
DASH: Decentralized CASH for Federated Learning

Md Ibrahim Ibne Alam
Department of ECSE

Rensselaer Polytechnic Institute
Troy, NY, USA - 12180

alamm2@rpi.edu

Koushik Kar
Department of ECSE

Rensselaer Polytechnic Institute
Troy, NY, USA - 12180

kark@rpi.edu

Theodoros Salonidis
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA - 10598
tsaloni@us.ibm.com

Horst Samulowitz
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA - 10598
samulowitz@us.ibm.com

Abstract

We present DASH, a decentralized framework that addresses for the first time
the Combined Algorithm Selection and HyperParameter Optimization (CASH)
problem in Federated Learning (FL) settings. DASH generates a set of algorithm-
hyper-parameter (Alg-HP) pairs using existing centralized HPO algorithms which
are then evaluated by clients individually on their local datasets. The clients transmit
to the server the loss functions and the server aggregates them in order to generate
a loss signal that will aid the next Alg-HP pair selection. This approach avoids the
communication complexity of performing client evaluations using communication-
intensive FL training. FL training is only performed when the final Alg-HP
pair is selected. Thus, DASH allows the use of sophisticated HPO algorithms
at the FL server, while requiring clients to perform simpler model training and
evaluation on their individual datasets than communication-intensive FL training.
We provide a theoretical analysis of the loss rate attained by DASH as compared to
a fully centralized solution (with access to all client datasets), and show that regret
depends on the dissimilarity between the datasets of the clients, resulting from the
FL restriction that client datasets remain private. Experimental studies on several
datasets show that DASH performs favorably against several baselines and closely
approximates centralized CASH performance.

1 Introduction

Motivation. Federated learning (FL) involves training a model from data located at client sites,
without requiring clients to share their data. Recent studies Li et al. (2020a) have shown how a model
can be trained optimally despite this sharing restriction through an iterative process of transmitting
model parameters and aggregating them at a central server. However, this may incur substantial
communication cost due to possibly many rounds of message exchanges of model parameters between
server and clients. Much of the research on FL have focused on reducing this communication overhead
during model training. However, such FL techniques typically assume a given algorithm and hyper-
parameter (HP) setting, which must be agreed upon a priori by the clients, or be decided by the server
and provided to the clients.

Towards developing AutoML capabilities in FL settings, recent work has shown that the training
accuracy is highly dependent on the HPs and addressed the problem of HyperParameter Optimization
(HPO) in FL settings (termed FL-HPO). In this paper we take a step further by addressing for the

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

first time the Combined Algorithm Selection and HPO (CASH) problem in the FL context, which
we term FL-CASH. CASH is a central problem in AutoML systems and has been addressed in the
centralized settings where all data is available in a central location, mostly by treating it as a more
complex HPO problem that merges the HPs of all algorithms and adds the algorithm type as a new
HP. This incurs an explosion in the problem dimensionality as different algorithms have different
HPs. Extending FL-HPO algorithms to solve the CASH problem using this centralized approach
would not be practical. Existing FL-HPO algorithms compute HPs locally and then aggregate them
to a global HP set. The explosion on HP dimensionality would put a much higher burden to the local
client HPO computations. Furthermore, the local client HPOs may yield CASH HPs of different type
and it is not evident how to aggregate such HPs to a single optimal HP set.

Overview of DASH. We propose and evaluate DASH, a Decentralized CASH framework for FL
systems. DASH solves FL-CASH through an iterative process where algorithm and HP pair (Alg-HP)
selections are computed at the central server and communicated to clients, and the clients generate
a loss signal transmitted back to the server for the next Alg-HP selection. Such a loss signal could
be generated using any known FL training process in the literature and then evaluating the resulting
model on the client validation datasets. However FL training process incurs high communication
overhead. In DASH, the clients perform evaluation of the Alg-HP selection made by the server, by
training and validation in their local datasets, and transmit their loss values to the server. The server
approximates the global loss for its current Alg-HP selection by aggregating the loss values. Thus, we
use a two-level optimization approach where we perform HPO at server and local evaluations at the
clients for each algorithm separately and finally select the (Alg-HP) pair that has the best loss. This
avoids the use of the popular HPO expansion approach of centralized systems, allows the utilization
of well established centralized HPO algorithms at the server, and averts the high message exchange
complexity of FL model training by approximating the loss signal based on the losses of the clients’
individual datasets. Thus, DASH follows a "single-shot" approach for global model training: the
time and communication intensive global FL training needs to be performed only once, when a final
algorithm and HP (Alg-HP) pair has been chosen by DASH. This implies that the total number of
communication rounds required by DASH is proportional to the number of iterations required by the
HPO process – which is fairly small, based on our evaluations.

We provide a theoretical analysis of DASH that bounds its sub-optimality in loss performance (regret)
with respect to a centralized CASH solution that has access to all client data. This regret is expressed
in terms of the dissimilarity across client datasets, which can be viewed as the performance penalty
for decentralization. However, our evaluation on 7 large datasets with 7 algorithms shows that the
performance of DASH closely approximates that of centralized CASH, and is significantly better
when compared to three baseline approaches.

Key contributions. To summarize, the key novel contributions of this work are as follows.

• We present DASH, a framework for solving the CASH problem in a FL setting by performing
algorithm selection and HPO at the central server, but the underlying model training and
evaluation for such selection is done locally at the clients. This limits the communication
complexity of DASH to a small number of rounds of (Alg-HP) pair message exchanges
between the central server and the clients, which are a negligible cost compared to that of
the FL training that is executed once the best (Alg-HP) pair is found.

• We provide a theoretical analysis of the worst-case loss performance of DASH, as compared
to that of a centralized CASH solution that has access to all client datasets. The performance
bound is expressed in terms of the dissimilarity between the client dataset distributions,
capturing the impact of the FL restriction that the client datasets remain private.

• For 7 large data sets with 7 algorithm choices, we numerically compare the loss performance
of DASH with a centralized CASH solution as well as two other baseline approaches.
These baseline approaches include one that uses a default HP setting for each algorithm,
and another that uses a state-of-the-art FL-HPO approach but with a fixed algorithm that
performs well across most datasets.

2 Related work

While there is no previous FL-CASH approach, we briefly describe prior work on centralized CASH,
FL model training, and FL-HPO approaches towards positioning DASH in this context.

2

FL model training. A number of optimization techniques have been devised to address the communi-
cation and computation overhead during FL training Li et al. (2020a). These techniques assume that
algorithm and HPs are known, and can therefore be viewed as complementary to DASH; any of these
approaches can be used for training the FL model once the Alg-HP pair has been chosen by DASH.

Centralized CASH solutions. A common approach is to view the CASH problem as an expanded
HPO problem by merging the HPs of all algorithms and introducing the algorithm type as a new HP
Komer et al. (2014), and then utilizing existing HPO methods (such as Shahriari et al. (2015); Li
et al. (2017); Klein et al. (2017); Falkner et al. (2018). However, the heterogeneity of the HP spaces
of different algorithms, along with the explosion of the HP space resulting from this approach can
limit its efficiency. Some recent approaches have used reinforcement learning Efimova et al. (2017),
adaptive allocation of HPO iterations to algorithms Li et al. (2020b), and alternating direction method
of multipliers Liu et al. (2020). DASH enables usage of all these approaches in FL setting because it
performs CASH at the server which typically has more processing capacity than the clients.

FL-HPO approaches. Most FL-HPO work focuses on finding local client HPs such as learning
rates (Koskela and Honkela, 2019; Mostafa, 2019; Reddi et al., 2020), number of local SGD iter-
ations (Wang et al., 2019) or network architecture parameters (He et al., 2020; Garg et al., 2020;
Xu et al., 2020) for SGD training algorithms and deep neural networks (DNNs). At the central
server, the local client HPs are then aggregated or extrapolated (through a regression based approach,
for example Zhou et al. (2022)) to obtain a good HP setting for the entire global dataset. For the
embedded FL-HPO problem in DASH, we take a different approach where the HPO problem is
solved at the central server but by utilizing loss signals generated at the clients. This approach has the
benefit of only requiring clients to run model training and evaluation on their local datasets instead of
expensive FL training for finding the best global model, while allowing the use of well established
centralized HPO solutions at the server.

3 FL-CASH Problem Formulation

Similar to the standard CASH problem considered in a centralized setting Thornton et al. (2013);
Zöller and Huber (2021), in the FL-CASH problem we are given a set of algorithms A =
(A(1), · · · , A(J)), where each algorithm A(j) is associated with hyperparameters (HPs) that be-
long to domain Λ(j). Each algorithm choice A(j) and HP setting λ ∈ Λ(j), compactly written as
A

(j)
λ , is associated with a model class W(j)

λ , from which a model (parameter vector) w ∈ W
(j)
λ must

be chosen so as to minimize a predictive loss function L(w,D′) over a validation dataset D′.

In an FL setting McMahan et al. (2017); Yang et al. (2019), the training dataset D is partitioned into
several subsets Di, i ∈ C that are owned individually by a set of N = |C| clients. Thus D = ∪i∈CDi.
We assume that Di is private to client i, and cannot be shared or aggregated due to privacy or
complexity reasons. The training and validation parts of the dataset Di are denoted by Dtrain

i and
Dvalid

i , respectively; therefore Di = Dtrain
i ∪Dvalid

i . Given algorithm choice A(j) and HP choice λ,
written compactly as A(j)

λ , an FL algorithm F aims to determine a model w using the training dataset,

F(A
(j)
λ ,∪iD

train
i) −→ w ∈ W

(j)
λ ,

where the training dataset is written as ∪iD
train
i to emphasize its distributed (partitioned) nature.

Usually, w is chosen to minimize the training error, i.e., the FL algorithm F typically aims to minimize
L(w,∪iD

train
i) over w ∈ W

(j)
λ , using iterative methods that involve local model training at the

individual clients (using their private datasets) and sharing information on models and their accuracies
(but not data) with a central aggregator. Lets us denote Dtrain = ∪iD

train
i and Dvalid = ∪iD

valid
i .

Then given the underlying FL algorithm F for finding the model (for a chosen Alg-HP setting), the
CASH problem for FL involves finding A⋆

λ⋆ that minimizes a global loss function, expressed as the
aggregation of loss functions at the clients computed over their validation datasets

A⋆
λ⋆ = argmin

A(j)∈A,

λ∈Λ(j)

L(F(A
(j)
λ ,Dtrain),Dvalid) = argmin

A(j)∈A,

λ∈Λ(j)

∑
i

αi L(F(A
(j)
λ ,∪iD

train
i),Dvalid

i), (1)

where αi are appropriately defined client weights, such as αi =
1
N or αi =

|Di|
|D| .

3

Algorithm 1 DASH: Decentralized CASH for Federated Learning

1: Input: A, Λ(j) ∀j.
2: Ã= [Set of all algorithms].
3: for each algorithm A(j) ∈ Ã do
4: Set the initial HP λ(j)(1) to a default or random HP in Λ(j).
5: for k = 1 to HPOiter do
6: Central server sends λ(j)(k) to all clients
7: Each client i trains model with HP λ(j)(k) and reports the loss li(k).
8: Server calculates the aggregated loss in that iteration as l(k) =

∑
i αili(k).

9: Based on the aggregate loss values calculated so far, l(k′), k′ ≤ k, server sets new HP,
λ(j)(k + 1), by executing the next step of a given HPO algorithm.

10: end for
11: Store the best (HP, loss) for each algorithm.
12: end for
13: Set A† = algorithm with the best loss after the last HPO iteration; λ† = corresponding HP choice.
14: For chosen Alg-HP pair A†

λ† , compute the best global model w† using any given FL algorithm.
15: Output: A†, λ†, w†.

4 Algorithm and Analysis
DASH-Algorithm. While solving this FL-CASH problem, we need to satisfy the FL requirement
that the datasets Di remain private, while attempting minimize the number of communication rounds
between the server and the clients, including the rounds needed by the federated learning (model
training) algorithm F. The development of DASH, outlined in Algorithm 1, is guided by these
practical requirements.

DASH approximates the global loss for any A
(j)
λ by aggregating each of the client’s losses (computed

on their individual datasets), i.e.,∑
i

αi L(F(A
(j)
λ ,Dtrain

i),Dvalid
i). (2)

Comparing with (1)), it can be noted that ∪iD
train
i in the argument of the model training function

F in (1) is replaced by Dtrain
i in (2). This implies that in DASH, model training (and therefore loss

computation) happens locally in each client, avoiding the communication-intensive procedure of
computing the global model through FL. This allows DASH to compute the global loss function
(albeit approximately), for a given A

(j)
λ and training dataset, in a single round of communication (see

appendix for communication overhead calculation). The DASH algorithm comprises of three key
elments, which are described below.

Decentralized HPO: The decentralized HPO method works as follows, which is repeated until the
maximum number of iterations (HPOiter) is reached. The aggregator (central server) sends out an
initial HP setting (say a default or randomly chosen HP) to all clients. Upon receiving this HP setting,
the clients use their private datasets to train the model and report back the respective performances
(i.e., losses or accuracies). The server then calculates the global loss value for that HP setting by
aggregating all per-client loss values. The next HP setting is then decided based on the global loss
values, using any centralized HPO technique chosen by the server. See steps 5-10 of Algorithm 1.

Algorithm Selection: DASH performs decentralized HPO (as described above) for all the algorithms
and picks the algorithm (and its best HP setting) that obtains the best global loss value by simply
comparing those values at the central server. See step 13 of Algorithm 1.

Federated Model Training: After the Alg-HP pair has been decided (as described above), DASH
computes the model with a single run of FL training, for which any FL algorithm can be used.

Regret Analysis. In this section, we provide a theoretical analysis of the loss optimality of DASH,
given by Theorem 1 below; proof of the result is included in the Appendix as supplementary material.
For ease of exposition, we are going to use A ∈ (A(1), · · · , A(J)) to denote a generic algorithm, and
Aλ to denote a generic Alg-HP pair.

4

DataSet Default FLoRA-LGBM CASH-C DASH

Connect-4 72.97 74.24 75.54 74.77
Default of.. 75.41 75.50 75.51 75.49
Diabetic .. 53.36 55.81 56.79 56.32
EEG-Eye 93.10 92.79 94.04 93.82
Electricity 91.04 90.32 93.51 93.51
Higgs 72.18 72.12 72.56 72.27
Magic Tel.. 86.13 86.65 86.66 86.40

Table 1: Comparison of Default, FLoRA-LGBM, CASH-C, and DASH

Figure 1: RI of DASH on Baselines

Table 2: Effect of N

DataSet RI −D RI − F

N = 5 N = 20 N = 5 N = 20

Connect-4 2.56 2.75 0.81 0.99
Default of.. 0.09 -0.08 -0.03 -0.21
Diabetic .. 5.29 5.43 0.66 0.79
EEG-Eye 0.82 0.52 1.16 0.85
Electricity 2.64 2.02 3.46 2.84
Higgs 0.05 -0.53 0.12 -0.448
Magic Tel.. 0.33 0.20 -0.27 -0.39

We first define L̂(Aλ, D̂), the loss rate of FL on any given dataset D̂ for a chosen Alg-HP pair Aλ, as

L̂(Aλ, D̂) = L(F(Aλ, D̂
train), D̂valid). (3)

Then for any two given datasets (or their distributions) D̂1 and D̂2, and ν(D̂1, D̂2) being the 1-
Wasserstein distance between them, we assume that

|L̂(Aλ, D̂1)− L̂(Aλ, D̂2)| ≤ β′ν(D̂1, D̂2), (4)

holds for some constant (scalar) β′, across all Alg-HP pairs Aλ.
Theorem 1. The loss attained by DASH is at most [β′ ∑

i αi · ν(Di,D)] more than the optimum
(centralized) loss.

Theorem 1 implies that the sub-optimality of DASH depends on the dissimilarity between the client
datasets; further, DASH is performance-optimal when all client datasets have the same distribution.

5 Empirical Evaluation

Datasets. To evaluate the performance of DASH, datasets from OpenML Vanschoren et al. (2013)
were used. Initially 43 datasets were chosen such that each of them had instances within a range of
10,000 to 120,000. To check their performance consistency under different conditions, we chose 7
Algorithms and their corresponding HP spaces: Random Forest, Decision Tree, Extra Tree, Logistic
Regression, XGB, LGBM and MLP. To reduce computational complexity, the HP space chosen for
each of these 7 Algorithms covers a subset containing their most important HPs (see appendix). Upon
checking the performance (accuracy) of all the 43 datasets for different Algorithms with default HPs
and centralized HPO, we chose 7 datasets (see Table 1 dataset column) for performance evaluation of
(DASH). The reason to choose these datasets were; i) they produce consistent results (for accuracy)
over many runs with different data-seeds and cross-validations; ii) they are diverse in terms of number
of examples and number of features.

Baselines. Since there is no existing FL-CASH solution, DASH is compared with 3 baselines. The
first, called Default, is when there is no HPO and the default sci-kit learn HP configuration of the
Algorithms are used. These default HPs have been empirically shown to yield good performance
across many datasets. The second baseline called FLoRA-LGBM, runs FLoRA Zhou et al. (2022),
a recent single-shot FL-HPO algorithm; the Algorithm in this case is fixed to LGBM, which often
yields best performance across different datasets. The third baseline, called CASH-C is the CASH
solution assuming all client data is centralized.

5

Figure 2: Effect of HPOiter Figure 3: Effect of β

Implementation. DASH was implemented by broadly following Algorithm 1. To check consistency
of results, 25 random seeds were used to split data to clients and perform HPO (i.e., using hyperopt)
After the generation of clients data, each client’s data are split in 70-30 ratio to use as train and test
data. We evaluate Alg-HP configurations at the clients on the training dataset using cross-validattion
with CV = 10 number of folds. The test data is not used during DASH algorithm Alg-HP search. It is
only used to evaluate the performance of the best Alg-HP configuration on the model computed using
the FL training on this configuration. In order to check the consistency of the results we measured
the standard deviation across the 25 random seeds. To perform HPO for each training algorithm at
the server, we used hyperopt Komer et al. (2014), however, any other HPO techniques could have
been used. In most of our runs HPOiter = 50 was used (except otherwise specified).

Comparing with Baselines. To compare the performance of DASH with the baselines outlined
above, all datasets were divided into three similar sized segments (using different random seeds
each run), and each of those segments represented a client for the DASH algorithm. We define
Relative Improvement (RI) of DASH over any baseline (B) as, RI −B = PD−PB

PB
× 100%, where

PD is the performance (accuracy) of DASH and PB is the performance of any of the baselines. To
denote Relative Improvement (RI) over Default, FLoRA-LGBM and CASH-C we use the terms
RI − D,RI − F and RI − C respectively. The value of these three relative improvements are
depicted in Fig. 1, and the actual performances for all the three baselines along with DASH are given
in Table 1. As expected, DASH outperforms both the Default and FLoRA-LGBM in most cases, and
gives a performance quite close to the (centralized) optimal solution (CASH-C).

Effect of Client Number. Table 2 summarizes the performance of DASH when the number of
clients N is 5 and 20. We note that most of the RI values are positive (indicating better performance
in DASH), and the few remaining negative values are quite small in magnitude (indicating similar
performance from DASH). Moreover, for some datasets (i.e., Diabetic Data, Connect-4), DASH
shows a high rate of performance improvement.

Effect of HPO Iteration. Fig. 2 shows the effect on the performance of DASH when HPOiter is
changed. We define the RI metric for this case as, RI−HPO = [(Piter−PD)/PD]×100%, where
PD is the performance of DASH with HPOiter = 50 (the maximum number of HPO iterations we
used) and Piter is the performance achieved by the given HPOiter. We ran the experiments five times
(using different seeds) for each HPOiter = 5, 10, 15, 20 and 25; and took the average performance.
Smaller HPOiter yielded higher variation in the results, and in some cases the performance is even
0.5 to 1% better than the performance of HPOiter = 50. One major reason behind this performance
anomaly is due to different data distribution of train and test data, where higher HPOiter can lead
to over-fitting issue in some cases. At HPOiter = 25, such variations decreased and most of the
performances are similar to the performance of HPOiter = 50.

Effect of non-IID Clients. In all of the simulations till now, clients are generated by dividing
the whole dataset using some random data-seed. Due to large amount of instances, we can assume
these data distributions of each client to be similar (IID). We call the performance of DASH with
this random data distribution as DASH-IID. To create different distribution of the target variable
at different clients, we use a Dirichlet constant β (smaller β yields more heterogeneous non-iid
distribution). The RI values of different values of β (102 and 106) over DASH-IID are depicted
in Fig. 3. We observe that RI has a small range (−0.4% to 0.5%) for both values of beta across all
datasets which shows that DASH achieves stable performance on heterogeneous non-iid distributions.

6

6 Conclusion

We propose DASH as a decentralized method to solve CASH problem for FL platform. DASH
performs algorithm selection and HPO at the central server via a few rounds of communication with
the clients. The communication between the server and client is limited to the exchange of Alg-HP
pairs chosen by the server and the corresponding loss values calculated by the clients. The worst case
sub-optimality of DASH in terms of loss performance was analyzed theoretically, and found to be
proportional to the dissimilarity in the clients’ dataset distributions. Empirical evaluations show that
DASH performs very close to the optimum solution (CASH-C) and generally outperforms the other
two baselines discussed. Consistent results over 7 large datasets and different settings (e.g., number
of clients, different data distribution of clients) demonstrates the strong potential of DASH for being
a effective solution to the FL-CASH problem.

References
Efimova, V., Filchenkov, A., and Shalamov, V. (2017). Fast automated selection of learning algorithm

and its hyperparameters by reinforcement learning. In International Conference on Machine
Learning AutoML Workshop.

Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust and efficient hyperparameter optimization
at scale. In International Conference on Machine Learning, pages 1437–1446. PMLR.

Garg, A., Saha, A. K., and Dutta, D. (2020). Direct federated neural architecture search.
arxiv.2010.06223.

He, C., Annavaram, M., and Avestimehr, S. (2020). Towards non-i.i.d. and invisible data with fednas:
Federated deep learning via neural architecture search. arxiv.2004.08546.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2017). Fast bayesian hyperparameter
optimization on large datasets. Electronic Journal of Statistics, 11(2):4945–4968.

Komer, B., Bergstra, J., and Eliasmith, C. (2014). Hyperopt-sklearn: automatic hyperparameter
configuration for scikit-learn. In ICML workshop on AutoML, pages 2825–2830. Citeseer.

Koskela, A. and Honkela, A. (2019). Learning rate adaptation for federated and differentially private
learning. arXiv preprint arXiv:1809.03832.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyperband:
Bandit-based configuration evaluation for hyperparameter optimization. In ICLR (Poster), page 53.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020a). Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine, 37(3):50–60.

Li, Y., Jiang, J., Gao, J., Shao, Y., Zhang, C., and Cui, B. (2020b). Efficient Automatic CASH via
Rising Bandits. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
4763–4771.

Liu, S., Ram, P., Vijaykeerthy, D., Bouneffouf, D., Bramble, G., Samulowitz, H., Wang, D., Conn,
A., and Gray, A. (2020). An ADMM based framework for automl pipeline configuration. In
Thirty-Fourth AAAI Conference on Artificial Intelligence.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B. A. (2017). Communication-
efficient learning of deep networks from decentralized data. In Proc. International Conference on
Artificial Intelligence and Statistics, pages 1273–1282, Ft. Lauderdale, FL.

Mostafa, H. (2019). Robust federated learning through representation matching and adaptive hyper-
parameters. arXiv preprint arXiv:1912.13075.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konecny, J., Kumar, S., and McMahan, H.
(2020). Adaptive federated optimization. In International Conference on Learning Representations.

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2015). Taking the human out
of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175.

7

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-weka: Combined selection
and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13, page
847–855, New York, NY, USA. Association for Computing Machinery.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013). OpenML: Networked science in
machine learning. SIGKDD Explorations, 15(2):49–60.

Wang, S., Tuor, T., Salonidis, T., Leung, K., Makaya, C., He, T., and Chan, K. (2019). Adaptive
federated learning in resource constrained edge computing systems. Journal Selected Areas in
Communications (JSAC).

Xu, M., Zhao, Y., Bian, K., Huang, G., Mei, Q., and Liu, X. (2020). Federated neural architecture
search. arxiv.2002.06352.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated machine learning: Concept and
applications. ACM Trans. Intell. Syst. Technol., 10(2).

Zhou, Y., Ram, P., Salonidis, T., Baracaldo, N., Samulowitz, H., and Ludwig, H. (2022). Single-shot
hyper-parameter optimization for federated learning: A general algorithm and analysis. arXiv
preprint arXiv:2202.08338.

Zöller, M.-A. and Huber, M. F. (2021). Benchmark and survey of automated machine learning
frameworks. J. Artif. Int. Res., 70:409–472.

A Supplementary Material

Communication Overhead of DASH: If LHP (Lloss) denotes the maximum length of the message
needed to communicate an HP setting (loss value, resp.) from the server to a client (from a client to
the server, resp.), then the communication overhead of the server for executing the CASH process in
DASH (which is all due to running the decentralized HPO) is bounded by N × (LHP + Lloss) ×
HPOiter. Our evaluations suggest that a reasonably small value of HPOiter (say about 20) suffices
to get near-optimal loss performance in practice; this implies that total message exchange complexity
of DASH can be expected to be small, unless the number of clients N is very large. In addition to
this, there is the complexity of doing one run of FL training process at the last step of DASH (see
step 14 of Algorithm 1); this additional complexity will be minimally necessary in any solution of the
FL-CASH problem, and will depend partly on the exact FL algorithm used in this step.

Proof of Theorem 1: To prove Theorem 1, we first introduce some definitions. On given dataset
D̂ = ∪iD̂i, we define the optimum (centralized) loss as follows (see (1) and (3)),

ℓ̃(Aλ, D̂) =
∑
i

αi L(F(Aλ,∪iD̂
train
i), D̂valid

i) = L(F(Aλ, D̂
train), D̂valid) = L̂(Aλ, D̂). (5)

Next, based on (2) and (3), we define the loss computed by DASH on the same dataset as

ℓ(Aλ, D̂) =
∑
i

αi L(F(Aλ, D̂
train
i), D̂valid

i) =
∑
i

αi L̂(Aλ, D̂i). (6)

We first bound the difference between ℓ̃(Aλ,D) and ℓ(Aλ,D), as follows.

|ℓ(Aλ,D)− ℓ̃(Aλ,D)|

= |
∑
i

αi L̂(Aλ, D̂i)− L̂(Aλ, D̂)| [using (5) and (6)]

= |
∑
i

αi

(
L̂(Aλ, D̂i)− L̂(Aλ, D̂)

)
| [since

∑
i

αi = 1]

≤ β′
∑
i

αiν(Di,D). [using (4)] (7)

8

Now, let us denote A†
λ† and A⋆

λ⋆ as the Alg-HP pair chosen by DASH and the optimum (centralized)
solution, respectively. Since A†

λ† and A⋆
λ⋆ are chosen by optimizing using the loss functions ℓ and ℓ̃,

respectively,

A⋆
λ⋆ = argmin

Aλ

ℓ̃(Aλ,D), and A†
λ† = argmin

Aλ

ℓ(Aλ,D).

In the above, we implicitly made the idealistic assumption that the central server is able to find an
exact solution to the underlying HPO problem (but with loss function ℓ) for any algorithm A when
implementing DASH. [In general, the correctness of the HPO solution will depend on the HPO
algorithm used by the server, and the number of HPO iterations used, HPOiter. If the HPO is solved
inexactly, the general line of our analysis still holds, but an extra error term (that depends on the
degree of approximation of the HPO solution) would need to be introduced in the regret bound.]

Now, we finalize our proof as follows,

ℓ(A†
λ† ,D) ≤ ℓ(A⋆

λ⋆ ,D) [since A†
λ† minimizes ℓ]

≤ ℓ̃(A⋆
λ⋆ ,D) + β′

∑
i

αiν(Di,D), [using Eq. 7] (8)

which completes the proof of Theorem 1.

HP space used: The HP spaces used for HPO in the DASH algorithm are as follows;

RandomForest:
‘n_estimators’ : uniformint(50, 300),
‘max_depth’ : uniformint(4, 20),
‘min_samples_split’ : uniformint(2, 6),
‘min_samples_leaf’ : uniformint(1, 3).

DecisionTree:
‘max_depth’ : uniformint(4, 20),
‘min_samples_split’ : uniformint(2, 6),
‘min_samples_leaf’ : uniformint(1, 3).

ExtraTree:
‘max_depth’ : uniformint(4, 20),
‘min_samples_split’ : uniformint(2, 6),
‘min_samples_leaf’ : uniformint(1, 3).

LogisticRegression:
‘tol’ : uniform(1e-4, 1e-3),
‘C’: uniform(0.2, 1.0),
‘max_iter’ : uniformint(80, 100).

XGB:
‘eta’ : uniform(0.1, 0.3),
‘min_child_weight’: uniformint(1, 3),
‘max_depth’ :hp.uniformint(3, 12).

LGBM:
‘subsample’ : uniform(0.5, 1.0),
‘colsample_bytree’: uniform(0.5, 1.0),
‘max_depth’ : uniformint(3, 12),
‘min_data_in_leaf’: uniformint(20, 30) ,
‘num_leaves’ : uniformint(20, 80).

MLP:
‘hidden_layer_sizes’ : uniformint(50, 200),
‘alpha’: loguniform(-5*np.log(10), 1*np.log(10)),
‘learning_rate_init’ : loguniform(5*np.log(10), -1*np.log(10)).

9

	Introduction
	Related work
	FL-CASH Problem Formulation
	Algorithm and Analysis
	Empirical Evaluation
	Conclusion
	Supplementary Material

