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Figure 1: (a) Rendering and mesh under different light conditions. (b) Comparison and statistics of datasets.
(c) Dataset collection across varied illumination conditions, scenarios, and flight altitudes.

ABSTRACT

Recent advances in large-scale 3D scene reconstruction using unmanned aerial vehicles
(UAVs) have spurred increasing interest in neural rendering techniques. However, existing
approaches with conventional cameras struggle to capture consistent multi-view images of
scenes, particularly in extremely blurred and low-light environments, due to the inherent
limitations in dynamic range caused by long exposure and motion blur resulting from
camera motion. As a promising solution, bio-inspired event cameras exhibit robustness
in extreme scenarios, thanks to their high dynamic range and microsecond-level temporal
resolution. Nevertheless, dedicated event datasets specifically tailored for large-scale UAV
3D scene reconstruction remain limited. To bridge this gap, we introduce SkyEvents, a
pioneering large-scale event-enhanced UAV dataset for 3D scene reconstruction, incorpo-
rating RGB, event, and LiDAR data. SkyEvents encompasses 45 sequences, spanning over
8 hours of video, captured across a diverse set of illumination conditions, scenarios, and
flight altitudes. To facilitate the event-based 3D scene reconstruction with SkyEvents, we
propose the Geometry-constrained Timestamp Alignment (GTA) module to align times-
tamps between the event and RGB cameras. Furthermore, we introduce Region-wise
Event Rendering (RER) loss for supervising the rendering optimization. With SkyEvents,
we aim to motivate and equip researchers to advance large-scale 3D scene reconstruction
in challenging environments, harnessing the unique strengths of event cameras.
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1 INTRODUCTION

Large-scale 3D scene acquisition using unmanned aerial vehicles (UAVs) has become a central tool for
urban modeling, digital twins, and robotics applications. Driven by the growing demand for accurate and
detailed reconstructions of city-scale environments, neural rendering techniques, such as Neural Radiance
Fields (NeRF) (Mildenhall et al., 2021) and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), have been
extended from small object-centric captures (Barron et al., 2022; Müller et al., 2022; Li et al., 2023; Huang
et al., 2024; Yu et al., 2024; Guédon & Lepetit, 2023) to large-scale scenes (Tancik et al., 2022; Turki
et al., 2022; Mi & Xu, 2023; Lin et al., 2024; Yu Chen, 2024; Liu et al., 2025; Li et al., 2025). However,
existing approaches still fundamentally rely on conventional CMOS-based RGB cameras, which remain
highly susceptible to the limitations in challenging conditions-especially in scenarios with motion blur and
insufficient illumination (Cladera et al., 2025). This inherent limitation often leads to a degradation in the
quality of 3D reconstructions under low-light and motion-blurred conditions (Zahid et al., 2025; Matta et al.,
2025; Zhang et al., 2025), thus limiting the achievable reconstruction fidelity (see Figure 1(a)).

To address this, event cameras have emerged as a promising alternative visual sensing paradigm, providing
a complementary modality for 3D reconstruction. Unlike conventional cameras, event-based sensors asyn-
chronously record changes in scene brightness at microsecond resolution, offering significantly improved
temporal fidelity, a wide dynamic range, and robustness to motion blur (Xu et al., 2025). These advantages
have made event cameras increasingly popular in 3D reconstruction, where they have been successfully
combined with NeRF and 3DGS techniques to enhance the robustness of reconstructions in dynamic and
low-light environments (Yura et al., 2025; Zhang et al., 2025; Zhu et al., 2024; Low & Lee, 2023).

Despite the growing efforts in event cameras for 3D reconstruction, a key limitation remains: the lack
of suitable, event-enhanced UAV datasets tailored for large-scale 3D scene reconstruction. While recent
event-enhanced UAV datasets have laid important groundwork, they often lack the necessary modalities and
ground truth required for high-fidelity city-scale 3D reconstruction (in Table 1). For instance, datasets such
as MVSEC (Zhu et al., 2018) and UZH-FPV (Delmerico et al., 2019) include aerial sequences, but they
lack synchronized high-resolution RGB frames or volumetric ground truth, limiting their utility for neural
rendering. Similarly, M3ED (Chaney et al., 2023) and NU-AIR (Iaboni et al., 2025) offer useful event
streams and RGB imagery but do not provide the dense depth and 6-DoF pose supervision necessary for
large-scale 3D reconstruction. The most recent work, EvMAPPER (Cladera et al., 2025), pioneers event-
based orthomapping for high-altitude flights, but its focus on planar mosaics does not address the challenges
of trajectory complexity and frame jitter that are inherent to low-altitude, large-scale 3D modeling.

To address it, we introduce SkyEvents, the first dataset specifically designed for event-enhanced UAV 3D re-
construction. SkyEvents brings together challenging low-light and motion-blurred conditions, synchronized
RGB frames, dense per-frame depth supervision, high-quality 3D ground-truth reconstructions, and accurate
6-DoF UAV poses within a benchmark dataset. The data is collected using a DJI Matrice 350 equipped with
a centimeter-accurate real-time kinematics system, flying over five distinct areas at altitudes ranging from
70 to 100 meters (see Figure 1(c)). DJI L2 LiDAR data serves as the ground truth due to its illumination-
invariant nature and high precision. In total, the dataset contains 45 sequences (spanning over 8 hours)
of paired RGB and event data, along with 0.72 km2 of point cloud data capturing at 2.64 cm/pixel GSD,
enabling the robust development of perception algorithms under real-world conditions (see Figure 1(b)).

To enable event-based 3D reconstruction with SkyEvents, we introduce two key components: the Geometry-
Constrained Timestamp Alignment (GTA) module, which aligns event and RGB data based on temporal
constraints, and the Region-Wise Event Rendering (RER) loss, which optimizes event-based rendering. We
evaluate the effectiveness of the proposed GTA and RER modules with existing neural rendering techniques
using the SkyEvents dataset. Our experiments demonstrate the potential of event data for 3D scene recon-
struction, particularly in challenging environments.
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Dataset Low-light/night RGB RGB Rate RGB FoV Event FoV Depth Geometry GT 6-Dof Pose Resolution Duration1

MVSEC (Hexacopter) (Zhu et al., 2018) ✓ 2 ✗ ✗ ✗ 83◦ ✓ ✗ ✓ 346×260 63
UZH-FPV (Delmerico et al., 2019) ✗ ✓ 30/50 Hz 186◦ 120◦ ✗ ✗ ✓ 346 × 260 23
M3ED (UAV splits) (Chaney et al., 2023) ✗ ✓ 30 Hz 52◦ 63◦ ✓ ✗ ✓ 1280×720 45
NU-AIR (Iaboni et al., 2025) ✗ 3 ✗ ✗ ✗ 70◦ ✗ ✗ ✗ 640×480 71
EvMAPPER (Cladera et al., 2025) ✓ ✓ 50 Hz 71◦ 64◦ ✗ ✗ ✗ 1280×720 161

SkyEvents ✓ ✓ 120 Hz 71◦ 45◦ ✓ ✓ ✓ 1280×720 481
1 In minutes, 2 dusk-only, 3 multiple illumination conditions.

Table 1: Comparison of SkyEvents with previous event-based UAV datasets.

Contributions. (1) We present SkyEvents, a first large-scale event-enhanced UAV dataset for 3D scene re-
construction, including synchronized RGB and event data, LiDAR data, and accurate 6-DoF UAV poses. (2)
We introduce two key components for integrating event modality into neural rendering-based 3D reconstruc-
tion: Geometry-constrained Timestamp Alignment (GTA) module and Region-wise Event Rendering (RER)
loss. (3) Experiments demonstrate that event-guided neural rendering outperforms RGB-only baselines,
achieving higher texture fidelity and geometric accuracy in large-scale 3D reconstructions under low-light
and motion-blurred environments.

2 RELATED WORKS

2.1 3D SCENE RECONSTRUCTION

3D scene reconstruction seeks to recover the geometric structure of a scene from multi-view images or
other modality data. Neural Radiance Fields (NeRF) (Deng et al., 2022; Garbin et al., 2021; Milden-
hall et al., 2021) have demonstrated high-fidelity novel view synthesis through an implicit representation,
but constrained by slow optimization and limited geometric precision. In contrast, 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) leverages an explicit point-based representation to improve computational ef-
ficiency. Each Gaussian in 3DGS is characterized by parameters such as center, opacity, covariance, and
color. Despite these improvements, the geometric accuracy and visual fidelity in 3DGS reconstructions can
degrade under challenging conditions, such as motion-blurred or low-light environments (Zahid et al., 2025;
Matta et al., 2025). To address these challenges, recent advancements in event-based 3DGS (Yura et al.,
2025; Zhang et al., 2025) have shown promising results in enhancing reconstruction quality by utilizing event
cameras. However, a notable gap in the existing works is the lack of relevant event dataset for large-scale 3D
scene reconstruction. To fill this gap, we introduce the first dataset specifically collected for event-enhanced
UAV 3D scene reconstruction.

2.2 EVENT-BASED 3D RECONSTRUCTION

Event cameras (Zheng et al., 2023; Xu et al., 2025) are bio-inspired sensors that capture asynchronous
brightness changes, in contrast to traditional cameras, which capture images at a fixed frame rate. This
unique sensing mechanism provides event cameras with distinct advantages, including exceptional temporal
resolution, low latency, and resilience to motion blur and challenging lighting conditions. These attributes
have spurred significant research into the application of event cameras across various computer vision tasks,
such as object detection (Mitrokhin et al., 2018), depth estimation (Pan et al., 2024; Shi et al., 2023), semantic
segmentation (Chen et al., 2024; Kong et al., 2024), video enhancement (Kim et al., 2024; Jing et al., 2021;
Tulyakov et al., 2021), and, notably, 3D reconstruction (Chen et al., 2025; Wu et al., 2024; Cannici &
Scaramuzza, 2024; Han et al., 2024; Cladera et al., 2025; Ye et al.; Han et al., 2024; Yu et al., 2025).
In the domain of 3D reconstruction, early methods (Rudnev et al., 2023; Zhu et al., 2024; Low & Lee,
2023) combined NeRF with event-based data, utilizing volumetric rendering techniques guided by event
supervision. More recent works (Zahid et al., 2025; Matta et al., 2025; Yura et al., 2025; Zhang et al., 2025)
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have explored the integration of 3DGS with event data to enhance the reconstruction process. However,
these prior approaches often face robustness issues, particularly in challenging conditions such as low-light
and motion-blurred environments. To address these shortcomings, Dark-EvGS (Wu et al., 2025) introduces
an event-based guided 3DGS pipeline, facilitating bright frame synthesis from arbitrary viewpoints in low-
light scenarios. Although this approach represents a significant advancement, it remains primarily focused
on small objects and does not fully capture the complexities of real-world 3D reconstruction tasks, which
typically involve large-scale scenes. In this work, we introduce a new dataset specifically designed for large-
scale UAV 3D scene reconstruction, overcoming the limitations of previous methods in city-scale scenes.

2.3 COMPARISON TO EXISTING EVENT-GUIDED DATASETS

Early UAV-related event datasets, such as MVSEC (Zhu et al., 2018) and UZH-FPV (Delmerico et al., 2019),
established important baselines by providing stereo events with aggressive flight trajectories and precise
ground truth. However, these datasets are not curated for texture-rich, city-scale 3D modeling (e.g., limited
image resolution/coverage and a focus on odometry rather than volumetric ground truth). Subsequent multi-
platform corpora like M3ED (Chaney et al., 2023) include aerial sequences and synchronized modalities,
but primarily target high-speed robotics rather than low-altitude urban reconstruction with dense geometry.
The NU-AIR dataset (Iaboni et al., 2025) advances urban perception with aerial event streams and extensive
detection labels, while lacking synchronized high-resolution RGB and per-frame dense depth required for
neural rendering benchmarks. EvMAPPER (Cladera et al., 2025) represents a pioneering effort in event-
based orthomapping at high altitudes, yet it generates only planar mosaics and does not capture the pose
jitter and parallax needed for volumetric modeling at low altitudes. Beyond datasets focused on UAVs, event
camera datasets and benchmarks from other domains, including automotive driving (Gehrig et al., 2021;
Binas et al., 2017) and indoor robotics (Fischer & Milford, 2020; Mitrokhin et al.; Burner et al., 2022), have
advanced event vision, but they are not tailored to aerial 3D reconstruction at city scale because they lack
synchronized RGB, dense per-frame depth, and low altitude capture protocols. To bridge this gap, in this
work, we introduce event-enhanced UAV datasets tailored for large-scale 3D scene reconstruction.

3 DATASET

We present SkyEvents, the first and large-scale UAV dataset that integrates tri-modal sensing across event
camera streams, RGB videos, and LiDAR point clouds. This dataset spans five distinct environments,
each characterized by unique architectural structures and diverse activity patterns. To address the critical
challenge of accurate temporal synchronization across RGB and event data, we propose the Geometry-
Constrained Timestamp Alignment (GTA) module. The GTA module ensures precise alignment of times-
tamps between event and RGB cameras, leveraging geometric constraints to optimize synchronization (see
Figure 2).

3.1 PLATFORM

To ensure the reproducibility and accessibility of our dataset collection methodology, we design a UAV sen-
sor platform utilizing commercially available components and self-designed modules, shown in Figure 2,
which lowers the barrier for community adoption and facilitates future extensions. The core platform lever-
ages the DJI Matrice 350 RTK airframe for its positioning system with centimeter accuracy. The platform
combines two complementary vision sensors: a Prophesee Gen4EVK event camera for high-speed event-
based vision and a DJI Osmo Action 4 camera for standard RGB video. Besides, a Mini PC serves as the
central on-board computing and data logging unit, handling raw data acquisition and temporary storage.
More details are listed in Appendix Table 4.

4
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Figure 2: Data collection and rendering pipelines. The data acquisition platform consists of an UAV payload,
an event camera, a 120HZ RGB camera, and a Mini PC. After collecting paired RGB and event data, we uti-
lized the proposed Geometry-Constrained Timestamp Alignment (GTA) module to synchronize timestamps
and warp between the event and RGB cameras.

3.2 DATASET COLLECTION AND STATISTICS

The platform receives control commands via a remote controller, supporting both real-time manual operation
by a pilot and pre-loaded Keyhole Markup Language (KML) route plans. This flexibility enables two distinct
flight strategies: (1) Circular orbits (21.4%) provide rapid data acquisition despite potential viewpoint gaps;
while (2) automated four directional oblique scanning routes (78.6%) ensure systematic coverage at the cost
of longer mission durations. Data acquisition is orchestrated by an onboard mini-PC, which runs a custom
script that automatically arms recording once the UAV takes off. This script issues software triggers to start
both the RGB camera and the event camera and logs their respective activation timestamps.

The comprehensive data statistics are shown in Figure 3, where our data collection encompasses a diverse
set of environmental conditions and flight parameters. In detail, the drone platform executes missions across
five distinct areas totaling 1.41 km2, with flight altitudes strategically distributed at 70 m (51.7%), 100 m
(41.3%), and 80 m (6.9%) to balance safety concerns with optimal sensor coverage. The dataset features
extensive architectural variety, spanning complex buildings, medium-rise structures (8.2% area coverage),
low-rise buildings (6.1%), open planar scenes (11.5%), and high-rise clusters (12.7%). Most data is collected
under well-light daytime conditions (73.2%). Additionally, data at dusk (26.8%) is also collected in selected
areas to enable validation under natural low-light environments.

Complementing the optical data, a DJI L2 LiDAR is deployed at approximately 100 meters for oblique
photogrammetry across all areas. LiDAR point cloud is chosen to serve as the ground truth depth reference
in this dataset owing to its superior accuracy. In total, 45 flight segments are conducted, accumulating
approximately 8 hours of event and RGB video data, along with 0.72 km2 of LiDAR point cloud data
capturing at 2.64 cm/pixel GSD (see more details in Table 5 in Appendix).

3.3 GEOMETRY-CONSTRAINED TIMESTAMP ALIGNMENT

In our system, we observe that the event camera stream is typically delayed by approximately 5 ms relative
to the RGB stream. Consequently, we need to ensure frame-accurate synchronization between event camera
and RGB camera. Let It ∈ RH×W×3 denote the RGB image at time t, and let Eτ ∈ RH×W×3 be the event-
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Figure 3: Data statistics from left to right: flight path, scenarios types, illumination, and height.

rendered image at time τ . Given RGB sampling times {tk}Kk=1 (e.g., 1s interval), we search a symmetric
window [tk −∆, tk +∆] with step δ and select the event time that maximizes a geometry score τ⋆k :

τ⋆k ∈ argmax
τ∈Tk

S
(
Itk , Eτ

)
, Tk = {tk −∆, tk −∆+ δ, . . . , tk +∆}. (1)

where ∆ = 100ms is the half-window size, δ = 8.333ms is the temporal step, Tk is the candidate set around
tk, and S(·, ·) is the geometry consistency score.

For a pair (Eτ , Itk), we obtain putative correspondences {(xi,x
′
i)}Ni=1 with xi = (ui, vi) ∈ Eτ and x′

i =
(u′

i, v
′
i) ∈ Itk via the dense matcher MatchAnything/ROMA (He et al., 2025; Edstedt et al., 2024), and

estimate a robust homography H ∈ R3×3 from RGB to event via MAGSAC (Barath et al., 2019):

λ

[
u
v
1

]
= H

[
u′

v′

1

]
, λ ̸= 0. (2)

where H maps RGB pixels to Event pixels, [u, v, 1]⊤ and [u′, v′, 1]⊤ are homogeneous coordinates in Event
and RGB, and λ is the projective scale.

Let m ∈ {0, 1}N be the inlier mask and Π([x, y, w]⊤) = (x/w, y/w). The per-inlier reprojection error is
εi = ∥Π(H[x′

i; 1])− xi∥2. We then score the pair as

S
(
Itk , Eτ

)
=

N∑
i=1

mi − α

∑N
i=1 mi εi

max
(
1,
∑N

i=1 mi

) , α > 0, (3)

where mi indicates whether correspondence i is an inlier, εi is the Euclidean reprojection error for inlier i,
and α balances inlier support and normalized error (invalid H yields a non-informative score).

To avoid per-pair perspective warping while preserving alignment, we approximate the RGB→Event ho-
mography H on a regular grid by a diagonal affine map [x, y]⊤ ≈ D[x′, y′]⊤+t with D = diag(sx, sy) and
t = (tx, ty)

⊤, and estimate (sx, sy, tx, ty) via a single linear least-squares fit. Concretely, we sample M grid
points (x′

j , y
′
j) in RGB, project them to Event by (xj , yj) = Π

(
H[x′

j , y
′
j , 1]

⊤), and solve minθ ∥Aθ − b∥22,
where the unknown θ = (sx, tx, sy, ty)

⊤, matrix A stacks RGB coordinates with axis-wise structure, and
b stacks the corresponding Event coordinates (first all xj , then all yj). Given event and RGB resolutions
(W0, H0) and (W1, H1), we derive an RGB crop window (x0, y0) → (x1, y1) by stabilizing scales with
s̃x = max(sx, ϵ), s̃y = max(sy, ϵ), back-computing the crop origin from (−tx/s̃x, −ty/s̃y) with clamp-
ing to valid bounds, and setting the crop size so that a bilinear resize matches the event resolution, i.e.,
widths/heights proportional to W0/s̃x and H0/s̃y . We log H, θ, and the crop coordinates for exact repro-
ducibility, where ϵ > 0 is a small stabilizer.
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To enforce a global 1 second cadence and suppress local noise, we jointly refine the sequence by maximizing
geometric consistency penalized by interval deviations:

{τ̃k}Kk=1 = argmax
{τk}

[
K∑

k=1

S
(
Itk , Eτk

)
− β

K∑
k=2

∣∣(τk − τk−1)− 1 s
∣∣] , β > 0. (4)

where τ̃k are the refined event timestamps; β trades off the global 1 second cadence against geometric fit,
and the absolute deviation term penalizes interval drift.

3.4 LIDAR ALIGNMENT

As demonstrated in Figure 2, we align LiDAR and RGB in a unified 3D coordinate and then transfer LiDAR
geometry to each RGB image as metrically accurate depth. In our setup, a DJI Zenmuse L2 LiDAR payload
and an RGB camera are flown in separate missions over the same area, so the raw trajectories are not
temporally synchronized. To recover a consistent geometry, we adopt a unified structure-from-motion (SfM)
pipeline using commercial photogrammetry software RealityScan. We first rasterize the LiDAR point cloud
into perspective “LiDAR RGB” images by projecting the laser returns onto virtual pinhole cameras whose
intrinsics and extrinsics are derived from the LiDAR trajectory. RealityScan generates the poses of these
LiDAR images, and we treat them as fixed anchor views. We then import the calibrated UAV RGB images
and run joint SfM and global bundle adjustment over all images, keeping the LiDAR-derived camera poses
frozen. This procedure rigidly registers all RGB cameras into the LiDAR coordinate system, yielding a
single globally consistent Euclidean frame shared by LiDAR and RGB.

Given the optimized camera intrinsics and extrinsics, we perform a global multi-view stereo (MVS) recon-
struction in which LiDAR depth acts as a strong geometric prior. Specifically, we fuse the LiDAR point
cloud with MVS-derived depth estimates to obtain a dense, continuous mesh, where LiDAR stabilizes depth
in texture-poor or repetitive regions and suppresses multi-view ambiguities. We treat this fused surface as
the ground-truth (GT) geometry. Finally, for each RGB frame, we back-project the GT mesh into the cor-
responding camera using the calibrated intrinsics and extrinsics, producing dense, metrically accurate depth
maps that are pixel-wise aligned with the original RGB images.

4 BENCHMARKS

4.1 BENCHMARK METHOD

To evaluate the effectiveness of incorporating event modality for 3D reconstruction, we leverage two state-
of-the-art 3DGS pipelines, Luminance-GS (Cui et al., 2025) and Improved-GS (Deng et al., 2025), for
benchmark experiments.

Input. Each event ei = (x, ti, pi) is triggered at a microsecond timestamp ti when the brightness at pixel
x changes by more than a contrast threshold C (i.e., |L(x, ti+1) − L(x, ti)| ≥ C), where L(x, ti) is the
logarithmic brightness, and pi ∈ {−1,+1} represents either an increase or decrease in the logarithmic
brightness L(x, ti). In parallel, RGB image Iti is captured at discrete time ti.

4.2 REGION-WISE EVENT RENDERING LOSS

To encourage 3DGS to recover accurate geometry and appearance, we introduce an event-based brightness-
change consistency loss Zhang et al. (2025). Given two timestamps t1 and t2, we accumulate events in
this interval into an image E(t1, t2) = {ei(x, ti, pi)}t1<ti<t2 and compare it with the synthesized bright-
ness change, computed as the logarithmic difference between two rendered images Ît1 and Ît2 . Since the
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Scenes Conditions Methods With Event Without Event
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Scene1
Low-light Luminance-GS 0.1257 5.2060 0.5850 0.1214 4.7870 0.5990

Blur Improved-GS 0.8044 27.4368 0.2701 0.8095 27.3554 0.2757
Improved-GS+kernel 0.8625 28.2600 0.2107 0.8655 28.1146 0.2045

Scene2
Low-light Luminance-GS 0.1417 5.7650 0.5402 0.1408 5.7000 0.5411

Blur Improved-GS 0.7951 26.4789 0.2482 0.7807 25.8635 0.2653
Improved-GS+kernel 0.2608 11.5674 0.6783 0.2488 11.5092 0.6816

Table 2: Rendering performance comparison across different conditions and scenarios, with and without
event data.

RGB Event Improved-GS Improved-GS+RERBlurry RGB

Figure 4: Comparison of 3D scene reconstruction with Improved-GS and Improved-GS+RER in blurred
environments.

RGB and event sensors have different footprints and intrinsics, naively warping and undistorting RGB im-
ages leads to misalignment with the event frame. Instead, we estimate the warp between the two sensors
and define a region-aligned event supervision loss that constrains the brightness change only within their
overlapping regions. To ensure spatial support is consistent with the event frame, we apply the region-wise
alignment and cropping derived in equation 1: we approximate the RGB→event homography by a diago-
nal affine map Cθ with parameters θ = (sx, sy, tx, ty), derive a crop window, and resample to the event
resolution. We then convert the aligned renderings to log space and define the loss as:

Levent =
∥∥∥(log Cθ(Ît1)− log Cθ(Ît2)), E(t1, t2)

∥∥∥
2
. (5)

4.3 IMPLEMENTATION DETAILS AND EVALUATION METRICS

Implementation Details. For the training setup, we employ Luminance-GS (Cui et al., 2025), a state-of-
the-art (SOTA) 3DGS pipeline designed for complex illumination scenes, and Improved-GS (Deng et al.,
2025), the SOTA neural rendering pipeline, to assess the effectiveness of incorporating event modality. Both
models were trained on a single NVIDIA RTX 4090 using the Adam optimizer. Training is conducted for
a total of 30,000 iterations, with Event refinement starting at 8,000 iterations. For other settings, such as
Gaussian reset steps (Kerbl et al., 2023), we follow the default configuration.

Low-light Image Generation. Although UAVs can be programmed to repeat nearly identical RTK-guided
flight paths across different light conditions, to build a unified model, we rely on structure-from-motion
(SfM), which requires reliable feature detection and matching across views. Under low-light conditions,
however, many images exhibit weak textures and low contrast, causing feature matching to fail. As a re-
sult, a substantial portion of low-light images cannot be registered in the SfM pipeline, preventing consis-
tent multi-temporal 3D reconstruction. To evaluate performance of methods in low light-conditions, we
utilize daytime sequences in our experiments and generate synthetic low-light versions. This ensures pixel-
level correspondence, enabling controlled training and ablation studies. Following (Zhang et al., 2021;
Liang et al., 2023), we generate low-light frames from corresponding normal-light frames using gamma
correction and linear scaling, employing identical parameter settings. The process is formalized as follows:
Lt(p) = β×(α×It(p))

γ ,where γ represents the gamma correction factor, which is sampled from a uniform
distribution U(2, 3.5). The parameters α and β are linear scaling factors, drawn from U(0.9, 1) and U(0.5,
1), respectively.
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Figure 5: Comparison of 3D scene reconstruction using existing 3D GS methods (Improved-GS and
Luminance-GS), with and without event enhancement. The integration of event modality through RER
markedly enhances rendering quality.

Method BRISQUE ↓ MANIQA ↑ NIQE ↓

E2VID 7.1075 0.2141 6.1096
E2VID+ 7.3820 0.2842 5.4571
ET-Net 22.9103 0.2885 5.4518
FireNet 14.3349 0.2276 4.5584
FireNet+ 12.7435 0.3445 4.2509
HyperE2VID 7.6182 0.2205 5.7398
SPADE-E2VID 14.7488 0.2444 7.0037
SSL-E2VID 59.9326 0.1701 9.0612

Table 3: Quantitative comparison of event-to-video
methods.

Event E2Depth GT

Figure 6: Depth Estimation.

Blurry Image Generation. Following prior work (Li et al., 2024), a motion-blurred image is physically
generated by accumulating photons over the exposure time, ensuring that the resulting blurred image remains
differentiable with respect to both the parameters of NeRF and the motion trajectory.

Evaluation Metrics. To thoroughly evaluate the performance of 3DGS methods, we employ standard quan-
titative metrics, including Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM),
and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018).

4.4 RESULTS

In this section we focus on novel view synthesis from joint RGB and event input using three dimensional
Gaussian splatting backbones. The goal is to answer a concrete question: given a fixed rendering pipeline,
does adding events improve reconstruction quality in low light and motion blurred UAV scenes?

Table 2 summarizes the quantitative results on two representative scenes. For the low light setting with
Luminance GS (Cui et al., 2025), events provide small but consistent gains. On both scenes, adding event
supervision increases PSNR and slightly reduces LPIPS, while keeping SSIM essentially unchanged, which
indicates that events act as a stabilizing cue under extreme illumination where RGB alone is severely un-
derexposed. For the blurred setting with Improved GS (Cui et al., 2025), the benefit of events is more pro-
nounced. On the larger Scene 2 with more than 800 training images, the gains are clearer: PSNR increases
by about half a decibel and LPIPS decreases by a noticeable margin for the event driven model compared to
the RGB only baseline. These trends hold both for the plain Improved GS variant and for the simple gamma
recovery kernel, which shows that event cues remain helpful even when exposure is partially corrected on
the RGB branch. Figure 4 visualizes the baseline comparison that underlies the blurred rows for Improved
GS in Table 2. When events are used, double contours and ghosting around moving or blurred regions
are notably reduced and details appear sharper, which matches the quantitative improvements in PSNR and
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Figure 7: Video reconstruction performance comparison: E2VID+ (Stoffregen et al., 2020), FireNet (Scheer-
linck et al., 2020), and SSL-E2VID (Paredes-Vallés & De Croon, 2021).

LPIPS. Under normal lighting, minor camera jitters that cause ambiguities in the RGB only reconstructions
are also mitigated once event constraints are introduced.

Overall, these results suggest that events supply high-frequency constraints that particularly aid deblurring,
and also benefit low-light reconstruction, especially in challenging or large-scale settings.

4.5 OTHER TASKS TO EXPLORE

Monocular Depth Estimation. We further evaluate event-based monocular depth estimation on SkyEvents
by running inference with the SOTA E2Depth model. As illustrated in Figure 6, depth predictions exhibit
noticeable artifacts and loss of fine structures in aerial event streams, highlighting that current models do not
adequately address UAV-based event depth estimation and underlining the potential value of our dataset for
this frontier task.

Event-to-Video Reconstruction. Table 3 and Figure 7 summarize the performance of representative event-
to-video reconstruction methods on our SkyEvents dataset. Overall, methods originally trained on ground-
level data struggle to generalize to UAV-based event streams. Methods such as ET-Net, SPADE-E2VID, and
SSL-E2VID exhibit significantly degraded image quality, underscoring the challenge posed by our aerial,
low-light event data and the need for dedicated training in this regime.

5 CONCLUSION

In this work, we introduced SkyEvents, the first large-scale, event-enhanced UAV dataset specifically de-
signed for 3D scene reconstruction using RGB, event, and LiDAR data. The dataset spans a wide range
of conditions, including variations in illumination, scenario, and flight height, comprising 45 sequences
(over 8 hours) of paired RGB and event data, along with 0.72 km2 of LiDAR point cloud data capturing at
2.64 cm/pixel GSD. To fully harness the potential of this large-scale dataset, we propose the Geometry-
Constrained Timestamp Alignment (GTA) module, which effectively synchronizes timestamps between
event and RGB camera data, and the Region-Wise Event Rendering (RER) loss, which guides the opti-
mization of rendering. Experimental results underscore the significant contribution of event data to 3D
scene reconstruction. In conclusion, we hope that SkyEvents will catalyze further research and innovation
in the domain of event-enhanced 3D reconstruction, particularly in extreme scenarios.

Limitations and Future Work. Due to limitations in the current hardware setup, the RGB and event data
are not perfectly aligned in both space and time. In the future, we aim to upgrade the data collection devices
to obtain a larger, more precise, and higher-quality paired dataset, enabling more accurate synchronization
under increasingly challenging and complex scenarios. This enhanced dataset will serve as a foundation for
exploring a broader range of computer vision tasks, such as depth estimation and video frame interpolation.
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A APPENDIX

A.1 UAV PLATFORM & SENSOR SYSTEM DESIGN

The data acquisition system was built around a DJI Matrice 350 RTK unmanned aerial vehicle, selected for
its robust payload capacity of 2.7 kg and extended flight endurance of approximately 45 minutes, shown in
Figure 8. This platform integrates RTK GNSS positioning with centimeter-level accuracy, ensuring precise
georeferencing throughout all missions. The airframe’s IP55 weather resistance enables operations under
varying environmental conditions.

(a) Front view (b) Side view (c) Rear view

Figure 8: Multi-modal UAV data collection platform overview. The DJI Matrice 350 RTK is equipped with
a synchronized sensor suite and An onboard mini-PC.

A custom-designed sensor suite was mounted on a vibration-damped carbon fiber plate to minimize motion
artifacts, shown in Figure 9. The core vision system consists of two synchronized cameras: a Prophesee
EVK4 HD event camera capturing asynchronous events at 1280×720 resolution with sub-millisecond la-
tency, and a DJI Osmo Action 4 RGB camera recording 4K video at 120 fps with global shutter. Temporal
alignment between these sensors was maintained with microsecond-level precision.

A.2 DATA COLLECTION SYSTEM KEY COMPONENTS

An onboard Xiaomi Mini PC served as the central computing unit, handling real-time data acquisition from
both cameras through USB 3.2 interfaces. With sustained write speeds exceeding 500 MB/s, this system
reliably captured the high-bandwidth event streams (up to 10 Mevts/s) alongside uncompressed RGB video.
The complete setup represents a balanced integration of commercial components and custom mounting
solutions, providing a reproducible platform for multi-modal aerial data collection across diverse urban
environments. Platform detail are listed in Table 4

A.3 LARGE-SCALE SCENARIO DIVERSITY

The dataset encompasses five distinct scenes at Hong Kong University of Science and Technology
(Guangzhou), shown in Figure 10, captured in sequential order: (1) Main Teaching Building (2) North
Dormitory, (3) Data Center, (4) Sports Field, (5) South Dormitory. Details are listed in Figure 10 and
Table 1 and each scene presents unique architectural and environmental challenges for aerial perception:

• Main Teaching Complex: A vast interconnected structure comprising ∼10 buildings with glass
facades, featuring a central aerial garden with dense foliage, ground-level water bodies, and tree
clusters.
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(a) Carbon fiber mounting
plate (b) Power conversion module (c) Flight controller with route planning

Figure 9: Key components of the UAV data collection system. (a) Custom carbon fiber plate provides rigid
mounting for sensors and computing unit while damping vibrations. (b) Power conversion module regulates
DJI battery output to stable 12V/5V for onboard electronics. (c) Remote controller with pre-loaded KML
routes enables fully autonomous flight operations.

• North/South Dormitories: High-rise residential buildings with rich texture patterns. The North
Dormitory was sampled at around 70m, while the taller South Dormitory required 100m flight alti-
tude for comprehensive coverage. Both feature intricate shadow dynamics from vertical structures.

• Data Center: Three isolated white-toned buildings with minimal color variation, creating texture-
poor surfaces ideal for testing feature extraction algorithms. Uniform 70m sampling height.

• Sports Field: Complementary low-texture environments characterized by monochromatic surfaces.
The outdoor Sports Field features uniform turf patterns, while the indoor Gymnasium contains fast-
moving human activities under variable artificial lighting.

A.4 MATCHING RESULTS

Figure 11 shows the matching results with the proposed GTA module on SkyEvents and MVSEC datasets.
And as shown in the figure, the event streams aligned by our GTA module exhibit a pixel-perfect correspon-
dence with the RGB frames’ geometric edges. Moreover, the successful alignment on MVSEC confirms that
our module generalizes well and achieves high temporal precision.

A.5 OTHER TASKS TO EXPLORE

Figure 13 shows the performance of existing event-to-video reconstruction methods E2VID (Rebecq et al.,
2019), E2VID+ (Stoffregen et al., 2020), FireNet (Scheerlinck et al., 2020), ET-Net (Weng et al., 2021),
FireNet+ (Stoffregen et al., 2020), HyperE2VID (Ercan et al., 2024), SPADE-E2VID (Cadena et al., 2021),
and SSL-E2VID (Paredes-Vallés & De Croon, 2021) when applied to our SkyEvents dataset.
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Figure 10: Campus region overview. The map shows five distinct areas: (1) Main Building complex, (2)
North Dormitory, (3) Data Center, (4) Playground, and (5) South Dormitory, covering diverse urban scenar-
ios for multi-modal data collection.

Figure 11: Matching results with the proposed GTA module on SkyEvents and MVSEC datasets.
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Table 4: Precise Sensor Suite Specifications and Integration Details

DJI Matrice 350 RTK (UAV Platform)

Category Specification / Details

Role Primary aerial vehicle
Dimensions Folded: 430 × 420 × 430 mm (with props)

Unfolded: 810 × 670 × 430 mm
Weight Without battery: 3.77 kg; With dual battery: 6.47 kg
Payload Capacity: 2.7 kg (max takeoff weight 9.2 kg); Gimbal load: 960 g max
Flight Endurance: ∼55 min (unloaded, 8 m/s cruise)

Max speed: 23 m/s (horizontal), 6 m/s (ascent), 5 m/s (descent)
Rotation rate: Pitch: 300◦/s, Yaw: 100◦/s

Positioning System: RTK GNSS (GPS+GLONASS+BeiDou+Galileo); Accuracy: 1 cm +1 ppm (horiz), 1.5
cm +1 ppm (vert)

Environmental Rating: IP55 (weather resistant); Max altitude: 5000 m (with 2110s props)
Safety ADS-B receiver, dual battery redundancy
Integration Custom vibration-damped carbon fiber plate

Prophesee EVK4 HD (Event Camera)

Category Specification / Details

Role Asynchronous event capture
Resolution 1280 × 720 (HD)
Pixel size 4.86 × 4.86 µm
Temporal Latency: 220 µs; Event Rate: 10 Mevts/s (million events per second)
Dynamic Range 86 dB (up to 120 dB under low light)
Spectral Response: 400-1000 nm (visible to NIR)
Power Consumption: 0.5 W (USB powered)
Interface Data: USB 3.0 Type-C; Sync: IX Connector Type B (sync in/out, trigger in)
Mechanical Dimensions: 30 × 30 × 36 mm; Weight: 40 g (excluding lens)
Mounting Rigid co-location with RGB camera
Optics Included: C-mount 1/2.5” lens (FOV 47.7◦)
Calibration Temporal-spatial calibration with RGB

DJI Osmo Action 4 (RGB Camera)

Category Specification / Details

Role Synchronized RGB video capture
Resolution 4K UHD (3840 × 2160) @ 120 fps
Shutter Global shutter (eliminates rolling shutter artifacts)
Sensor Size: 1/1.3” CMOS; Pixel Size: 2.4 µm
Dynamic Range D-Log M (10-bit color depth)
Lens FOV: 155◦(wide mode)
Synchronization Accuracy: <100 µs relative to event camera

Xiaomi Mini PC (Compute & Data Logger)

Category Specification / Details

Role Central data acquisition hub
CPU Intel N100 (4-core, 3.4GHz Turbo)
Memory 16GB DDR4 RAM
Storage 512GB NVMe SSD
I/O Ports: 4 × USB 3.2 Gen 2 (10Gbps), 1 × HDMI 2.0, 1 × 2.5G Ethernet
OS Windows 10 Professional
Power Consumption: 12W TDP (powered via UAV battery)
Data Rate Capacity: ∼500 MB/s sustained write
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Figure 12: Video reconstruction with E2VID, E2VID+, FireNet, ET-Net, FireNet+, HyperE2VID, SPADE-
E2VID, and SSL-E2VID.
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A.6 DATASET STATISTICS AND EXAMPLES

A.6.1 DATASET STATISTICS

The SkyEvents dataset comprises multi-modal aerial data collected across five distinct urban scenarios,
including complex building structures, low-rise and high-rise buildings, and open planar scenes. Data
acquisition was performed using a UAV platform equipped with synchronized RGB (3840×2160), event
(1280×720), and LiDAR sensors. Flights were conducted at altitudes of 70–100 m under varied illumina-
tion conditions (morning, noon, afternoon, dusk), with both automated routes and manual circular paths
employed to ensure comprehensive spatial coverage. The dataset spans a total duration of 28,866 seconds,
amounting to 2.02 TB of data. Detailed specifications for each sequence—including sensor types, illumi-
nation, resolution, flight parameters, and data size—are summarized in Table 5. This diverse collection
supports development and evaluation of perception algorithms under real-world urban scenarios.
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Table 5: SkyEvents Dataset Collection Statistics

Sequence Sensor Illumin. Dur.(s) Resolution Scenario Flight Path Height(m) Data Size(GB)

07061519 RGB Afternoon 1056 3840×2160 Medium-rise building Auto flight 70 16.00
07061519 Event Afternoon 1435 1280×720 Medium-rise building Auto flight 70 115.00
07061537 RGB Afternoon 379 3840×2160 Medium-rise building Auto flight 70 5.54
07061635 RGB Afternoon 1056 3840×2160 Low-rise building Auto flight 70 16.00
07061635 Event Afternoon 1056 1280×720 Low-rise building Auto flight 70 141.00
07071011 RGB Morning 1056 3840×2160 Open planar scenes Auto flight 70 16.00
07071011 Event Morning 1523 1280×720 Open planar scenes Auto flight 70 103.00
07071029 RGB Morning 467 3840×2160 Open planar scenes Auto flight 70 7.04
07071146 RGB Noon 1056 3840×2160 High-rise building Auto flight 100 16.00
07071146 Event Morning 1820 1280×720 High-rise building Auto flight 100 150.00
07071204 RGB Noon 764 3840×2160 High-rise building Auto flight 100 11.50
07071500 RGB Afternoon 1056 3840×2160 Complex building Auto flight 100 16.00
07071500 Event Afternoon 1628 1280×720 Complex building Auto flight 100 145.00
07071518 RGB Afternoon 572 3840×2160 Complex building Auto flight 100 8.68
07071631 Event Afternoon 1618 1280×720 Complex building Auto flight 100 139.00
07071632 RGB Afternoon 1056 3840×2160 Complex building Auto flight 100 16.00
07071649 RGB Afternoon 562 3840×2160 Complex building Auto flight 100 8.47
07071800 RGB Dusk 1056 3840×2160 Low-rise building Auto flight 70 16.00
07071800 Event Dusk 1183 1280×720 Low-rise building Auto flight 70 95.70
07071817 RGB Dusk 127 3840×2160 Open planar scenes Auto flight 70 1.92
07071936 RGB Dusk 1454 3840×2160 Medium-rise building Auto flight 70 13.40
07071936 Event Dusk 1454 1280×720 Medium-rise building Auto flight 70 40.20
09111836 RGB Dusk 546 3840×2160 Complex building Manual circle 70 8.21
09111836 Event Dusk 546 1280×720 Complex building Manual circle 70 7.89
09121548 RGB Afternoon 969 3840×2160 Open planar scenes Manual circle 80 14.50
09121549 Event Afternoon 969 1280×720 Open planar scenes Manual circle 80 12.80
09121611 RGB Afternoon 911 3840×2160 Open planar scenes Auto flight 80 13.60
09121612 Event Afternoon 911 1280×720 Open planar scenes Auto flight 80 30.40
09141514 RGB Afternoon 1053 3840×2160 Complex building Auto flight 100 16.00
09141514 Event Afternoon 1913 1280×720 Complex building Auto flight 100 72.50
09141532 RGB Afternoon 860 3840×2160 Complex building Auto flight 100 12.40
09141551 RGB Afternoon 752 3840×2160 Complex building Auto flight 100 10.80
09141551 Event Afternoon 752 1280×720 Complex building Auto flight 100 23.80
09141605 RGB Afternoon 1066 3840×2160 Complex building Manual circle 80 15.90
09141605 Event Afternoon 1066 1280×720 Complex building Manual circle 80 56.30
09141759 RGB Dusk 1053 3840×2160 Complex building Auto flight 100 16.00
09141759 Event Dusk 1803 1280×720 Complex building Auto flight 100 104.00
09141816 RGB Dusk 750 3840×2160 Complex building Auto flight 100 10.90
09191513 RGB Afternoon 782 3840×2160 Low-rise building Manual circle 100 11.30
09191513 Event Afternoon 782 1280×720 Low-rise building Manual circle 100 22.80
09191530 RGB Afternoon 599 3840×2160 Medium-rise building Manual circle 100 8.76
09191530 Event Afternoon 599 1280×720 Medium-rise building Manual circle 100 24.10
09191543 RGB Afternoon 1053 3840×2160 High-rise building Manual circle 100 16.00
09191543 Event Afternoon 1208 1280×720 High-rise building Manual circle 100 52.20
09191601 RGB Afternoon 155 3840×2160 High-rise building Manual circle 100 2.08
0922 LiDAR - 6600 - All regions Auto flight 100 362.00

Total Duration & Size 28866s 2022.69GB
* RGB: 3840×2160@30fps H.265; Event: 1280×720 @ variable rate; LiDAR: Full area coverage

22



1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Figure 13: Video reconstruction with E2VID, E2VID+, FireNet, ET-Net, FireNet+, HyperE2VID, SPADE-
E2VID, and SSL-E2VID.

A.7 OTHER TASKS TO EXPLORE

Figure 13 shows the performance of existing event-to-video reconstruction methods E2VID (Rebecq et al.,
2019), E2VID+ (Stoffregen et al., 2020), FireNet (Scheerlinck et al., 2020), ET-Net (Weng et al., 2021),
FireNet+ (Stoffregen et al., 2020), HyperE2VID (Ercan et al., 2024), SPADE-E2VID (Cadena et al., 2021),
and SSL-E2VID (Paredes-Vallés & De Croon, 2021) when applied to our SkyEvents dataset.
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