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ABSTRACT

Loss spikes commonly emerge during neural network training with the Adam
optimizer across diverse architectures and scales, yet their underlying mechanisms
remain poorly understood. In this work, we investigate the fundamental causes of
Adam spikes. While previous explanations attribute these phenomena to sharper
loss landscapes at lower loss values, our analysis reveals that it is Adam’s adaptive
preconditioners that trigger spikes during training. We identify a key mechanism
where the second moment estimate becomes insensitive to current gradients when
using large β2 values. This insensitivity can push the maximum eigenvalue of the
preconditioned Hessian beyond the stability threshold 2/η for sustained periods,
manifesting as dramatic loss spikes. We theoretically and experimentally character-
ize five distinct stages of spike evolution and propose a predictor for anticipating
spikes based on gradient-directional curvature. We further validate our mechanism
and demonstrate practical mitigation strategies from small fully connected net-
works to large-scale Transformers. These findings provide new theoretical insights
for understanding and controlling loss spike behavior in Adam optimization.

1 INTRODUCTION

Neural network optimization remains a complex and sometimes unpredictable process despite signifi-
cant advances in training methodologies. One particularly intriguing phenomenon that practitioners
frequently encounter but rarely explore systematically is the “loss spike” — a sudden and sharp
surge in the loss function that subsequently subsides. As illustrated in Fig. 1, these spikes differ
markedly from normal fluctuations, resembling systematic instabilities rather than random noise.
While observed across diverse architectures and datasets, their underlying mechanisms remain poorly
understood. This creates a critical dilemma for practitioners: should they intervene to eliminate these
apparent anomalies, or might loss spikes actually benefit the optimization process? Answering this
question requires deeper theoretical understanding of when, how, and why loss spikes occur.

Previous research has tried to explain loss spikes through the geometry of loss landscapes (Ma et al.,
2022a; Li et al., 2025). The lower-loss-as-sharper (LLAS) hypothesis (Li et al., 2025) suggests
that regions of lower loss correspond to sharper curvature in the loss landscape, potentially causing
instability. While this explanation provides some intuition, it fails to explain the specific behavior of
adaptive optimizers like Adam (Kingma & Ba, 2014) that consistently exhibit spikes even in simple
scenarios where landscape geometry is well-understood. For instance, as shown in Fig. 2(a), Adam
produces loss spikes on a simple quadratic function even with learning rates well below theoretical
stability thresholds, while gradient descent converges smoothly. This behavior can not be explained
by loss landscape alone, since quadratic functions have constant curvature. Furthermore, although
previous research has identified the Edge of Stability (EoS) phenomenon, where loss decreases non-
monotonically while the largest Hessian eigenvalue hovers around 2/η (η is the learning rate) (Cohen
et al., 2021; Wu et al., 2018; Xing et al., 2018; Ahn et al., 2022; Lyu et al., 2022; Arora et al., 2022;
Wang et al., 2022; Cohen et al., 2023), loss spikes appear to represent more dramatic instabilities than
typical EoS behavior. In particular, the precise relationship between these instabilities and observed
spikes remains unclear—instability may sometimes manifest as oscillations and sometimes as spikes
(Ma et al., 2022b), the specific mechanism under which spikes occur is not well understood.

In this work, we present a detailed mechanistic explanation for loss spikes in Adam optimization. Our
key finding is that these spikes arise not primarily from the complex geometry of the loss landscape,
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Figure 1: Loss spikes across architectures: (a) FNNs for function approximation. (b) CNNs on
CIFAR10. (c-d) Transformers on language tasks. See experimental details in Appendix G.

but rather from the intrinsic dynamics of Adam’s adaptive preconditioners. Specifically, we demon-
strate both theoretically and experimentally that Adam’s stability is governed by a preconditioned
Hessian. When using large values of β2 (as is common in practice), the second moment estimate
becomes insensitive to current gradients, causing the maximum eigenvalue of the preconditioned
Hessian to exceed the stability threshold 2/η for sustained periods. This creates severe instability
that manifests as dramatic loss spikes. The instability further induces alignment between the gradient
and the maximum eigendirection, with loss spikes occurring precisely when the gradient-directional
curvature exceeds 2/η. We find that directly reducing β2 is effective in mitigating loss spikes.

Our main contributions are summarized as follows:

(i) We show that it is Adam’s adaptive preconditioners that causes spikes in practical Adam training.
The five stages of spike evolution are clearly characterized, both theoretically and experimentally.
This mechanism is distinct from previous lower-loss-as-sharper (LLAS) landscape hypothesis (Li
et al., 2025) (please refer to Sec. 3, Sec. 4.1 and Sec. 5).

(ii) We identify a key mechanism whereby the second moment estimate becomes insensitive to
current gradients when employing a relatively large β2. This causes the maximum eigenvalue of the
preconditioned Hessian to persistently exceed the classical stability threshold 2/η, manifesting as
dramatic loss spikes. (please refer to Sec. 4.1, Sec. 4.2, and Sec. 6).

(iii) We propose a predictor, λgrad(Ĥt) for anticipating spikes based on the curvature in the gradient
direction. We empirically show that this predictor is highly accurate in forecasting spike onset, and
we further validate practical strategies for mitigating spikes. (please refer to Sec. 4.3 and Sec. 6).

2 RELATED WORKS

Edge of Stability (EoS). Various works (Cohen et al., 2021; Wu et al., 2018; Xing et al., 2018; Ahn
et al., 2022; Lyu et al., 2022; Arora et al., 2022; Jastrzebski et al., 2020; Jastrzębski et al., 2019;
Lewkowycz et al., 2020) have investigated the Edge of Stability (EoS), a phenomenon where gradient
descent progressively increases the sharpness of the loss landscape—a process known as progressive
sharpening—until the maximum Hessian eigenvalue stabilizes near the threshold 2/η, while the
loss continues to decrease non-monotonically. Ma et al. (2022a) proposed a subquadratic structure
near local minima, where sharpness increases when the loss decreases along the gradient direction,
providing a theoretical account of this behavior. Other studies (Damian et al., 2023; Wang et al.,
2022) show that when λmax > 2/η, self-stabilization mechanisms can reduce sharpness and restore
stability. More recently, Cohen et al. (2023) extended the EoS framework to adaptive optimizers,
introducing the concept of Adaptive Edge of Stability (AEoS). Furthermore, Cohen et al. (2025)
also developed the concept of central flow to study the average trajectory of oscillatory dynamics
during EoS. While EoS has been widely explored, its direct association with loss spikes has yet to be
thoroughly investigated.

Convergence Analysis of Adam. Numerous works have analyzed the convergence behavior of
adaptive gradient methods (Chen et al., 2019; Li & Orabona, 2019; Xie et al., 2020; Défossez et al.,
2022; Da Silva & Gazeau, 2020; Shi et al., 2021; Zou et al., 2019; Zhou et al., 2024). In particular,
Reddi et al. (2018) demonstrated that Adam may fail to converge even in simple convex settings,
prompting a series of variants (Liu et al., 2019; Taniguchi et al., 2024). Zhang et al. (2022) showed
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that in the case of learning rate decay Adam can converge to a neighborhood of critical points when
β2 is large, and this convergence is guaranteed if β1 <

√
β2.

Loss Spike Analysis. Chowdhery et al. (2023) reported that restarting training from an earlier
checkpoint and skipping the spiking data batch can mitigate spikes in large models. Molybog et al.
(2023) found that the gradient and second-moment estimates of shallow layer parameters can decay
to near-zero and then spike upon encountering a large gradient. Li et al. (2025) argued that spikes
occur in sharp regions of the loss landscape with a lower-loss-as-sharper (LLAS) structure. Ma et al.
(2022b) qualitatively demonstrated that Adam’s hyperparameters impact the occurrence of spikes or
oscillations. Although previous studies have uncovered parts of the puzzle surrounding spikes, this
work provides a more detailed and comprehensive understanding of the spike formation.

3 DISTINCT LOSS SPIKE MECHANISM IN ADAM AND GRADIENT DESCENT

Adam Algorithm. The Adam algorithm is widely used in training Transformer models and is widely
observed to be more prone to cause loss spikes. Adam maintains exponential moving averages of
gradients (first moment) and squared gradients (second moment) to speed up training:

mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t , (1)

where gt := ∇L(θt) is the gradient, and β1, β2 ∈ [0, 1) are hyperparameters controlling the
exponential decay rates (default values: β1 = 0.9, β2 = 0.999). To counteract the initialization bias
toward zero, these moments are corrected: m̂t =

mt

1−βt
1
, v̂t =

vt

1−βt
2

. The parameter update rule is:

θt+1 = θt − η
m̂t√
v̂t + ε

, (2)

where η > 0 is the learning rate and ε > 0 is a small constant (default 10−8 in PyTorch).
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Figure 2: Optimization of f(θ) = 1
2θ

2. (a) Loss trajectories during Adam and GD training across
various learning rates. Curves of different colors represent Adam’s training loss, which initially
decreases steadily before abruptly spiking to significantly higher values. (b) The relationship between
learning rate and

√
v̂t value at spike occurrence follows a power law, appearing as a straight line

with a slope of approximately 1 in log-log scale. (c) Under different learning rates, the ratio η/
√
v̂t

consistently reaches a nearly identical threshold value immediately before the loss begins to spike.

Differences in Spike Behavior Between GD and Adam. Adaptive methods like Adam exhibit
fundamentally different behavior compared to standard gradient descent (GD). A notable distinction
is that Adam can encounter convergence difficulties even with simple quadratic functions and very
small learning rates. For the quadratic function f(θ) = 1

2θ
2, it is well established that gradient

descent converges when the learning rate η < 2/λmax = 2 (depicted by the black dashed line in
Fig. 2(a)). However, Adam displays more intricate dynamics. As illustrated in Fig. 2(a), Adam
with a learning rate η ≪ 2 (using hyperparameters β1 = 0.9, β2 = 0.99, ε = 10−8) still fails to
converge. This non-convergence manifests in the distinctive colored curves in Fig. 2(a), where the
training loss initially decreases steadily before abruptly spiking to a substantially higher magnitude.
Fig. 2(b) further examines the relationship between Adam’s second moment

√
v̂t at spike occurrence

and learning rate. From Fig. 2(b), we observe that smaller learning rates correspond to smaller
√
v̂t

values when spikes occur, with the relationship appearing linear in log-log scale with a slope near 1.
For one-dimensional quadratic optimization, η/

√
v̂t can be interpreted as the effective learning rate

3
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and it increases as training progresses because
√
v̂t diminishes alongside the gradient gt according to

Eq. (1). Experimentally, Fig. 2(c) confirms that this ratio increases until reaching a nearly consistent
threshold value 38 (see Prop. 2 for a theoretical explanation), at which point the loss spike invariably
occurs. While straightforward, this analysis provides valuable intuition for the emergence of spikes.
However, it is important to note that in high-dimensional optimization scenarios,

√
v̂t becomes a

vector rather than a scalar, rendering the notion of an effective learning rate inapplicable. In the
following section, we will quantitatively characterize Adam’s spike behavior in more general settings.

4 LOSS SPIKE ANALYSIS OF ADAM

Quadratic Approximation. To understand the mechanics behind loss spikes, we begin with a linear
stability analysis that connects optimization dynamics to the geometry of the loss landscape. Consider
optimizing a loss function L(θ) with respect to parameters θ ∈ RM . Around any point θ0, we can
approximate the loss using a second-order Taylor expansion:

L(θ0 + δθ) ≈ L̃(δθ) := L(θ0) +∇L(θ0)
⊤δθ + 1

2δθ
⊤Hδθ, (3)

where ∇L(θ0) is the gradient and H := H(θ0) = ∇2L(θ0) is the Hessian matrix at θ0.

Stability Analysis. For GD with learning rate η, the parameter update is: θt+1 = θt − η∇L(θt).
Using the quadratic approximation from Eq. (3), the displacement δθt = θt − θ0 evolves as:

δθt+1 ≈ δθt − η∇L̃(δθt) = δθt − η(∇L(θ0) +Hδθt) = (I − ηH)δθt − η∇L(θ0).

The optimization becomes unstable along the maximum eigendirection when λmax(H) > 2/η.

Practical Stability Condition. In neural network optimization, the loss landscape—and consequently
the Hessian matrix—evolves continuously as parameters are updated. The local Hessian stability
condition ensures stable loss decrease at each iteration, as formalized below.
Proposition 1 (see Appendix D Prop. D.1 for proof). Let L : RM → R be twice continuously
differentiable. For any iterate θt define the gradient gt := ∇L(θt) and, for a fixed learning rate
η > 0, define the local directional maximum Hessian λ̄t := sups∈[0,1] λmax

(
∇2L(θt − sηgt)

)
, the

maximum eigenvalue of the Hessian along the line segment from θt to θt+1 = θt − ηgt. If η < 2
λ̄t
,

the gradient descent step θt+1 = θt − ηgt satisfies the descent estimate:

L(θt+1) ≤ L(θt)− η
(
1− ηλ̄t

2

)
∥gt∥2.

In particular, whenever η ∈
(
0, 2/λ̄t

)
and gt ̸= 0 we have strict decrease L(θt+1) < L(θt).

In practice, since learning rates are typically small, we can monitor the step-wise stability condition
λmax(Ht) ≤ 2/η as a proxy. When this condition is persistently violated, there is likely a loss spike.

4.1 ADAM’S PRECONDITIONED HESSIAN AND STABILITY

Stability Analysis of Adaptive Mechanism. To analyze Adam’s stability conditions, we first
examine the adaptive mechanism by setting β1 = 0, ignoring momentum effects. Following the
Taylor expansion approach from Eq. (3), we have:

δθt+1 ≈ δθt − η
∇L̃(δθt)√
v̂t + ε

=

(
I − ηdiag

(
1√

v̂t + ε

)
H

)
δθt − η

∇L(θ0)√
v̂t + ε

.

Stability requires the spectral radius ρ
(
I − ηĤ

)
< 1, where Ĥ = diag((

√
v̂t + ε)−1)H is

the “adaptive preconditioned Hessian”. Although asymmetric, Ĥ can be diagonalized with real
eigenvalues (see Appendix D Lem. D.1), yielding the stability condition λmax(Ĥ) < 2/η.

Stability Analysis of Momentum Mechanism. With momentum (β1 > 0), we analyze the update
rule θt+1 = θt−ηmt. Following the same Taylor expansion approach: δθt+1 ≈ δθt−η(β1mt−1+
(1− β1)(∇L(θ0) +Hδθt)). Substituting ηmt−1 = δθt−1 − δθt gives:

δθt+1 ≈ [(1 + β1)I − η(1− β1)H] δθt − β1δθt−1 − η(1− β1)∇L(θ0). (4)
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Proposition 2 (see Appendix D Prop. D.2 for proof). Consider the three-term recursive iteration

δθt+1 =
[
(1 + β1)I − η(1− β1)H(θ0)

]
δθt − β1δθt−1 − η(1− β1)∇L(θ0),

with learning rate η > 0 and momentum parameter β1 ∈ [0, 1). Then the linearized system at θ0 is
asymptotically stable in all positive-curvature eigendirections (i.e., for every eigenvalue λi > 0 the
characteristic roots lie strictly inside the unit disk) if and only if

λmax

(
1− β1

1 + β1
H(θ0)

)
<

2

η
,

where λmax(·) denotes the largest positive eigenvalue.

Comprehensive Stability Analysis of Adam. Integrating both mechanisms and the momentum bias
correction m̂t =

mt

1−βt
1

, the comprehensive “Adam preconditioned Hessian1” becomes:

Ĥt =
1

1− βt
1

1− β1

1 + β1
diag

(
1√

v̂t + ε

)
Ht. (5)

In Sec. 4.2, we experimentally validate that this modified step-wise instability criterion λmax(Ĥt) >
2/η accurately predicts loss spikes in one-dimensional scenarios.

4.2 SUSTAINED DECAY OF SECOND-ORDER MOMENT TRIGGERS LOSS SPIKES

The key difference between gradient descent and Adam stability lies in Adam’s adaptive precondi-
tioners vt. To investigate how the decay behavior of vt affects loss spikes, we conducted controlled
experiments on a simple quadratic function f(θ) = 1

2θ
2.

Large β2 Causes Sustained Instability and Spikes. Fig. 3(a–b) shows results with β1 = 0.9
and β2 = 0.99. Initially, loss decreases gradually until epoch 782, when a spike occurs precisely
as λmax(Ĥt) exceeds the threshold 2/η. The mechanism works as follows: Before the spike, the
gradient norm (green line, ≈ 10−15) becomes much smaller than

√
v̂t (red line, ≈ 10−1). According

to Eq. (1), this causes vt to decay exponentially as vt ≈ β2vt−1. The green dashed line in Fig. 3(b)
fits this decay with v̂t = Aαt, confirming α ≈ β2 = 0.99. When λmax(Ĥt) surpasses 2/η, the loss
spikes and gradient norm increases. However, due to the large β2, vt responds sluggishly to current
gradients, allowing the exponential decay to continue. This maintains λmax(Ĥt) above the stability
threshold, sustaining the spike until epoch 845, when the gradient grows large enough to increase v̂t.
This causes λmax(Ĥt) to drop back below 2/η, and the loss begins to decrease again at epoch 845.
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Figure 3: Adam optimization on f(θ) = 1
2θ

2 with different β2 values. (a, c) Evolution of training loss
and gradient norm. (b, d) Evolution of the second moment estimate v̂t and the maximum eigenvalue
of the preconditioned Hessian. The red dotted line marks the onset of the loss spike, while the blue
dotted line indicates the point where the loss begins to decrease. The green dashed lines fit v̂t decay
using v̂t = Aαt with decay rate shown in the labels.

Small β2 Prevents Sustained Instability. Fig. 3(c–d) shows results with β1 = 0.9 and β2 = 0.9—a
configuration less commonly used in practice due to its inferior convergence guarantees (Shi et al.,
2021; Zhang et al., 2022). Here, the gradient remains non-negligible relative to

√
vt throughout

1This preconditioner jointly incorporates the effects of β1 and β2, unifying the stability threshold at 2
η

. While
the formulation differs slightly from that in Cohen et al. (2023), the two definitions are essentially equivalent.
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training, preventing pure β2-exponential decay (the observed decay rate α ≈ 0.93 exceeds β2 = 0.9).
As training progresses and gradients diminish, v̂t decreases and λmax(Ĥt) gradually increases.
However, when λmax(Ĥt) reaches 2/η, the responsive vt immediately adjusts to the rising gradient,
preventing sustained instability. Instead of large spikes, we observe minor oscillations (Fig. 3(c)).
An extreme case is to set β1 = β2 = 0, then Adam becomes “signGD” and spike never occurs. This
helps explain why Adam training, as empirically observed by Ma et al. (2022b), sometimes results in
sudden spikes in loss and sometimes in oscillatory behavior.

4.3 PRECISE LOSS SPIKE PREDICTION VIA GRADIENT-DIRECTIONAL CURVATURE

In high-dimensional optimization, when λmax(Ht) > 2/η, instability occurs primarily along the
corresponding unstable eigendirection, while other directions may remain stable. As shown in
our 2-dimension experiments with gradient descent (Figures D4 and D5), even when λmax(Ht)
exceeds 2/η, the loss can continue decreasing normally for some time until oscillations along the
unstable direction grow sufficiently large to cause the loss to increase. Consequently, exceeding
λmax(Ht) > 2/η does not immediately trigger a spike. To precisely predict loss spikes, we analyze
the loss change between consecutive steps using a second-order Taylor expansion: L(θt+1) ≈
L(θt) +∇L(θt)

⊤(θt+1 − θt) +
1
2 (θt+1 − θt)

⊤Ht(θt+1 − θt). Substituting the gradient descent
update θt+1 − θt = −η∇L(θt): L(θt+1) − L(θt) ≈ −η∥∇L(θt)∥2 + 1

2η
2∇L(θt)

⊤Ht∇L(θt).
A loss increase (necessary for a loss spike) occurs when this expression is positive, yielding the
condition (see Theorem D.1 for a general result and rigorous proof):

λgrad(Ht) :=
∇L(θt)

⊤Ht∇L(θt)

∥∇L(θt)∥2
>

2

η
. (6)

Here, λgrad(Ht) represents the curvature along the gradient. For Adam, we define the analogous

predictor as λgrad(Ĥt) :=
∇L(θt)

⊤Ĥt∇L(θt)
∥∇L(θt)∥2 , where Ĥt is the preconditioned Hessian from Eq. (5).

Experimental Verification of Loss Spike Predictor. We validate our predictor using a two-layer
network trained on 20 data points to fit f(x) = sin(x) + sin(4x). We track both λmax(Ht) and
λgrad(Ht) during training. For gradient descent (Fig. 4(a–b)), two loss spikes occur. At epoch 416,
although λmax(Ht) exceeds 2/η, loss continues decreasing. The spike occurs only when λgrad(Ht)

also exceeds 2/η. For Adam (Fig. 4(c–d)), 7 distinct spikes occur, while λmax(Ĥt) exceeds 2/η at
10 time steps. Crucially, spikes occur only when λgrad(Ĥt) > 2/η, confirming that λmax(Ĥt) alone
is insufficient for spike prediction.
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Figure 4: Experimental validation of the gradient-directional loss spike predictor. A two-layer
fully connected neural network (width 20) is trained on 200 randomly sampled data points to fit
f(x) = sin(x) + sin(4x). (a–b) Gradient descent with learning rate η = 0.08. (c–d) Adam with
learning rate η = 0.01, β1 = 0.9, β2 = 0.999.

5 FIVE-STAGE CHARACTERIZATION FOR LOSS SPIKE MECHANICS IN ADAM

Building on our theoretical and empirical findings, we conjecture a five-stage progression that
characterizes how loss spikes form and resolve during Adam optimization (Fig. 5).

Stage 1: Stable Loss Decrease. Training loss decreases steadily with no abnormalities observed.
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Figure 5: Five-stage progression for loss spike mechanics in Adam.

Stage 2: Preconditioner Decay. As training progresses, gradients in some layers diminish as
effective representations are learned. The corresponding second moment estimates vt also decrease.
Due to the element-wise division in Eq. (5), this causes λmax(Ĥt) to gradually increase.

Stage 3: Spike Onset. Instability begins when λmax(Ĥt) exceeds the stability threshold 2/η.
Initially localized, the instability intensifies as the gradient aligns with max eigen-direction. A loss
increase occurs only when the gradient curvature λgrad(Ĥt) also exceeds 2/η. With typical large
values β2 ∈ [0.95, 0.9999], the second moment vt responds sluggishly to gradient information,
causing λgrad(Ĥt) to persistently exceed 2/η and thus manifesting as a dramatic loss spike.

Stage 4: Preconditioner Growth. As the spike intensifies, gradients grow larger. When gradients
become sufficiently large to influence vt, the decay of vt halts and reverses. This growth in vt reduces
λmax(Ĥt), helping restore stability.

Stage 5: Loss Decrease. When λmax(Ĥt) falls below 2/η, the optimizer regains stability. Loss
resumes decreasing, completing the spike cycle and returning to Stage 1.

These five stages provide an intuitive understanding of the Adam loss spike phenomenon. We also
provide a rigorous mathematical five-stage characterization for quadratic optimization:
Theorem 1 (Five Stages of Adam for Quadratic Optimization (see Appendix D Thm. D.2 and
Fig. D1 for details and proof)). Consider the 1D loss L(θ) = 1

2θ
2, optimized using Adam with β1 = 0,

β2 ∈ (0, 1), and η > 0. The update rules are: θt+1 =
(
1− η√

vt

)
θt, vt+1 = β2vt + (1− β2)θ

2
t .

Assume v0 = θ20 and |θ0| > η
2 . Then there exist integers t0 < t1 < t2 < t3 < t4 < t5 < ∞ such

that the iterates (θt, vt) exhibit the five stages described above in intervals [ti, ti+1), respectively.

Furthermore, we show that common learning rate decay strategies are insufficient to avoid this
unstable behavior for sufficiently large β2, suggesting its inevitability:
Theorem 2 (Decaying Learning Rate Scheduler (see Appendix D Thm. D.3 for proof)). Consider
the same setup as Thm. 1 with decaying learning rate ηt = η0(t+ 1)−α where α ∈ (0, 1). Assume
the initialization satisfies v0 = θ20 and |θ0| > 2η0 > 0. Assume β2 is sufficiently close to 1. Then the
stability condition |1− ηt√

vt
| < 1 cannot hold for all t ∈ N+.

6 EMPIRICAL VALIDATION OF LOSS SPIKE MECHANICS IN ADAM

To empirically validate the proposed loss spike mechanics in realistic, high-dimensional settings, we
conduct comprehensive experiments across various neural network architectures and optimization
tasks. We implement efficient Hessian-vector products for eigenvalue computation to track the
theoretical indicators proposed in our conjecture. This method allows us to calculate λmax and
λgrad by obtaining the product of the Hessian and a vector, without computing the full Hessian
matrix. Detailed experimental configurations are provided in Appendix G, with additional validation
experiments (including CNNs model) in Appendix F.

6.1 FULLY CONNECTED NEURAL NETWORKS FOR FUNCTION APPROXIMATION

We trained a two-layer fully connected network on a 50-dimensional function approximation task
using Adam with β1 = 0.9, β2 = 0.999. The optimization dynamics mirror our quadratic analysis:
both loss and gradient norm decrease rapidly before experiencing a sharp spike (Fig. 6(a)).
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Figure 6: (a) Training loss and gradient norm over time. (b) Evolution of critical eigenvalues: original
Hessian maximum eigenvalue λmax(Ht), preconditioned Hessian maximum eigenvalue λmax(Ĥt)

and gradient-directional eigenvalue λgrad(Ĥt) relative to 2/η. (c) L2-norm of second moment
||
√
v̂t||2 of different parameter blocks during training. (d) Cosine similarity between maximum

eigenvectors in two consecutive epochs (blue) and between gradient and current maximum eigenvector
(orange). (e) Training trajectory projected onto maximum and minimum Hessian eigenvectors at
epoch 390. The colorbar for training steps is normalized to the range [0, 1], where 0 corresponds to
epoch 28 and 1 corresponds to epoch 390. (f) Increase the default ε in Eq. (2) to 0.1 at epoch 184.

Eigenvalue Evolution and Spike Timing: Fig. 6(b) shows that λmax(Ht) stabilizes quickly while
λmax(Ĥt) continues increasing due to decreasing vt (Fig. 6(c)). Crucially, although λmax(Ĥt)
surpasses the stability threshold 2/η at epoch 179, the spike occurs precisely at epoch 184 when
λgrad(Ĥt) exceeds 2/η, confirming our directional stability analysis in Sec. 4.3.

Second Moment vt Dynamics: Fig. 6(c) shows the evolution of second-moment norms
√
v̂t for

each parameter block. Before the spike, the gradient norm ∥gt∥ ≈ 10−2 becomes much smaller than
∥
√
v̂t∥, causing vt to decay exponentially at rate β2. During the spike, gradient norms increase while

v̂t continues decreasing due to its sluggish response. Once gradients become sufficiently large, vt

rises rapidly, driving λmax(Ĥt) below 2/η and allowing loss descent to resume at epoch 206.

Validation of Quadratic Analysis. The cosine similarity between maximum eigenvectors of Ht

across consecutive steps approaches 1 early in training (Fig. 6(d)), validating our quadratic analysis.
Fig. 6(e) confirms that spikes occur when gradients align with the maximum curvature direction
by projecting the trajectory onto maximum and minimum eigenvectors. To suppress the spike, a
straightforward method involves increasing ε in Eq. (2). As demonstrated in Fig. 6(f), increasing ε to
0.1 at spike onset effectively eliminates the instability.

6.2 TRANSFORMER MODELS FOR LANGUAGE TASKS

We trained an 8-layer Transformer (approximately 10 million parameters) on a synthetic dataset of
900k sequences (batch size 2048) for compositional rule learning under the next-token prediction
paradigm. Fig. 7(a) shows seven distinct loss spikes (blue regions). Prior to each spike, the norm
of the second-moment estimate v̂t for the embedding and WV parameters across attention layers
decays at a rate of approximately 0.999003 (close to β2), followed by a sudden increase in ∥v̂t∥
and a sharp drop in loss. Fig. 7(b) describes a typical case where λgrad(Ĥt) exceeds 2/η causing
a spike. However, it is important to note that stochastic batching introduces significant noise,
making precise spike prediction challenging. To address this, we define a “sustained spike predictor”
as: λgrad(Ĥt)(sustained) = min(λgrad(Ĥt−1), λgrad(Ĥt), λgrad(Ĥt+1)). This refined predictor
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Figure 7: (a) Evolution of training loss and second moment ∥v̂t∥, with seven spikes high-
lighted. (b) Eigenvalue analysis near a typical spike. (c) Sustained gradient-directional eigenvalue
λgrad(Ĥt)(sustained) (orange) versus stability threshold 2/η. The raw λgrad(Ĥt) is shown in
Fig. D9. The 2/η line is plotted against the secondary y-axis on the right for for comparison with the
eigenvalues. (d) Reduce the hyperparameter β2 in Adam to 0.9 and retrain.
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Figure 8: (a) Training loss evolution for a 187M parameter LLaMA transformer with different
β2 values. Loss curves show time-weighted EMA smoothing; raw loss appears in Fig. D11. (b)
Gradient-directional eigenvalues λgrad(Ĥt) and sustained version λgrad(Ĥt)(sustained) during a
representative spike (iterations 14,250-14,400) with β2 = 0.999. (c) Layer-wise gradient norms
during the spike period. Layer indices on y-axis; gradient magnitudes shown in log-scale colorbar.

(Fig. 7(b), orange line) demonstrates perfect correspondence with all seven loss spike occurrences.
Sustained periods above threshold trigger loss spikes, which is consistent with the findings in Fig. 3.
In addition, we find that directly reducing β2 is effective to mitigate loss spikes (Fig. 7(d)).

Large-Scale Language Model Validation: We trained a 187M parameter LLaMA-structured
transformer on 100B tokens from SlimPajama to validate our mechanics in realistic large-scale
settings. With the default β2 = 0.999, training exhibits multiple loss spikes (Fig. 8(a)). Fig. 8(b)
examines a representative spike occurring between iterations 14,250-14,400. We observe that the
gradient-directional eigenvalue λgrad(Ĥt) exceeds the stability threshold 2/η, signaling the spike
onset. Consistent with our proposed mechanism (Sec. 5), gradient norms in certain layers diminish
before this spike (Fig. 8(c)). As expected, reducing β2 consistently decreases spike frequency during
training (Fig. 8(a)), confirming the key role of second-moment in spike formation.
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7 CONCLUSION AND DISCUSSION

In this work, we provide a detailed mechanistic analysis of loss spikes in Adam, showing that these
spikes are triggered by Adam’s adaptive preconditioners. By identifying a critical response delay
between the second-moment and the current gradients, we reveal the mechanism underlying the
persistence of these instabilities. Our theory suggests a simple remedy—reducing β2—and we
experimentally confirm its effectiveness. Encouragingly, many recent large-scale language model
studies (Touvron et al., 2023; Dubey et al., 2024; Orvieto & Gower, 2025) have already adopted
lower values of β2 (e.g., 0.95 or lower), further underscoring the practical relevance of our analysis.

In addition, loss spikes represent more than mere optimization phenomena; they may signify transi-
tions between distinct attractor basins in the landscape. Our supplementary experiments in Appendix E
identify four spike types (neutral, benign, malignant, and catastrophic) in Transformer training—
highlighting the importance of context-specific decisions on whether to suppress or preserve them.
Precisely distinguishing between these spike types remains an unresolved challenge.

Beyond hyperparameter adjustments to Adam, alternative spike mitigation techniques include sand-
wich normalization (Ding et al., 2021; Yin et al., 2025), σ-Reparam (Zhai et al., 2023), and scaled-
decouple distribution (Wang et al., 2025). While some studies (Lyu et al., 2022; Mueller et al., 2023)
attribute normalization’s effectiveness to sharpness reduction, a deeper understanding of how to
leverage or control spikes remains a promising avenue for future research.
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structure and clarity; (ii) Enhance grammatical accuracy and flow; (iii) Refine technical writing style
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mization algorithm using standard neural network architectures and publicly available datasets. All
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No human subjects, sensitive data, or potentially harmful applications were involved in this study.

Reproducibility Statement. To ensure reproducibility, we provide detailed experimental configura-
tions in Appendix G and supplementary experiments in Appendix F. Our theoretical analysis includes
complete mathematical derivations and proofs in Appendix D. All hyperparameters, network archi-
tectures, and training procedures are fully specified. The synthetic datasets and training procedures
can be reproduced following the provided specifications. Code and additional implementation details
are made available in the supplementary materials.

C LIMITATION AND FUTURE WORK

Our detailed analysis of loss spikes in Adam optimization reveals that adaptive preconditioners
can themselves trigger these phenomena and we verify this mechanism in certain neural network
architectures. However, we acknowledge that in more complex scenarios, both the intrinsic geometry
of the loss landscape and the applied preconditioners likely interact to jointly produce loss spikes.
Disentangling these individual contributions and accurately attributing different spike mechanisms in
large-scale models remains a significant challenge for future research.

While we have developed efficient Hessian-vector products to compute gradient-directional eigen-
values without full Hessian computation, computational cost remains a key constraint for scaling
this analysis to larger models. Developing efficient algorithms to approximate maximum Hessian
eigenvalues and gradient-directional eigenvalues represents a critical direction for future work.

Furthermore, as discussed in Appendix E, the precise categorization of loss spikes into our proposed
taxonomy (neutral, benign, malignant, and catastrophic types) presents ongoing challenges.
Developing robust, computationally efficient criteria to distinguish between these categories would
significantly enhance our ability to detect and appropriately respond to different spike types during
training.

D PROOFS OF THEORETICAL RESULTS

Proposition D.1. Let L : RM → R be twice continuously differentiable. For any iterate θt define the
gradient gt := ∇L(θt) and, for a fixed learning rate η > 0, define the local directional maximum
Hessian λ̄t := sups∈[0,1] λmax

(
∇2L(θt − sηgt)

)
, the maximum eigenvalue of the Hessian along

the line segment from θt to θt+1 = θt − ηgt. If η < 2
λ̄t
, then we have the descent estimate:

L(θt+1) ≤ L(θt)− η
(
1− ηλ̄t

2

)
∥gt∥2.

In particular, whenever η ∈
(
0, 2/λ̄t

)
and gt ̸= 0 we have strict decrease L(θt+1) < L(θt).
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Proof. Apply the one-dimensional Taylor expansion of the scalar function ϕ(s) := L(θt − sηgt)
around s = 0 up to second order with the remainder written using the Hessian at some point along
the segment. Equivalently, use the multivariate Taylor expansion along the direction −ηgt:

L(θt − ηgt) = L(θt)− ηg⊤
t gt +

η2

2
g⊤
t

(
∇2L(θt − s∗ηgt)

)
gt

for some s∗ ∈ (0, 1). Since the symmetric matrix ∇2L(θt − s∗ηgt) has largest eigenvalue at most
λ̄t, we get

g⊤
t

(
∇2L(θt − s∗ηgt)

)
gt ≤ λ̄t ∥gt∥2.

Hence

L(θt+1) ≤ L(θt)− η∥gt∥2 +
η2

2
λ̄t∥gt∥2 = L(θt)− η

(
1− ηλ̄t

2

)
∥gt∥2.

If η < 2/λ̄t, then 1− ηλ̄t

2 > 0, so the right-hand side is strictly less than L(θt) whenever gt ̸= 0.

Lemma D.1. Let H be a real symmetric matrix and Ĥ = diag
(

1√
v̂t+ε

)
H . Then Ĥ is diagonaliz-

able in the field of real numbers.

Proof. While diag
(

1√
v̂t+ε

)
H is generally asymmetric, we can demonstrate that it is similar to a

symmetric matrix and therefore has real eigenvalues. Let Dt = diag
(

1√
v̂t+ε

)
, which is positive

definite. We can express:

DtH = D
1/2
t · (D1/2

t HD
1/2
t ) ·D−1/2

t

Since D
1/2
t HD

1/2
t is symmetric, DtH is similar to a symmetric matrix. This confirms that DtH

has real eigenvalues and is diagonalizable.

Proposition D.2. Consider the three-term recursive iteration

δθt+1 =
[
(1 + β1)I − η(1− β1)H(θ0)

]
δθt − β1δθt−1 − η(1− β1)∇L(θ0),

with learning rate η > 0 and momentum parameter β1 ∈ [0, 1). Then the linearized system at θ0 is
asymptotically stable in all positive-curvature eigendirections (i.e., for every eigenvalue λi > 0 the
characteristic roots lie strictly inside the unit disk) if and only if

λmax

(
1− β1

1 + β1
H(θ0)

)
<

2

η
,

where λmax(·) denotes the largest positive eigenvalue.

Proof. We analyze the stability of the vector recurrence by decomposing it along the eigenspace of
the Hessian matrix. Since the Hessian H := H(θ0) is symmetric, it admits an eigen-decomposition
H = QΛQ⊤, where Q is an orthogonal matrix and Λ = diag(λ1, . . . , λd) contains the eigenvalues
of H .

Define the change of variables δθt = Qzt. Substituting into the recurrence yields

zt+1 = [(1 + β1)I − η(1− β1)Λ] zt − β1zt−1 − η(1− β1)Q
⊤∇L(θ0).

Since this is a decoupled system in the eigenbasis, for each positive-curvature eigendirections with
λi > 0, the i-th component z(i)t satisfies a scalar second-order linear nonhomogeneous recurrence:

z
(i)
t+1 = αiz

(i)
t − β1z

(i)
t−1 + ci,

where

αi := (1 + β1)− η(1− β1)λi, ci := −η(1− β1)g
(i), g(i) :=

[
Q⊤∇L(θ0)

]
i
.
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The general solution to this nonhomogeneous recurrence is the sum of the homogeneous solution and
a particular solution. The homogeneous part is governed by the characteristic equation:

r2 − αir + β1 = 0.

It is well known (e.g., see Elaydi, An Introduction to Difference Equations (Elaydi, 2005)) that the
solution z

(i)
t that the homogeneous solution is (asymptotically) stable (both characteristic roots lie

strictly inside the unit disk, so perturbations in this direction decay and do not grow exponentially) if
and only if both roots of the characteristic equation lie strictly inside the unit circle in the complex
plane. This is equivalent to the following three conditions:

1 + αi + β1 > 0,

1− αi + β1 > 0,

|β1| < 1.

Since β1 ∈ [0, 1) by assumption, the third condition always holds. The first two inequalities can be
rewritten as:

|αi| < 1 + β1.

Substituting the expression for αi, we obtain:

|(1 + β1)− η(1− β1)λi| < 1 + β1.

Solving this inequality gives:

η(1− β1)λi < 2(1 + β1) ⇐⇒ λi <
2

η
· 1 + β1

1− β1
.

Therefore, the recurrence stabilize in all eigendirections with λi > 0 if and only if

λmax

(
1− β1

1 + β1
H

)
<

2

η
.

This completes the proof.

Theorem D.1 (Exact Necessary and Sufficient Condition for Loss Spike Onset). Let L : RM → R
be twice continuously differentiable. At iterate θt, denote the gradient gt := ∇L(θt) ̸= 0, and
consider a gradient descent update

θt+1 = θt − ηgt, η > 0.

Define the weighted averaged Hessian along the update direction by

H̄t := 2

∫ 1

0

(1− s)∇2L(θt − sηgt) ds,

and the corresponding directional curvature by

λgrad(H̄t) :=
g⊤
t H̄tgt
∥gt∥2

.

Then the update exhibits a loss increase (necessary for a loss spike) if and only if λgrad(H̄t) >
2
η ,

i.e.,

L(θt+1) > L(θt) ⇐⇒ λgrad(H̄t) >
2

η
.

Proof. Consider the univariate function

ϕ(s) := L(θt − sηgt), s ∈ [0, 1].

By the chain rule,

ϕ′(s) = −η g⊤
t ∇L(θt − sηgt), ϕ′(0) = −η∥gt∥2.
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Differentiating once more yields

ϕ′′(s) = η2 g⊤
t ∇2L(θt − sηgt) gt.

Since L is twice continuously differentiable, ϕ is C2 on [0, 1]. The second-order Taylor theorem with
integral remainder gives the exact identity

ϕ(1) = ϕ(0) + ϕ′(0) +

∫ 1

0

(1− s)ϕ′′(s) ds.

Substituting the expressions for ϕ(0), ϕ′(0), and ϕ′′(s) yields

L(θt+1)− L(θt) = −η∥gt∥2 + η2
∫ 1

0

(1− s) g⊤
t ∇2L(θt − sηgt) gt ds.

Introduce the weighted averaged Hessian

H̄t :=

∫ 1

0

(1− s)∇2L(θt − sηgt) ds∫ 1

0

(1− s) ds

= 2

∫ 1

0

(1− s)∇2L(θt − sηgt) ds.

Then the previous equality becomes

L(θt+1)− L(θt) = −η∥gt∥2 +
η2

2
g⊤
t H̄tgt.

Dividing both sides by ∥gt∥2 > 0 shows that the sign of the loss change is exactly the sign of

−η +
η2

2
λgrad(H̄t),

where

λgrad(H̄t) :=
g⊤
t H̄tgt
∥gt∥2

.

Therefore,

L(θt+1) > L(θt) ⇐⇒ −η +
η2

2
λgrad(H̄t) > 0 ⇐⇒ λgrad(H̄t) >

2

η
.

This proves the claimed necessary and sufficient condition for a loss spike onset.

Practical proxy for loss spike onset. The exact loss–spike condition in Theorem D.1 depends
on the directional curvature λgrad(H̄t), where H̄t is the weighted line–segment average of the true
Hessian. Computing H̄t is intractable in modern deep networks, as it requires access to second-order
information along the entire update path. In practice, since learning rates are typically small, we can
monitor the step-wise curvature as a proxy:

λgrad(Ht) :=
g⊤
t Htgt
∥gt∥2

.

Our central theoretical insight is that Adam can be understood as applying a preconditioning transfor-
mation to the Hessian, as expressed in our Equation 5:

Ĥt =
1

1− βt
1

1− β1

1 + β1
diag

(
1√

v̂t + ε

)
Ht.

Therefore, a natural extension for Adam is to replace Ht with the preconditioned Hessian Ĥt. This
yields our predictor:

λgrad(Ĥt) :=
∇L(θt)

⊤Ĥt∇L(θt)

∥∇L(θt)∥2
>

2

η
.

Empirically, we observe that this curvature proxy aligns closely with the onset of loss spikes across
architectures and datasets, suggesting that it provide a robust approximation to the underlying
directional curvature governing spike formation.
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Theorem D.2 (Five Stages of Adam for Optimizing Quadratic Loss). Consider the 1-d quadratic
loss L(θ) = 1

2θ
2, optimized using Adam with hyper-parameters β1 = 0, β2 ∈ (0, 1), and learning

rate η > 0. The update rules are:

θt+1 =

(
1− η

√
vt

)
θt, vt+1 = β2vt + (1− β2)θ

2
t .

Assume the initialization satisfies v0 = θ20 and |θ0| > η
2 . Assume 1

ln(1/β2)
> 1

ln(
2|θ0|

η )
+ 1

ln 2 . Then

there exist integers t0 < t1 < t2 < t3 < t4 < t5 < ∞ such that the iterates (θt, vt) exhibit the five
stages described above in intervals [ti, ti+1), respectively. Specifically,

(i) Stable Loss Decrease. Define t0 = 0, then for all t0 ≤ t < t1, where

t1 :=
2 ln

(
|θ0|
η + 1

2

)
ln 1

β2

,

the sequence |θt| decreases exponentially, and vt ∈ [βt
2θ

2
0, θ

2
0]. In particular, there exists s ∈ (0, 1)

such that
|θt| ≤ st|θ0|, and |θt1 | ≤ δ := st1 |θ0|.

(ii) Preconditioners Decay. For t1 ≤ t < t2, where

t2 := inf
{
t > t1 |

√
vt <

η
2

}
,

the momentum vt decays exponentially as

vt ≤ (vt1+1 − δ2)βt−t1−1
2 + δ2.

(iii) Spike Onset. Define
t3 := inf {t > t2 | vt+1 > vt} .

For t2 ≤ t < t3, the preconditioner vt continues to decay, and the update multiplier
∣∣∣1− η√

vt

∣∣∣ grows,

causing |θt| to increase exponentially.

(iv) Preconditioners Growth. Define

t4 := inf{ t > t3 |
√
vt >

η
2 }.

For t3 ≤ t < t4, the growing gradient magnitude forces the preconditioner vt to increase. Conse-
quently, the update multiplier

∣∣∣1− η√
vt

∣∣∣ shrinks steadily, preparing the transition from explosive
growth to contraction.

(v) Loss Decrease. Define
t5 := inf

{
t > t4 :

√
vt <

η
2

}
.

If no such t exists, we simply take t5 > t4 to be any larger index. For t4 ≤ t < t5, the preconditioner
has grown sufficiently so that η√

vt
< 1. In this regime, the update multiplier satisfies

∣∣∣1− η√
vt

∣∣∣ < 1,

ensuring that |θt| contracts and the loss L(θt) = 1
2θ

2
t decreases once again.

Proof. We proceed in stages and make all inequalities explicit. The corresponding schematic diagrams
of the five stages are shown in Fig. D1.

Stage 1 (Stable loss decrease). For the given initialization v0 = θ20 and 0 < β2 < 1 we have the
trivial lower bound (single-step recurrence gives a simple monotone inequality)

vt ≥ βt
2v0 = βt

2θ
2
0, ∀t ≥ 0.

Also note vt ≥ 0 for all t.

Construction of t1 and δ. Define

t1 :=
2 ln
( |θ0|

η + 1
2

)
ln(1/β2)

.
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Figure D1: The five stages are illustrated schematically.

Because 0 < β2 < 1, ln(1/β2) > 0 and t1 is well defined. Set

s := max
{

1
2

η

|θ0|
,
∣∣1− η

|θ0|
∣∣}.

By the hypothesis |θ0| > η/2 we have s ∈ (0, 1). Define

δ := s⌊t1⌋|θ0|.

Here, ⌊·⌋ is the floor function. The choice of t1 ensures the following inequality chain for all integers
t with t0 ≤ t < t1. Using the lower bound vt > βt

2θ
2
0 and the definition of t1, one obtains

√
vt ≥ β

t/2
2 |θ0| ≥ β

t1/2
2 |θ0| and by the definition of t1, β

t1/2
2 |θ0| =

|θ0|
|θ0|
η + 1

2

,

so in particular
√
vt >

|θ0|
|θ0|
η + 1

2

and hence

1− η
√
vt

> −1

2

η

|θ0|
.

Therefore
−1 < −1

2

η

|θ0|
< 1− η

√
vt

< 1,∀0 ≤ t < t1.

This indicates that |θt| is monotonically decreasing for 0 < t < t1. Thus,
√
vt ≤ |θ0| for all

0 < t < t1. This completes the upper bound of 1− η√
vt

as follows:

−1

2

η

|θ0|
< 1− η

√
vt

< 1− η

|θ0|
,∀0 ≤ t < t1.

By definition of s, we get ∣∣∣1− η
√
vt

∣∣∣ ≤ s < 1.

Therefore for 0 < t < t1,
|θt| ≤ st|θ0|.

In particular |θ⌊t1⌋| ≤ δ, establishing the intended bound at the end of Stage 1. This proves Stage 1.

Stage 2 (Preconditioner decay). Define

t2 := inf
{
t ∈ N+ : 1− η

√
vt

< −1
}
.

For integers t1 ≤ t ≤ t2, we have |θt| ≤ |θt1 | ≤ δ. The recurrence for v implies

vt+1 = β2vt + (1− β2)θ
2
t ≤ β2vt + (1− β2)δ

2.
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This is an affine linear inequality in vt. Iterating this inequality forward from t = t1+1 yields, for
any integer t1 + 1 ≤ t ≤ t2,

vt ≤ (vt1+1 − δ2)β t−t1−1
2 + δ2, (7)

which shows vt decays geometrically toward δ2 with factor β2 so long as |θt| ≤ δ. Because |θt| ≤ δ
on the time window following Stage 1 by construction, we have established the Stage 2 statement.

Note also the obvious lower bound obtained by ignoring the additive (1− β2)θ
2
t term:

vt ≥ vt1+1β
t−t1−1
2 ,

so vt is squeezed between two geometric forms until |θt| leaves the small region.

Existence and finiteness of t2: Suppose by contradiction that t2 = +∞. Then 1− η√
vt

≥ −1, which

simplifies to vt ≥ η2

4 ,∀t ∈ N+. In Eq. (7) let t → +∞, it follows that lim supt→∞ vt ≤ δ2. So

δ2 ≥ η2

4 , which indicates that δ ≥ η
2 . Since δ := s⌊t1⌋|θ0|, we have ⌊t1⌋ ≤

ln(
2|θ0|

η )

ln(1/s) . By definition,

s ≥ 1
2 , so ⌊t1⌋ ≤

ln(
2|θ0|

η )

ln 2 . By definition of t1, it follows that

ln( 2|θ0|η )

ln(1/β2)
− 1 ≤

2 ln( |θ0|η + 1
2 )

ln(1/β2)
− 1 ≤ ⌊t1⌋ ≤

ln( 2|θ0|η )

ln 2
.

Therefore we have
1

ln(1/β2)
≤ 1

ln( 2|θ0|η )
+

1

ln 2
,

which contradicts the assumption. So t2 is finite.

Stage 3 (Spike onset). By definition of t2, at t = t2 we have √
vt2 < η/2. Consequently∣∣∣1− η

√
vt2

∣∣∣ > 1,

so passing from t2 to t2 + 1 yields

|θt2+1| =
∣∣∣1− η

√
vt2

∣∣∣ |θt2 | > |θt2 |.

Thus |θt| grows for t just after t1.

Finiteness of t3. To capture when the second-moment estimate vt ceases to decay, define

t3 := inf{ t > t2 : vt+1 > vt }.

If no such t exists we set t3 = +∞. Suppose, for contradiction, that t3 = ∞. Then vt+1 ≤ vt for all
t ≥ t2, so vt is monotonically decreasing and bounded below by 0. Thus the limit

v∞ := lim
t→∞

vt

exists. Since vt ≤ vt2 for all t ≥ t2, we obtain
η

√
vt

≥ η
√
vt2

> 2,

hence there exists a constant q := η√
vt2

− 1 > 1 such that∣∣∣1− η
√
vt

∣∣∣ ≥ q > 1, ∀t ≥ t2.

By recursion,
|θt2+k| ≥ qk|θt2 | → ∞ as k → ∞.

However, the recurrence for vt is

vt+1 = β2vt + (1− β2)θ
2
t .

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since |θt| → ∞ and 1− β2 > 0, the term (1− β2)θ
2
t → ∞, forcing vt+1 → ∞. This contradicts

the assumption that vt is monotonically decreasing with a finite limit v∞. Therefore, t3 < ∞. The
larger β2 is, the more slowly vt responds to gt, and the later the index t3 of the monotonic change
will occur.

Exponential growth in loss for t2 ≤ t < t3. For any t2 ≤ t < t3, we have vt+1 ≤ vt ≤ vt2 . Hence
η

√
vt

≥ η
√
vt2

> 2,

and so ∣∣∣1− η
√
vt

∣∣∣ ≥ q > 1,

where q = η√
vt2

− 1. By induction,

|θt| ≥ q t−t2 |θt2 |, ∀t2 ≤ t < t3.

Thus |θt| grows at least exponentially on the interval [t2, t3), and the loss

l(θt) =
1
2θ

2
t

increases dramatically, capturing the onset of the spike.

Stage 4 (Preconditioner growth). Define

t4 := inf{ t > t3 |
√
vt >

η
2 }.

Finiteness of t4. We first show that t4 < +∞. Suppose, for contradiction, that t4 = +∞. By the
definition of t3, we have vt3+1 > vt3 . Since

vt3+1 = β2vt3 + (1− β2)θ
2
t3 ,

this inequality implies θ2t3 > vt3 . On the other hand,

θt3+1 =
(
1− η√

vt3

)
θt3 .

If θt3 > 0, then
θt3+1 < (1− η

θt3
)θt3 = θt3 − η,

so either θt3 > η
2 or θt3+1 < −η

2 . Thus, in either case, there exists some t ∈ {t3, t3 + 1} such that

|θt| > η
2 .

Now assume t4 = +∞. Then by definition we must have
√
vt ≤ η

2 for all t > t3. Hence∣∣∣1− η√
vt

∣∣∣ ≥ 1,

implying that |θt| is monotonically non-decreasing. Since at least one of |θt3 | or |θt3+1| already
exceeds η

2 , it follows that

|θt| ≥ a := max{|θt3 |, |θt3+1|} > η
2 , ∀ t > t3.

Thus |θt| converges to a limit (possibly +∞) with

lim
t→∞

|θt| ≥ a > η
2 .

But then, since
vt+1 = β2vt + (1− β2)θ

2
t ,

we must have
lim
t→∞

vt = a2,

so that
lim
t→∞

√
vt = a > η

2 .

This contradicts the assumption that
√
vt ≤ η

2 for all t > t3. Therefore t4 must be finite.
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During the interval t3 < t ≤ t4, the preconditioner
√
vt evolves from being strictly below η

2 to
exceeding it. We refer to this regime as the “preconditioner growth stage”.

Stage 5 (Loss decrease). Define

t5 := inf
{
t > t4 : 1− η

√
vt

< −1
}
.

If no such t exists, we simply set t5 > t4 to be any larger index for convenience. At time t4, the
preconditioner satisfies √vt4 > η

2 . Hence, for t ≥ t4,∣∣∣1− η√
vt

∣∣∣ < 1.

This ensures that, during the interval t4 ≤ t ≤ t5, the multiplicative factor falls strictly within (−1, 1),
so |θt| no longer grows but instead contracts. Consequently, the loss L(θt) = 1

2θ
2
t decreases over this

period.

Thus the trajectory transitions from exponential growth (Stage 3) and preconditioner growth (Stage
4) into a contraction regime. In this way, the cycle closes and the dynamics return to behavior of the
same type as in Stage 1.

This completes the proof of the five-stage behavior for the quadratic optimization.

Theorem D.3 (Analysis of decaying learning rate scheduler). Consider the same setup as Thm. 1
with decaying learning rate ηt = η0(t+ 1)−α where α ∈ (0, 1). Assume the initialization satisfies
v0 = θ20 and |θ0| > 2η0 > 0. Assume β2 is sufficiently close to 1. Then the stability condition
|1− ηt√

vt
| < 1 cannot hold for all t ∈ N+.

Proof. Assume by contradiction that |1− ηt√
vt
| < 1 holds for all t ∈ N+.

Stage 1 (Loss Decay Stage). For all t, βt
2v0 ≤ vt ≤ θ20 . Define t0 = log 2

log 1
β2

. Then for

all t ≤ t0, vt ≥ 1
2v0. Since |θ0| > 2η0, we have ηt√

vt
< η0√

1
2 v0

< 2η0

|θ0| < 1 for all

0 ≤ t ≤ t0. Therefore ,
∏t0

k=0(1−
ηk√
vk
) = e

∑t0
k=0 log(1− ηk√

vk
) ≤ e

−
∑t0

k=0

ηk√
vk ≤ e

− 1
|θ0|

∑t0
k=0 ηk ≤

e
− η0

(1−α)|θ0| ((t0+2)1−α−1) ≤ e
− η0

(1−α)|θ0| (t
1−α
0 −1). Therefore |θt| ≤ |θ0|e−

η0
(1−α)|θ0| (t

1−α
0 −1). By as-

sumption, s := t1−α
0 is sufficiently large. Therefore |θt0 | := δ is sufficiently small, whereas

1
2 |θ0|

2 ≤ vt0 ≤ |θ20|.
Stage 2 (Decay of the Adaptive Preconditioners). With the same argument of Theorem D.2(ii), we
have

vt ≤ (vt0+1 − δ2)βt−t0−1
2 + δ2,

Solving ηT = 3δ, we have T = (η0

3δ )
α − 1. Then vT ≤ (vt0+1 − δ2)βT−t0−1

2 + δ2. Therefore

ηT√
vT

≥ 3δ√
(vt0+1 − δ2)βT−t0−1

2 + δ2
=

3√
(vt0+1 − δ2)

β
T−t0−1
2

δ2 + 1

.

By calculation,

βT−t0−1
2

δ2
= e

(
(
η0
3δ )α− log 2

log 1
β2

−2

)
log β2−2 log δ

.

When β2 → 1, log β2 → 0, δ → 0, but δ is of the form e(
c1

log β2
)c2 with c1, c2 > 0. Intuitively,

δ << log β2. From e(
c1

log β2
)c2 with c1, c2 > 0, one may verify that(
(
η0
3δ

)α − log 2

log 1
β2

− 2

)
log β2 − 2 log δ → −∞.

So β
T−t0−1
2

δ2 → 0. Thus, ηT√
vT

> 2 when β2 is sufficiently close to 1. This breaks the stability
condition.
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E DISCUSSION: THE PROS AND CONS OF LOSS SPIKES

Connection to Generalization Transitions. Loss spikes represent more than mere optimization phe-
nomena; they may signify transitions between distinct attractor basins in the optimization landscape.
To systematically investigate the relationship between loss spikes and generalization, we conducted
controlled experiments using a Transformer model. The model was trained to identify specific anchors
within sequences, using a dataset of 2,000 samples (1,800 training, 200 test). We employed full-batch
Adam optimization for training (detailed experimental setups and dataset specifications are provided
in Appendix F). By analyzing the differential impacts on training and test losses before and after
spike occurrences, we identified four distinct categories of loss spikes:

(i) Neutral Spikes (Fig. D2(a)): Both training and test losses resume their normal declining trajectory
following the spike, suggesting minimal impact on the overall optimization process.

(ii) Benign Spikes (Fig. D2(b)): Prior to the spike, training loss reaches very low values while test
loss remains elevated, indicating overfitting. After the spike, test loss decreases rapidly, suggesting
improved generalization performance.

(iii) Malignant Spikes (Fig. D2(c)): Before the spike, both training and test losses achieve low values.
After the spike, while training loss continues to decrease normally, test loss plateaus, indicating
deteriorated generalization.

(iv) Catastrophic Spikes (Fig. D2(d)): Both training and test losses are low before the spike but
neither recovers afterward, signifying a complete breakdown of the optimization process. These find-
ings demonstrate that loss spikes can have context-dependent effects on generalization—sometimes
enhancing model performance while in other cases degrading performance.
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Figure D2: The Transformer model was trained to identify specific anchors within sequences. (a–d)
Evolution of the training and test losses over the course of training. (e-h) Evolution of the eigenvalues
in the gradient direction λgrad(Ĥt) near the spike.

As shown in Fig. D2(e–h), all four types of spikes correspond to our proposed indicator, λgrad(Ĥt),
exceeding the classical stability threshold 2/η. Despite this commonality, their effects on general-
ization differ significantly. While our study uncovers the underlying mechanism that triggers these
spikes, determining the precise conditions under which a spike becomes benign or malignant remains
an open question for future research.

F SUPPLEMENTARY EXPERIMENTS

Optimization of Quadratic Function with Varying Hyper-parameters. For the optimization of a
one-dimensional quadratic function, Fig. D3 illustrates the precise location of the spike under various
hyperparameter configurations, where λmax(Ĥt) exceeds the stability threshold 2

η .
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(a) η = 0.15, β1 =
0.9, β2 = 0.999
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(b) η = 0.25, β1 =
0.9, β2 = 0.999
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(c) η = 0.15, β1 =
0.95, β2 = 0.999
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(d) η = 0.15, β1 =
0.9, β2 = 0.99

Figure D3: Optimization of f(θ) = 1
2θ

2 using the Adam algorithm with different hyperparameter
settings. The solid red line denotes the training loss. The dashed black line indicates the stability
threshold 2

η . The blue, purple, and green solid lines represent λmax(Ht), λmax(Ĥt), and the bias-
corrected ∥

√
v̂t∥2, respectively, at each training step.

Delay Mechanism in Gradient Descent

To verify that in high-dimensional cases, when λmax > 2
η , the maximum eigenvalue direction

oscillates while other eigenvalue directions steadily decrease (resulting in overall loss reduction), we
conducted experiments on one and two-dimensional quadratic functions with varying learning rates.

For a one-dimensional quadratic function, the loss landscape curvature remains constant. In this
setting, the learning rate initially produces linear improvement over time, followed by gradual decay.
When the instability condition is met—as illustrated in Fig. D4(a)—the loss increases immediately.

In contrast, for the two-dimensional case, instability primarily emerges along the dominant eigendi-
rection, while other directions continue to descend stably. As shown in Fig. D4(b), this leads to a
delayed onset of the loss spike.

To further validate this mechanism, we visualize the training trajectories in Fig. D5(a–b). In gradient
descent (GD), the component along the maximum eigenvalue direction is learned rapidly at first,
resulting in a small magnitude. However, once the instability condition is triggered, this component
requires significant time to grow and eventually dominate the dynamics.
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(a) 1d-quadratic
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Figure D4: Delay mechanism in gradient descent: Comparison of loss dynamics for 1D and 2D
quadratic functions. The learning rate varies over the course of training.
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Figure D5: Training dynamics for the 2D quadratic function under gradient descent. (a) Evolution of
the solution components along different eigendirections. (b) Optimization trajectory in parameter
space.

Gradient-direction Curvature vs. Update-direction Curvature for Loss Spike Prediction

For Adam, where the Hessian is preconditioned, we define the predictor as

λgrad(Ĥ) :=
∇L(θt)

⊤Ĥ∇L(θt)

∥∇L(θt)∥2
,

where Ĥ denotes the preconditioned Hessian in Eq. (5).

We also define

λupdate(Ĥ) :=
u⊤
t Ĥut

∥ut∥2
,

where ut =
m̂t√
v̂t+ε

is the update vector.

To validate our quadratic approximation-based predictor, we tracked the eigenvalue evolution of the
preconditioned Hessian throughout training. Fig. D6(b) reveals that while λmax(Ht) quickly stabi-
lizes, λmax(Ĥt) continues to increase steadily. Notably, λmax(Ĥt) surpasses the stability threshold
2
η at epoch 179, yet no immediate spike occurs. At epoch 184, precisely when λgrad(Ĥt) exceeds 2

η ,

we observe the loss spike depicted in Fig. D6(a). Subsequently, the eigenvalue λupdate(Ĥt) in the
parameter update direction also exceeds 2

η .

This demonstrates that the eigenvalue in the gradient direction more accurately predicts the onset
of the actual spike. The update direction requires time to respond to changes in the gradient. When
λupdate exceeds 2/η, the loss spike has already occurred.

CIFAR-10 Experiments

We trained a convolutional neural network on CIFAR10 using Adam hyperparameters β1 = 0.9, β2 =
0.999. As shown in Fig. D7(a), the optimization follows a pattern similar to FNN, with an initial
loss decrease followed by three distinct spikes. Analysis of the preconditioned Hessian’s eigenvalues
(Fig. D7(b)) shows λmax(Ht) remaining below the stability threshold 2/η, while λmax(Ĥt) increases
until exceeding it. Loss spikes occur precisely when λgrad(Ĥt) surpasses 2/η. Figs. D7(c-d) show
the evolution of squared gradients and second-order moments

√
v̂t across parameter blocks. Before

spikes, ∥gt∥ is much smaller than ∥
√
v̂t∥, with v̂t decaying exponentially at rate ≈ β2. During

spikes, while v̂t continues decreasing, the gradient norm increases until substantially impacting vt.
Subsequently, v̂t rises, causing λgrad(Ĥt) to fall below 2/η and allowing loss descent to resume.

Transformer Models for Sequence Learning

For the experiment illustrated in Fig. 7, Fig. D9 presents the complete evolution of all eigenvalues,
along with detailed views of each spike in Fig. 7(c-e) and Fig. D10(a-d).
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Figure D6: (a) Training loss and gradient norm over time. (b) Evolution of critical eigenval-
ues: original Hessian maximum eigenvalue λmax(Ht), preconditioned Hessian maximum eigen-
value λmax(Ĥt), gradient-directional eigenvalue λgrad(Ĥt) and update-directional eigenvalue
λupdate(Ĥt) relative to 2/η.
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Figure D7: Training a CNN on 50 randomly selected CIFAR-10 images to illustrate the detailed
spikes (see similar result for larger datasets in Appendix F Fig. D8). (a) Training loss over time.
(b) Evolution of eigenvalues: original Hessian maximum eigenvalue λmax(Ht), preconditioned
Hessian maximum eigenvalue λmax(Ĥt), and gradient-directional eigenvalue λgrad(Ĥt) relative to
2/η (black dashed line). (c) Gradient norm evolution across parameter blocks. (d) L2-norm of second
moment estimate ∥v̂t∥ of different parameter blocks.

As depicted in Fig. D10(a-d), we found that transient periods where λmax(Ĥt) and λgrad(Ĥt) exceed
2/η are insufficient to induce a spike. Loss spikes only materialize when λgrad(Ĥt) remains above
the threshold for a sustained duration. This observation aligns with stability analysis principles,
which suggest that loss increases exponentially only after persistent instability, with isolated threshold
violations being insufficient to trigger rapid loss elevation. Based on this insight, we formulated a
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Figure D8: Loss spike in CNNs on CIFAR10 for randomly sampled 1000 images. (a) Temporal evolu-
tion of training loss. (b) Progression of critical eigenvalue metrics: original Hessian maximum eigen-
value λmax(Ht), preconditioned Hessian maximum eigenvalue λmax(Ĥt), and gradient-directional
eigenvalue λgrad(Ĥt) relative to the stability threshold 2

η (black dashed line). (c) Temporal evolution
of gradient norm of different parameter blocks. (d) L2-norm of second moment ∥v̂t∥ of different
parameter blocks.
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Figure D9: (a) Evolution of critical eigenvalues: original Hessian maximum eigenvalue λmax(Ht),
preconditioned Hessian maximum eigenvalue λmax(Ĥt) and gradient-directional eigenvalue
λgrad(Ĥt) relative to 2/η. (b) Gradient-directional eigenvalues λgrad(Ĥt) (gray) and sustained
predictor λgrad(Ĥt)(sustained) (orange) vs. 2/η.

“sustained spike predictor” defined as:

λgrad(Ĥt)(sustained) = min(λgrad(Ĥt−1), λgrad(Ĥt), λgrad(Ĥt+1)).

This refined predictor demonstrates perfect correspondence with loss spike occurrences, as shown by
the orange line in Fig. D9(b).

Controlling Adaptive Preconditioners to Eliminate Spikes

We discovered that the epsilon parameter (ε) in Adam plays a critical role in modulating loss spike
behavior. Specifically, using a larger ε significantly reduces spike severity by effectively imposing an
upper bound on the preconditioned eigenvalues. Additionally, we experimented with component-wise
clipping of vt, where elements falling below a specified threshold are clipped to that threshold value.

As shown in Fig. D12(a), locally increasing ε during training can effectively suppress loss spikes.
Fig. D12(b) further demonstrates that increasing ε or applying vt clipping from the beginning of
training can also mitigate spike behavior, although this may come at the cost of slower convergence.

G EXPERIMENTAL SETUP

All experiments were conducted on 1 NVIDIA RTX 4080 GPU. The runtime varied across tasks,
ranging from a few minutes for smaller models to several days for large-scale training.

Computing the full Hessian matrix for large-scale neural networks is computationally prohibitive
due to its quadratic memory complexity. To address this challenge, we employ an efficient power
iteration method combined with Hessian-vector products that leverages automatic differentiation,
circumventing the explicit construction of the complete Hessian matrix.

Setup for Fig. 6 and Fig. 1(a). We trained two-layer fully connected neural network applied
to a high-dimensional function approximation task. The target function is defined as f∗(x) =
w∗⊤x+ x⊤diag(v∗)x, where w∗,v∗ ∈ R50 are the ground-truth parameters and x ∈ R50 denotes
the input features. A total of n = 200 data points are sampled, with inputs drawn from a standard
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Figure D10: Detailed inspection of loss spike intervals showing the maximum eigenvalues of the
original Hessian λmax(Ht), preconditioned Hessian λmax(Ĥt), and λgrad(Ĥt).

0 5000 10000 15000 20000 25000
Iteration

2

4

6

8

10

Lo
ss

2 = 0.999
2 = 0.9
2 = 0.85

(a)

Figure D11: The raw loss of the Fig. 8(a).

Gaussian distribution. Gaussian noise with standard deviation ε = 0.1 is added to the outputs. The
network has a hidden layer width of m = 1000, placing it in the over-parameterized regime. All
weights are initialized from a Gaussian distribution N (0, 1

m ). Training is performed using full-batch
Adam with a learning rate of η = 0.02, and momentum parameters β1 = 0.9, β2 = 0.999.

Setup for Fig. D7 and Fig. 1(b). We trained a convolutional neural network on the CIFAR-10
dataset. For computational tractability in computing Hessian eigenvalues, we restricted the training
set to 50 randomly sampled images. The network contains approximately 500, 000 parameters and is
trained using Mean Squared Error (MSE) loss with one-hot encoded labels. Optimization is performed
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Figure D12: The training loss with the same experiment settings as Fig. 6. (a) The only difference of
the blue solid line is that we change the ε in Adam to 0.1 at epoch 184 where the loss in the original
training process begin to spike. (b) The green solid line is the training loss that we change the ε to 0.1
at the beginning of the training. The blue solid line is the training loss that we clip the vt in Adam to
0.01.

using full-batch Adam with a learning rate of η = 0.001 and default momentum parameters β1 = 0.9,
β2 = 0.999.

Setup for Fig. D17(a,b). We trained a ViT on the CIFAR-10 dataset. The ViT consists of 4 layers
and 8 heads. The embedding dimension is 64. The network is trained using Mean Squared Error
(MSE) loss with one-hot encoded labels. Optimization is performed using full-batch Adam with a
learning rate of η = 0.001 and default momentum parameters β1 = 0.9, β2 = 0.999.

Setup for Fig. D17(c,d). We trained a ResNet on the CIFAR-10 dataset. The network is trained
using Mean Squared Error (MSE) loss with one-hot encoded labels. Optimization is performed using
full-batch Adam with a learning rate of η = 0.001 and default momentum parameters β1 = 0.9,
β2 = 0.999.

Setup for Fig. 7 and Fig. 1(d). We implemented an 8-layer standard Transformer with approx-
imately 10 million parameters. The model is trained on a synthetic dataset designed to learn
compositional rules from sequences (Zhang et al., 2025), consisting of 900, 000 sequences. Training
uses a batch size of 2048 and follows the next-token prediction paradigm with cross-entropy loss. The
learning rate follows a linear warm-up stage followed by cosine decay. Optimization is performed
using Adam with β1 = 0.9 and β2 = 0.999.

Setup for Fig. 8 and Fig. D11 We implemented a LLaMA structure Transformer with 187M non-
embedding parameters and trained on 100B data split from SlimPajama. The detailed hyperparameters
are shown in Table 1.

Setup for Fig. D2, Fig. D13 and Fig. 1(c). We further evaluate our theoretical insights using
4-layer (Fig. D2, Fig. D13) and 12-layer ((Fig. D2, Fig. 1(c))) standard Transformers trained on a
synthetic classification task. The dataset is constructed to learn a specific anchor rule (3x → x)
from sequences (Zhang et al., 2025), comprising 2, 000 sequences. The model is trained using
cross-entropy loss. The learning rate follows a linear warm-up followed by cosine decay. Adam is
used for optimization with β1 = 0.9 and β2 = 0.999.

Setup for Fig. D20 We trained two-layer fully connected neural network applied to a high-
dimensional function approximation task. The target function is defined as f∗(x) = w∗⊤x +
x⊤diag(v∗)x, where w∗,v∗ ∈ R50 are the ground-truth parameters and x ∈ R50 denotes the input
features. A total of n = 200 data points are sampled, with inputs drawn from a standard Gaussian
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Hyperparameter Value

Number of Layers 16

Hidden Size 1280

FFN Inner Hidden Size 1280

Attention Heads 16

Attention Head Size 80

Batch Size 512

Learning Rate Scheduler 10% Warmup + Cosine Annealing

Adam β1 0.9

Adam β2 0.999; 0.9; 0.85

Adam ϵ 10−8

Gradient Clipping 1.00

Table 1: Detailed Hyperparameters for the 187M Transformer.

distribution. Gaussian noise with standard deviation ε = 0.1 is added to the outputs. The network
has a hidden layer width of m = 1000, placing it in the over-parameterized regime. All weights are
initialized from a Gaussian distribution N (0, 1

m ). Training is performed using full-batch Adam with
a learning rate of η = 0.002, momentum parameter β1 = 0.0, and different variations of β2.

G.1 PRACTICAL FEASIBILITY OF OUR MONITORING APPROACH.

For λmax(Ĥt): We do not need the full spectral information or all eigenvalues. To estimate the
maximum eigenvalue, we employ the power iteration method, which requires only multiple Hessian-
vector products. Specifically, starting from a random vector v0, power iteration performs:

vk+1 =
Ĥtvk

∥Ĥtvk∥
,

and the largest eigenvalue is approximated by v⊤
k Ĥtvk. This converges rapidly (typically 5-10 itera-

tions) and each iteration costs only O(n) via automatic differentiation, requiring no explicit Hessian
construction. The total cost is O(kn) where k ≪ n is the number of power iterations—entirely
tractable even for large models.

For our predictor λgrad(Ĥt): The computational cost is even lower. By definition,

λgrad(Ĥt) =
g⊤t Ĥtgt
∥gt∥2

,

which requires only a single Hessian-vector product Ĥtgt in the gradient direction. This is precisely
“a single projection”, but this is not a limitation—it is exactly the relevant information for predicting
loss spikes. We do not need full spectral information; we only need the curvature in the direction the
optimizer is moving, which is captured by this single directional derivative.

H NEW SUPPLEMENTARY EXPERIMENTS

Compared to research on Edge of Stability (EoS). Several papers on EoS have noted the close
relationship between η and 2/λmax(H) in modern deep learning as discussed in the main text.
However, these phenomena are typically characterized as edge-of-stability behavior, which differs
from the large, pronounced loss spikes we observe. The precise relationship between these instabilities
and observed spikes remains unclear—instability may manifest as oscillations or as spikes, but the
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specific mechanism under which spikes occur is not well understood. As shown in our experiment
(Figure D13), the system can remain in the EoS region for extended periods, but spikes occur
specifically when the curvature in the gradient direction λgrad(Ĥt) exceeds 2/η. Our work reveals
how λgrad(Ĥt) increases, how larger β2 leads to persistent instability and identifies that spikes occur
precisely when the curvature in the gradient direction λgrad(Ĥt) exceeds 2/η, rather than λmax(H)
as discussed in EoS literature. To our best knowledge, no prior work has explicitly identified these
mechanisms.

Why understanding quantitative mechanisms matters: Loss spikes are notoriously difficult to
study due to their strong correlations with numerous factors, leading to many seemingly plausible but
ambiguous explanations without causal understanding. We emphasize that mechanistic understanding
and quantitative prediction are crucial because they typically indicate causality.
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Figure D13: (a) Evolution of critical eigenvalues of a 3x → x task (Zhang et al., 2025): original
Hessian maximum eigenvalue λmax(Ht), preconditioned Hessian maximum eigenvalue λmax(Ĥt)

and gradient-directional eigenvalue λgrad(Ĥt) relative to 2/η.
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Figure D14: Adagrad optimization on f(θ) = 1
2θ

2. AdaGrad’s second-moment estimate follows
vt = vt−1 + g2t , which is a strict accumulation. This ensures the effective learning rate η/

√
vt can

only decrease monotonically over time, precluding the possibility of preconditioner decay that our
theory identifies as the root cause of spikes.
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Figure D15: RMSProp optimization (β1 = 0 in Adam) on f(θ) = 1
2θ

2 with β2 = 0.99 and 0.00. (a,
c) Evolution of training loss and gradient norm. (b, d) Evolution of the second moment estimate v̂t

and the maximum eigenvalue of the preconditioned Hessian.
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Figure D16: The optimization for a 100-dimensional quadratic function with gradient descent.
η = 0.02 and there are 90 stable direction that λ < 100 and 10 unstable direction that λ > 100. (a)
Evolution of loss and critical eigenvalues: Hessian maximum eigenvalue λmax(Ht) and gradient-
directional eigenvalue λgrad(Ht) relative to 2/η. (b) Cosine similarity between gradient direction
and 10 unstable directions. When spikes occur, the gradient direction aligns predominantly with the
most unstable eigendirection (i.e., the one corresponding to λmax(Ht)), as this direction dominates
the optimization dynamics.
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Figure D17: (a,c) The training loss of ViT and ResNet18 model on randomly selected 1000 CIFAR-
10 images respectively. (b,d) Detailed inspection of loss spike intervals showing the maximum
eigenvalues of the preconditioned Hessian λmax(Ĥt), and gradient-directional eigenvalue λgrad(Ht)
relative to 2/η.
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Figure D18: The loss spike in Figure 2 is not caused by rounding errors. Adam optimization on
f(θ) = 1

2θ
2 with a large ϵ = 10−3 values and learning rate 0.001. (a) Evolution of training loss and

gradient norm. (b) Evolution of the second moment estimate v̂t and the maximum eigenvalue of the
preconditioned Hessian. We increase Adam’s ϵ parameter to 10−3 to ensure that λgrad(Ĥt) can not
exceed 2/η, Adam can converge to loss values as low as 10−300.
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(c) η = 15
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(d) η = 0.15
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(e) η = 1.5
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(f) η = 15

Figure D19: Stable loss decrease is still observed initially even with larger learning rates in the case
of β2 = 0.9. Our results show that when the learning rate is particularly large, vt grows rapidly in the
early stages of optimization. This rapid growth of vt effectively reduces the preconditioned step size
η/

√
vt, which allows the loss to decrease stably at the beginning even under large nominal learning

rates.
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(f) Eigenvalues, β2 = 0.5
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Figure D20: Training trajectories and eigenvalue evolution for varying β2 values with β1 = 0 (to
isolate the effect of adaptive learning rate from momentum). Each row shows the loss curve and
corresponding evolution of λmax(Ĥt) and λgrad(Ĥt) for a different β2 setting. Larger β2 values
produce more pronounced spikes in the loss, while smaller β2 values lead to denser oscillations,
mirroring the behavior observed for the quadratic function in Fig. 3. Notably, loss spikes and
oscillations correlate with λgrad approaching 2/η, rather than with λmax(Ĥt), providing empirical
validation for the practical utility of our proposed λgrad metric.
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