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Abstract

Large language models (LLMs) show potential001
in healthcare but often generate hallucinations,002
especially when handling unfamiliar informa-003
tion. In medication, a systematic benchmark to004
evaluate model capabilities is lacking, which005
is critical given the high-risk nature of medical006
information. This paper introduces a Chinese007
benchmark aimed at assessing models in med-008
ication tasks, focusing on knowledge and rea-009
soning across six datasets: indication, dosage010
and administration, contraindicated population,011
mechanisms of action, drug recommendation,012
and drug interaction. We evaluate eight closed-013
source and five open-source models to iden-014
tify knowledge boundaries, providing the first015
systematic analysis of limitations and risks in016
proprietary medical models.017

1 Introduction018

Large language models (LLMs) have made signifi-019

cant strides in various domains, including medica-020

tion, where they provide information and recom-021

mendations related to medical treatments (Singhal022

et al., 2022; Nori et al., 2023). However, a signifi-023

cant challenge remains: these models are prone to024

generating hallucinations and confidently provid-025

ing incorrect or incomplete information, especially026

in cases where they lack adequate knowledge (Ste-027

fansson and Johansson, 2021; Shukla et al., 2022).028

In the context of medication and drug usage, such029

hallucinations can lead to critical errors, particu-030

larly in high-risk situations like identifying con-031

traindicated populations or recommending unsafe032

drug combinations. Despite the progress made in033

medical AI, there is a notable gap in the devel-034

opment of systematic benchmarks to evaluate the035

full range of a model’s capabilities in medication036

applications.037

In this paper, we construct a Chinese benchmark038

called ChiDrug, specifically designed to assess039

LLMs’ knowledge and reasoning abilities in the040
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Figure 1: Our benchmark involves four datasets that
directly examine model parametric knowledge and two
datasets that examine model reasoning ability.

medication domain. As shown in Figure 1, our 041

benchmark is structured into two key subdimen- 042

sions: parametric knowledge and reasoning ca- 043

pability. We construct six diverse datasets that 044

cover crucial aspects of drug information—dosage 045

and administration, indication, contraindicated pop- 046

ulations, mechanisms of action, medication recom- 047

mendations, and drug interactions. 048

To evaluate the capabilities of existing models, 049

we apply our benchmark to eight closed-source 050

and five open-source models. Our work also ex- 051

plores various methods for expressing knowledge 052

boundaries, providing insights into the potential 053

risks of overconfident but inaccurate AI-generated 054

responses. 055

Our contributions include: (1) This benchmark 056

serves as the first systematic tool for analyzing the 057

capabilities of LLMs in the field of medicine across 058

various dimensions. (2) We are pioneers in con- 059

ducting knowledge boundary analysis on medical 060

models within medicine, providing a comprehen- 061

sive overview of their performance in real-world 062

medical applications. 063
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2 Related Work064

2.1 Chinese Benchmark in Medication065

Assessing the capabilities of Large Language Mod-066

els (LLMs) in the medical field requires special-067

ized benchmarks, especially when dealing with068

Chinese medical texts. Recent efforts have led to069

the development of several Chinese-specific medi-070

cal benchmarks, focusing on various domains such071

as clinical question answering, knowledge recall,072

and medication recommendations (Singhal et al.,073

2023; Liu et al., 2024; Wang et al., 2024; Yue et al.,074

2024).075

MedExpQA (Liu et al., 2024) proposes a multi-076

lingual benchmark evaluating models on medical077

question answering tasks, including drug-related078

and clinical guideline questions. DialMed (He079

et al.) focuses on dialogue-based medication rec-080

ommendations, testing models on handling patient081

symptom queries and drug interactions. However,082

existing datasets do not have a dedicated bench-083

mark built in the field of medication in Chinese to084

evaluate the model’s ability in this area.085

2.2 Abstention in LLMs086

The ability of Large Language Models (LLMs) to087

refrain from providing answers when uncertain—is088

crucial for enhancing model reliability and safety.089

Studies have explored various methods to improve090

this capability (Wen et al., 2024):091

Currently, methods to guide models in refusing092

to answer include: Calibration-Based Methods:093

After the model provides an answer, continue by094

asking, "Are you sure about your answer?" to ver-095

ify its confidence (Tian et al.). Training-Based096

Methods: Construct a training set containing both097

questions the model can answer and those it cannot,098

training the model to refuse to answer questions099

with unfamiliar knowledge (Slobodkin et al., 2023;100

Zhang et al., 2023; Stengel-Eskin et al., 2024).101

Consistency-Based Methods: Perform multiple102

samplings and calculate the consistency score of103

the model’s responses to assess reliability(Kuhn104

et al.; Feng et al., 2024). Token Probability Meth-105

ods: Ensemble the probability of each token gener-106

ated by the model to determine the uncertainty of107

the response (Liang et al., 2024; Malinin and Gales,108

2021).109

3 Dataset110

ChiDrug is designed to assess models’ parametric111

knowledge and reasoning ability in handling criti-112

cal medication-related tasks. Below, we outline the 113

dataset construction process and the verification 114

procedures used to ensure the quality and reliabil- 115

ity of the data. The entire benchmark construction 116

process is shown in Figure 2 117

3.1 Dataset Construction 118

We began by collecting official drug brochures 119

for existing medications from the internet1. We 120

organized this information into a table that in- 121

cludes details on 8,000 drugs, encompassing their 122

generic names, ingredients, specifications, indi- 123

cations, dosages, contraindications, drug interac- 124

tions, adverse reactions, and mechanisms of ac- 125

tion. This structured dataset served as the foun- 126

dation for developing questions that evaluate the 127

model’s parametric knowledge in four areas: Indi- 128

cation, Dosage and Administration, Contraindi- 129

cated Population, and Mechanism of Action. 130

We extracted the relevant sections from each drug 131

brochure and utilized Spark2 to generate multiple- 132

choice question stems and answer options. In con- 133

structing these questions, we ensured that the incor- 134

rect options did not overlap with the correct ones. 135

The second step involved constructing ques- 136

tions for Medication Recommendation. We col- 137

lected doctor-patient dialogues from the existing 138

DIALMED dataset (He et al.), where Spark trans- 139

formed these dialogues into question formats, using 140

the recommended medication by the doctor as the 141

correct option. To generate distractor options that 142

could confuse the model, we first used Spark to 143

extract the patient’s symptoms and demographic 144

information, then searched the drug brochures for 145

medications that treat the same symptoms but are 146

not suitable for the patient’s demographic group, 147

thereby creating incorrect options (e.g., “symptom 148

in indication and demographic in contraindicated 149

population”). 150

In the third step, we constructed a dataset for 151

Drug Interaction. First, doctors defined three 152

risk levels for drug interaction (high, medium, and 153

low). We then randomly selected a drug from the 154

brochures and identified its combination guidelines. 155

From there, we extracted the ingredients involved 156

in drug interactions and further searched for medi- 157

cations that contained the same ingredients. Finally, 158

we input the two drugs and the interaction docu- 159

mentation into Spark to generate the appropriate 160

risk level as the correct answer. 161

1https://drugs.dxy.cn
2https://xinghuo.xfyun.cn
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Azithromycin
Dispersible Tablets

Contraindicated Population
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avoid using azithromycin dispersible tablets?
(A) Patients allergic to penicillin
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have had a mild cough accompanied 
by hoarseness and occasional 
headaches. The cough has worsened 
and I also have symptoms of rhinitis.

Recommendations: Montelukast, 
Azithromycin, Compound 
Methoxynamine Capsules

A 32 year old pregnant woman 
with hyperthyroidism recently 
experienced a week of mild cough 
accompanied by hoarseness and 
occasional headaches, followed by 
worsening cough and symptoms of 
rhinitis. The recommended 
medication is:
(A) Montelukast
(B) Azithromycin
(C) Compound Methoxynamine
Capsules
(D) Xinqin Capsules

Xinqin
Capsules

Wrong Option

This product, when used in 
combination with 
immunosuppressants such as 
cyclosporine, azithromycin, 
clarithromycin, etc., can increase 
the risk of muscle lysis and acute 
renal failure.

Pitavastatin

Azithromycin
Dispersible 

Tablets

What are the risks associated 
with the combination of 
pitavastatin and azithromycin? 
(High/Medium/Low)
Answer: high-risk

Parametric Knowledge Requests

“pregnant” in Contraindicated Population
And

“rhinitis” in Indication
“Azithromycin” in Drug Ingredients

Risk definition:
High risk:
Medium risk:
Low risk:

Reasoning Skill Requests

Figure 2: Overview of our benchmark construction process

3.2 Verification162

Since we automatically generated the questions163

for the dataset, we used a double-check process164

to make sure the questions were reasonable. Each165

question was tested by three large models (GPT-43,166

Qwen-max4, ERNIE bot5). We gave these models167

the question, options, and document sources and168

asked them to check the following: (1) If the ques-169

tion makes sense. (2) If the answer is correct. (3)170

If the answer is unique. A question was considered171

valid only if all three models agreed it was correct.172

Additionally, We hire doctors with licensed qualifi-173

cations to examine all the datasets we construct.174

In the end, we created a benchmark dataset with175

a total of 5,243 samples, covering the following176

categories: Indication (705), Dosage and Admin-177

istration (651), Contraindicated Population (659),178

Mechanism of Action (773), Medication Recom-179

mendation (838), and Drug Interaction (1,617).180

4 Experiment181

In this section, we evaluate the performance of182

large language models (LLMs) on our benchmark.183

We assess both closed-source and open-source mod-184

els, using our benchmark to examine their capabil-185

ities in handling medication-related queries and186

their ability to identify knowledge gaps and over-187

confidence. Table 1 presents the results for the188

model ability, while the second table focuses on189

the methods to express the knowledge boundaries190

in seven different methods.191

3https://chatgpt.com
4https://tongyi.aliyun.com/qianwen
5https://yiyan.baidu.com

4.1 Model Performance Evaluation 192

We selected models with strong Chinese language 193

capabilities, including GPT4o (Hurst et al., 2024), 194

Claude3.5-Sonnet6, Qwen-max7, Doubao8, GLM4 195

(GLM et al., 2024), Baichuan49, XiaoYi10, and 196

ERNIE Bot11, for evaluation of closed-source mod- 197

els. For open-source models, we chose Bencao 198

(Wang et al., 2023), MedGLM (Haochun Wang, 199

2023), MedicalGPT (Xu, 2023), ChiMedical (Tian 200

et al., 2024), and HuatuoGPT2 (Chen et al., 2024) 201

for evaluation. 202

The results summarized in Table 1, The closed- 203

source models generally outperformed the open- 204

source models across all dimensions, with XiaoYi 205

leading in overall performance, followed closely 206

by GPT4o and ERNIE Bot. In Open-source mod- 207

els, Bencao and MedicalGPT demonstrated lower 208

performance, particularly in complex tasks like 209

Contraindicated Populations and Drug Interactions, 210

while HuatuoGPT2 generally outperformed other 211

models. We will provide a more detailed analysis 212

of each model in the Appendix A. 213

4.2 Methods for Knowledge Boundary 214

Detection 215

In this subsection, we apply seven methods to ex- 216

plore their impact on expressing uncertainty or ab- 217

stention, using HuatuoGPT2 as the backbone. 218

6https://claude.ai
7https://tongyi.aliyun.com/qianwen
8https://www.doubao.com/chat
9https://www.baichuan-ai.com

10https://chatdr.iflyhealth.com
11https://yiyan.baidu.com
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Close-source Models
Dosage and Administration Indication Contraindicated Population Mechanism of Action Medication Recommendation Drug Interaction Avg.

XiaoYi 81.1 77.87 66.71 92.85 65.31 63.27 73.52
GPT4o 66.41 73.65 69.35 92.13 59.79 59.93 70.21
ERNIE 67.64 65.3 57.97 92.76 51.43 38.59 62.28

Qwen-max 69.02 72.13 68.19 93.28 61.22 54.73 69.76
Doubao 71.32 71.24 54.17 92.77 63.25 55.35 68.02
GLM4 71.32 75.71 71.02 94.16 59.79 54.92 71.15

Claude3.5 54.59 74.53 70.29 89.92 54.06 60.73 67.24
Baichuan4 62.14 69.97 69.24 90.35 52.98 52.81 66.25

Open-source Models
Bencao 28.92 19.88 12.2 40.71 16.23 38.28 26.04

MedGLM 38.92 13.21 8.75 44.86 20.17 34.59 26.75
MedicalGPT 33.51 10.14 3.18 49.41 13.84 30.98 23.51
ChiMedical 33.51 16.04 14.32 38.54 24.71 36.05 27.20

HuatuoGPT2 55.83 47.03 18.66 77.16 25.18 25.60 41.58

Table 1: This table presents the performance of 8 closed-source models and 5 open-source models across various
medication-related tasks. Bold indicates the best performance, while underlining denotes the second-best.

Dosage and Administration Indication Contraindicated Population Mechanism of Action Medication Recommendation Drug Interaction Avg.
Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc

Baseline 55.83 55.83 47.03 47.03 18.66 18.66 77.16 77.16 25.18 25.18 25.60 25.60 41.58 41.58
Post-calibration 55.94 57.91 47.01 47.62 18.05 18.17 77.21 77.37 25.23 26.12 24.76 25.67 41.37 42.12

IDK 54.26 54.68 47.18 47.18 17.90 17.30 78.68 80.28 24.47 24.66 24.55 26.64 41.17 41.79
LNS 53.99 50.46 50.78 50.85 18.18 23.03 79.97 71.07 28.22 26.21 24.94 23.58 42.68 40.87

Probing 66.11 43.90 66.11 51.86 22.83 27.43 85.24 80.01 29.82 19.80 31.31 30.54 50.24 42.26
R-tuning 53.90 57.61 53.66 56.00 22.12 31.00 81.35 83.00 19.80 12.45 30.34 31.68 43.53 45.29

Self-Consistency 66.85 46.20 68.03 48.46 15.24 10.67 89.37 78.60 30.15 20.84 20.90 30.00 48.42 39.13
Semantic Entropy 64.79 55.32 70.28 52.71 28.11 26.95 86.24 83.09 29.22 24.95 38.56 31.76 52.87 45.79

Table 2: This table displays the performance of 7 different methods on the models’ ability to detect knowledge
boundaries and manage uncertainty.

Post-Calibration (Tian et al.): Enhances model219

confidence by prompting it to verbalize its certainty220

after providing an answer.221

IDK (I Don’t Know): Trains models to acknowl-222

edge uncertainty by explicitly stating when they223

lack knowledge, thereby reducing hallucinations.224

LNS (Malinin and Gales, 2021): Utilizes proba-225

bilistic ensemble-based techniques to assess uncer-226

tainty in structured prediction tasks, aiding in more227

reliable outputs.228

Probing (Slobodkin et al., 2023): Analyzes inter-229

nal model representations to understand how they230

encode information about answerability, helping231

detect overconfidence and hallucinations.232

R-tuning (Zhang et al., 2023): Instructs models233

to explicitly state when they lack knowledge, re-234

ducing the generation of hallucinated information.235

Self-Consistency (Kuhn et al.): Enhances rea-236

soning by generating multiple reasoning paths and237

selecting the most consistent answer, improving238

response reliability.239

Semantic Entropy (Feng et al., 2024): Esti-240

mates uncertainty in natural language generation by241

considering linguistic invariances, allowing models242

to better assess the reliability of their outputs.243

In this section, two evaluation metrics are used:244

Precision: This metric measures the proportion of245

correct answers out of the total predictions made,246

without abstaining. Abstain Accuracy: This met-247

ric evaluates when models correctly answer or 248

choose not to respond due to uncertainty. 249

Results are shown in Table 2. Post-calibration 250

and IDK cannot achieve good results in Hu- 251

atuoGPT2 with weak instruction capabilities. Self- 252

Consistency improved accuracy in complex tasks 253

like Medication Recommendations. Probing re- 254

fined uncertainty estimations, with varying effec- 255

tiveness. R-tuning reduced hallucinations but some- 256

times sacrificed performance on hard tasks, while 257

LNS showed mixed results, improving Medication 258

Recommendations but hindering performance on 259

Drug Interaction. Overall, Semantic Entropy has 260

achieved good results in both metrics, and we fur- 261

ther analyze the effectiveness of this method on 262

multiple models in Appendix B. 263

5 Conclusion 264

We present ChiDrug, a benchmark designed to 265

evaluate LLMs (Large Language Models) in 266

medication-related tasks, with an emphasis on their 267

knowledge and reasoning abilities. Both GLM4 268

and XiaoYi performed exceptionally well; how- 269

ever, even these advanced models exhibited gaps 270

in drug knowledge. This highlights the need for ef- 271

fective methods to align the knowledge boundaries 272

of LLMs, particularly for high-risk tasks. 273
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6 Limitations274

This study mainly focuses on Chinese medical275

texts, which may affect generalizability. The276

benchmark doesn’t fully capture real-world med-277

ical decision-making complexities. Additionally,278

model generalization to new knowledge, handling279

uncertainty, and reliance on high-quality, up-to-280

date data are ongoing challenges for AI in health-281

care.282
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A Model Performance Analysis 443

A.1 Visualization of Model Performance 444

In this section, we present radar chart visualiza- 445

tions to highlight the performance of both closed- 446

source and open-source models across different 447

medication-related tasks. The radar charts provide 448

a clear, comparative view of how various models 449

handle tasks such as Indication, Dosage and Admin- 450

istration, Contraindicated Population, and Mecha- 451

nisms of Action. Notably, models like GLM4 and 452

XiaoYi stand out for their excellent performance, 453

with XiaoYi leading the closed-source models and 454

GLM4 showing remarkable consistency. On the 455

other hand, HuatuoGPT2 significantly outperforms 456

the other open-source models, as shown in Figure 3 457

and Figure 4. These findings underscore the impor- 458

tance of model selection in high-stakes domains 459

like healthcare, where the quality of responses di- 460

rectly impacts patient safety.

Dosage and 
Administration

IndicationContraindicated 
Population

Mechanism of 
Action

Drug 
Recommendatio

Drug 
Interaction

Figure 3: Radar Chart Representation of Close-Source
Models Performance.

461

Dosage and 
Administration

IndicationContraindicated 
Population

Mechanism of 
Action

Drug 
Recommendatio

Drug 
Interaction

Figure 4: Radar Chart Representation of Open-Source
Models Performance.
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A.2 Knowledge Mastery Assessment of462

Common Drugs463

To further evaluate model capabilities, we focus464

on a subset of 282 commonly used drugs. For465

each drug, we constructed questions pertaining to466

Indication, Dosage and Administration, Contraindi-467

cated Population, and Mechanism of Action, draw-468

ing from the benchmark dataset. The knowledge469

boundary of models was then assessed by visual-470

izing their performance on these tasks, as shown471

in the radar charts for GLM4, XiaoYi, and GPT4o472

and the result is shown in Figure 3.473

The radar charts depict knowledge boundaries474

by showing the areas where models could answer475

correctly once (orange area), 5 times (yellow area),476

and areas where errors could be corrected after 5477

times attempts (yellow with red area). These visu-478

alizations emphasize that while some models show479

robustness in their knowledge, significant gaps re-480

main in certain drug-related tasks. The results481

indicate that GLM4 and XiaoYi exhibit stronger482

consistency in answering these questions correctly483

across the four tasks compared to GPT4o. However,484

there were cases where even the most advanced485

models struggled to demonstrate comprehensive486

knowledge across all aspects of these drugs. This487

highlights a key issue—despite their advanced ca-488

pabilities, large models still fall short in areas of489

medication-related knowledge. This reinforces the490

importance of exercising caution when deploying491

such models in high-risk areas like medication us-492

age.

Dosage and Administration Indication Contraindicated Population Mechanisms of Action Avg.

XiaoYi 82.27 78.01 63.12 92.20 78.90
GPT4o 67.02 74.11 70.2 92.91 76.24

ERNIE 69.15 64.89 58.51 91.13 70.92

Qwen-max 67.73 74.11 71.63 92.55 76.51

Doubao 75.89 74.47 64.54 92.55 76.86

GLM4 74.11 75.89 71.99 93.97 78.99

Claude3.5 67.09 67.73 54.26 93.46 70.64

Baichuan4 59.93 70.21 51.06 91.49 68.17

Table 3: Performance of various model on Common
Drugs

493

B Semantic Entropy (SE) Method for494

Knowledge Boundary Expression495

In this section, we explore the Semantic Entropy496

(SE) method used to detect knowledge boundaries,497

as introduced in Section 4.2. The SE method is498

particularly noteworthy for its effectiveness in ex-499

pressing model uncertainty and improving response500

reliability, as demonstrated in our experiments. We501

applied this method to HuatuoGPT2 and XiaoYi,502

observing that it significantly enhanced the models’ 503

performance on challenging tasks, such as Medica- 504

tion Recommendations and Drug Interactions. 505

As shown in Table 4, the SE method proved to 506

be robust and consistent across different model ar- 507

chitectures and sizes. It improved both Precision 508

and Abstain Accuracy, regardless of the model’s 509

scale. This reinforces the notion that SE is an ef- 510

fective tool for managing uncertainty, making it an 511

essential method for enhancing the reliability of 512

models in real-world medical applications. 513

C Case Study 514

In Figure 6, we present a case to illustrate the prac- 515

tical section of the ChiDrug. 516
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XiaoYi GLM4 GPT4o

Figure 5: Knowledge boundary chart for GLM4, XiaoYi, and GPT4o across 282 common drugs. The orange area
indicates that the model answered correctly once, while the yellow area indicates 5 times opportunities to answer
correctly. The red areas in the yellow-covered region represent cases where a model made an error in a single
attempt but was able to recover after multiple tries.

Model Method Dosage and Administration Indication Contraindicated Population Mechanisms of Action Medication Recommendation Drug Interaction
Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc Precision A-Acc

HuatuoGPT2 w/o SE 55.83 55.83 47.03 47.03 18.66 18.66 77.16 77.16 25.18 25.18 25.60 25.60
SE 64.79 55.32 70.28 52.71 28.11 26.95 86.24 83.09 29.22 24.95 38.56 31.72

XiaoYi w/o SE 81.1 81.1 77.87 77.87 66.71 66.71 92.85 92.85 59.31 59.31 63.27 3.27
SE 83.42 84.46 94.01 94.15 80.14 83.28 91.71 92.1 67.71 75.71 63.85 69.02

Table 4: Application of the SE method on HuatuoGPT2 and XiaoYi models, showcasing the performance improve-
ments achieved through the SE method. This method enhances precision and uncertainty handling, effectively
reducing hallucinations.

Figure 6: Partial cases of ChiDrug on 6 sub datasets.
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