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ABSTRACT

Loss spikes commonly emerge during neural network training with the Adam
optimizer across diverse architectures and scales, yet their underlying mechanisms
remain poorly understood. In this work, we investigate the fundamental causes of
Adam spikes. While previous explanations attribute these phenomena to sharper
loss landscapes at lower loss values, our analysis reveals that it is Adam’s adaptive
preconditioners that trigger spikes during training. We identify a key mechanism
where the second moment estimate becomes insensitive to current gradients when
using large 32 values. This insensitivity can push the maximum eigenvalue of the
preconditioned Hessian beyond the stability threshold 2/7 for sustained periods,
manifesting as dramatic loss spikes. We theoretically and experimentally character-
ize five distinct stages of spike evolution and propose a predictor for anticipating
spikes based on gradient-directional curvature. We further validate our mechanism
and demonstrate practical mitigation strategies from small fully connected net-
works to large-scale Transformers. These findings provide new theoretical insights
for understanding and controlling loss spike behavior in Adam optimization.

1 INTRODUCTION

Neural network optimization remains a complex and sometimes unpredictable process despite signifi-
cant advances in training methodologies. One particularly intriguing phenomenon that practitioners
frequently encounter but rarely explore systematically is the “loss spike” — a sudden and sharp
surge in the loss function that subsequently subsides. As illustrated in Fig. |1} these spikes differ
markedly from normal fluctuations, resembling systematic instabilities rather than random noise.
While observed across diverse architectures and datasets, their underlying mechanisms remain poorly
understood. This creates a critical dilemma for practitioners: should they intervene to eliminate these
apparent anomalies, or might loss spikes actually benefit the optimization process? Answering this
question requires deeper theoretical understanding of when, how, and why loss spikes occur.

Previous research has tried to explain loss spikes through the geometry of loss landscapes (Ma et al.,
2022a; [Li et all 2025)). The lower-loss-as-sharper (LLAS) hypothesis (Li et al., 2025) suggests
that regions of lower loss correspond to sharper curvature in the loss landscape, potentially causing
instability. While this explanation provides some intuition, it fails to explain the specific behavior of
adaptive optimizers like Adam (Kingma & Ba,|2014) that consistently exhibit spikes even in simple
scenarios where landscape geometry is well-understood. For instance, as shown in Fig. 2[a), Adam
produces loss spikes on a simple quadratic function even with learning rates well below theoretical
stability thresholds, while gradient descent converges smoothly. This behavior can not be explained
by loss landscape alone, since quadratic functions have constant curvature. Furthermore, although
previous research has identified the Edge of Stability (EoS) phenomenon, where loss decreases non-
monotonically while the largest Hessian eigenvalue hovers around 2 /7 (7 is the learning rate) (Cohen
et al.,[2021; [Wu et al., [2018}; [Xing et al., 2018} |Ahn et al., 2022} Lyu et al., |2022} |Arora et al., [2022;
Wang et al.| [2022; (Cohen et al., |2023)), loss spikes appear to represent more dramatic instabilities than
typical EoS behavior. In particular, the precise relationship between these instabilities and observed
spikes remains unclear—instability may sometimes manifest as oscillations and sometimes as spikes
(Ma et al} 2022b), the specific mechanism under which spikes occur is not well understood.

In this work, we present a detailed mechanistic explanation for loss spikes in Adam optimization. Our
key finding is that these spikes arise not primarily from the complex geometry of the loss landscape,
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Figure 1: Loss spikes across architectures: (a) FNNs for function approximation. (b) CNNs on
CIFARI10. (c-d) Transformers on language tasks. See experimental details in Appendix @

but rather from the intrinsic dynamics of Adam’s adaptive preconditioners. Specifically, we demon-
strate both theoretically and experimentally that Adam’s stability is governed by a preconditioned
Hessian. When using large values of 35 (as is common in practice), the second moment estimate
becomes insensitive to current gradients, causing the maximum eigenvalue of the preconditioned
Hessian to exceed the stability threshold 2/7 for sustained periods. This creates severe instability
that manifests as dramatic loss spikes. The instability further induces alignment between the gradient
and the maximum eigendirection, with loss spikes occurring precisely when the gradient-directional
curvature exceeds 2 /1. We find that directly reducing (35 is effective in mitigating loss spikes.

Our main contributions are summarized as follows:

(i) We show that it is Adam’s adaptive preconditioners that causes spikes in practical Adam training.
The five stages of spike evolution are clearly characterized, both theoretically and experimentally.
This mechanism is distinct from previous lower-loss-as-sharper (LLAS) landscape hypothesis (Li
et all 2025)) (please refer to Sec.[3] Sec.[dT]and Sec. [3).

(ii)) We identify a key mechanism whereby the second moment estimate becomes insensitive to
current gradients when employing a relatively large 5,. This causes the maximum eigenvalue of the
preconditioned Hessian to persistently exceed the classical stability threshold 2/7, manifesting as
dramatic loss spikes. (please refer to Sec. .1} Sec.[d.2] and Sec. [6).

(iii) We propose a predictor, )\grad(ﬁ +) for anticipating spikes based on the curvature in the gradient
direction. We empirically show that this predictor is highly accurate in forecasting spike onset, and
we further validate practical strategies for mitigating spikes. (please refer to Sec.[#.3]and Sec. [6).

2 RELATED WORKS

Edge of Stability (EoS). Various works (Cohen et al., 2021; Wu et al.} 2018 Xing et al.,[2018}; |Ahn
et al., 2022} |[Lyu et al., [2022; |Arora et al.| [2022; |Jastrzebski et al., 2020; Jastrzebski et al.| [2019;
Lewkowycz et al.,2020) have investigated the Edge of Stability (EoS), a phenomenon where gradient
descent progressively increases the sharpness of the loss landscape—a process known as progressive
sharpening—until the maximum Hessian eigenvalue stabilizes near the threshold 2/7, while the
loss continues to decrease non-monotonically. Ma et al.|(2022a) proposed a subquadratic structure
near local minima, where sharpness increases when the loss decreases along the gradient direction,
providing a theoretical account of this behavior. Other studies (Damian et al., 2023} Wang et al.,
2022)) show that when Apax > 2/7, self-stabilization mechanisms can reduce sharpness and restore
stability. More recently, |(Cohen et al.| (2023)) extended the EoS framework to adaptive optimizers,
introducing the concept of Adaptive Edge of Stability (AEoS). Furthermore, (Cohen et al.| (2025))
also developed the concept of central flow to study the average trajectory of oscillatory dynamics
during EoS. While EoS has been widely explored, its direct association with loss spikes has yet to be
thoroughly investigated.

Convergence Analysis of Adam. Numerous works have analyzed the convergence behavior of
adaptive gradient methods (Chen et al.}[2019;|Li & Orabonal 2019; Xie et al., |2020; |Défossez et al.}
2022; Da Silva & Gazeaul [2020; [Shi et al., [2021} Zou et al.,2019; Zhou et al., [2024). In particular,
Reddi et al.[(2018) demonstrated that Adam may fail to converge even in simple convex settings,
prompting a series of variants (Liu et al.,[2019] [Taniguchi et al.,|2024). Zhang et al.| (2022)) showed
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that in the case of learning rate decay Adam can converge to a neighborhood of critical points when
(o is large, and this convergence is guaranteed if 51 < /2.

Loss Spike Analysis. (Chowdhery et al.| (2023) reported that restarting training from an earlier
checkpoint and skipping the spiking data batch can mitigate spikes in large models. [Molybog et al.
(2023)) found that the gradient and second-moment estimates of shallow layer parameters can decay
to near-zero and then spike upon encountering a large gradient. Li et al.| (2025)) argued that spikes
occur in sharp regions of the loss landscape with a lower-loss-as-sharper (LLAS) structure. [Ma et al.
(2022b) qualitatively demonstrated that Adam’s hyperparameters impact the occurrence of spikes or
oscillations. Although previous studies have uncovered parts of the puzzle surrounding spikes, this
work provides a more detailed and comprehensive understanding of the spike formation.

3  DISTINCT LOSS SPIKE MECHANISM IN ADAM AND GRADIENT DESCENT

Adam Algorithm. The Adam algorithm is widely used in training Transformer models and is widely
observed to be more prone to cause loss spikes. Adam maintains exponential moving averages of
gradients (first moment) and squared gradients (second moment) to speed up training:

my = Bimy_1+ (1= Bi)gi, v = Bovi1 + (1 — B2)g7, (D

where g; := VL(0,) is the gradient, and 31,82 € [0,1) are hyperparameters controlling the

exponential decay rates (default values: 51 = 0.9, 82 = 0.999). To counteract the initialization bias

toward zero, these moments are corrected: m; = f—ét, vy = # The parameter update rule is:
1 2

my
0i1=0; —n———), @
VU + €
where 77 > 0 is the learning rate and € > 0 is a small constant (default 10~% in PyTorch).
10-6 10-2{ @ DataPoints .z) [ ——— — Adamn=1
2 9 ——- Fitting: V¥, =0.02172%3 //' 10! Adam n=0.5
&10 %“1073 o —— Adamn=0.1
810 —-. GDp=199 % o g 10° — Adam =001
£ g | — Adamn=1 \ P Vd S —— Adam n=0.001
£ Adam n=0.5 \ T s <
F10%{ — Adamn=0.1 1 s ~ 1072
10-76] — Adamn=0.01 ' =107 Ea st pikes occur when -
—— Adam n=0.001 ! '/ 103 ) AN
107 10° 10t 10? 10° 104 1074 103 1072 107t 10° 10° 10 10? 10® 10*
Iteration learning rate n Epoch
= 3 n
(a) Loss (b) Vo x (c) Evolution of 75
Figure 2: Optimization of f(0) = %62. (a) Loss trajectories during Adam and GD training across

various learning rates. Curves of different colors represent Adam’s training loss, which initially
decreases steadily before abruptly spiking to significantly higher values. (b) The relationship between
learning rate and /9, value at spike occurrence follows a power law, appearing as a straight line
with a slope of approximately 1 in log-log scale. (c) Under different learning rates, the ratio 1/+/0;
consistently reaches a nearly identical threshold value immediately before the loss begins to spike.

Differences in Spike Behavior Between GD and Adam. Adaptive methods like Adam exhibit
fundamentally different behavior compared to standard gradient descent (GD). A notable distinction
is that Adam can encounter convergence difficulties even with simple quadratic functions and very
small learning rates. For the quadratic function f(0) = %62, it is well established that gradient
descent converges when the learning rate 7 < 2/Ap.x = 2 (depicted by the black dashed line in
Fig. P(a)). However, Adam displays more intricate dynamics. As illustrated in Fig. [2(a), Adam
with a learning rate 7 < 2 (using hyperparameters 31 = 0.9, 32 = 0.99,¢ = 10~9) still fails to
converge. This non-convergence manifests in the distinctive colored curves in Fig. [J(a), where the
training loss initially decreases steadily before abruptly spiking to a substantially higher magnitude.
Fig. b) further examines the relationship between Adam’s second moment /7, at spike occurrence
and learning rate. From Fig. b), we observe that smaller learning rates correspond to smaller v/9;
values when spikes occur, with the relationship appearing linear in log-log scale with a slope near 1.
For one-dimensional quadratic optimization, 17/+/9; can be interpreted as the effective learning rate
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and it increases as training progresses because /9; diminishes alongside the gradient g; according to
Eq. (I). Experimentally, Fig. 2Jc) confirms that this ratio increases until reaching a nearly consistent
threshold value 38 (see Prop. [2|for a theoretical explanation), at which point the loss spike invariably
occurs. While straightforward, this analysis provides valuable intuition for the emergence of spikes.

However, it is important to note that in high-dimensional optimization scenarios, v/©, becomes a
vector rather than a scalar, rendering the notion of an effective learning rate inapplicable. In the
following section, we will quantitatively characterize Adam’s spike behavior in more general settings.

4 L0OSS SPIKE ANALYSIS OF ADAM

Quadratic Approximation. To understand the mechanics behind loss spikes, we begin with a linear
stability analysis that connects optimization dynamics to the geometry of the loss landscape. Consider
optimizing a loss function L (@) with respect to parameters 8 € R*. Around any point 8y, we can
approximate the loss using a second-order Taylor expansion:

L(8o + 68) ~ L(30) := L(6o) + VL(6) ' 56 + 156 T H 0, 3)
where VL(6y) is the gradient and H := H (6,) = VZL(0y) is the Hessian matrix at .

Stability Analysis. For GD with learning rate 7, the parameter update is: ;1 = 6; — nVL(0;).
Using the quadratic approximation from Eq. (3)), the displacement 66; = 6; — 8, evolves as:

00i 41 ~ 60, —nV L(60,) = 60, — n(VL(0y) + H0,) = (I — nH)60, — nVL(6y).
The optimization becomes unstable along the maximum eigendirection when Apax (H) > 2/7.
Practical Stability Condition. In neural network optimization, the loss landscape—and consequently

the Hessian matrix—evolves continuously as parameters are updated. The local Hessian stability
condition ensures stable loss decrease at each iteration, as formalized below.

Proposition 1 (see Appendix [D] Prop. for proof). Let L : RM — R be twice continuously
differentiable. For any iterate 0, define the gradient g; := V L(0;) and, for a fixed learning rate
n > 0, define the local directional maximum Hessian Ny = SUP4e0,1] /\max(VzL(Ot — sngt)), the

maximum eigenvalue of the Hessian along the line segment from 0, to 0,11 = 0, — ngy. If n < %,
the gradient descent step 0,1 = 0y — ngy satisfies the descent estimate:

nA
L(8141) < L(8)) — (1= 25 ) gl
In particular, whenever 1) € (0,2/X;) and g; # 0 we have strict decrease L(041) < L(6,).

In practice, since learning rates are typically small, we can monitor the step-wise stability condition
Amax (Ht) < 2/n as a proxy. When this condition is persistently violated, there is likely a loss spike.

4.1 ADAM’S PRECONDITIONED HESSIAN AND STABILITY

Stability Analysis of Adaptive Mechanism. To analyze Adam’s stability conditions, we first
examine the adaptive mechanism by setting 51 = 0, ignoring momentum effects. Following the

Taylor expansion approach from Eq. (3), we have:
1 VL6
t+¢€

VL(66,) ( . (
00 ~ 00, —n———= = | I — ndia _—
tHL O e e U AW o + ¢

Stability requires the spectral radius p (I —nH ) < 1, where H = diag((v/?; + ¢) ) H is

the “adaptive preconditioned Hessian”. Although asymmetric, H can be diagonalized with real
eigenvalues (see Appendix@Lem. , yielding the stability condition \pax(H) < 2/7.

Stability Analysis of Momentum Mechanism. With momentum (3; > 0), we analyze the update
rule ;1 = 0; — nm;. Following the same Taylor expansion approach: 60;1 ~ 66; —n(B1m_1 +
(1= 51)(VL(6g) + H36,)). Substituting nmy_; = 660;_1 — §0; gives:

00; 11 = [(1+ B1)I —n(1 — B1)H]60; — 160;—1 — n(1 — 1)V L(6y). 4)
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Proposition 2 (see Appendix [D]Prop. [D.2)for proof). Consider the three-term recursive iteration
50t+1 = [(1 + “81)1— — 7](1 — /31)H(90)} 00; — 1001 — 7](1 — 81)VL(90),

with learning rate n > 0 and momentum parameter 51 € [0,1). Then the linearized system at 0 is
asymptotically stable in all positive-curvature eigendirections (i.e., for every eigenvalue \; > 0 the
characteristic roots lie strictly inside the unit disk) if and only if

1—p1 2
A —— H(6 < -,
max(l n %91 ( 0)) n’

where A, () denotes the largest positive eigenvalue.

Comprehensive Stability Analysis of Adam. Integrating both mechanisms and the momentum bias
correction m; = 1’_"—52, the comprehensive “Adam preconditioned Hessiarﬂ ’ becomes:
1

: 1 1-5 . 1
H, = d H,. 5
e () ©

In Sec. we experimentally validate that this modified step-wise instability criterion )\max(ﬁ 1) >
2/n accurately predicts loss spikes in one-dimensional scenarios.

4.2 SUSTAINED DECAY OF SECOND-ORDER MOMENT TRIGGERS LOSS SPIKES

The key difference between gradient descent and Adam stability lies in Adam’s adaptive precondi-
tioners v;. To investigate how the decay behavior of v; affects loss spikes, we conducted controlled
experiments on a simple quadratic function f(#) = %92.

Large (3, Causes Sustained Instability and Spikes. Fig. [B(a-b) shows results with 8; = 0.9
and 32 = 0.99. Initially, loss decreases gradually until epoch 782, when a spike occurs precisely
as )\max(fI +) exceeds the threshold 2/7. The mechanism works as follows: Before the spike, the
gradient norm (green line, ~ 10~ %) becomes much smaller than /?; (red line, ~ 10~1). According
to Eq. (T), this causes v; to decay exponentially as v & 2v;_1. The green dashed line in Fig. [3[b)
fits this decay with ©; = Aa!, confirming o ~ f2 = 0.99. When Amax(ﬂt) surpasses 2/, the loss
spikes and gradient norm increases. However, due to the large S35, v; responds sluggishly to current
gradients, allowing the exponential decay to continue. This maintains )\max(ﬁ +) above the stability
threshold, sustaining the spike until epoch 845, when the gradient grows large enough to increase v;.
This causes Amax(ﬁt) to drop back below 2/1, and the loss begins to decrease again at epoch 845.
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Figure 3: Adam optimization on f(6) = %02 with different 35 values. (a, ¢) Evolution of training loss
and gradient norm. (b, d) Evolution of the second moment estimate ¥; and the maximum eigenvalue
of the preconditioned Hessian. The red dotted line marks the onset of the loss spike, while the blue
dotted line indicates the point where the loss begins to decrease. The green dashed lines fit v, decay

using ©¥; = Ao with decay rate shown in the labels.

Small 3, Prevents Sustained Instability. Fig. [3(c—d) shows results with 81 = 0.9 and 8, = 0.9—a
configuration less commonly used in practice due to its inferior convergence guarantees (Shi et al.
[2021}; |Zhang et al.,[2022). Here, the gradient remains non-negligible relative to /v; throughout

'This preconditioner jointly incorporates the effects of 31 and 32, unifying the stability threshold at % While
the formulation differs slightly from that in (2023)), the two definitions are essentially equivalent.
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training, preventing pure [3z-exponential decay (the observed decay rate o &~ 0.93 exceeds S = 0.9).
As training progresses and gradients diminish, 9; decreases and )\max(ﬁt) gradually increases.
However, when )\max(ﬁ +) reaches 2/1), the responsive v; immediately adjusts to the rising gradient,
preventing sustained instability. Instead of large spikes, we observe minor oscillations (Fig. [3|c)).
An extreme case is to set §; = 2 = 0, then Adam becomes “signGD” and spike never occurs. This
helps explain why Adam training, as empirically observed by Ma et al.| (2022b)), sometimes results in
sudden spikes in loss and sometimes in oscillatory behavior.

4.3 PRECISE L0OSS SPIKE PREDICTION VIA GRADIENT-DIRECTIONAL CURVATURE

In high-dimensional optimization, when \,.x(H;) > 2/7, instability occurs primarily along the
corresponding unstable eigendirection, while other directions may remain stable. As shown in
our 2-dimension experiments with gradient descent (Figures and [D5)), even when Ap,ax(Hy)
exceeds 2/7, the loss can continue decreasing normally for some time until oscillations along the
unstable direction grow sufficiently large to cause the loss to increase. Consequently, exceeding
Amax (H ) > 2/1 does not immediately trigger a spike. To precisely predict loss spikes, we analyze
the loss change between consecutive steps using a second-order Taylor expansion: L(6;y1) =~
L(6;) + VL(0;) " (641 — 6;) + 5 (0141 — 0;) " Hy (6,11 — 6;). Substituting the gradient descent
update 0t+1 - Ot = anL(Gt) L(0t+1) — L(Ot) ~ *’I’}”VL(gt)”Q + %nQVL(Bt)THtVL(Ot)
A loss increase (necessary for a loss spike) occurs when this expression is positive, yielding the
condition (see Theorem D] for a general result and rigorous proof):

VL(6,)TH,VL(6,) 2

Aerad (Ht) := > —. (6)

- IVL(6,)]? 7
Here, )\grad(Ht) represents the curvature along the gradient. For Adam, we define the analogous
predictor as )\grad(ﬁt) = W, where H. ¢ is the preconditioned Hessian from Eq. @

Experimental Verification of Loss Spike Predictor. We validate our predictor using a two-layer
network trained on 20 data points to fit f(z) = sin(z) + sin(4x). We track both A\, (H;) and
Aerad (H) during training. For gradient descent (Fig. 4(a—b)), two loss spikes occur. At epoch 416,
although Apax (H;) exceeds 2/1, loss continues decreasing. The spike occurs only when Agraa(Hy)

also exceeds 2/7. For Adam (Fig. |4 lc—d)) 7 distinct spikes occur, while Amax (H) exceeds 2/7) at

10 time steps. Crucially, spikes occur only when )\grad(H +) > 2/m, confirming that )\max(H +) alone
is insufficient for spike prediction.

30 L : F 6x101 —— Training Loss

Loss Spike

“’20

: 15 = Amax(He)
AgrasHe)

Loss
Loss

5x107%

Eigenvalue

D AmaxlF)
Agraa(Fe)

a) . H - H - H H H
0@ ¢ B H HE PPN
0 400 600 800 1000 6 200 400 660 Loss Spike
Epoch

0 200 400 600 800 1000 0 2 S >
Epoch Epoch 0 200 400 600

(a) GD (loss) (b) GD (eigenvalues) (c) Adam (loss) (d) Adam (eigenvalues)

Figure 4: Experimental validation of the gradient-directional loss spike predictor. A two-layer
fully connected neural network (width 20) is trained on 200 randomly sampled data points to fit
f(z) = sin(x) + sin(4z). (a-b) Gradient descent with learning rate = 0.08. (c—d) Adam with
learning rate n = 0.01, 51 = 0.9, 82 = 0.999.

5 FIVE-STAGE CHARACTERIZATION FOR LOSS SPIKE MECHANICS IN ADAM

Building on our theoretical and empirical findings, we conjecture a five-stage progression that
characterizes how loss spikes form and resolve during Adam optimization (Fig. [5).

Stage 1: Stable Loss Decrease. Training loss decreases steadily with no abnormalities observed.
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Figure 5: Five-stage progression for loss spike mechanics in Adam.

Stage 2: Preconditioner Decay. As training progresses, gradients in some layers diminish as
effective representations are learned. The corresponding second moment estimates v; also decrease.

Due to the element-wise division in Eq. (E]) this causes )\max(ﬁt) to gradually increase.

Stage 3: Spike Onset. Instability begins when Ayax(H;) exceeds the stability threshold 2/7.
Initially localized, the instability intensifies as the gradient aligns with max eigen-direction. A loss
increase occurs only when the gradient curvature Agrad(ﬁ +) also exceeds 2/7. With typical large
values B2 € [0.95,0.9999], the second moment v; responds sluggishly to gradient information,

causing Agraq (H) to persistently exceed 2/7 and thus manifesting as a dramatic loss spike.

Stage 4: Preconditioner Growth. As the spike intensifies, gradients grow larger. When gradients
become sufficiently large to influence v, the decay of v, halts and reverses. This growth in v, reduces
Amax (H?), helping restore stability.

Stage 5: Loss Decrease. When A, (H;) falls below 2/7, the optimizer regains stability. Loss
resumes decreasing, completing the spike cycle and returning to Stage 1.

These five stages provide an intuitive understanding of the Adam loss spike phenomenon. We also
provide a rigorous mathematical five-stage characterization for quadratic optimization:

Theorem 1 (Five Stages of Adam for Quadratic Optimization (see Appendix [D| Thm. [D.2]and
Fig.|D for details and proof)). Consider the 1D loss L(0) = % 02 optimized using Adam with ﬂl =0,
B2 € (0,1), andn > 0. The update rules are: 0,41 = (1 — 7) O, vep1 = Bovg + (1 — Ba)02.
Assume vy = 90 and 0y| > 2 Then there exist integers tog < t1 < to < t3 < t4 < t5 < 00 such
that the iterates (0, v:) exhibit the five stages described above in intervals [t;, t;11), respectively.

Furthermore, we show that common learning rate decay strategies are insufficient to avoid this
unstable behavior for sufficiently large (2, suggesting its inevitability:

Theorem 2 (Decaying Learnlng Rate Scheduler (see Appendix @]Thm [D.3|for proof)). Consider
the same setup as Thm. [I|with decaymg learning rate n, = no(t + 1)~* where o € (0,1). Assume
the initialization satisfies vy = 02 and |0g| > 2ng > 0. Assume [ is sufficiently close to 1. Then the
stability condition |1 — \1/71‘]7| < 1 cannot hold for all t € N*.

6 EMPIRICAL VALIDATION OF LOSS SPIKE MECHANICS IN ADAM

To empirically validate the proposed loss spike mechanics in realistic, high-dimensional settings, we
conduct comprehensive experiments across various neural network architectures and optimization
tasks. We implement efficient Hessian-vector products for eigenvalue computation to track the
theoretical indicators proposed in our conjecture. This method allows us to calculate A, and
Agrad by obtaining the product of the Hessian and a vector, without computing the full Hessian
matrix. Detailed experimental configurations are provided in Appendix [G] with additional validation
experiments (including CNNs model) in Appendix [

6.1 FULLY CONNECTED NEURAL NETWORKS FOR FUNCTION APPROXIMATION

We trained a two-layer fully connected network on a 50-dimensional function approximation task
using Adam with 8; = 0.9, 82 = 0.999. The optimization dynamics mirror our quadratic analysis:
both loss and gradient norm decrease rapidly before experiencing a sharp spike (Fig. [6[a)).
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Figure 6: (a) Training loss and gradient norm over time. (b) Evolution of critical eigenvalues: original
Hessian maximum eigenvalue \,.x (H}), preconditioned Hessian maximum eigenvalue Apax (Hy)
and gradient-directional eigenvalue Agaq(H,) relative to 2/n. (c¢) Lo-norm of second moment

|[v/0¢||2 of different parameter blocks during training. (d) Cosine similarity between maximum
eigenvectors in two consecutive epochs (blue) and between gradient and current maximum eigenvector
(orange). (e) Training trajectory projected onto maximum and minimum Hessian eigenvectors at
epoch 390. The colorbar for training steps is normalized to the range [0, 1], where O corresponds to
epoch 28 and 1 corresponds to epoch 390. (f) Increase the default € in Eq. (Z)) to 0.1 at epoch 184.

Eigenvalue Evolution and Spike Timing: Fig. @b) shows that Ap,.x (H;) stabilizes quickly while
)\max(I:It) continues increasing due to decreasing v; (Fig. Ekc)). Crucially, although /\maX(I:It)
surpasses the stability threshold 2/7 at epoch 179, the spike occurs precisely at epoch 184 when
)\gmd(ﬁ +) exceeds 2/7, confirming our directional stability analysis in Sec.

Second Moment v; Dynamics: Fig. Ekc) shows the evolution of second-moment norms /9; for
each parameter block. Before the spike, the gradient norm ||g;|| ~ 10~2 becomes much smaller than
||v/9¢||, causing v; to decay exponentially at rate 2. During the spike, gradient norms increase while
v, continues decreasing due to its sluggish response. Once gradients become sufficiently large, v;
rises rapidly, driving /\max(f{ +) below 2 /1 and allowing loss descent to resume at epoch 206.

Validation of Quadratic Analysis. The cosine similarity between maximum eigenvectors of H,
across consecutive steps approaches 1 early in training (Fig. [6[(d)), validating our quadratic analysis.
Fig. [6(e) confirms that spikes occur when gradients align with the maximum curvature direction
by projecting the trajectory onto maximum and minimum eigenvectors. To suppress the spike, a
straightforward method involves increasing ¢ in Eq. (Z). As demonstrated in Fig. [6{f), increasing ¢ to
0.1 at spike onset effectively eliminates the instability.

6.2 TRANSFORMER MODELS FOR LANGUAGE TASKS

We trained an 8-layer Transformer (approximately 10 million parameters) on a synthetic dataset of
900k sequences (batch size 2048) for compositional rule learning under the next-token prediction
paradigm. Fig.[7(a) shows seven distinct loss spikes (blue regions). Prior to each spike, the norm
of the second-moment estimate v, for the embedding and Wy, parameters across attention layers
decays at a rate of approximately 0.999003 (close to (2), followed by a sudden increase in || 0|
and a sharp drop in loss. Fig. b) describes a typical case where Agrad(ﬁt) exceeds 2/n causing
a spike. However, it is important to note that stochastic batching introduces significant noise,
making precise spike prediction challenging. To address this, we define a “sustained spike predictor”

as: Agrad (H)(sustained) = min(Ageaa (Fy—1), Agrad (Ft), Agraa (Fi11)). This refined predictor
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Figure 7: (a) Evolution of training loss and second moment ||?;||, with seven spikes high-
lighted. (b) Eigenvalue analysis near a typical spike. (c¢) Sustained gradient-directional eigenvalue
Agrad ﬁt)(sustained) (orange) versus stability threshold 2/n. The raw /\gmd(f{t) is shown in
Fig.|D9} The 2/7 line is plotted against the secondary y-axis on the right for for comparison with the
eigenvalues. (d) Reduce the hyperparameter 35 in Adam to 0.9 and retrain.
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Figure 8: (a) Training loss evolution for a 187M parameter LLaMA transformer with different
(B2 values. Loss curves show time-weighted EMA smoothing; raw loss appears in Fig. (b)
Gradient-directional eigenvalues )\grad(ﬁt) and sustained version )\grad(ﬁt)(sustained) during a
representative spike (iterations 14,250-14,400) with 85 = 0.999. (c) Layer-wise gradient norms
during the spike period. Layer indices on y-axis; gradient magnitudes shown in log-scale colorbar.

(Fig.[7(b), orange line) demonstrates perfect correspondence with all seven loss spike occurrences.
Sustained periods above threshold trigger loss spikes, which is consistent with the findings in Fig. 3]
In addition, we find that directly reducing f3; is effective to mitigate loss spikes (Fig.[7(d)).

Large-Scale Language Model Validation: We trained a 187M parameter LLaMA-structured
transformer on 100B tokens from SlimPajama to validate our mechanics in realistic large-scale
settings. With the default 3, = 0.999, training exhibits multiple loss spikes (Fig.[8{a)). Fig.[8(b)
examines a representative spike occurring between iterations 14,250-14,400. We observe that the
gradient-directional eigenvalue )\grad(fl +) exceeds the stability threshold 2/7, signaling the spike
onset. Consistent with our proposed mechanism (Sec. [3)), gradient norms in certain layers diminish
before this spike (Fig.[§[c)). As expected, reducing 3> consistently decreases spike frequency during
training (Fig. [8[a)), confirming the key role of second-moment in spike formation.
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7 CONCLUSION AND DISCUSSION

In this work, we provide a detailed mechanistic analysis of loss spikes in Adam, showing that these
spikes are triggered by Adam’s adaptive preconditioners. By identifying a critical response delay
between the second-moment and the current gradients, we reveal the mechanism underlying the
persistence of these instabilities. Our theory suggests a simple remedy—reducing So—and we
experimentally confirm its effectiveness. Encouragingly, many recent large-scale language model
studies (Touvron et al., 2023 Dubey et al.| [2024} |Orvieto & Gower, [2025) have already adopted
lower values of 32 (e.g., 0.95 or lower), further underscoring the practical relevance of our analysis.

In addition, loss spikes represent more than mere optimization phenomena; they may signify transi-
tions between distinct attractor basins in the landscape. Our supplementary experiments in Appendix [E]
identify four spike types (neutral, benign, malignant, and catastrophic) in Transformer training—
highlighting the importance of context-specific decisions on whether to suppress or preserve them.
Precisely distinguishing between these spike types remains an unresolved challenge.

Beyond hyperparameter adjustments to Adam, alternative spike mitigation techniques include sand-
wich normalization (Ding et al.| 2021} Yin et al., [2025)), o-Reparam (Zhai et al.| 2023)), and scaled-
decouple distribution (Wang et al.,[2025). While some studies (Lyu et al.} 2022; Mueller et al.| 2023)
attribute normalization’s effectiveness to sharpness reduction, a deeper understanding of how to
leverage or control spikes remains a promising avenue for future research.
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language polishing and writing enhancement purposes. The LLMs were used to: (i) Improve sentence
structure and clarity; (ii) Enhance grammatical accuracy and flow; (iii) Refine technical writing style
and consistency; and (iv) Polish language expression while preserving original meaning.

B ETHICS AND REPRODUCIBILITY STATEMENT

Ethics Statement. This work involves theoretical analysis and empirical studies of Adam opti-
mization algorithm using standard neural network architectures and publicly available datasets. All
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Reproducibility Statement. To ensure reproducibility, we provide detailed experimental configura-
tions in Appendix [G|and supplementary experiments in Appendix [F] Our theoretical analysis includes
complete mathematical derivations and proofs in Appendix [D} All hyperparameters, network archi-
tectures, and training procedures are fully specified. The synthetic datasets and training procedures
can be reproduced following the provided specifications. Code and additional implementation details
are made available in the supplementary materials.

C LIMITATION AND FUTURE WORK

Our detailed analysis of loss spikes in Adam optimization reveals that adaptive preconditioners
can themselves trigger these phenomena and we verify this mechanism in certain neural network
architectures. However, we acknowledge that in more complex scenarios, both the intrinsic geometry
of the loss landscape and the applied preconditioners likely interact to jointly produce loss spikes.
Disentangling these individual contributions and accurately attributing different spike mechanisms in
large-scale models remains a significant challenge for future research.

While we have developed efficient Hessian-vector products to compute gradient-directional eigen-
values without full Hessian computation, computational cost remains a key constraint for scaling
this analysis to larger models. Developing efficient algorithms to approximate maximum Hessian
eigenvalues and gradient-directional eigenvalues represents a critical direction for future work.

Furthermore, as discussed in Appendix [E] the precise categorization of loss spikes into our proposed
taxonomy (neutral, benign, malignant, and catastrophic types) presents ongoing challenges.
Developing robust, computationally efficient criteria to distinguish between these categories would
significantly enhance our ability to detect and appropriately respond to different spike types during
training.

D PROOFS OF THEORETICAL RESULTS

Proposition D.1. Let L : RM — R be twice continuously differentiable. For any iterate 0, define the
gradient g, := V L(0,) and, for a fixed learning rate 1 > 0, define the local directional maximum
Hessian Ay = SUP4e(o,1) )\maX(V2L(9t — sngt)), the maximum eigenvalue of the Hessian along

the line segment from 0, to 0,11 = 0, — ng. If n < 5%, then we have the descent estimate:

A
L(81+1) < L(8:) — (1 — T2 ) .|

In particular, whenever n € (0,2/);) and g, # 0 we have strict decrease L(0y1) < L(6;).
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Proof. Apply the one-dimensional Taylor expansion of the scalar function ¢(s) := L(0; — sng;)
around s = 0 up to second order with the remainder written using the Hessian at some point along
the segment. Equivalently, use the multivariate Taylor expansion along the direction —ng;:

2

L(0: —ngy) = L(6;) —ng, g + % g/ (V2L(0t - 3*779t)>gt

for some s* € (0, 1). Since the symmetric matrix V2L(0, — s*ng;) has largest eigenvalue at most
A, wWe get
T 2 * By 2
9 (V L(O; - s 779t)>gt < At llgell”.
Hence -
2 M 2 nAe 2
L(Oi+1) < L(0) = nllgell? + T Nellgel* = £0e) = n(1 = "5 ) ge[*

Ifn < 2/\;, then 1 — T’% > 0, so the right-hand side is strictly less than L(6;) whenever g, # 0. O

Lemma D.1. Let H be a real symmetric matrix and H-= diag ( \/171 +6> H. Then H is diagonaliz-
able in the field of real numbers.

Proof. While diag ( \/& +€) H is generally asymmetric, we can demonstrate that it is similar to a

symmetric matrix and therefore has real eigenvalues. Let D, = diag ( 1

VUi +e

), which is positive
definite. We can express:

D.H = D;? . (D}*HD}*) - D, /?

Since Dt1 H Dt1 /% s symmetric, D; H is similar to a symmetric matrix. This confirms that D, H
has real eigenvalues and is diagonalizable. O

Proposition D.2. Consider the three-term recursive iteration
50t+l = [(1 + [J)l)I — f](l — 31)H(0[))} OGt — ‘5150#1 — f}(l — ﬁl)VL(a()),

with learning rate n > 0 and momentum parameter 31 € [0, 1). Then the linearized system at 0y is
asymptotically stable in all positive-curvature eigendirections (i.e., for every eigenvalue \; > 0 the
characteristic roots lie strictly inside the unit disk) if and only if

1— 81 2
A | ——— H(6 -,
max (1 ¥ /jl ( 0)) < ,],

where A, () denotes the largest positive eigenvalue.

Proof. We analyze the stability of the vector recurrence by decomposing it along the eigenspace of
the Hessian matrix. Since the Hessian H := H (0,) is symmetric, it admits an eigen-decomposition
H = QAQT, where Q is an orthogonal matrix and A = diag()y, ..., \g) contains the eigenvalues
of H.

Define the change of variables §0; = Qz;. Substituting into the recurrence yields

zee1 = [(L+ BT — (1 — B1)A] 2 — Brze—1 — (1 — B1)Q T VL(6y).
Since this is a decoupled system in the eigenbasis, for each positive-curvature eigendirections with
Ai > 0, the i-th component zt(z) satisfies a scalar second-order linear nonhomogeneous recurrence:
gt =iz = g+,
where

ai =1+ 1) —n(l = BN, ci=-n1-p)g?, ¢ :=[QTVL(®6Y)],.
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The general solution to this nonhomogeneous recurrence is the sum of the homogeneous solution and
a particular solution. The homogeneous part is governed by the characteristic equation:

r? —a;r + B1 = 0.

It is well known (e.g., see Elaydi, An Introduction to Difference Equations 2003)) that the

solution zt(i) that the homogeneous solution is (asymptotically) stable (both characteristic roots lie

strictly inside the unit disk, so perturbations in this direction decay and do not grow exponentially) if
and only if both roots of the characteristic equation lie strictly inside the unit circle in the complex
plane. This is equivalent to the following three conditions:

1+ a; + 51 >0,
1—a;+p1 >0,
1] < 1.

Since 3 € [0,1) by assumption, the third condition always holds. The first two inequalities can be
rewritten as:
o[ <1+ Bi.

Substituting the expression for «;, we obtain:

|1+ B1) —n(1 = B)Ai| <1+ B
Solving this inequality gives:
2 145

n(l—03)N <21+ 61) <= >\¢<5'1_61.

Therefore, the recurrence stabilize in all eigendirections with \; > 0 if and only if

1-75 ) 2
Amax H)<-.
<1+51 n

This completes the proof. O

Theorem D.1 (Exact Necessary and Sufficient Condition for Loss Spike Onset). Let L : RM — R
be twice continuously differentiable. At iterate 0;, denote the gradient g, :== VL(0;) # 0, and
consider a gradient descent update

0H_1 = Ot — Ngt, n > 0.

Define the weighted averaged Hessian along the update direction by

1
H, = 2/ (1 —8)V2L(0; — sng;) ds,
0
and the corresponding directional curvature by

o
5 g; H:g;
Aewsa(Hle) = oo™

Then the update exhibits a loss increase (necessary for a loss spike) if and only if Agraa (H}) > %

Le.,

’

. 2
L) > L(6) <= Agraa(Hy) > .

Proof. Consider the univariate function
o(s) == L(6; — sng), s €[0,1].
By the chain rule,

¢'(s)=-ng/ VL0, —sng:),  ¢'(0) = —nl|ge|*.
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Differentiating once more yields
¢"(s) = n* g, V>L(8; — sngy) gr.

Since L is twice continuously differentiable, ¢ is C* on [0, 1]. The second-order Taylor theorem with
integral remainder gives the exact identity

1
8(1) = 6(0) +0)+ [ (15" () ds.
Substituting the expressions for ¢(0), ¢’(0), and ¢” () yields

1
L(O1) — L(6:) = —nllgi])® + / (1— 5)g] V>L(8, — sng.) gt ds.
0

Introduce the weighted averaged Hessian

1
/ (1 —s)V2L(0; — sng;) ds
0

/01(1—s)ds

Then the previous equality becomes

Ht =

1
= 2/ (1 —5)V2L(0; — sng;) ds.
0

2 —
L(8141) — L(8:) = ~nllg | + - 97 Hig.

Dividing both sides by ||g;||?> > 0 shows that the sign of the loss change is exactly the sign of

" .
-n + 7)\grad<Ht)7

2
where -
T 9. Hig:
A rad (Ht) = e
¢ lg:l1?
Therefore,
2
_ _ 2
L(0i41) > L(6;) <— -—n+ %Agmd(Ht) >0 <= Agaa(Hy) > e
This proves the claimed necessary and sufficient condition for a loss spike onset. O

Practical proxy for loss spike onset. The exact loss—spike condition in Theorem [D.1I] depends
on the directional curvature Agraq (H;), where H, is the weighted line—segment average of the true
Hessian. Computing H is intractable in modern deep networks, as it requires access to second-order
information along the entire update path. In practice, since learning rates are typically small, we can
monitor the step-wise curvature as a proxy:

.
g: Hig;
Nesaa(HL) = o

Our central theoretical insight is that Adam can be understood as applying a preconditioning transfor-
mation to the Hessian, as expressed in our Equation [5}

5 I 1-5 1
H, = dia H;.
S R CT g( ﬁt+€) '

Therefore, a natural extension for Adam is to replace H; with the preconditioned Hessian H . This
yields our predictor:

VL(6,) H,VL(6;) _ 2
IVL(6,)]? n

/\grad(ﬁt) =

Empirically, we observe that this curvature proxy aligns closely with the onset of loss spikes across
architectures and datasets, suggesting that it provide a robust approximation to the underlying
directional curvature governing spike formation.
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Theorem D.2 (Five Stages of Adam for Optimizing Quadratic Loss). Consider the 1-d quadratic
loss L(0) = 362, optimized using Adam with hyper-parameters 31 = 0, B2 € (0,1), and learning
rate 1 > 0. The update rules are:

n 2
O =|1—— 16 wv11 = pov 1—055)6;5.
1 ( \/a) b, V1 = P+ (1 — B2)0;

PPN . . _n2 1 1 1
Assume the initialization satisfies vo = 65 and |6y| > 3. Assume n(i/5) > (2, + 15 Then
there exist integers to < t1 < ta < t3 < t4 < t5 < 0o such that the iterates (0, v;) exhibit the five
stages described above in intervals [t;,t,11), respectively. Specifically,

(i) Stable Loss Decrease. Define to = 0, then for all to < t < t1, where

[’
21n (%—f—%)
by = T L
N3,

the sequence |0;| decreases exponentially, and v, € [B50%,02]. In particular, there exists s € (0,1)
such that
0:] < s'[0o], and |0y, ] < 6 := 5"

(ii) Preconditioners Decay. Fort| <t < to, where

ty :=inf {t > t1 | oy < £},
the momentum v; decays exponentially as

vy < (Vg 41 — 6B 462
(iii) Spike Onset. Define

tz:=1inf {t > to | ve41 > ve}.

For ty <t < ts, the preconditioner vy continues to decay, and the update multiplier grows,

1 1
VUt
causing |0:| to increase exponentially.

(iv) Preconditioners Growth. Define
ty = 1nf{t > 13 | VUt > g}
For ts <t < ty, the growing gradient magnitude forces the preconditioner v, to increase. Conse-

__n
1- L

quently, the update multiplier shrinks steadily, preparing the transition from explosive

growth to contraction.

(v) Loss Decrease. Define

ts = inf{t >ty Vor < 3},
If no such t exists, we simply take t5 > t4 to be any larger index. For ty <t < ts, the preconditioner
\/TZ)T 1—- \/’% <1,
ensuring that |0y contracts and the loss L(0;) = 5607 decreases once again.

has grown sufficiently so that < 1. In this regime, the update multiplier satisfies

Proof. We proceed in stages and make all inequalities explicit. The corresponding schematic diagrams
of the five stages are shown in Fig.[DI]

Stage 1 (Stable loss decrease). For the given initialization vy = 9(2) and 0 < B2 < 1 we have the
trivial lower bound (single-step recurrence gives a simple monotone inequality)

v > Phvo = B30,  VE=0.
Also note v; > 0 for all ¢.
Construction of ¢; and J. Define
10| 4 1
t1 = 7211’1( L i 2)
ln( 1/52)
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Amax(Hp)

N

Figure D1: The five stages are illustrated schematically.

Because 0 < 82 < 1,1n(1/82) > 0 and ¢; is well defined. Set

o 1 "
S = max{im, |1 — |9Lo|’}
By the hypothesis |0y > 7/2 we have s € (0,1). Define
§ = sltl|gy).

Here, |- | is the floor function. The choice of ¢; ensures the following inequality chain for all integers
t with tg < t < t1. Using the lower bound v; > (5632 and the definition of ¢;, one obtains

0
Vg > 65/2|90| > BEI/QWO\ and by the definition of ¢4, 551/2|90‘ = \90|\70|1’
W T2
so in particular /vy > ‘9(‘)9“11 and hence
T2
1
oo 1
NG 2 |6o]
Therefore )
n n
“I<——=—<1l—-—<1LV0O<L 1t < .
216o] Vor '

This indicates that |¢;| is monotonically decreasing for 0 < ¢ < ¢;. Thus, \/v; < |6p] for all
0 <t < t;. This completes the upper bound of 1 — # as follows:

L n n
——— <1l —=<1-— V0<t<t.
2000l = Vo Tl 1
By definition of s, we get
n
1-—|<s<1
' N
Therefore for 0 < ¢ < ¢,
160;] < s%|6p|.

In particular |0, || < 6, establishing the intended bound at the end of Stage 1. This proves Stage 1.

Stage 2 (Preconditioner decay). Define

ty =1 f{t N*t . 17L<71}.
2 mn € \/@

For integers t1 < t < to, we have |0;] < |0;,| < §. The recurrence for v implies

Vir1 = Bovy + (1 — B2)07 < Bovy + (1 — Ba)6%.

18
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This is an affine linear inequality in v;. Iterating this inequality forward from ¢ = ¢;+1 yields, for
any integer t1 + 1 <t < to,

ve < (V41 — 0%) By T 62, @)

which shows v; decays geometrically toward 52 with factor 35 so long as |6;| < §. Because |0;| < &
on the time window following Stage 1 by construction, we have established the Stage 2 statement.

Note also the obvious lower bound obtained by ignoring the additive (1 — 33)607 term:

t—t;—1
vy > Ut1+1/82 T

so vy is squeezed between two geometric forms until |0;| leaves the small region.

Existence and finiteness of ¢5: Suppose by contradiction that 3 = +o0c. Then 1 — \/% > —1, which

simplifies to v; > %,Vt € NT. In Eq. (7) let t — +oo, it follows that lim sup,_, ., v; < 62. So
n( 2%l
, we have [t ] < 1115(17%)) By definition,

52 > %, which indicates that 6 > Z. Since ¢ := sltal |6,

n( 2%l
5> % so [t1] < : (ln’é ). By definition of ¢, it follows that
In( 2%l 2 In (1l +1 In( 2%l
cody oy e
In(1/82) In(1/82) In 2
Therefore we have
Lo
In(1/B2) = n(2ly = In2’
n

which contradicts the assumption. So ¢ is finite.
Stage 3 (Spike onset). By definition of ¢, at t = to we have /v, < 1/2. Consequently

n
’Ut2

-

> 1,

so passing from ¢, to t5 + 1 yields
N

to

Brat1] = [ = —=|181z] > 101

Thus |6;| grows for ¢ just after ¢;.
Finiteness of ¢3. To capture when the second-moment estimate v, ceases to decay, define
ty:=1inf{t > to : v411 > v¢ }.

If no such ¢ exists we set t3 = +00. Suppose, for contradiction, that t3 = oo. Then vy; < v, for all
t > 9, so v; is monotonically decreasing and bounded below by 0. Thus the limit

Voo := lim vy
t—o00

exists. Since v; < vy, for all ¢t > t5, we obtain
o,
VUt vV Uts

hence there exists a constant ¢ := \/ZT — 1 > 1 such that
2

-

> 2,

>q>1, Vit > to.
Ut

By recursion,
06,1%] > ¢"101,] — o0 ask — .

However, the recurrence for v, is

V41 = ﬁg’Ut + (1 — ,82)0?
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Since |0;| — oo and 1 — B2 > 0, the term (1 — £2)07 — oo, forcing vs41 — 0o. This contradicts
the assumption that v; is monotonically decreasing with a finite limit v.,. Therefore, t3 < co. The
larger f35 is, the more slowly v; responds to g;, and the later the index ¢3 of the monotonic change
will occur.

Exponential growth in loss for {; < ¢ < t3. For any {5 <t < t3, we have v, < v; < vy,. Hence
n n

e > 2,
\/E v/ Uta
and so
‘1 ~Ll>g>1,
Ut
where ¢ = \/ZTQ — 1. By induction,
10 > " "10,,], Vi <t <ts.

Thus |6;| grows at least exponentially on the interval [t5, ¢3), and the loss
1(6:) = 367

increases dramatically, capturing the onset of the spike.

Stage 4 (Preconditioner growth). Define

ty = inf{t >tz | vy > 2}

Finiteness of t,. We first show that ¢4 < +00. Suppose, for contradiction, that ¢, = +oo. By the
definition of ¢3, we have v, 11 > v,. Since

Vta+1 = 521}753 + (]- - ﬁ2)975237

this inequality implies 9?3 > v¢,. On the other hand,

Op i1 = (1 - w’%)ats.
If 6, > 0, then

Orr1 < (1 — al)@ts =01, — 1,
ts

so either 0y, > Z or 0y, 1 < —3. Thus, in either case, there exists some ¢ € {t3,3 + 1} such that
n
0:] > 3.

Now assume t4 = +o00. Then by definition we must have \/v; < g for all t > t3. Hence

__n_
-k

implying that |6;| is monotonically non-decreasing. Since at least one of |0, or |0, 41| already
exceeds 7, it follows that

>1

- )

0¢] > a := max{[0,], |0¢, 41|} > 3, Vit > ts.
Thus |0;| converges to a limit (possibly +o0) with
i > I,
tli)lgo|0t| = &>
But then, since
Vi1 = Bov + (1 — B2)07,

we must have

lim v; = a?,
t—o0

so that
lim o, =a > 2.
t—o00 t 2

This contradicts the assumption that /vy < g for all t > t3. Therefore t, must be finite.
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During the interval t3 < t < t4, the preconditioner ,/v; evolves from being strictly below Z to
exceeding it. We refer to this regime as the “preconditioner growth stage”.

Stage 5 (Loss decrease). Define
. Ui
ts = f{t>t:1——<—1}.
P YT e

If no such ¢ exists, we simply set t5 > ¢4 to be any larger index for convenience. At time ¢4, the
preconditioner satisfies ,/vz, > g Hence, for t > t4,

<1

__n_
- &
This ensures that, during the interval ¢4 < ¢ < t5, the multiplicative factor falls strictly within (—1, 1),

so |0¢| no longer grows but instead contracts. Consequently, the loss L(6;) = %9? decreases over this
period.

Thus the trajectory transitions from exponential growth (Stage 3) and preconditioner growth (Stage
4) into a contraction regime. In this way, the cycle closes and the dynamics return to behavior of the
same type as in Stage 1.

This completes the proof of the five-stage behavior for the quadratic optimization. O

Theorem D.3 (Analysis of decaying learning rate scheduler). Consider the same setup as Thm.[I]
with decaying learning rate ny = 1o(t + 1)~ where o € (0,1). Assume the initialization satisfies
vo = 02 and |0g| > 2n9 > 0. Assume (33 is sufficiently close to 1. Then the stability condition
11— \}7—%\ < 1 cannot hold for all t € N*.

Proof. Assume by contradiction that |1 — 2| < 1 holds for all t € N,

Jor
Stage 1 (Loss Decay Stage). For all t, Sivy < v; < 63. Define to = lclf;gi. Then for

Ba
all t < tg, vy > Lwy. Since |6y] > 21, we have b < o < 200 < 1 for all

2 Ve Ve 160
to Mk _sto Mk 1 gt
0 <t < tg. Therefore , HZ”:O(l — \;’%) _ (Sl los1- k) <e Shilo A= < e TGl 00 e <
11—« 7 -« 7 -«
e~ (042" ™" =1) < == (0" 1) Therefore |6;] < |foe” =m0 (%0 “~1), By as-
sumption, s := t(l)*a is sufficiently large. Therefore |6;,| := ¢ is sufficiently small, whereas

3100]* < vy, < 163].
Stage 2 (Decay of the Adaptive Preconditioners). With the same argument of Theorem [D.2]ii), we
have
vr < (Vg1 — 0%)B5 07 + 62,
Solving nr = 33, we have T = (42)* — 1. Then v < (veg1 — 02)B5 °~' + §2. Therefore
nr 30 3

— > - T—tg—1 ’
o \/(vto+1 —0%)By 0T+ 8 \/(Uto+1 -0 — 41

By calculation,

BT—to—l <(2—0)a7 1;0gi 72) log f2—2log §
2 —e & By
02 '

When 5; — 1, log82; — 0,6 — 0, but § is of the form .e(loglﬁ‘z)c2 with ¢1,ce > 0. Intuitively,
0 << log 2. From (55 with c1,¢o > 0, one may verify that

log 2
<<770)a_ ogl —2) log B2 — 2log 6 — —o0.

36 log 5>
T—tg—1
So 22 520 — 0. Thus, \}71% > 2 when [, is sufficiently close to 1. This breaks the stability
condition. 0O
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E DiscusSION: THE PROS AND CONS OF LOSS SPIKES

Connection to Generalization Transitions. Loss spikes represent more than mere optimization phe-
nomena; they may signify transitions between distinct attractor basins in the optimization landscape.
To systematically investigate the relationship between loss spikes and generalization, we conducted
controlled experiments using a Transformer model. The model was trained to identify specific anchors
within sequences, using a dataset of 2,000 samples (1,800 training, 200 test). We employed full-batch
Adam optimization for training (detailed experimental setups and dataset specifications are provided
in Appendix [F). By analyzing the differential impacts on training and test losses before and after
spike occurrences, we identified four distinct categories of loss spikes:

(i) Neutral Spikes (Fig.[D2[a)): Both training and test losses resume their normal declining trajectory
following the spike, suggesting minimal impact on the overall optimization process.

(ii) Benign Spikes (Fig.[D2|b)): Prior to the spike, training loss reaches very low values while test
loss remains elevated, indicating overfitting. After the spike, test loss decreases rapidly, suggesting
improved generalization performance.

(iii) Malignant Spikes (Fig.[D2|c)): Before the spike, both training and test losses achieve low values.
After the spike, while training loss continues to decrease normally, test loss plateaus, indicating
deteriorated generalization.

(iv) Catastrophic Spikes (Fig.[D2(d)): Both training and test losses are low before the spike but
neither recovers afterward, signifying a complete breakdown of the optimization process. These find-
ings demonstrate that loss spikes can have context-dependent effects on generalization—sometimes
enhancing model performance while in other cases degrading performance.
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Figure D2: The Transformer model was trained to identify specific anchors within sequences. (a—d)
Evolution of the training and test losses over the course of training. (e-h) Evolution of the eigenvalues

in the gradient direction )\grad(ﬁ +) near the spike.

As shown in Fig. e—h), all four types of spikes correspond to our proposed indicator, Agrad(ﬁt),
exceeding the classical stability threshold 2/7. Despite this commonality, their effects on general-
ization differ significantly. While our study uncovers the underlying mechanism that triggers these
spikes, determining the precise conditions under which a spike becomes benign or malignant remains
an open question for future research.

F SUPPLEMENTARY EXPERIMENTS
Optimization of Quadratic Function with Varying Hyper-parameters. For the optimization of a

one-dimensional quadratic function, Fig. [D3|illustrates the precise location of the spike under various
hyperparameter configurations, where A,.x(H}) exceeds the stability threshold %
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Figure D3: Optimization of f(6) = %92 using the Adam algorithm with different hyperparameter

settings. The solid red line denotes the training loss. The dashed black line indicates the stability
threshold % The blue, purple, and green solid lines represent Apax (H¢), Amax(H:), and the bias-

corrected ||/ ||2, respectively, at each training step.

Delay Mechanism in Gradient Descent

To verify that in high-dimensional cases, when Apax > %, the maximum eigenvalue direction

oscillates while other eigenvalue directions steadily decrease (resulting in overall loss reduction), we
conducted experiments on one and two-dimensional quadratic functions with varying learning rates.

For a one-dimensional quadratic function, the loss landscape curvature remains constant. In this
setting, the learning rate initially produces linear improvement over time, followed by gradual decay.
When the instability condition is met—as illustrated in Fig.[D4{a)—the loss increases immediately.

In contrast, for the two-dimensional case, instability primarily emerges along the dominant eigendi-
rection, while other directions continue to descend stably. As shown in Fig. @kb), this leads to a
delayed onset of the loss spike.

To further validate this mechanism, we visualize the training trajectories in Fig.[D3[a—b). In gradient
descent (GD), the component along the maximum eigenvalue direction is learned rapidly at first,
resulting in a small magnitude. However, once the instability condition is triggered, this component
requires significant time to grow and eventually dominate the dynamics.
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Figure D4: Delay mechanism in gradient descent: Comparison of loss dynamics for 1D and 2D
quadratic functions. The learning rate varies over the course of training.
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Figure D5: Training dynamics for the 2D quadratic function under gradient descent. (a) Evolution of
the solution components along different eigendirections. (b) Optimization trajectory in parameter
space.

Gradient-direction Curvature vs. Update-direction Curvature for Loss Spike Prediction

For Adam, where the Hessian is preconditioned, we define the predictor as

o VL(6,)THVL(6,)
|77 AT

where H denotes the preconditioned Hessian in Eq. (3).
We also define

~ u qut
)\update(H) = W7

where u; = \/UTEFE is the update vector.
t

To validate our quadratic approximation-based predictor, we tracked the eigenvalue evolution of the
preconditioned Hessian throughout training. Fig. b) reveals that while Ay.x(H) quickly stabi-

lizes, Amax(ﬁt) continues to increase steadily. Notably, Ap,.x(H:) surpasses the stability threshold
% at epoch 179, yet no immediate spike occurs. At epoch 184, precisely when Agraq(H:) exceeds %,

we observe the loss spike depicted in Fig. a). Subsequently, the eigenvalue )\update(ﬁ ¢) in the
parameter update direction also exceeds %

This demonstrates that the eigenvalue in the gradient direction more accurately predicts the onset
of the actual spike. The update direction requires time to respond to changes in the gradient. When
Aupdate €xceeds 2/1, the loss spike has already occurred.

CIFAR-10 Experiments

We trained a convolutional neural network on CIFAR10 using Adam hyperparameters 81 = 0.9, 83 =
0.999. As shown in Fig.[D7|a), the optimization follows a pattern similar to FNN, with an initial
loss decrease followed by three distinct spikes. Analysis of the preconditioned Hessian’s eigenvalues
(Fig. b)) shows Ayax (H¢) remaining below the stability threshold 2/7, while Apax H +) increases
until exceeding it. Loss spikes occur precisely when Agrad(ﬁt) surpasses 2/1. Figs.@c-d) show
the evolution of squared gradients and second-order moments /@, across parameter blocks. Before
spikes, ||g|| is much smaller than ||\/?;||, with ¥; decaying exponentially at rate ~ (3. During
spikes, while ¥; continues decreasing, the gradient norm increases until substantially impacting v;.
Subsequently, v, rises, causing )\grad(I:It) to fall below 2/ and allowing loss descent to resume.

Transformer Models for Sequence Learning

For the experiment illustrated in Fig.[7] Fig.[D9]presents the complete evolution of all eigenvalues,
along with detailed views of each spike in Fig.[7(c-¢) and Fig.[DI0fa-d).
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Figure D6: (a) Training loss and gradient norm over time. (b) Evolution of critical eigenval-
ues: original Hessian maximum eigenvalue \y,.x(H:), preconditioned Hessian maximum eigen-

value Amax(Hy), gradient-directional eigenvalue Agraq(H;) and update-directional eigenvalue
)\updatc(ﬁt) relative to 2/7.
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Figure D7: Training a CNN on 50 randomly selected CIFAR-10 images to illustrate the detailed
spikes (see similar result for larger datasets in Appendix [F] Fig. [D8). (a) Training loss over time.
(b) Evolution of eigenvalues: original Hessian maximum eigenvalue A,.x(H}), preconditioned
Hessian maximum eigenvalue )\max(ﬁ +), and gradient-directional eigenvalue )\grad(ﬁ +) relative to
2/n (black dashed line). (c) Gradient norm evolution across parameter blocks. (d) Lo-norm of second
moment estimate ||, || of different parameter blocks.

As depicted in Fig. a-d), we found that transient periods where /\max(ﬁ +) and )\grad(ﬁ +) exceed

2/n are insufficient to induce a spike. Loss spikes only materialize when )\gmd(fI +) remains above
the threshold for a sustained duration. This observation aligns with stability analysis principles,
which suggest that loss increases exponentially only after persistent instability, with isolated threshold
violations being insufficient to trigger rapid loss elevation. Based on this insight, we formulated a
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Figure D8: Loss spike in CNNs on CIFAR10 for randomly sampled 1000 images. (a) Temporal evolu-
tion of training loss. (b) Progression of critical eigenvalue metrics: original Hessian maximum eigen-

value Apax (Hy), preconditioned Hessian maximum eigenvalue )\max(ﬁ +), and gradient-directional
eigenvalue Agraq (Hy) relative to the stability threshold % (black dashed line). (c) Temporal evolution

of gradient norm of different parameter blocks. (d) Lo-norm of second moment |9 of different
parameter blocks.

25



Under review as a conference paper at ICLR 2026

6 x 10°
= Training Loss

Amax(H)
5% 100 Amax(H)
Agrad(He)
—_2
n
4 x10°
] ‘ L]
0

5000 10000 15000 20000 25000 30000 35000
Iteration

Loss

(a) Eigenvalues

—— Loss
5x 10° .
W AgraalHe)
\.nstantaneous peaks do not trigger loss spike| Agrad(Ht) (sustained)
2
- a
0

Training Loss

MOO\\AH ‘|I

5000 10000 15000 20000 25000 30000 35000
Iteration

(b) Agrad (Hz)

Figure D9: (a) Evolution of critical eigenvalues: original Hessian maximum eigenvalue \yax (H}),
preconditioned Hessian maximum eigenvalue Ay.x(H;) and gradient-directional eigenvalue
Agrad (Hy) relatiYe to 2/n. (b) Gradient-directional eigenvalues Agaq(H:) (gray) and sustained
predictor Agraq(Hy)(sustained) (orange) vs. 2/1.

“sustained spike predictor” defined as:
Agrad () (sustained) = min(Agrad (Hi—1), Agrad (F¢ ), Agrad (Flri1))-

This refined predictor demonstrates perfect correspondence with loss spike occurrences, as shown by
the orange line in Fig.[D9|b).

Controlling Adaptive Preconditioners to Eliminate Spikes

We discovered that the epsilon parameter (¢) in Adam plays a critical role in modulating loss spike
behavior. Specifically, using a larger € significantly reduces spike severity by effectively imposing an
upper bound on the preconditioned eigenvalues. Additionally, we experimented with component-wise
clipping of v;, where elements falling below a specified threshold are clipped to that threshold value.

As shown in Fig.[DI2(a), locally increasing ¢ during training can effectively suppress loss spikes.
Fig.[DI2{b) further demonstrates that increasing € or applying v; clipping from the beginning of
training can also mitigate spike behavior, although this may come at the cost of slower convergence.

G EXPERIMENTAL SETUP

All experiments were conducted on 1 NVIDIA RTX 4080 GPU. The runtime varied across tasks,
ranging from a few minutes for smaller models to several days for large-scale training.

Computing the full Hessian matrix for large-scale neural networks is computationally prohibitive
due to its quadratic memory complexity. To address this challenge, we employ an efficient power
iteration method combined with Hessian-vector products that leverages automatic differentiation,
circumventing the explicit construction of the complete Hessian matrix.

Setup for Fig. [6] and Fig. [T[(a). We trained two-layer fully connected neural network applied
to a high-dimensional function approximation task. The target function is defined as f*(x) =
w*Tx + " diag(v*)x, where w*, v* € R are the ground-truth parameters and = € R°" denotes
the input features. A total of n = 200 data points are sampled, with inputs drawn from a standard
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Figure D10: Detailed inspection of loss spike intervals showing the maximum eigenvalues of the
original Hessian Amax (H), preconditioned Hessian Amax (H¢), and Agraq (Hy).
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Figure D11: The raw loss of the Fig.a).

Gaussian distribution. Gaussian noise with standard deviation € = 0.1 is added to the outputs. The
network has a hidden layer width of m = 1000, placing it in the over-parameterized regime. All
weights are initialized from a Gaussian distribution A/ (0, #) Training is performed using full-batch
Adam with a learning rate of = 0.02, and momentum parameters 51 = 0.9, 82 = 0.999.

Setup for Fig.[D7 and Fig. [I(b). We trained a convolutional neural network on the CIFAR-10
dataset. For computational tractability in computing Hessian eigenvalues, we restricted the training
set to 50 randomly sampled images. The network contains approximately 500, 000 parameters and is
trained using Mean Squared Error (MSE) loss with one-hot encoded labels. Optimization is performed
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Figure D12: The training loss with the same experiment settings as Fig. |§I (a) The only difference of
the blue solid line is that we change the € in Adam to 0.1 at epoch 184 where the loss in the original
training process begin to spike. (b) The green solid line is the training loss that we change the € to 0.1
at the beginning of the training. The blue solid line is the training loss that we clip the v; in Adam to
0.01.

using full-batch Adam with a learning rate of 7 = 0.001 and default momentum parameters 3; = 0.9,
B2 = 0.999.

Setup for Fig.[DI7(a,b). We trained a ViT on the CIFAR-10 dataset. The ViT consists of 4 layers
and 8 heads. The embedding dimension is 64. The network is trained using Mean Squared Error
(MSE) loss with one-hot encoded labels. Optimization is performed using full-batch Adam with a
learning rate of 77 = 0.001 and default momentum parameters 3, = 0.9, 82 = 0.999.

Setup for Fig.[DI7|c,d). We trained a ResNet on the CIFAR-10 dataset. The network is trained
using Mean Squared Error (MSE) loss with one-hot encoded labels. Optimization is performed using
full-batch Adam with a learning rate of = 0.001 and default momentum parameters 3; = 0.9,
B2 = 0.999.

Setup for Fig.[7 and Fig.[T[(d). We implemented an 8-layer standard Transformer with approx-
imately 10 million parameters. The model is trained on a synthetic dataset designed to learn
compositional rules from sequences (Zhang et al. [2025)), consisting of 900, 000 sequences. Training
uses a batch size of 2048 and follows the next-token prediction paradigm with cross-entropy loss. The
learning rate follows a linear warm-up stage followed by cosine decay. Optimization is performed
using Adam with 8; = 0.9 and B = 0.999.

Setup for Fig.[8]and Fig.[D11] We implemented a LLaMA structure Transformer with 187M non-
embedding parameters and trained on 100B data split from SlimPajama. The detailed hyperparameters
are shown in Table[I]

Setup for Fig. Fig. and Fig. [[(c). We further evaluate our theoretical insights using
4-layer (Fig. Fig. and 12-layer ((Fig.[D2] Fig.[IJc))) standard Transformers trained on a

synthetic classification task. The dataset is constructed to learn a specific anchor rule (3xz — x)
from sequences (Zhang et all [2025)), comprising 2,000 sequences. The model is trained using
cross-entropy loss. The learning rate follows a linear warm-up followed by cosine decay. Adam is
used for optimization with $; = 0.9 and 83 = 0.999.

Setup for Fig. [D20| We trained two-layer fully connected neural network applied to a high-
dimensional function approximation task. The target function is defined as f*(z) = w* 'z +
x| diag(v*)x, where w*, v* € R are the ground-truth parameters and = € R denotes the input

features. A total of n = 200 data points are sampled, with inputs drawn from a standard Gaussian
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Hyperparameter Value
Number of Layers 16
Hidden Size 1280

FFN Inner Hidden Size 1280

Attention Heads 16
Attention Head Size 80
Batch Size 512

Learning Rate Scheduler | 10% Warmup + Cosine Annealing

Adam £ 0.9

Adam Sy 0.999; 0.9; 0.85
Adam € 1078

Gradient Clipping 1.00

Table 1: Detailed Hyperparameters for the 187M Transformer.

distribution. Gaussian noise with standard deviation £ = 0.1 is added to the outputs. The network
has a hidden layer width of m = 1000, placing it in the over-parameterized regime. All weights are
initialized from a Gaussian distribution A/(0, 2 ). Training is performed using full-batch Adam with

’m

a learning rate of = 0.002, momentum parameter 3; = 0.0, and different variations of 5.

G.1 PRACTICAL FEASIBILITY OF OUR MONITORING APPROACH.

For /\max(Ht): We do not need the full spectral information or all eigenvalues. To estimate the
maximum eigenvalue, we employ the power iteration method, which requires only multiple Hessian-
vector products. Specifically, starting from a random vector v, power iteration performs:

a tVik
Vi+l = &
[ Hyv|
and the largest eigenvalue is approximated by v, H,v},. This converges rapidly (typically 5-10 itera-
tions) and each iteration costs only O(n) via automatic differentiation, requiring no explicit Hessian
construction. The total cost is O(kn) where k < n is the number of power iterations—entirely
tractable even for large models.

For our predictor /\grad(I:I +): The computational cost is even lower. By definition,

.
2 9y Hygy
Nesaa(He) = S

which requires only a single Hessian-vector product H, g in the gradient direction. This is precisely
“a single projection”, but this is not a limitation—it is exactly the relevant information for predicting
loss spikes. We do not need full spectral information; we only need the curvature in the direction the
optimizer is moving, which is captured by this single directional derivative.

H NEW SUPPLEMENTARY EXPERIMENTS

Compared to research on Edge of Stability (EoS). Several papers on EoS have noted the close
relationship between 1 and 2/\,.x(H) in modern deep learning as discussed in the main text.
However, these phenomena are typically characterized as edge-of-stability behavior, which differs
from the large, pronounced loss spikes we observe. The precise relationship between these instabilities
and observed spikes remains unclear—instability may manifest as oscillations or as spikes, but the
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specific mechanism under which spikes occur is not well understood. As shown in our experiment
(Figure [DT3), the system can remain in the EoS region for extended periods, but spikes occur
specifically when the curvature in the gradient direction Agraq (ﬂ +) exceeds 2/7. Our work reveals
how )\grad(I:It) increases, how larger 3 leads to persistent instability and identifies that spikes occur

precisely when the curvature in the gradient direction Agrad (H' +) exceeds 2/n, rather than A,y (H)
as discussed in EoS literature. To our best knowledge, no prior work has explicitly identified these
mechanisms.

Why understanding quantitative mechanisms matters: Loss spikes are notoriously difficult to
study due to their strong correlations with numerous factors, leading to many seemingly plausible but
ambiguous explanations without causal understanding. We emphasize that mechanistic understanding
and quantitative prediction are crucial because they typically indicate causality.
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Figure D13: (a) Evolution of critical eigenvalues of a 3z — x task (Zhang et al., 2025): original
Hessian maximum eigenvalue \,.x (H}), preconditioned Hessian maximum eigenvalue Apax (H)
and gradient-directional eigenvalue Agraq (H;) relative to 2/1.
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Figure D14: Adagrad optimization on f(#) = £62. AdaGrad’s second-moment estimate follows
Vg = Vi1 + gf, which is a strict accumulation. This ensures the effective learning rate n/,/v; can
only decrease monotonically over time, precluding the possibility of preconditioner decay that our

theory identifies as the root cause of spikes.
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Figure D15: RMSProp optimization (8; = 0 in Adam) on f(6) = 162 with 85 = 0.99 and 0.00. (a,
¢) Evolution of training loss and gradient norm. (b, d) Evolution of the second moment estimate v
and the maximum eigenvalue of the preconditioned Hessian.
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Figure D16: The optimization for a 100-dimensional quadratic function with gradient descent.
1 = 0.02 and there are 90 stable direction that A < 100 and 10 unstable direction that A > 100. (a)
Evolution of loss and critical eigenvalues: Hessian maximum eigenvalue A, (H) and gradient-
directional eigenvalue Agaq(H;) relative to 2/7. (b) Cosine similarity between gradient direction
and 10 unstable directions. When spikes occur, the gradient direction aligns predominantly with the
most unstable eigendirection (i.e., the one corresponding to Ayax (H)), as this direction dominates
the optimization dynamics.
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Figure D17: (a,c) The training loss of ViT and ResNet18 model on randomly selected 1000 CIFAR-
10 images respectively. (b,d) Detailed inspection of loss spike intervals showing the maximum
eigenvalues of the preconditioned Hessian )\max(fI +), and gradient-directional eigenvalue Agyaq (Hy)
relative to 2/7.
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Figure D18: The loss spike in Figure |2|is not caused by rounding errors. Adam optimization on
f(o) = %92 with a large € = 103 values and learning rate 0.001. (a) Evolution of training loss and
gradient norm. (b) Evolution of the second moment estimate v; and the maximum eigenvalue of the
preconditioned Hessian. We increase Adam’s e parameter to 10~ to ensure that )\grad(f{t) can not

exceed 2/7, Adam can converge to loss values as low as 107300,
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Figure D19: Stable loss decrease is still observed initially even with larger learning rates in the case
of B = 0.9. Our results show that when the learning rate is particularly large, v; grows rapidly in the
early stages of optimization. This rapid growth of v, effectively reduces the preconditioned step size
1n/+/V¢, which allows the loss to decrease stably at the beginning even under large nominal learning
rates.
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Figure D20: Training trajectories and eigenvalue evolution for varying 85 values with 5; = 0 (to
isolate the effect of adaptive learning rate from momentum). Each row shows the loss curve and
corresponding evolution of )\max(fft) and Agrad (ﬁt) for a different 3 setting. Larger (32 values
produce more pronounced spikes in the loss, while smaller 85 values lead to denser oscillations,
mirroring the behavior observed for the quadratic function in Fig. 3] Notably, loss spikes and

oscillations correlate with \g;.q4 approaching 2 /m, rather than with )\max(ﬁ +), providing empirical
validation for the practical utility of our proposed Agraq metric.
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