests how likely the character boundary becomes a word boundary: the higher the more likely it becomes a word boundary. $y_i = 0$ is the decision boundary of this formulation: the classifier determines the word boundary where y_i is positive.

2.2 Context Features

In Figure 1, we input a piece of Japanese text, and the model is predicting whether the character boundary “世界” is a word boundary or not. Figure 1 shows available character n-gram features in this prediction. Character n-gram features are defined as a pair of character n-grams and their relative positions from the boundary.

Similarly to character n-grams, the type n-gram features are defined as a pair of character type n-grams and their relative positions. Character types are defined as a function $t(a)$ which assigns a character a to one of 6 categories: H (Hiragana), T (Katakana), K (Kanji), D (Digit), R (Roman), and O (Other). For example, the character n-gram “世界の” is mapped to the type n-gram $[t(‘世’), t(‘界’), t(‘の’)]=[‘K’, ‘K’, ‘H’].$

If a character boundary is overlapped by some dictionary words, dictionary features corresponding to the word are additionally introduced to enhance the confidence of the prediction. Each dictionary word has at most 3 types of features: L (the leftmost side of the word), R (the rightmost side of the word), and I (any boundaries inside the word). Figure 2 shows an example of dictionary features.

2.3 PLC with Pattern Matching

In Equation (1), we need to extract the features $\phi(x_i)$ and calculate an inner product for every character boundary. Since consecutive classifications in PLC requires similar features, this process can be composed into a unified routine in Algorithm 1.

Figure 3 shows an example of this algorithm with character n-gram features. First, the input text of N characters is decomposed into a character sequence $a = (a_0, a_1, \ldots, a_{N-1})$ and analyzed by the pattern matching function $\text{Match}(a)$ to look up all character n-grams with nonzero weights. The score array $w_{\text{pattern}}(q)$ is defined for each n-gram pattern q and formulated as follows:

$$w_{\text{pattern}}(q) := (w(q,W-n), w(q,W-n-1), \ldots, w(q,-W)), \text{ (2)}$$

where $w(q, \cdot)$ is a weight corresponding to the n-gram feature (q, \cdot) described in Section 2.2 and n is the length of the n-gram. Each score array contains $2W - n + 1$ elements corresponding to all relative positions. For each q, a corresponding score array is integrated to the appropriate span of

3According to Neubig et al. (2011), word features are shared among all words with the same number of characters. Our definition is more general as well as covering the original definition.
the result array \((y_1, y_2, \ldots, y_{N-1}) \), representing a sequence of classification results.

Although Algorithm 1 does not show any improvements in terms of complexity, the calculation of \(y_i \) is decomposed into elementwise summing between multiple arrays that has ability to bring high hardware-level throughput.\(^4\) Algorithm 1 also involves several bottlenecks that can be improved as discussed in Section 3.

Note that a similar approach to Algorithm 1 has also been adopted in KyTea, but there are several rooms for improvement about the entire efficiency of the algorithm. In our implementation, we focused on adjusting the whole algorithm to maximize the actual utilization in modern processors.

3 Improving Efficiency of PLC

3.1 Efficient Pattern Matching

The Match function runs over the whole input text \(a \), and discovers all available substrings registered in the pattern set of the function. We need three Match functions to achieve the whole feature lookup: character \(n \)-grams, type \(n \)-grams, and dictionary. The character \(n \)-grams and dictionary need to match over the raw characters \(a \), while the type \(n \)-grams need to match over the sequence of character types \(t(a) := [t(a_0), t(a_1), \ldots, t(a_{N-1})] \). This pattern matching is solved efficiently by so-called Aho-Corasick (AC) algorithm (Aho and Corasick, 1975; Maruyama, 1994) which is also used in KyTea. The AC algorithm employs an automaton called Pattern Matching Automaton (PMA) that performs in \(O(N + \text{occ}) \) time in the most efficient cases, where \(\text{occ} \) is the number of pattern occurrences in the text.

The complexity of the AC algorithm additionally depends on the data structure of the inner PMA (Nieminen and Kilpeläinen, 2007). KyTea employs a binary search to discover state transitions of the PMA due to the large alphabet size of Japanese characters, which actually requires \(O(N \log \sigma + \text{occ}) \) where \(\sigma \) is the expected number of possible transitions. To mitigate this problem, we employ compacted double-arrays (CDAs) (Aoe, 1989; Yata et al., 2007). CDAs adjust the assignment of state IDs to share the memory space of their transition mappings as much as possible, which enables direct lookup of state transitions by character IDs so that the whole performance of the PMA becomes back \(O(N + \text{occ}) \).

3.2 Merging Character \(n \)-gram Scores

PLC models usually introduce character \(n \)-grams with different \(n \)-s to capture a variety of contexts around the boundary. In this case, a longer \(n \)-gram overlaps several substring \(n \)-grams and the PMA may report all possible \(n \)-grams sharing the same suffix as well as the longest \(n \)-gram.

Figure 3 shows an example of summing three score arrays of “界” (domain), “世界” (the world) and “全世界” (overall the world). Since these patterns are suffixes of the longest one, summing the

\(^4\)Specifically, arithmetic with sequential access is beneficial for (i) accurate branch prediction, (ii) high availability of hardware caches, and (iii) high availability of SIMD optimizations.
score array w_{pattern} ("全世界") always involves summing w_{pattern} ("世界") and w_{pattern} ("界").

Figure 4 shows a PMA built from "界", "世界", and "全世界". When the PMA reaches the state s, it yields a list of all possible suffixes collected by tracing a chain of failure edges from s, and the Algorithm 1 eventually aggregates all score arrays corresponding to the yielded suffixes. Since each state in the PMA yields always the same list of possible suffixes, we can calculate a partial sum of the score arrays $w_{\text{state}}(s)$ in advance by summing over all possible w_{pattern}:

$$w_{\text{state}}(s) := \sum_{q \in S(s)} w_{\text{pattern}}(q), \quad (3)$$

where $S(s)$ is the set of possible suffixes at s. Using w_{state} instead of w_{pattern} improves the runtime efficiency by allowing the Algorithm 1 to aggregate score arrays only once for each character boundary.

3.3 Integrating Dictionary Words

As we discussed in Section 3.1, PMAs of the character n-grams and the dictionary run over the same sequence a and some of their patterns may be overlapped each other. This suggests that we can further integrate score arrays of dictionary words into the partial sum of the character n-gram scores to reduce certain amount of burdens caused by matching dictionary words. To this end, we propose two methods to integrate dictionary features as discussed in the following sections.

3.3.1 Integrating Short Dictionary Words

As we can see in Figure 3, the score arrays of character n-grams at the position k start with always the position $k - W$, and dictionary features of any words of lengths $l \leq W$ can be integrated into the partial sums of character n-grams without introducing any extra treatment. Based on this observation, it may be reasonable to integrate only words with short lengths while long words (of lengths $l > W$) are remained in the separate PMA. We call this method Short.

3.3.2 Integrating All Dictionary Words

We can further consider to integrate every dictionary word into the partial sums to get rid of the PMA of dictionary words completely. Since score arrays of long words cover beyond the range of character n-gram scores (as in the last case of Figure 5), we need to prepare additional arrays to store partial sums for all long words. We also need to determine the correct starting positions of the score summation, which may cause an additional cost of the calculation. We call this method All.

3.4 Caching Type n-gram Scores

Type n-gram scores are calculated similarly to that of character n-grams, but its alphabet size is limited. As described in Section 2.1, KyTea models distinguish only 6 character types. Since the sliding window of size W contains a sequence of character types of length $2W$, the number of possible type n-gram sequences is only 6^{2W}. This is small enough to store all resulting scores of possible sequences at initialization for a reasonable value of W, which is typically $W = 3$.\(^5\) This approach allows to achieve the score calculation of type n-grams by looking

\(^5\)According to the analysis in Appendix A.4.
Input

<table>
<thead>
<tr>
<th>char types</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>KKHKKKHKOH</td>
<td>全世界の国民が、ひ</td>
</tr>
</tbody>
</table>

Id(i) = 101101001101001110(2) = 170830

Id(i + 1) = (101101001101001110 << 3 | 110(2)) & 3FFFF(16) = 101001101101001110(2) = 170830

Figure 6: Calculating sequence IDs of character types with $W = 3$. Binary sequences under character types indicate codes related to each character type: for example, $\text{Cd}(H) = 001_{(2)}$. Sequence ID of the next sliding window can be calculated by the current sequence ID and the incoming character type.

up only one integrated score and avoid both the PMA of type n-grams and summing corresponding score arrays.

Specifically, we assign a binary code of 3 bits $\text{Cd}(t) \in [1, 6]$ for each character type t, and defines the sequence ID $\text{Id}(i)$ as follows:

$$ \text{Id}(i) := \sum_{k=0}^{2W-1} 2^{3(2W-1-k)} c(i - W + k), \quad (4) $$

$$ c(i) := \begin{cases}
\text{Cd}(t_i) & \text{if } i \in [0, N - 1], \\
0 & \text{otherwise},
\end{cases} \quad (5) $$

for each sliding window at position i, where $t_i := t(a_i)$. $\text{Id}(i)$ is a $6W$ bit integer which is used as the address of the integrated type n-gram score. Since $\text{Id}(i)$ shares most of its subsequence with the neighboring window $\text{Id}(i + 1)$ as shown in Figure 6, we can induce $\text{Id}(\cdot)$ values recurrently as follows:

$$ \text{Id}(-W) := 0, $$

$$ \text{Id}(i + 1) := (2^3 \text{Id}(i) + c(i + W)) \% 2^{6W}, \quad (7) $$

where $\%$ indicates the modulo operation. This calculation can be performed by only a few bit operations and requires a constant time complexity for each character boundary.

4 Experiments

4.1 Setup

We evaluate tokenization speed of our methods with multiple combinations and compared them with conventional tokenization tools. We use short unit words (SUW) in BCCWJ 1.1 corpus (Maekawa et al., 2014) to train PLC models. The corpus consists of 60k Japanese sentences with manually annotated SUW boundaries. We also use 667k words for dictionary features extracted from UniDic 3.1.0 (Den et al., 2007) with manual filtering. Our methods are implemented in Rust and compiled by rustc 1.60.0 with optimization flag `opt-level=3`. Other tools are compiled by GCC 11.2.0 or the same rustc with their recommended configuration. For each experiment, we performed 10-fold cross validation: 9 fractions are used in training, and the remaining one is used for test. The PLC model is trained by the LIBLINEAR with L1 regularization (Tibshirani, 1996). The same PLC model is used in both KyTea and our methods. We fixed several hyperparameters to obtain representative metrics of each method: the penalty parameter C to 1, the window size W to 3, and the maximum length of n-grams to 3, according to the analysis in Appendix A.2 and Mori et al. (2011).

In our experiments, we are especially targeting to compare the performance of the systems on a long-lived server service. To this end, we aim to measure only the computing overhead imposed by the actual tokenization processes. Specifically, model initialization (loading the parameters and preprocessing integrated scores) are omitted from the resulting measure because these are performed only once during the runtime. In addition, all test sentences are loaded onto the memory in advance to avoid constant disk access.

We perform all experiments in a single thread process on a dedicated machine with Intel Core i7-8086K CPU (4GHz, 6 cores, 32KiB L1, 256KiB L2, 12MiB L3) and 64GiB DDR4 RAM.

4.2 Baseline systems

We introduced following tools as our baselines:

KyTea9 The original implementation of the PLC method. Since we use the same model in both KyTea and our methods, tokenization accuracy of both systems are exactly the same.

6https://clrd.ninjal.ac.jp/bccwj/en/
7https://clrd.ninjal.ac.jp/unidic/en/
8GPL-2 or LGPL-2.1 or BSD-3
9We removed all words including whitespaces.
9https://github.com/neubig/kytea (Apache-2.0)
Table 1: Average time elapsed to tokenize the test data. [ms]

<table>
<thead>
<tr>
<th>Tokenizer</th>
<th>Time</th>
<th>Time − (a)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>KyTea (2020-04-03)</td>
<td>136.6</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Our methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a): §3.1 Efficient Pattern Matching</td>
<td>33.2</td>
<td>(0)</td>
<td>0.5</td>
</tr>
<tr>
<td>(b): (a) + §3.2 Merging Character n-gram Scores</td>
<td>31.2</td>
<td>-2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>(c): (a) + §3.3 Integrating Dictionary Scores (All)</td>
<td>29.4</td>
<td>-3.8</td>
<td>0.5</td>
</tr>
<tr>
<td>(d): (a) + §3.4 Caching Type n-gram Scores</td>
<td>30.2</td>
<td>-3.0</td>
<td>0.5</td>
</tr>
<tr>
<td>(e): (a) + §3.2 + §3.3 (All) + §3.4</td>
<td>23.8</td>
<td>-9.4</td>
<td>0.4</td>
</tr>
<tr>
<td>MeCab (2020-09-14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPADic</td>
<td>65.4</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>UniDic</td>
<td>161.5</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>sudachi.rs (0.6.4-a1)</td>
<td>169.5</td>
<td>3.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Average number of score arrays aggregated during tokenizing the test data. [×10^3]

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>(a)</th>
<th>(b)</th>
<th>(a)+Short</th>
<th>(a)+All</th>
<th>(b)+Short</th>
<th>(b)+All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character n-grams</td>
<td>360.</td>
<td>203.</td>
<td>386.</td>
<td>392</td>
<td>204.</td>
<td>204.</td>
</tr>
<tr>
<td>Dictionary words</td>
<td>307.</td>
<td>307.</td>
<td>6.</td>
<td>-</td>
<td>6.</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>667.</td>
<td>509.</td>
<td>392.</td>
<td>392</td>
<td>210.</td>
<td>204.</td>
</tr>
</tbody>
</table>

MeCab\(^{10}\) A major Japanese tokenizer based on the lattice method. We used IPADic dictionary (Asahara and Matsumoto, 2003) as well as UniDic.\(^{11}\)

sudachi.rs\(^{12}\) An efficient implementation of Sudachi (Takaoka et al., 2018) which is also based on the lattice method. We picked up Sudachi because it is widely used as an internal tokenizer of larger systems such as spaCy.\(^{13}\) We used SudachiDictCore 20210802 model and disabled all postprocessing.

4.3 Overall Speed Comparison

Table 1 shows average time elapsed to tokenize the test data. The results in KyTea and our methods include only time elapsed by the boundary classification, while MeCab and sudachi.rs involves the whole analysis which is hard to be separated due to the model formulation.\(^{14}\)

First, we focus on 5 different settings (a) to (e) of our methods described in Section 3. The settings (b), (c), and (d) run faster than (a), demonstrating that these preprocessing approaches are effective to suppress computation time. We can also see that applying the all preprocessing (e) achieves the fastest result and the overall improvement is comparable with the sum of (b), (c), and (d). This suggests that these techniques are orthogonal and improves different part of computation in the whole algorithm.

Comparing (e) and other tools, our method achieves 5.7 times faster performance than KyTea, 6.8 times faster than MeCab with the same dictionary,\(^{15}\) and 7.1 times faster than sudachi.rs.

4.4 Performance of Subroutines

Table 2 shows the average number of score arrays aggregated during score calculation of all test examples. We focused on the number of arrays rather than the number of actual scores because most score arrays can be aggregated by at most a few SIMD instructions. We do not show corresponding metrics of type n-grams because its calculation can be removed completely by the method described in Section 3.4.

10\https://github.com/taku910/mecab\(\) (GPL-2 or LGPL-2.1 or BSD-3)
11\We provide a reference performance of MeCab with a typical configuration (IPADic) for a fair comparison of speeds.
12\https://github.com/WorksApplications/sudachi.rs\(\) (Apache-2.0)
13\https://spacy.io/\(\)
14Lattice methods are designed to consider a joint distribution of tokenization and morphology.
15PLC models rely on word boundary labels annotated in the training corpus (BCCWJ) and the word unit of the dictionary must be compatible with the corpus’ standard to avoid unnecessary lacking of tokenization accuracy. Since the word unit of IPADic is not compatible with BCCWJ, we did not prepare the results of PLC models with IPADic.
We can see that merging character n-gram scores (b) reduces 44% of array summations involved by character n-gram features, and integrating short dictionary words (a)+Short reduces 98% of array summations involved by dictionary features. (a)+Short also increases the number of array summations in character n-grams slightly due to introducing unseen character n-grams derived from the dictionary.

On the other hand, combining both methods (b)+Short successfully reduced the calculation of character n-gram scores to a comparable range of (b). This tendency shows that even if the dictionary contains unseen character n-grams, they can be integrated to the partial sums of other patterns in most cases. Comparing methods Short and All in both (a) and (b), there was no significant difference of the number of score summations by integrating long words.

Table 3 shows the average time elapsed during each subroutine. We measured each metric by simply disabling other subroutines from the whole process. The last row shows the time with all subroutines, which should be longer than the sum of all individual metrics due to the lack of caching efficiency. We can see that the time of character n-grams in (b)+All is longer than that in (b)+Short nevertheless the numbers of score summations in Table 2 are almost the same. This is expected because the method All introduces an additional complexity as discussed in Section 3.3.2. However, we can also see that the whole process of (b)+All achieved faster performance than (b)+Short because (b)+All eventually removes the whole process of dictionary features completely.

4.5 Effect of Model Size

We analysed the impact of model sizes against tokenization efficiency by varying the penalty parameter C of L1 regularization (Tibshirani, 1996) during training SVMs. L1 regularization squashes certain number of weights into 0 and such weights can be removed from the model (Gao et al., 2007).

Figure 7 shows the whole processing time of the method (e) and KyTea with varying C. Intuitively, both models achieve faster processing speed with small C (strong regularization), and our method achieves better processing speed against KyTea for every values of C.

Considering the gradient of each plot in Figure 7, we can also see that C brings larger exponential effect against processing speed of the method (e) than KyTea. This tendency is reasonable because our methods heavily rely on the CPU architecture: large models may cause many disruption of efficient computing. Here we provide several observations of this tendency in detail.

We hypothesized first that this tendency is simply caused by increasing the number of array summations because a larger model may discover more patterns on the same input. As Figure 8 shows, this

16We followed the same definition of C in Fan et al. (2008): the smaller the stronger regularization. The actual relation between model sizes and C is shown in Appendix A.3.
hypothesis is not correct because merging character
\(n \)-grams ((b) and (b)+All) effectively suppressed
the number of array summations under a certain
upper bound even when \(C \) was large (weak regu-
larization). This means that the speed reduction
on large \(C \) is not caused by the complexity of the
algorithm itself.

We also investigated hardware level efficiency
of each method. As clearly shown in Figure 9, the
number of CPU cache misses grows signifi-
cantly by increasing \(C \) despite maintaining the number
of summation operations. This phenomenon is ex-
plained by observing access frequency of score
arrays. Figure 10 summarizes the access frequency
distribution of score arrays as an entropy, and
shows that large models tend to require more var-
ied score arrays than small models to calculate the
final scores. Since the CPU cache can remember
only the neighboring contents around the memory
accessed recently, requiring varied parts of memory
lacks utilization of the cache, resulting in overall
speed reduction of the algorithm.

5 Conclusion and Future Work

We introduced multiple techniques to improve ef-
ficiency of the Japanese tokenizer based on Point-
wise Linear Classification (PLC) models. Exper-
iments clearly showed substantial improvements
brought by our methods compared with the baseline
implementation (KyTea) and other tokenization
tools in terms of tokenization speed. Although we
focused especially on the tokenization task, some
of the techniques presented in this paper is generic
and can also be applied to other tasks if it can be
decomposed into a sequence of multiple problems
in the same manner.

We improved only the tokenization speed in this
paper because it is the most essential part of practi-
cal use-cases of tokenizers. Improving the whole
efficiency of the PLC based lexical analysis is also
challenging; it is one of the main focus of our fu-
ture work. Especially, PLC based part-of-speech
tagging requires much larger alphabet size (set of
words rather than characters) and further improve-
ment of the PMA architecture is required.
References

A Appendix

A.1 Accuracy Metrics

To measure the tokenization accuracy, we choose two metrics: boundary error rate which is the ratio of false classifications for all character boundaries, and the word-wise F_1 measure introduced by Nagata (1994).

A.2 Relation Between Penalty Parameter and Accuracy

We investigated the effect of the strength of the L1 regularization against the tokenization accuracy. Figure 11 shows the tendency of the boundary error rate with varying the penalty parameter C. As we discussed in the section 4.2, all of our methods and KyTea shares the same accuracy. We can see that the error rate becomes the minimum around $C = 1$ with and without employing a dictionary.

A.3 Relation Between Penalty Parameter and Model Size

We investigated the effect of the strength of the L1 regularization on the model size. Figure 12 shows the tendency of the number of n-grams in the model, and Figure 13 shows the number of states in the PMA with varying C. We can see that larger C (weak regularization) yields more n-grams with nonzero weights, and hence it requires more PMA states. We can also see that C has different effects for n-grams with different n-s.

A.4 Relation Between Window Size and Accuracy

We investigated the effect of the window size W and the maximum length of n-grams against tokenization speed and accuracy. We did not use any dictionary for this experiment because the dictionary feature is independent from both W and n. For models with $W \geq 4$, we did not introduce caching type n-gram scores discussed in Section 3.4 because it requires a large amount of memory.

Table 4 shows the comparison of the tokenization accuracy and the speed. We can see that the tokenization accuracy is saturated with a certain value of W and n (3 for SUW and 5 for LUW), although the tokenization speed drops when we selected larger W and n.
Table 4: Effect of window size W and n-gram size n on elapsed time [ms] and accuracy.

<table>
<thead>
<tr>
<th>W, n</th>
<th>SUW</th>
<th>LƯW</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>F_1</td>
<td>Error rate</td>
<td>Time</td>
<td>F_1</td>
<td>Error rate</td>
</tr>
<tr>
<td>1,1</td>
<td>7.7</td>
<td>0.8265</td>
<td>0.0887</td>
<td>7.6</td>
<td>0.8207</td>
<td>0.0749</td>
</tr>
<tr>
<td>2,2</td>
<td>11.3</td>
<td>0.9810</td>
<td>0.0093</td>
<td>11.1</td>
<td>0.9608</td>
<td>0.0155</td>
</tr>
<tr>
<td>3,3</td>
<td>13.3</td>
<td>0.9867</td>
<td>0.0066</td>
<td>13.3</td>
<td>0.9779</td>
<td>0.0088</td>
</tr>
<tr>
<td>4,4</td>
<td>15.7</td>
<td>0.9867</td>
<td>0.0066</td>
<td>15.9</td>
<td>0.9805</td>
<td>0.0078</td>
</tr>
<tr>
<td>5,5</td>
<td>20.1</td>
<td>0.9862</td>
<td>0.0069</td>
<td>20.5</td>
<td>0.9807</td>
<td>0.0077</td>
</tr>
<tr>
<td>6,6</td>
<td>23.3</td>
<td>0.9857</td>
<td>0.0071</td>
<td>24.2</td>
<td>0.9804</td>
<td>0.0078</td>
</tr>
<tr>
<td>7,7</td>
<td>25.6</td>
<td>0.9850</td>
<td>0.0074</td>
<td>27.1</td>
<td>0.9799</td>
<td>0.0080</td>
</tr>
</tbody>
</table>