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Abstract

This paper proposes multiple techniques to im-
prove runtime efficiency of Japanese tokeniza-
tion based on the Pointwise Linear Classifica-
tion (PLC) framework, which formulates the
whole tokenization process as a sequence of
linear classification problems. Our techniques
are optimized by leveraging the characteristics
of the PLC framework and the task definition
itself. Specifically, we introduce (1) composing
multiple classifications into array-based opera-
tions, (2) efficient feature lookup with memory-
optimized automata, and (3) three orthogonal
preprocessing to reduce actual score calcula-
tion. Combining these techniques, our imple-
mentation works 5.7 times faster than the exist-
ing tokenizer based on the same model without
any loss of tokenization accuracy.!

1 Introduction

In languages without explicit word boundaries such
as Japanese and Chinese, natural language process-
ing systems are required to determine these bound-
aries from unsegmented texts before any types of
word-based analyses. In Japanese processing, two
major linguistic” tokenization methods have been
proposed: lattice methods and pointwise methods.
The lattice methods (Hisamitsu and Nitta, 1990)
generate a lattice of possible tokenizations over the
input text and determines the path on the lattice
that minimizes a given cost function. In contrast,
pointwise methods (Shinnou, 2000; Sassano, 2002;
Neubig et al., 2011; Kitagawa and Komachi, 2018;
Tolmacheyv et al., 2019) utilize a binary classifier
to predict whether a particular character boundary
becomes a word boundary or not, as in Figure 1.
A thorough analysis revealed that both methods

'Our implementation is available as an open source soft-
ware at https://example.com/ (MIT or Apache-2.0)

There are also unsupervised tokenization methods such as
SentencePiece (Kudo and Richardson, 2018) but we focused
on linguistic tokenization which is still important for word
sensitive methods such as information retrieval.
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Figure 1: An example of Japanese tokenization with the
pointwise method. The bottom box contains character
n-gram features described in Section 2.1.

are comparable in terms of tokenization accuracy
(Mori et al., 2011).

Although the pointwise methods could work in
a linear time of input lengths as described in Sec-
tion 2, it requires careful designs of the overall
algorithm to reduce unnecessary bottlenecks which
cause a main concern of runtime efficiency. Particu-
larly, comparing well-known tools of both methods,
we can see that KyTea (Neubig et al., 2011) (point-
wise) is almost 2.1 times slower than MeCab (Kudo
et al., 2004) (lattice), meaning that there are still
rooms for improvements.

In this paper, we focus on designing an efficient
algorithm of the pointwise methods with linear clas-
sifiers, which we call Pointwise Linear Classifica-
tion (PLC), without changing the model structure.
Our algorithm works as the same as KyTea, but is
extremely faster than the original implementation.
To this end, we (1) formulate the whole PLC al-
gorithm as a set of array manipulations (Section
2.3), (2) introduce an efficient pattern matching al-
gorithm to look up features from the text (Section
3.1), and (3) propose three preprocessing methods
to reduce runtime score calculation (Sections 3.2 to
3.4). Experiments show that all of our approaches
improve the overall tokenization speed and eventu-
ally runs 5.7 times faster than KyTea in a controlled
environment. We also provide thorough analyses
of the proposed methods to capture the tendency of
their behavior from different perspectives.


https://example.com/

2 Pointwise Linear Classification

2.1 Algorithm Overview

Pointwise methods predict whether a particular
character boundary becomes a word boundary or
not using a binary classifier with context features
(Shinnou, 2000). Sassano (2002) and Neubig
et al. (2011) introduce an SVM with three types
of context features: character n-grams, type n-
grams, and dictionary features. These features are
generated within a sliding window of width W
which contains a sequence of surrounding charac-
ters around the boundary. Since the classifier is
defined independently from the context features,
we can employ off-the-shelf binary classification
models for this purpose. KyTea introduced a lin-
ear SVM as the classification model and utilized
LIBLINEAR (Fan et al., 2008) for training the
model parameters. According to this characteris-
tics, KyTea models can be considered as a variant
of the PLC. As we discussed later, PLC models are
capable of many optimization techniques.

A single classification in a PLC model is formu-
lated as follows:

yi(w, z;) = w' p(z;) + b, (1)

where z; is the ¢-th input data corresponding to the
i-th character boundary, ¢(x;) is a binary vector
representing a set of available features extracted
from x; , w is a weight vector corresponding to
all features, and b is a scalar bias. The resulting
value y; suggests how likely the character boundary
becomes a word boundary: the higher the more
likely it becomes a word boundary. y; = 0 is the
decision boundary of this formulation: the classifier
determines the word boundary where y; is positive.

2.2 Context Features

In Figure 1, we input a piece of Japanese text,
and the model is predicting whether the charac-
ter boundary “5%-0” is a word boundary or not.
Figure 1 shows available character n-gram features
in this prediction. Character n-gram features are
defined as a pair of character n-grams and their
relative positions from the boundary.

Similarly to character n-grams, the type n-gram
features are defined as a pair of character type
n-grams and their relative positions. Character
types are defined as a function ¢(a) which assigns
a character a to one of 6 categories: H (Hira-
gana), T (Katakana), K (Kanji), D (Digit), R (Ro-
man), and O (Other). For example, the character

(‘L) 2t R|loER
(‘®"R) ttt % o|E § »
(‘R Sd. 2RO
(“H587 1) 2R E
(“1#5 R) 2R OEER

ra wa zen se kai no koku min ga

Figure 2: Examples of dictionary features of two words
“®” and “M5L” with different positions. The I feature
is repeated for all intermediate character boundaries.

n-gram “H5¢ D> is mapped to the type n-gram
[t(‘ﬁ,)v t(‘?%,)’ t(*?)] = ['K*,’K’,*"H’].

If a character boundary is overlapped by some
dictionary words, dictionary features correspond-
ing to the word are additionally introduced to en-
hance the confidence of the prediction.? Each dic-
tionary word has at most 3 types of features: L (the
leftmost side of the word), R (the rightmost side of
the word), and I (any boundaries inside the word).
Figure 2 shows an example of dictionary features.

2.3 PLC with Pattern Matching

In Equation (1), we need to extract the features
¢(x;) and calculate an inner product for every char-
acter boundary. Since consecutive classifications
in PLC requires similar features, this process can
be composed into a unified routine in Algorithm 1.

Figure 3 shows an example of this algorithm
with character n-gram features. First, the input
text of NV characters is decomposed into a character
sequence a = (ag, a1, .. .,an—1) and analyzed by
the pattern matching function Match(a) to look up
all character n-grams with nonzero weights. The
score array Wpaiern(q) is defined for each n-gram
pattern g and formulated as follows:

Wpattern (Q)

= (w(q,an)7 'lU(q7W,n,1)7 ey w(q,7W))7 (2)

where wq ) 1s a weight corresponding to the n-
gram feature (g, -) described in Section 2.2 and
n is the length of the n-gram. Each score array
contains 2W — n + 1 elements corresponding to
all relative positions. For each g, a corresponding
score array is integrated to the appropriate span of

3 According to Neubig et al. (2011), word features are
shared among all words with the same number of characters.
Our definition is more general as well as covering the original
definition.



Algorithm 1 Pointwise linear classification using
n-gram pattern matching.

Input: Text: a, Weights: w
Output: Result array: (y1,y2, . ..
L (Y1,92,---,yn-1) «<— 0
2: for [j, k) € Match(a) do
3 q <— (aj,aj+1,...,ak_1)
4 w’ — wpattem(‘])
5 p—k-—-W
6: forv=0to2W —ndo
7
8
9

7yN71)

ifp+i€[l, N — 1] then
Ypti < Ypri + Wj

end if
10:  end for
11: end for
12: return (yh Y2, ... 7yN—1)
the result array (y1,y2, ..., yn—1), representing a

sequence of classification results.

Although Algorithm 1 does not show any im-
provements in terms of complexity, the calculation
of y; is decomposed into elementwise summing
between multiple arrays that has ability to bring
high hardware-level throughput.* Algorithm 1 also
involves several bottlenecks that can be improved
as discussed in Section 3.

Note that a similar approach to Algorithm 1 has
also been adopted in KyTea, but there are several
rooms for improvement about the entire efficiency
of the algorithm. In our implementation, we fo-
cused on adjusting the whole algorithm to maxi-
mize the actual utilization in modern processors.

3 Improving Efficiency of PLC

3.1 Efficient Pattern Matching

The Match function runs over the whole input
text a, and discovers all available substrings reg-
istered in the pattern set of the function. We need
three Match functions to achieve the whole feature
lookup: character n-grams, type n-grams, and dic-
tionary. The character n-grams and dictionary need
to match over the raw characters a, while the type
n-grams need to match over the sequence of charac-
ter types t(a) := [t(ao), t(a1, ), ...,t(an—1)]. This
pattern matching is solved efficiently by so-called
Aho-Corasick (AC) algorithm (Aho and Corasick,

*Specifically, arithmetic with sequential access is benefi-
cial for (i) accurate branch prediction, (ii) high availability of
hardware caches, and (iii) high availability of SIMD optimiza-
tions.
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Figure 3: Integrating character nm-gram scores to the
result array y. W = 3. Wpaien (“517) has 6 weights,
Wparern (“THFL”) has 5 weights, and wypagern (“4 TH5)
has 4 weights as formulated in the Equation (2). Each
score array is integrated to the position k£ — W on y,
where k is the rightmost position of the pattern.
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1975; Maruyama, 1994) which is also used in
KyTea. The AC algorithm employs an automaton
called Pattern Matching Automaton (PMA) that
performs in O(N + occ) time in the most efficient
cases, where occ is the number of pattern occur-
rences in the text.

The complexity of the AC algorithm additionally
depends on the data structure of the inner PMA
(Nieminen and Kilpeldinen, 2007). KyTea employs
a binary search to discover state transitions of the
PMA due to the large alphabet size of Japanese
characters, which actually requires O(N logo +
occ) where o is the expected number of possible
transitions. To mitigate this problem, we employ
compacted double-arrays (CDAs) (Aoe, 1989; Yata
et al., 2007). CDAs adjust the assignment of state
IDs to share the memory space of their transition
mappings as much as possible, which enables direct
lookup of state transitions by character IDs so that
the whole performance of the PMA becomes back
O(N + occ).

3.2 Merging Character n-gram Scores

PLC models usually introduce character n-grams
with different n-s to capture a variety of contexts
around the boundary. In this case, a longer n-gram
overlaps several substring n-grams and the PMA
may report all possible n-grams sharing the same
suffix as well as the longest n-gram.

Figure 3 shows an example of summing three
score arrays of “5&” (domain), “f:5% (the world)
and “Z 15 (overall the world). Since these pat-
terns are suffixes of the longest one, summing the
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Figure 4: A PMA built from three patterns (“5%, “fi:
S, <4t 5. Balloons indicate patterns reported at
corresponding states. Dotted lines indicate failure edges
to non-root states.

score array Wpagtern (“EH5FE”) always involves
summing Wpattern (“HE5L”) and wpagtern (“547).

Figure 4 shows a PMA built from “5%”, “fft 5>,
and “2 5. When the PMA reaches the state
s, it yields a list of all possible suffixes collected
by tracing a chain of failure edges from s, and the
Algorithm 1 eventually aggregates all score arrays
corresponding to the yielded suffixes. Since each
state in the PMA yields always the same list of
possible suffixes, we can calculate a partial sum of
the score arrays Wstate($) in advance by summing
over all possible Wpattern(-):

wstate(s) = Z wpattern(Q)7 (3)

geS(s)

where S(s) is the set of possible suffixes at s. Us-
ing Wgtate(-) instead of wpattern(-) improves the
runtime efficiency by allowing the Algorithm 1 to
aggregate score arrays only once for each character
boundary.

3.3 Integrating Dictionary Words

As we discussed in Section 3.1, PMAs of the char-
acter n-grams and the dictionary run over the same
sequence a and some of their patterns may be over-
lapped each other. This suggests that we can fur-
ther integrate score arrays of dictionary words into
the partial sum of the character n-gram scores to
reduce certain amount of burdens caused by match-
ing dictionary words. To this end, we propose
two methods to integrate dictionary features as dis-
cussed in the following sections.

3.3.1 Integrating Short Dictionary Words

As we can see in Figure 3, the score arrays of char-
acter n-grams at the position k start with always
the position £ — W, and dictionary features of any
words of lengths [ < W can be integrated into the
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Figure 5: The difference of adding positions of character
n-gram scores and dictionary word scores. W = 3. L,
I, and R indicate types of the dictionary feature. 0
indicates a padding.

partial sums of character n-grams without introduc-
ing any extra treatment. Based on this observation,
it may be reasonable to integrate only words with
short lengths while long words (of lengths [ > W)
are remained in the separate PMA. We call this
method Short.

3.3.2 Integrating All Dictionary Words

We can further consider to integrate every dictio-
nary word into the partial sums to get rid of the
PMA of dictionary words completely. Since score
arrays of long words cover beyond the range of
character n-gram scores (as in the last case of Fig-
ure 5), we need to prepare additional arrays to store
partial sums for all long words. We also need to
determine the correct starting positions of the score
summation, which may cause an additional cost of
the calculation. We call this method All.

3.4 Caching Type n-gram Scores

Type n-gram scores are calculated similarly to that
of character n-grams, but its alphabet size is lim-
ited. As described in Section 2.1, KyTea models
distinguish only 6 character types. Since the sliding
window of size W contains a sequence of character
types of length 2W, the number of possible type n-
gram sequences is only 62", This is small enough
to store all resulting scores of possible sequences at
initialization for a reasonable value of W, which is
typically W = 3.5 This approach allows to achieve
the score calculation of type n-grams by looking

3 According to the analysis in Appendix A.4.
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Figure 6: Calculating sequence IDs of character types
with W = 3. Binary sequences under character types
indicate codes related to each character type: for exam-
ple, Cd(H) = 001(2). Sequence ID of the next sliding
window can be calculated by the current sequence ID
and the incoming character type.

up only one integrated score and avoid both the
PMA of type n-grams and summing corresponding
score arrays.

Specifically, we assign a binary code of 3 bits
Cd(t) € [1, 6] for each character type ¢, and defines
the sequence ID 1d(i) as follows:

2W -1
Td(i) =y 2PCWTIRe(i W+ k), @)
k=0

~ [ cd(t;) ifie[0,N—1],
o(i) := { 0 otherwise, )
for each sliding window at position ¢, where ¢; :=
t(a;). Id(4) is a 61V bit integer which is used as
the address of the integrated type n-gram score.
Since 1d(7) shares most of its subsequence with
the neighboring window Id(i + 1) as shown in
Figure 6, we can induce Id(-) values recurrently
as follows:

1d(=W):=0, (6)
1d(i + 1) := (2°1d() + c(i + W) %25, (7)
where % indicates the modulo operation. This cal-
culation can be performed by only a few bit opera-

tions and requires a constant time complexity for
each character boundary.

4 Experiments

4.1 Setup

We evaluate tokenization speed of our methods
with multiple combinations and compared them

with conventional tokenization tools. We use
short unit words (SUW) in BCCWJ 1.1 corpus
(Maekawa et al., 2014)% to train PLC models. The
corpus consists of 60k Japanese sentences with
manually annotated SUW boundaries. We also
use 667k words for dictionary features extracted
from UniDic 3.1.0 (Den et al., 2007)’ with manual
filtering.® Our methods are implemented in Rust
and compiled by rustc 1.60.0 with optimization
flag opt —1level=3. Other tools are compiled by
GCC 11.2.0 or the same rustc with their recom-
mended configuration. For each experiment, we
performed 10-fold cross validation: 9 fractions are
used in training, and the remaining one is used
for test. The PLC model is trained by the LIB-
LINEAR with L1 regularization (Tibshirani, 1996).
The same PLC model is used in both KyTea and
our methods. We fixed several hyperparameters to
obtain representative metrics of each method: the
penalty parameter C to 1, the window size W to 3,
and the maximum length of n-grams to 3, accord-
ing to the analysis in Appendix A.2 and Mori et al.
(2011).

In our experiments, we are especially targeting to
compare the performance of the systems on a long-
lived server service. To this end, we aim to measure
only the computing overhead imposed by the actual
tokenization processes. Specifically, model initial-
ization (loading the parameters and preprocessing
integrated scores) are omitted from the resulting
measure because these are performed only once
during the runtime. In addition, all test sentences
are loaded onto the memory in advance to avoid
constant disk access.

We perform all experiments in a single thread
process on a dedicated machine with Intel Core
17-8086K CPU (4GHz, 6 cores, 32KiB L1, 256KiB
L2, 12MiB L3) and 64GiB DDR4 RAM.

4.2 Baseline systems

We introduced following tools as our baselines:

KyTea’ The original implementation of the PLC
method. Since we use the same model in both
KyTea and our methods, tokenization accuracy of
both systems are exactly the same.

®https://clrd.ninjal.ac.jp/bccwi/en/

"https://clrd.ninjal.ac.jp/unidic/en/
(GPL-2 or LGPL-2.1 or BSD-3)

8We removed all words including whitespaces.

‘https://github.com/neubig/kytea (Apache-
2.0)
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Table 1: Average time elapsed to tokenize the test data. [ms]

Tokenizer Time Time — (a) SD
KyTea (2020-04-03) 136.6 5.6
Our methods
(a): §3.1 Efficient Pattern Matching 332 O 05
(b): (a) + §3.2 Merging Character n-gram Scores 31.2 2.0 0.6
(c): (a) + §3.3 Integrating Dictionary Scores (All) | 29.4 -3.8 0.5
(d): (a) + §3.4 Caching Type n-gram Scores 30.2 -3.0 05
(e): (a) + §3.2 4+ §3.3 (Al +§3.4 23.8 94 04
MeCab (2020-09-14)
IPADic 65.4 1.9
UniDic 161.5 7.3
sudachi.rs (0.6.4-al) 169.5 34

Table 2: Average number of score arrays aggregated during tokenizing the test data. [x103]

Subroutine ‘ (a (b) (a)+Short (a)+All (b)+Short (b)+All
Character n-grams | 360. 203. 386. 392 204. 204.
Dictionary words | 307. 307. 6. - 6. -
Total \ 667. 509. 392. 392 210. 204.

MeCab'® A major Japanese tokenizer based on
the lattice method. We used IPADic dictionary
(Asahara and Matsumoto, 2003) as well as Uni-
Dic.!!

sudachi.rs'>  An efficient implementation of Su-
dachi (Takaoka et al., 2018) which is also based on
the lattice method. We picked up Sudachi because
it is widely used as an internal tokenizer of larger
systems such as spaCy.'> We used SudachiDict-
core 20210802 model and disabled all postprocess-
ing.

4.3 Overall Speed Comparison

Table 1 shows average time elapsed to tokenize the
test data. The results in KyTea and our methods
include only time elapsed by the boundary classi-
fication, while MeCab and sudachi.rs involves the
whole analysis which is hard to be separated due
to the model formulation.'*

First, we focus on 5 different settings (a) to (e)
of our methods described in Section 3. The settings

Ohttps://github.com/taku910/mecab (GPL-2
or LGPL-2.1 or BSD-3)

""We provide a reference performance of MeCab with a
typical configuration (IPADic) for a fair comparison of speeds.

Zhttps://github.com/WorksApplications/
sudachi . rs (Apache-2.0)

Bhttps://spacy.io/

Lattice methods are designed to consider a joint distribu-
tion of tokenization and morphology.

(b), (c), and (d) run faster than (a), demonstrating
that these preprocessing approaches are effective
to suppress computation time. We can also see
that applying the all preprocessing (e) achieves
the fastest result and the overall improvement is
comparable with the sum of (b), (c), and (d). This
suggests that these techniques are orthogonal and
improves different part of computation in the whole
algorithm.

Comparing (e) and other tools, our method
achieves 5.7 times faster performance than KyTea,
6.8 times faster than MeCab with the same dictio-
nary,' and 7.1 times faster than sudachi.rs.

4.4 Performance of Subroutines

Table 2 shows the average number of score arrays
aggregated during score calculation of all test ex-
amples. We focused on the number of arrays rather
than the number of actual scores because most
score arrays can be aggregated by at most a few
SIMD instructions. We do not show corresponding
metrics of type n-grams because its calculation can
be removed completely by the method described in
Section 3.4.

'SPLC models rely on word boundary labels annotated in
the training corpus (BCCWJ) and the word unit of the dictio-
nary must be compatible with the corpus’ standard to avoid
unnecessary lacking of tokenization accuracy. Since the word
unit of IPADic is not compatible with BCCWJ, we did not
prepare the results of PLC models with [PADic.
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Table 3: Average time elapsed to process character n-grams and dictionary. [ms]

Subroutine ‘ (a) (b)

(a)+Short

@+Al (b)+Short (b)+All

Character n-grams
Pattern matching | 6.15
All 7.46

5.99
6.75

7.68
10.96

9.65
17.75

7.35
9.60

9.09
15.88

Dictionary words
Pattern matching | 8.28
All 13.63

8.26
13.56

5.82 -
6.27 -

5.74 -
6.36 -

All subroutines 23.67 22.82

20.77 17.75 19.40 15.88

We can see that merging character n-gram scores
(b) reduces 44% of array summations involved by
character n-gram features, and integrating short
dictionary words (a)+Short reduces 98% of ar-
ray summations involved by dictionary features.
(a)+Short also increases the number of array sum-
mations in character n-grams slightly due to intro-
ducing unseen character n-grams derived from the
dictionary.

On the other hand, combining both methods
(b)+Short successfully reduced the calculation of
character n-gram scores to a comparable range of
(b). This tendency shows that even if the dictio-
nary contains unseen character n-grams, they can
be integrated to the partial sums of other patterns in
most cases. Comparing methods Short and All in
both (a) and (b), there was no significant difference
of the number of score summations by integrating
long words.

Table 3 shows the average time elapsed during
each subroutine. We measured each metric by sim-
ply disabling other subroutines from the whole pro-
cess. The last row shows the time with all sub-
routines, which should be longer than the sum of
all individual metrics due to the lack of caching
efficiency. We can see that the time of character n-
grams in (b)+All is longer than that in (b)+Short
nevertheless the numbers of score summations in
Table 2 are almost the same. This is expected be-
cause the method All introduces an additional com-
plexity as discussed in Section 3.3.2. However,
we can also see that the whole process of (b)+All
achieved faster performance than (b)+Short be-
cause (b)+All eventually removes the whole pro-
cess of dictionary features completely.

4.5 Effect of Model Size

We analysed the impact of model sizes against tok-
enization efficiency by varying the penalty parame-
ter C' of L1 regularization (Tibshirani, 1996) during
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— w/o Dictionary
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Figure 7: Effect of the penalty parameter C' against the
elapsed time of each method.

training SVMs.!® L1 regularization squashes cer-
tain number of weights into 0 and such weights can
be removed from the model (Gao et al., 2007).

Figure 7 shows the whole processing time of the
method (e) and KyTea with varying C' Intuitively,
both models achieve faster processing speed with
small C (strong regularization), and our method
achieves better processing speed against KyTea for
every values of C'.

Considering the gradient of each plot in Figure
7, we can also see that C' brings larger exponen-
tial effect against processing speed of the method
(e) than KyTea. This tendency is reasonable be-
cause our methods heavily rely on the CPU archi-
tecture: large models may cause many disruption
of efficient computing. Here we provide several
observations of this tendency in detail.

We hypothesized first that this tendency is simply
caused by increasing the number of array summa-
tions because a larger model may discover more
patterns on the same input. As Figure 8 shows, this

16We followed the same definition of C' in Fan et al. (2008):
the smaller the stronger regularization. The actual relation
between model sizes and C'is shown in Appendix A.3.
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Figure 9: Effect of the penalty parameter C' against the
number of L3 cache misses of each method. Lines and
areas indicate means and standard deviations, respec-
tively.

hypothesis is not correct because merging character
n-grams ((b) and (b)-+All) effectively suppressed
the number of array summations under a certain
upper bound even when C was large (weak regu-
larization). This means that the speed reduction
on large C' is not caused by the complexity of the
algorithm itself.

We also investigated hardware level efficiency
of each method. As clearly shown in Figure 9, the
number of CPU cache misses!” grows significantly
by increasing C' despite maintaining the number
of summation operations. This phenomenon is ex-
plained by observing access frequency of score

Counted by the perf_event_open system call on
Linux.

Entropy [nat]

r — w/ Dictionary |
- — w/o Dictionary

0.0 I I | I
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L

Figure 10: Entropy of access frequency distribution of
character n-gram score arrays by the method (e).

arrays. Figure 10 summarizes the access frequency
distribution of score arrays as an entropy, and
shows that large models tend to require more var-
ied score arrays than small models to calculate the
final scores. Since the CPU cache can remember
only the neighboring contents around the memory
accessed recently, requiring varied parts of memory
lacks utilization of the cache, resulting in overall
speed reduction of the algorithm.

5 Conclusion and Future Work

We introduced multiple techniques to improve ef-
ficiency of the Japanese tokenizer based on Point-
wise Linear Classification (PLC) models. Exper-
iments clearly showed substantial improvements
brought by our methods compared with the baseline
implementation (KyTea) and other tokenization
tools in terms of tokenization speed. Although we
focused especially on the tokenization task, some
of the techniques presented in this paper is generic
and can also be applied to other tasks if it can be
decomposed into a sequence of multiple problems
in the same manner.

We improved only the tokenization speed in this
paper because it is the most essential part of practi-
cal use-cases of tokenizers. Improving the whole
efficiency of the PLC based lexical analysis is also
challenging; it is one of the main focus of our fu-
ture work. Especially, PLC based part-of-speech
tagging requires much larger alphabet size (set of
words rather than characters) and further improve-
ment of the PMA architecture is required.
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Figure 11: Effect of penalty parameter C' against mean
error rate.

A Appendix

A.1 Accuracy Metrics

To measure the tokenization accuracy, we choose
two metrics: boundary error rate which is the ratio
of false classifications for all character boundaries,
and the word-wise F) measure introduced by Na-
gata (1994).

A.2 Relation Between Penalty Parameter and
Accuracy

We investigated the effect of the strength of the
L1 regularization against the tokenization accuracy.
Figure 11 shows the tendency of the boundary error
rate with varying the penalty parameter C'. As we
discussed in the section 4.2, all of our methods and
KyTea shares the same accuracy. We can see that
the error rate becomes the minimum around C' = 1
with and without employing a dictionary.

A.3 Relation Between Penalty Parameter and
Model Size

We investigated the effect of the strength of the
L1 regularization on the model size. Figure 12
shows the tendency of the number of n-grams in
the model, and Figure 13 shows the number of
states in the PMA with varying C. We can see that
lager C' (weak regularization) yields more n-grams
with nonzero weights, and hence it requires more
PMA states. We can also see that C' has different
effects for n-grams with different n-s.

11

10 IS=SSSSsstt: IS=SSSSsstt: == =S=ssE IS=SSSSsstt:

# n-grams

-©- l-gram -« 2-gram -8 3-gram

0 I I | I

N 1072 10 10° 10' 10°
Penalty parameter C

Figure 12: Effect of penalty parameter C' against the
number of n-grams in the model. (w/o Dictionary)
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Figure 13: Effect of penalty parameter C' against the
number of PMA states in the model. (w/o Dictionary)

A.4 Relation Between Window Size and
Accuracy

We investigated the effect of the window size W
and the maximum length of n-grams against tok-
enization speed and accuracy. We did not use any
dictionary for this experiment because the dictio-
nary feature is independent from both W and n.
For models with W > 4, we did not introduce
caching type n-gram scores discussed in Section
3.4 because it requires a large amount of memory.

Table 4 shows the comparison of the tokeniza-
tion accuracy and the speed. We can see that the
tokenization accuracy is saturated with a certain
value of W and n (3 for SUW and 5 for LUW),
although the tokenization speed drops when we
selected larger W and n.



Table 4: Effect of window size W and n-gram size n on elapsed time [ms] and accuracy.

SUW LUW
Time Fi Error rate | Time F Error rate
1,1 7.7 0.8265  0.0887 7.6 0.8207  0.0749
2,2 11.3 0.9810  0.0093 11.1 09608  0.0155
3,3 13.3 09867  0.0066 13.3 09779  0.0088
4.4 15.7 09867  0.0066 159 09805 0.0078
5,5 20.1 09862  0.0069 20.5 09807  0.0077
6,6 23.3 09857  0.0071 242 09804  0.0078
7,7 25.6 09850 0.0074 27.1 0.9799  0.0080

W,n
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