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ABSTRACT

In conventional statistical learning settings, data points are typically assumed to
be independently and identically distributed (i.i.d.) according to some unknown
probability distribution. Various supervised learning algorithms, such as general-
ized linear models, are derived by making different assumptions about the con-
ditional distribution of the response variable given the independent variables. In
this paper, we propose an alternative formulation in which data points in a typical
supervised learning dataset are treated as interconnected, and we model the data
sampling process by a Markov reward process. Accordingly, we view the origi-
nal supervised learning problem as a classic on-policy policy evaluation problem
in reinforcement learning, and introduce a generalized temporal difference (TD)
learning algorithm to address it. Theoretically, we establish the convergence of
our generalized TD algorithms under linear function approximation. We then ex-
plore the relationship between TD’s solution and the original linear regression
solution. This connection suggests that the probability transition matrix does not
significantly impact optimal solutions in practice and hence can be easy to design.
In our empirical evaluations, we examine critical designs of our generalized TD
algorithm, and demonstrate the competitive generalization performance across a
variety of benchmark datasets, including regression, binary classification, and im-
age classification within a deep learning context.

1 INTRODUCTION

Conventional statistical supervised learning (SL) typically assumes that the dataset is drawn from
an unknown probability distribution. The primary objective in such scenarios is to learn the rela-
tionship between the features and the output (response) variable. To achieve this, generalized linear
models (Nelder & Wedderburn, 1972; McCullagh & Nelder, 1989) are considered a generic algorith-
mic framework employed to derive objective functions. These models make specific assumptions
regarding the conditional distribution of the response variable given input features, which can take
forms such as Gaussian (resulting in ordinary least squares), Poisson (resulting in Poisson regres-
sion), or multinomial (resulting in logistic regression or multiclass softmax cross-entropy loss).

In recent years, reinforcement learning (RL), widely utilized in interactive learning settings, has
witnessed a surge in popularity. This surge has attracted growing synergy between RL and SL, where
each approach complements the other in various ways. In SL-assisted RL, the area of imitation
learning (Hussein et al., 2017) may leverage expert data to regularize/speed up RL, while weakly
supervised methods (Lee et al., 2020) have been adopted to constrain RL task spaces, and relabeling
techniques contributed to goal-oriented policy learning (Ghosh et al., 2021).

Conversely, RL has also expanded its application into traditional SL domains. RL has proven ef-
fective in fine-tuning large language models (MacGlashan et al., 2017), aligning them with user
preferences. Additionally, RL algorithms (Gupta et al., 2021) have been tailored for training neu-
ral networks (NNs), treating individual network nodes as RL agents. In the realm of imbalanced
classification, RL-based control algorithms have been developed, where predictions correspond to
actions, rewards are based on heuristic correctness criteria, and episodes conclude upon incorrect
predictions within minority classes (Lin et al., 2020).

Existing approaches that propose a RL framework for solving supervised learning problems often
exhibit a heuristic nature. These approaches involve crafting specific formulations, including ele-
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ments like agents, reward functions, action spaces, and termination conditions, based on intuitive
reasoning tailored to particular tasks. Consequently, they lack generality, and their heuristic nature
leaves theoretical assumptions, connections between optimal RL and SL solutions, and convergence
properties unclear. To the best of our knowledge, it remains uncertain whether a unified and system-
atic RL formulation capable of modeling a wide range of conventional supervised learning problems
exists. Such a formulation should be agnostic to learning settings, including various tasks such as
ordinary least squares regression, Poisson regression, binary or multi-class classification, etc. The
potential benefit of using RL for predictions was first noted by Sutton (1988). They analyzed the cir-
cumstances under which a problem is better suited for solution by temporal difference (TD) learning
compared to SL when both are applicable.

In this study, we introduce a generic Markov process formulation for data generation, offering an al-
ternative to the conventional i.i.d. data assumption in SL. We also demonstrate the potential benefits
of using TD algorithms. Specifically, when faced with a supervised learning dataset, we view the
data points as originating from a Markov reward process (MRP) (Szepesvari, 2010). To accommo-
date a wide range of problems, such as Poisson regression, binary or multi-class classification, we
introduce a generalized TD learning model in Section 3, whose convergence is given in Section 4
under linear function approximation. Additionally, we explore the relationship between the solu-
tions obtained through TD learning and the original linear regression, and establish an equivalence
between them under specific conditions, which renders the ease of designing the transition proba-
bility matrix. Our paper concludes with an empirical evaluation of our TD algorithm in Section 5,
assessing its critical design choices and practical utility when integrated with a deep neural network
across various tasks, achieving competitive results and, in some cases, improvements in generaliza-
tion performance. We view our work as a step towards unifying diverse learning tasks from two
pivotal domains within a single, coherent theoretical framework.

2 BACKGROUND

This section provides a brief overview of the fundamental concepts in statistical supervised learning
and reinforcement learning settings, laying the groundwork for the introduction of our formulation
and algorithm in the next section.

2.1 CONVENTIONAL SUPERVISED LEARNING

In the context of statistical learning, we make the assumption that data points, in the form of
(x, y) ∈ X × Y , are independently and identically distributed (i.i.d.) according to some unknown
probability distribution P . The goal is to find the relationship between the feature/input x and re-
sponse/output/label variable y given a training dataset D = {(xi, yi)}ni=1.

In a simple linear function approximation case, a commonly seen algorithm is ordinary least squares
(OLS) that optimizes squared error objective function

min
w
||Xw − y||22. (1)

where X is the n× d feature matrix and y is the corresponding n-dimensional training label vector,
and the w is the parameter vector we aim to optimize.

From a probabilistic perspective, this objective function can be derived by assuming p(y|x) follows
a Gaussian distribution with mean x⊤w and conducting maximum likelihood estimation (MLE)
for w with the training dataset. It is well known that E[Y |x] is the optimal predictor (Bishop,
2006). For many other choices of distribution p(y|x), generalized linear models (GLMs) (Nelder
& Wedderburn, 1972) are commonly employed for estimating E[Y |x]. This includes OLS, Poisson
regression and logistic regression, etc.

An important concept in GLMs is the inverse link function, which we denoted as f , that establishes
a connection between the linear prediction (also called the logit), and the conditional expectation:
E[Y |x] = f(x⊤w). For example, in logistic regression, the inverse link function is the sigmoid
function. We later propose generalized TD learning models within the framework of RL that corre-
spond to GLMs, enabling us to handle a wide range of data.
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SL Definitions RL Definitions
Feature matrix X Feature matrix X

Training feature of the ith example xi The ith state feature ϕ(si) = xi

Training target of the ith example yi The state value v(si) = yi

Table 1: How definitions in SL correspond to those in RL

2.2 REINFORCEMENT LEARNING

Reinforcement learning is often formulated within the Markov decision process (MDP) framework.
An MDP can be represented as a tuple (S,A, r, P, γ) (Puterman, 2014), where S is the state space,A
is the action space, r : S×A 7→ R is the reward function, P (·|s, a) defines the transition probability,
and γ ∈ (0, 1] is the discount factor. Given a policy π : S × A → [0, 1], the return at time step t is
Gt =

∑∞
i=0 γ

ir(St+i, At+i), and value of a state s ∈ S is the expected return starting from that state
vπ(s) = Eπ[Gt|St = s]. In this work, we focus on the policy evaluation problem for a fixed policy,
thus the MDP can be reduced to a Markov reward process (MRP) (Szepesvari, 2010) described by
(S, rπ, Pπ, γ) where rπ(s)

def
=
∑

a π(a|s)r(s, a) and Pπ(s′|s) def
=
∑

a π(a|s)P (s′|s, a). When it is
clear from the context, we will slightly abuse notations and ignore the superscript π.

In policy evaluation problem, the objective is to estimate the state value function of a fixed policy π
by using the trajectory s0, r1, s1, r2, s2, ... generated from π. Under linear function approximation,
the value function is approximated by a parametrized function v(s) ≈ ϕ(s)⊤w with parameters w
and some fixed feature mapping ϕ : S 7→ Rd where d is the feature dimension. Note that the state
value satisfies the Bellman equation

v(s) = r(s) + γES′∼P (·|s)[v(S
′)]. (2)

One fundamental approach for the evaluation problem is the temporal difference (TD) learning,
which uses a sampled transition st, rt+1, st+1 to update the parameters w through stochastic fixed
point iteration based on (2) with a step-size α > 0:

w← w + α(yt,td − ϕ(st)
⊤w)ϕ(st) where yt,td

def
= rt+1 + γϕ(st+1)

⊤w. (3)

In linear function approximation setting, TD converges to the solution that solves the system Aw =
b (Bradtke & Barto, 1996; Tsitsiklis & Van Roy, 1997), where

A = E[ϕ(st)(ϕ(st)− γϕ(st))
⊤] = X⊤D(I− γP)X and b = E[rtϕ(st)] = X⊤Dr (4)

with X ∈ R|S|×d being the feature matrix whose rows are the state features ϕ(st), D ∈ R|S|×|S|

being the diagonal matrix with the stationary distribution probabilities on the diagonal, P ∈ R|S|×|S|

being the transition probability matrix (i.e., Pij = P (sj |si)) and r ∈ R|S| being the reward vector.

3 GENERALIZED TEMPORAL DIFFERENCE LEARNING

This section describes our MRP construction given a supervised learning dataset D = {(xi, yi)}ni=1
and proposes our generalized TD learning algorithm to solve it.

Regression. We start by considering the basic regression setting with linear models before introduc-
ing our generalized TD algorithm. Table 1 summarizes how we can view concepts in the conven-
tional supervised learning from an RL perspective. The key is to treat the original training label as a
state value that we are trying to learn, and then the reward function can be derived from the Bellman
equation (2) as

r(s) = v(s)− γES′∼P (·|s)[v(S
′)]. (5)

We will discuss the choice of P later. At each iteration (or time step in RL), the reward can be
approximated using a stochastic example. For instance, assume that at iteration t (i.e., time step in
RL), we obtain an example (x

(t)
i , y

(t)
i ). We use superscripts and subscripts to denote that the ith

training example is sampled at the tth time step. Then the next example (x
(t+1)
j , y

(t+1)
j ) is sampled

according to P (·|x(t)
i ) and the reward can be estimated as r(t+1) = y

(t)
i −γy

(t+1)
j by approximating

the expectation in Eq. (5) with a stochastic example. As one might notice that, in a sequential setting
the t is monotonically increasing, hence we will simply use a simplified notation (xt, yt) to denote
the training example sampled at time step t.
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We now summarize and compare the updating rules in conventional SL and in our TD algorithm
under linear function approximation. At time step t, the conventional updating rule based on
stochastic gradient descent (SGD) is given by

w← w + α(yt − x⊤
t w)xt, (6)

while our TD updating rule is

w← w + α(yt,td − x⊤
t w)xt (7)

where yt,td
def
= rt+1 + γŷt+1 = yt − γyt+1 + γx⊤

t+1w (8)

and xt+1 ∼ P (·|xt) with ground-truth label yt+1. The critical difference is that TD uses a bootstrap,
so it does not cancel the γyt+1 term from the reward when computing the TD training target yt,td.
By setting γ = 0, one recovers the original supervised learning updating rule (6).

Generalized TD: An extension to general learning tasks. A natural question regarding TD is how
to extend it to different types of data, such as those with counting, binary, or multiclass labels. TD
is not derived by making probabilistic assumptions about the value conditioned on a state. A naı̈ve
solution would be to treat all labels in the same manner as described above. However, this approach
lacks justification and does not perform well empirically, as demonstrated in Section 5.

Recall that in generalized linear models (GLMs), it is assumed that the output variable y ∈ Y follows
an exponential family distribution. In addition, there exists an inverse link function f that maps a
linear prediction z

def
= w⊤x to the output/label space Y (i.e., f(z) ∈ Y,∀z ∈ R). Examples of GLMs

include linear regression (where y follows a normal/Gaussian distribution, f is the identity function
and the loss is the squared loss) and logistic regression (where y is Bernoulli, f is the sigmoid
function and the loss is the log loss). More generally, the output may be in higher dimensional space
and both z and y will be vectors instead of scalars. As an example, multinomial regression uses the
softmax function f to convert a vector z to another vector y in the probability simplex. Interested
readers can refer to Banerjee et al. (2005); Helmbold et al. (1999); McCullagh & Nelder (1989,
Table 2.1) for more details. As per convention, we refer to the variable z as logit.

The significance of the logit z is that it is naturally additive, which mirrors the additive nature of
returns (cumulative sum of rewards) in RL. It also implies that one can add two linear predictions
and the resultant z = z1+z2 can still be transformed to a valid output f(z) ∈ Y . In contrast, adding
two labels does not necessarily produce a valid label y1+y2 /∈ Y . Therefore, the idea is to construct
a bootstrapped target in the real line (logit space, or z-space)

zt,td
def
= rt+1 + γẑt+1 = (zt − γzt+1) + γx⊤

t+1w

and then convert back to the original label space to get the TD target yt,td = f(zt,td). In multiclass
classification problems, we often use a one-hot vector to represent the original training target. For
instance, in the case of MNIST, the target is a ten-dimensional one-hot vector. Consequently, the
reward becomes a vector, with each component corresponding to a class. This can be interpreted as
evaluating the policy under ten different reward functions in parallel and selecting the highest value
for prediction.

Algorithm 1 provides the pseudo-code of our algorithm. At time step t, the process begins by
sampling the state xt, and then we sample the next state according to the predefined P . The reward
is computed as the difference in logits after converting the original labels yt, yt+1 into the logit space
with the link function. Subsequently TD bootstrap target is constructed in the logit space. Finally,
the TD target is transformed back to the original label space before it is used to calculate the loss.
Note that in standard regression is a special case where the (inverse) link function is simply the
identity function, so it reduces to the standard update (6) with squared loss. In practice, we might
need some smoothing parameter when the function f−1 goes to infinity. For example, in binary
classification, Y = {0, 1} and the corresponding logits are z = −∞ and z = ∞. To avoid this, we
subtract/add some small value to the label before applying f−1.

4 THEORETICAL JUSTIFICATIONS

In this section, we present convergence proofs for our generalized TD algorithm (Algorithm 1) under
both the expected updating rule and the sample-based updating rule. We also explore the relationship
between the solutions obtained by our algorithm and conventional linear regression. Detailed proofs
are provided in the Appendix A.
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Algorithm 1 Generalized TD for SL
Input: A dataset D; randomly sample a data point (xt, yt) ∈ D as the starting point. (One can also use
mini-batch starting points in NNs.)
for t = 1, 2, . . . do

Sample xt+1 according to predefined P (·|xt), let yt+1 be its label
rt+1 = f−1(yt)− γf−1(yt+1) // Convert to logits and compute reward
zt,td = rt+1 + γx⊤

t+1w // Bootstrap target, a separate target network is needed in deep NNs
w← w − α∇l(f(zt,td), yt) // Convert the logit back to original label space
// When using linear models, the update is w← w − α(yt − f(zt,td))xt

4.1 CONVERGENCE

Here we show the finite-time convergence when using our TD(0) updates with linear function ap-
proximation. We primarily follow the convergence framework presented in Bhandari et al. (2018),
making nontrivial adaptations due to the presence of the inverse link function. Let z(s) = ϕ(s)⊤w,
or z = ϕ⊤w for conciseness.
Assumption 1 (Feature regularity). ∀s ∈ S, ∥ϕ(s)∥2 ≤ 1 and the steady-state covariance matrix
Σ

def
= D(s)ϕ(s)ϕ(s)⊤ has full rank.

It is natural to consider the existence of a stationary point before demonstrating convergence. As-
sumption 1 is a typical assumption necessary for the existence of the fixed point w∗ when there is
no transform function (Tsitsiklis & Van Roy, 1997).
Assumption 2. The inverse link function f is continuous, invertible and strictly increasing in its
domain.

Assumption 2 is satisfied for those inverse link functions commonly used in GLMs, including but not
limit to identity function (linear regression), exponential function (Poisson regression), and sigmoid
function (logistic regression) (McCullagh & Nelder, 1989).

Remark. These two assumptions ensure that w∗ is also the fixed point in our setting. Then we can
consider a bounded domainW such that w∗ ∈ W , and the following lemma holds.
Lemma 1. Under Assumption 1 and w ∈ W , there exists L ≥ 1 such that ∀s1, s2 ∈ S with
z1 = ϕ(s1)

⊤w, z2 = ϕ(s2)
⊤w
1

L
|z1 − z2| ≤ |f(z1)− f(z2)| ≤ L|z1 − z2|. (9)

This is due to f being invertible and both the features and the parameters are bounded. The next
assumption is necessary later to ensure that the step size is positive.
Assumption 3 (Bounded discount). The discount factor satisfies γ < 1

L2 for the L in Lemma 1.

Convergence under expected update. The expected update rule is given by

wt+1 = wt + αg(wt) with g(wt)
def
= E[(ytd − y)ϕ] (10)

where y
def
= f(z), ytd

def
= f(ztd) = f(r + γϕ′⊤wt) and ϕ′ def

= ϕ(s′) for short.

One can expand the distance from wt+1 to w∗ as
∥w∗ −wt+1∥22 = ∥w∗ −wt∥22 − 2α(w∗ −wt)

⊤g(wt) + α2∥g(wt)∥22 (11)
The common strategy is to make sure that the second term can outweigh the third term on the RHS
so that wt+1 can get closer to w∗ than wt in each iteration. This can be achieved by choosing an
appropriate step size as shown below:
Theorem 1. [Convergence with Expected Update] Under Assumption 1-3, consider the sequence
(w0,w1, · · · ) satisfying Eq. (10). Let wT

def
= 1

T

∑T−1
t=0 wt, zT = ϕ⊤wT and z∗ = ϕ⊤w∗. By

choosing α = 1−γL2

4L3 > 0, we have

E
[
(z∗ − zT )

2] ≤ ( 2L2

1− γL2

)2 ∥w∗ −w0∥22
T

(12)

∥w∗ −wT ∥22 ≤ exp

(
−Tω

(
1− γL2

2L2

)2
)
∥w∗ −w0∥22 (13)
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Eq. (12) shows that in expectation, the average prediction converges to the true value in the z-space,
while Eq. (13) shows that the last iterate converges to the fixed point exponentially fast when using
expected update. In practice, sample-based update is preferred and we discuss its convergence next.

Convergence under sample-based update. This subsection shows the convergence under i.i.d.
sample setting. Suppose st is sampled from the stationary distribution D(s) and st+1 ∼ P (·|st).
For conciseness, let ϕt

def
= ϕ(st) and ϕt+1

def
= ϕ(st+1). Then the sample-based update rule is

wt+1 = wt + αtgt(wt) with gt(wt)
def
= (yt,td − yt)ϕt (14)

where yt
def
= f(zt) = f(ϕ⊤

t wt) and yt,td
def
= f(zt,td) = f(rt+1 + γϕ⊤

t+1wt).

To account for the randomness, let σ2 def
= E[∥gt(w∗)∥22], the variance of the TD update at the fixed

point w∗ under the stationary distribution. The following theorem shows the convergence when
using i.i.d. sample for the update:
Theorem 2. [Convergence with Sampled-based Update] Under Assumption 1-3, with sample-based
update Eq. (14) and σ2 = E[∥gt(w∗)∥22]. Let wT

def
= 1

T

∑T−1
t=0 wt, zT = ϕ⊤wT and z∗ = ϕ⊤w∗.

For T ≥ 64L6

(1−γL2)2 and a constant step size αt = 1/
√
T ,∀t, we have

E
[
(z∗ − zT )

2] ≤ L
(
∥w∗ −w0∥22 + 2σ2

)
√
T (1− γL2)

. (15)

This shows that the generalized TD update converges even when using sample-based update. Not
surprisingly, it is slower than using the expected update (12) in terms of the number of iterations T .

4.2 MIN-NORM SOLUTION EQUIVALENCE

This subsection provides sufficient condition for the equivalence between the minimum norm solu-
tions of TD and OLS:

wTD = A†b wLS = X†y (16)

using notations from Eq. (4). In our context, the reward is r = (I − γP)y. To simplify notations,
define S

def
= D(I− γP). Then

A = X⊤SX, b = X⊤Sy, wTD = A†b = (X⊤SX)† ·X⊤Sy (17)

Note that, it is evident that the OLS solution aligns with TD’s solution under our formulation: any
solution to the original system is also a solution to TD. To establish exact equivalence, we need the
following assumption:
Assumption 4. D has full support and X has linearly independent rows.

These conditions may be easily satisfied, for example, when the transition probability matrix P
is irreducible and in the over-parametrization regime. When D has full support, S is invertible
(thus has linearly independent rows/columns). Additionally, X has linearly independent rows so
(X⊤SX)† = X†S−1(X⊤)† (Greville, 1966, Thm.3) and the min-norm solution becomes

wTD = A†b = X†S−1(X⊤)†X⊤Sy (18)

Finally, when X has linearly independent rows, (X⊤)†X⊤ = In so wTD = X†y = wLS . It should
be noted that, the minimum norm property of TD’s solution under overparameterization regime is
not new, and has been discussed by Xiao et al. (2022).

Empirical verification. The above equivalence, despite its simplicity and intuitiveness, underscores
the ease of selecting a P. Table 2 illustrates the striking similarity between the closed-form solutions
of our linear TD method and standard OLS under various choices of the probability matrix by
using a synthetic dataset (details are in Appendix B.1). Two key observations emerge: 1) As the
feature dimension increases towards the overparameterization regime, both solutions become nearly
indistinguishable, implying that designing P may be straightforward when employing a powerful
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Transition
Dimension 70 90 110 130

Random 0.027 (± 0.01) 0.075 (± 0.02) ≤ 10−10
(± 0.00) ≤ 10−10

(± 0.00)

Uniform 0.026 (± 0.01) 0.074 (± 0.01) ≤ 10−10
(± 0.00) ≤ 10−10

(± 0.00)

Distance (Far) 0.028 (± 0.01) 0.075 (± 0.01) ≤ 10−10
(± 0.00) ≤ 10−10

(± 0.00)

Distance (Close) 0.182 (± 0.10) 0.249 (± 0.04) ≤ 10−10
(± 0.00) ≤ 10−10

(± 0.00)

Deficient 0.035 (± 0.01) 0.172 (± 0.04) 0.782 (± 0.18) 0.650 (± 0.25)

Table 2: Distance between closed-form min-norm solutions of TD(0) and LS ∥wTD −wLS∥2. Input matrix
X has normally distributed features with dimension d ∈ {70, 90, 110, 130}. Results are average over 10 runs
with standard error in bracket. Details can be found in Appendix B.1.

model like NN. 2) Deficient choices for P with non-full support can pose issues and should be
avoided. In practice, deep learning settings are prevalent for real-world problems, making it feasible
to opt for a computationally and memory-efficient P, such as a uniform constant matrix where every
entry is set to 1/n. Such a matrix is ergodic and, therefore, not deficient. We will delve deeper into
the selection of P in the next section. In practice, we have observed that the solution of TD is nearly
identical to that of the OLS even when the sufficient conditions do not hold. Detailed results on
real-world datasets can be found in Table 7 of Appendix B.2.

5 EMPIRICAL STUDIES

This section focuses on the following aspects: 1) Investigating the effectiveness of critical compo-
nents of our algorithm, including the bootstrap, transition probability, and the inverse link function;
2) Analyzing the sensitivity of hyperparameters in our algorithm; 3) Assessing the practical utility
when applied with relatively larger NNs. Details for reproducible research and additional results can
be found in Appendix B.2.

Setup overview. We use fully connected NN for regression and binary classification tasks and
use CNNs for image tasks. For regression with real targets, we adopt three datasets: house (Lich-
man, 2015), CTPOS (Graf et al., 2011) and execution time (Paredes & Ballester-Ripoll, 2018).
For Poisson regression, we use Bikeshare data (Fanaee-T & Gama, 2013), where the target vari-
able represents bike rental counts. For binary classification, we employ Australian weather (Joe
Young , Owner), Cancer (Wolberg et al., 1995) and travel insurance (Company, 2021). These rel-
atively small datasets allow for thorough performance evaluation. For image classification, we use
the popular MNIST (LeCun et al., 2010), Fashion-MNIST (Xiao et al., 2017), Cifar10 and Ci-
far100 (Krizhevsky, 2009) datasets. In TD algorithms, unless otherwise specified, we use a fixed
transition probability matrix with all entries set to 1/n. This choice simplifies memory management,
generation, and sampling processes.

Baselines and naming rules. Unless otherwise specified, the following baselines and naming con-
ventions apply. TDReg: Used for continuous target values, with its direct competitor being Reg
(conventional least square regression). Reg-WP: Utilizes the same probability transition matrix as
TDReg but does not employ bootstrap targets. This baseline can be used to assess the effect of
bootstrap and transition probability matrix. TDPoisson: Designed for handling counting data, con-
trasting with the vanilla Poisson regression. To evaluate the necessity of using the inverse link
function f , we introduce the baseline with the suffix -WOF (without the function f ).

The effect of bootstrap. In this set of experiments, we aim to examine the effect of bootstrap. To
do so, we focus on comparing TDReg and Reg-WP, as the bootstrap is the only distinction between
them in the context of regression datasets. We design experiments where we introduce zero-mean
Gaussian noise with increasing variance to the training targets while leaving the test data untouched.
Table 3 shows across most datasets, TD demonstrates a mild improvement in test error. As the
noise increases, the benefits of TD become more evident. Intuitively, the usage of bootstrap may
prevent the model from overfitting to the original training targets in the datasets. To gain further
insights, we visualize the learning curves in Figure 1. Figure 1(d) illustrates that TD exhibits only
mild overfitting behavior compared to the baselines during the early stages of learning.

The hyperparameter sensitivity. In deep learning, TD algorithms can pose challenges due to the
interplay of two additional hyperparameters: the discount rate γ and the target NN moving rate
τ (Mnih et al., 2015). Optimizing these hyperparameters can often be computationally expensive.
Therefore, we investigate their impact on performance by varying γ, τ . We find that selecting appro-
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Figure 1: These learning curves represent the performance across different standard deviations σ of Gaussian
noise on the CTPOS dataset. The noise is only added to the training data, and the test root mean square error
(RMSE) is plotted as a function of the number of mini-batch updates. The rightmost figure uses a smaller
learning rate. The results have been smoothed using a 5-point window before averaging over 5 runs.

CTPOS
TD-Reg Reg-WP Reg

1.9230± 0.1146 2.0573± 0.0813 2.0148± 0.1334
2.9717± 0.0708 3.4708± 0.1111 3.5696± 0.0714
9.0226± 0.0607 9.8214± 0.0851 9.8328± 0.0407

house
TD-Reg Reg-WP Reg

3.3843± 0.2142 3.3553± 0.2269 3.3193± 0.1630
4.3256± 0.2345 4.7508± 0.2452 4.7551± 0.2797
10.7322± 0.2835 11.9900± 0.5564 12.1484± 0.4733

Bikeshare
TD-Poisson Poisson-WP Poisson

40.6562± 0.7763 40.9044± 0.3671 40.4971± 0.4546
40.9761± 0.2627 43.9063± 0.4340 43.9376± 0.4436
42.7952± 0.2095 44.8175± 0.4478 44.7051± 0.4201

Table 3: Test root mean squared error (RMSE) with standard error. Each table comprises three rows, with
increasing variance of Gaussian noise (σ2 ∈ {0, 2.5, 10}) added to the training target to observe overfitting.
The results have been smoothed using a 5-point window before averaging over 5 runs.

priate parameters tends to be relatively straightforward. Figure 2 displays the testing performance
across various parameter settings. It is evident that performance does not vary significantly across
settings, indicating that only one hyperparameter or a very small range of hyperparameters needs to
be considered during the hyperparameter sweep.

The impact of transition probability matrix P. Figure 2 illustrates the sensitivity analysis when
employing three intuitive types of transition matrices: P (x′|x) is larger when the two points x,x′

are 1) similar (denoted as Ps); 2) far apart (Pf ); 3) P (x′|x) = 1/n,∀x,x′ ∈ X (Pc). The rationale
for choosing these three options is as follows: the first two may lead to a reduction in the variance
of the bootstrap estimate if two consecutive points are positively or negatively correlated. The last
choice is consistently used due to its computational and memory efficiency and its natural simplicity.
To expedite computations, Ps, Pf are computed based on the training targets instead of the features.
The resulting matrix may not be a valid stochastic matrix, we use DSM projection (Wang et al.,
2010) to turn it into a valid one. We refer readers to Appendix B.3 for details.

Since our results in Table 2 and Figure 2 indicate that P does not significantly impact regular regres-
sion, we conducted experiments on binary classification tasks and observed their particular utility
when dealing with imbalanced labels. We define Ps by defining the probability of transitioning
to the same class as 0.9 and to the other class as 0.1. Table 4 presents the reweighted balanced
results for two binary classification datasets with class imbalance. It is worth noting that in such
cases, Classify-WP serves as both 1) no bootstrap baseline and 2) the upsampling techniques for
addressing class imbalance in the literature (Kubát & Matwin, 1997).

Observing that TD-Classify and Classify-WP yield nearly identical results and Classify (without
using TD’s sampling) is significantly worse, suggesting that the benefit of TD arises from the sam-
pling distribution rather than the bootstrap estimate in the imbalanced case. Furthermore, Pf , Ps

yield almost the same results in this scenario since they provide the same stationary distribution
(equal weight to each class), so here Classify-WP represents both. We also conducted tests using
Pc, which yielded results that are almost the same as Classify, and have been omitted from the
table. In conclusion, the performance difference of TD in the imbalanced case arises from the tran-
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Figure 2: Sensitivity to hyperparameter settings. We show test RMSE with error bars while sweeping over
discount rate γ ∈ {0.1, 0.2, 0.4, 0.9}, target NN moving rate τ ∈ {0.001, 0.01, 0.1, 0.2, 0.4, 0.9}, and three
types of transition probability. γ significantly hurts only when it goes to the largest value on bikeshare, and
it is likely because the exponential term in Poisson regression needs a unusally small learning rate. When
generating curves for τ and γ, we maintain Ptype as a simple uniform constant, further indicating that sweeping
over this hyperparameter is unnecessary.

sition probability matrix rather than the bootstrap target. The transition matrix’s impact is due to the
implied difference in the stationary distribution.

Dataset
Algs TD-Classify Classify-WP Classify TD-WOF

Insurance 0.0073± 0.0001 0.0073± 0.0001 0.0144± 0.0003 0.4994± 0.0005
Weather 0.0695± 0.0008 0.0701± 0.0008 0.0913± 0.0010 0.4965± 0.0031
Cancer 0.0231± 0.0023 0.0241± 0.0021 0.0244± 0.0034 0.4883± 0.0105

Table 4: Binary classification with imbalance. 0.0073 means 0.73% misclassification rate, or 1 − 0.73% =
99.27% accuracy. The results are smoothed over 5 evaluations before averaging over 5 random seeds.
The usage of inverse link function. The results of TD on classification without using a transforma-
tion are presented in Table 4 and are marked by the suffix ’WOF.’ These results are not surprising,
as the bootstrap estimate can potentially disrupt the TD target entirely. Consider a simple example
where a training example x has a label of one and transitions to another example, also labeled one.
Then the reward (r = y−γy′) will be 1−γ. If the bootstrap estimate is negative, the TD target might
become close to zero or even negative, contradicting the original training label of one significantly.

Image dataset. For image datasets, we employed a convolutional neural network (CNN) architec-
ture consisting of three convolution layers with the number of kernels 32, 64, and 64, each with a
filter size of 2× 2. This was followed by two fully connected hidden layers with 256 and 128 units,
respectively, before the final output layer. The error rates are presented in Table 5. Our TD algorithm
demonstrated competitive performance when compared to the classical approach.

Dataset
Algs TD-Classify Classify-WP Classify

mnist 0.0094± 0.0002 0.0103± 0.0006 0.0100± 0.0005
mnistfashion 0.1090± 0.0006 0.1074± 0.0013 0.1104± 0.0001

cifar10 0.3258± 0.0015 0.3289± 0.0041 0.3287± 0.0006
cifar100 0.6845± 0.0015 0.6874± 0.0043 0.6879± 0.0037

Table 5: Image classification test error. 0.0094 means 0.94% misclassifications, or 1 − 0.94% = 99.06%
accuracy. The results are smoothed over 10 evaluations before averaging over 3 random seeds.

6 CONCLUSION

This paper presents a general formulation that converts classic SL problems into RL problems, em-
ploying a generalized TD algorithm for solving them. We establish the algorithm’s convergence
properties and delve into practical aspects, including transition matrix design, the impact of boot-
strap, hyperparameter sensitivity, and its utility in image classification tasks.

Future work and limitations. Our work does not conclusively explain the generalization benefits
of using TD in deep learning settings. Furthermore, our current focus has primarily been on stan-
dard learning scenarios, with only a limited set of experiments in the imbalance scenario. It would
be more intriguing to explore the utility of the probability transition matrix in a broader context,
such as continual learning settings characterized by distribution shifts over time. Lastly, extending
our approach to test its effectiveness with more modern NNs, such as transformers, could be of
significant interest to a broader community.
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A PROOFS

A.1 CONVERGENCE UNDER EXPECTED UPDATE

The convergence proofs resemble those in Bhandari et al. (2018), adapted to handle our specific case
with a transformation function f .

As mentioned in the main text, the strategy is to bound the second and third terms of the RHS of
Eq. (11). Denote y∗ = f(z∗) = f(ϕ⊤w∗) and y∗td = f(z∗td) = f(r + ϕ′⊤w∗). The next two
lemmas bound the second and third terms respectively.
Lemma 2. For w ∈ W , (w∗ −w)⊤g(w) ≥

(
1
L − γL

)
· E
[
(z∗ − z)2

]
Proof. Note that

(w∗ −w)⊤g(w) = (w∗ −w)⊤[g(w)− g(w∗)] (19)

= (w∗ −w)⊤E[ [(ytd − y)− (y∗td − y∗)]ϕ ] (20)
= E[ (z∗ − z) · [(y∗ − y)− (y∗td − ytd)] ] (21)

By Lemma 1 and using the assumption that f is strictly increasing, we have (z∗ − z)(y∗ − y) ≥
1
L (z

∗ − z)2. Moreover, the function z 7→ f(r+ γPz) is (γL)-Lipschitz so

E [ (z∗ − z)(y∗td − ytd) ] ≤ γL · E[(z∗ − z)2]. (22)

Plug these two to Eq. (21) completes the proof.

Lemma 3. For w ∈ W , ∥g(w)∥2 ≤ 2L
√
E [(z∗ − z)2]

Proof. To start

∥g(w)∥2 = ∥g(w)− g(w∗)∥2 (23)
= ∥E[ [(ytd − y)− (y∗td − y∗)]ϕ ]∥2 (24)

≤
√
E[∥ϕ∥22]

√
E [[(ytd − y)− (y∗td − y∗)]2] Cauchy-Schwartz (25)

≤
√
E [[(y∗ − y)− (y∗td − ytd)]2] Assumption 1 (26)

Let δ def
= y∗ − y and δtd

def
= y∗td − ytd, then

E
[
(δ − δtd)

2
]
= E[δ2] + E[δ2td]− 2E[δδtd] (27)

≤ E[δ2] + E[δ2td] + 2|E[δδtd]| (28)

≤ E[δ2] + E[δ2td] + 2
√
E[δ2]E[δ2td] Cauchy-Schwartz (29)

=

(√
E[δ2] +

√
E[δ2td]

)2

(30)

As a result,

∥g(w)∥2 ≤
√

E [(y∗ − y)2] +
√

E [(y∗td − ytd)2] (31)

≤ L

{√
E [(z∗ − z)2] +

√
E [(z∗td − ztd)2]

}
(32)

Finally, note that

E
[
(z∗td − ztd)

2
]
= E

[
[(r + γϕ′⊤w∗)− (r + γϕ′⊤w)]2

]
(33)

= γ2E
[
(ϕ′⊤w∗ − ϕ′⊤w)2

]
(34)

= γ2E
[
(z∗ − z)2

]
(35)

where the last line is because both s, s′ are assumed to be from the stationary distribution. Plugging
this to Eq. (32) and use the fact that γ ≤ 1 complete the proof.
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Now we are ready to prove the main theorem:

Theorem 1. [Convergence with Expected Update] Under Assumption 1-3, consider the sequence
(w0,w1, · · · ) satisfying Eq. (10). Let wT

def
= 1

T

∑T−1
t=0 wt, zT = ϕ⊤wT and z∗ = ϕ⊤w∗. By

choosing α = 1−γL2

4L3 > 0, we have

E
[
(z∗ − zT )

2] ≤ ( 2L2

1− γL2

)2 ∥w∗ −w0∥22
T

(12)

∥w∗ −wT ∥22 ≤ exp

(
−Tω

(
1− γL2

2L2

)2
)
∥w∗ −w0∥22 (13)

Proof. With probability 1, for any t ∈ N0

∥w∗ −wt+1∥22 = ∥w∗ −wt∥22 − 2α(w∗ −wt)
⊤g(wt) + α2∥g(wt)∥22 (36)

≤ ∥w∗ −wt∥22 −
(
2α

(
1

L
− γL

)
− 4L2α2

)
E
[
(z∗ − zt)

2
]

(37)

where zt
def
= ϕ⊤wt. Using α = 1−γL2

4L3 > 0

∥w∗ −wt+1∥22 ≤ ∥w∗ −wt∥22 −
(
1− γL2

2L2

)2

E
[
(z∗ − zt)

2
]

(38)

Telescoping sum gives(
1− γL2

2L2

)2

×
T−1∑
t=0

E
[
(z∗ − zt)

2
]
≤

T−1∑
t=0

(∥w∗ −wt∥22 − ∥w∗ −wt+1∥22) ≤ ∥w∗ −w0∥22

(39)

By Jensen’s inequality

E
[
(z∗ − zT )

2
]
≤ 1

T

T−1∑
t=0

E
[
(z∗ − zt)

2
]
≤
(

2L2

1− γL2

)2 ∥w∗ −w0∥22
T

(40)

Finally since we assume that ∥ϕ(s)∥22 ≤ 1,∀s, we have E
[
(z∗ − zt)

2
]
≥ ω∥w∗ − wt∥22 where

ω is the maximum eigenvalue of the steady-state feature covariance matrix Σ = X⊤DX =∑
s D(s)ϕ(s)ϕ(s)⊤. Therefore, Eq. (38) leads to

∥w∗ −wt+1∥22 ≤

(
1− ω

(
1− γL2

2L2

)2
)
∥w∗ −wt∥22 (41)

≤ exp

(
−ω

(
1− γL2

2L2

)2
)
∥w∗ −wt∥22 ∀x ∈ R, 1− x ≤ e−x (42)

Repeatedly applying this bound gives Eq. (13).

A.2 CONVERGENCE UNDER SAMPLE-BASED UPDATE

To account for the randomness, let σ2 def
= E[∥gt(w∗)∥22], the variance of the TD update at the station-

ary point w∗ under the stationary distribution. Similar to Lemma 3, the following lemma bounds
the expected norm of the update:

Lemma 4. For w ∈ W , E[∥gt(w)∥22] ≤ 2σ2 + 8L2E[(z∗t − zt)
2] where σ2 = E[∥gt(w∗)∥22].
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Proof. To start
E[∥gt(w)∥22] = E[∥gt(w)− gt(w

∗) + gt(w
∗)∥22] (43)

≤ E[(∥gt(w∗)∥2 + ∥gt(w)− gt(w
∗)∥2)2] Triangle inequality (44)

≤ 2E[(∥gt(w∗)∥22] + 2E[∥gt(w)− gt(w
∗)∥22] (a+ b)2 ≤ 2a2 + 2b2 (45)

≤ 2σ2 + 2E
[
∥[(yt,td − yt)− (y∗t,td − y∗t )]ϕt∥22

]
(46)

≤ 2σ2 + 2E
[
((yt,td − yt)− (y∗t,td − y∗t ))

2
]

Assumption 1 (47)

= 2σ2 + 2E
[
((y∗t − yt)− (y∗t,td − yt,td))

2
]

(48)

≤ 2σ2 + 4
(
E[(y∗t − yt)

2] + E[(y∗t,td − yt,td)
2]
)

(a− b)2 ≤ 2a2 + 2b2 (49)

where y∗t
def
= f(z∗t ) = f(ϕ⊤

t w
∗) and y∗t,td

def
= f(z∗t,td) = f(rt + ϕ⊤

t+1w
∗). Note that by Lemma 1

E[(y∗t − yt)
2] + E[(y∗t,td − yt,td)

2] ≤ L2
{
E
[
(z∗t − zt)

2
]
+ E

[
(z∗t,td − zt,td)

2
]}

. (50)
Finally,

E
[
(z∗t,td − zt,td)

2
]
= E

[
[(rt + γϕ⊤

t+1w
∗)− (rt + γϕ⊤

t+1wt)]
2
]

(51)

= γ2E
[
(ϕ⊤

t+1w
∗ − ϕ⊤

t+1wt)
2
]

(52)

= γ2E
[
(z∗t − zt)

2
]

(53)
where the last line is because both st, st+1 are from the stationary distribution. Combining these
with Eq. (49) gives

E[∥gt(w)∥22] ≤ 2σ2 + 4L2(1 + γ2)E
[
(z∗t − zt)

2
]

(54)

≤ 2σ2 + 8L2E
[
(z∗t − zt)

2
]
. 0 ≤ γ ≤ 1 (55)

Now we are ready to present the convergence when using i.i.d. sample for the update:
Theorem 2. [Convergence with Sampled-based Update] Under Assumption 1-3, with sample-based
update Eq. (14) and σ2 = E[∥gt(w∗)∥22]. Let wT

def
= 1

T

∑T−1
t=0 wt, zT = ϕ⊤wT and z∗ = ϕ⊤w∗.

For T ≥ 64L6

(1−γL2)2 and a constant step size αt = 1/
√
T ,∀t, we have

E
[
(z∗ − zT )

2] ≤ L
(
∥w∗ −w0∥22 + 2σ2

)
√
T (1− γL2)

. (15)

Proof. Note that Lemma 2 holds for any w ∈ W and the expectation in g(w) = E[gt(w)] is
based on the sample (st, rt, st+1), regardless of the choice of w. Thus, one can choose w = wt

and then E[gt(wt)|wt] = g(wt). As a result, both Lemma 2 and Lemma 4 can be applied to
E[(w∗ −wt)

⊤gt(wt)|wt] and E[∥gt(wt)∥22|wt], respectively, in the following. For any t ∈ N0

E[∥w∗ −wt+1∥22] = E[∥w∗ −wt∥22]− 2αtE[(w∗ −wt)
⊤gt(wt)] + α2

tE[∥gt(wt)∥22] (56)

= E[∥w∗ −wt∥22]− 2αtE[E[(w∗ −wt)
⊤gt(wt)|wt]] + α2

tE[E[∥gt(wt)∥22|wt]]
(57)

≤ E[∥w∗ −wt∥22]−
(
2αt

(
1

L
− γL

)
− 8L2α2

t

)
E
[
(z∗ − zt)

2
]
+ 2α2

tσ
2

(58)

≤ E[∥w∗ −wt∥22]− αt

(
1

L
− γL

)
E
[
(z∗ − zt)

2
]
+ 2α2

tσ
2 (59)

where the last inequality is due to αt =
1√
T
≤ 1−γL2

8L3 . Then telescoping sum gives

1√
T

(
1

L
− γL

) T−1∑
t=0

E
[
(z∗ − zt)

2
]
≤ ∥w∗ −w0∥22 + 2σ2 (60)

⇐⇒
T−1∑
t=0

E
[
(z∗ − zt)

2
]
≤
√
TL

1− γL2

(
∥w∗ −w0∥22 + 2σ2

)
. (61)
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Finally, Jensen’s inequality completes the proof

E
[
(z∗ − zT )

2
]
≤ 1

T

T−1∑
t=0

E
[
(z∗ − zt)

2
]
≤

L
(
∥w∗ −w0∥22 + 2σ2

)
√
T (1− γL2)

. (62)

B EXPERIMENT DETAILS

This section describes details for reproducing all experiments in this paper, with additional results
that are not shown in the main body due to space limit.

B.1 VERIFYING MIN-NORM EQUIVALENCE

This subsection provides details of the empirical verification in Section 4.2.

Each element of the input matrix X is drawn from the standard normal distribution N (0, 1). This
(almost surely) gurantees that X has linearly independent rows in the overparametrization regime
(i.e., when n < d). The true model w∗ is set to be a vector of all ones. Each label yi is generated by
yi = x⊤

i w
∗ + ϵi with noise ϵi ∼ N (0, 0.12).

We test various transition matrices P as shown in Table 2. For Random, each element of P is
drawn from the uniform distribution U(0, 1) and then normalized so that each row sums to one. The
Deficient variant is exact the same as Random, except that the last column is set to all zeros
before row normalization. This ensures that the last state is never visited from any state, thus not
having full support in its stationary distribution. Uniform simply means every element of P is
set to 1/n where n = 100 is the number of training points. Distance (Close) assigns higher
transition probability to points closer to the current point, where the element in the ith row and the
jth column is first set to exp(−(yi − yj)

2/2) then the whole matrix is row-normalized. Finally,
Distance (Far) uses 1− exp(−(yi − yj)

2/2) before normalization. The last two variants are
used to see if similarity between points can play a role in the transition when using our TD algorithm.

As shown in Table 2, the min-norm solution wTD is very close to the min-norm solution of OLS as
long as n < d and D has full support (non-deficient P). The choice of P only has little effect in
such cases. This synthetic experiment verifies our analysis in the main text.

B.2 DETAILS FOR EXPERIMENT SECTION

Deep learning experiments are based on tensorflow (Abadi et al., 2015), version 2.11.0. Datasets
and Code for running our experiments will be published.

Dataset preparation. For the CTPOS data, we have selected a subset of 10k data points for ex-
periments to reduce training time. Regarding the Bikeshare dataset, we have performed one-hot
encoding for all categorical variables and removed intuitively less relevant features such as date and
year. This preprocessing results in 114 features.

Hyperparameter settings. For regression and binary classification tasks, we employ neural net-
works with two hidden layers of size 256x256 and ReLU activation functions. These networks
are trained with a mini-batch size of 128 using the Adam optimizer (Kingma & Ba, 2015). In our
TD algorithm, we perform hyperparameter sweeps for γ ∈ {0.1, 0.9}, target network moving rate
τ ∈ {0.01, 0.1}. For all algorithms we sweep learning rate α ∈ {0.0003, 0.001, 0.003, 0.01}, except
for cases where divergence occurs, such as in Poisson regression on the Bikeshare dataset, where
we additionally sweep {0.00003, 0.0001}. Training iterations are set to 15k for the house data, 25k
for Bikeshare, and 30k for other datasets. We perform random splits of each dataset into 60% for
training and 40% for testing for each random seed or independent run. Hyperparameters are opti-
mized over the final 25% of evaluations to avoid divergent settings. The reported results in the tables
represent the average of the final two evaluations after smoothing window.

Additional results. Results on execution time is in table B.2, again, with increasing variance (σ2 ∈
{0, 2.5, 10}) zero-mean Gaussian noise added to the training target from the first row to the last row.
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execution time
TD-Reg Reg-WP Reg

23.7634± 0.3825 23.7943± 0.3655 23.8700± 0.3603
23.6543± 0.3479 23.7634± 0.3448 23.8907± 0.3580
23.7981± 0.3661 23.9577± 0.3713 24.0420± 0.3562

Table 6: Testing RMSE on execution time dataset.
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0 10000 20000 3000030

40

50

60

70

80

90

100

RMSE
Averaged

Over
5runs

TDPoisson
Poisson
Poisson-WP

(b) bikeshare, σ2 = 2.5
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(c) bikeshare, σ2 = 10

Figure 3: Learning curves on bikeshare dataset. From left to right, the noise variance is increasing.

To gain a better understanding of how each algorithm operates, we provide additional learning curves
in Figures 3 and 4. There is no statistically significant difference among the algorithms on the
execution time dataset, as indicated in Table B.2, so we have omitted it. We observed that the
baselines tend to overfit rapidly when noise levels are high in the house dataset. As a sanity check,
we have included a fourth figure where the baselines use a learning rate that is 10 times smaller than
the chosen one. However, it’s worth noting that even with the reduced learning rate, overfitting still
occurs, albeit at a slower pace.

Linear function approximation result. We did not discuss the results on the regression datasets
under linear function approximation in the experiment section. This is because TD is nearly identical
to OLS, even when the assumption mentioned earlier does not hold. Table 7 presents the l2 norm
distance between our solution and a standard OLS solution on three real-world datasets. As we
explained in Section B.1, our linear TD method can be viewed as solving the left-sided sketched
system X⊤SXw = X⊤Sy. One conjecture is that such left-sided sketching essentially provides
a high-quality approximation to the original system. A separate study also observed that a left-
sided random projection could yield a solution that is highly similar to the original system Pan et al.
(2017).

Binary classification. On binary classification dataset, weather and insurance, the imbalance ratios
(proportion of zeros) are around 72.45%, 88.86% respectively. We set number of iterations to 20k
for both and it is sufficient to see convergence, as shown in Figure 5.

Additionally, in our TD algorithm, to prevent issues with inverse link functions, we add or subtract
1× 10−15 when applying them to values of 0 or 1 in classification tasks.

On those class-imbalanced datasets, when computing the reweighted testing error, we use the func-
tion from https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.balanced_accuracy_score.html.
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(b) House, σ2 = 2.5
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Figure 4: Learning curves on house dataset. From left to right, the noise variance is increasing. The
rightmost figure has the same noise as (c), with the baseline using a smaller learning rate.
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Dataset
Discount rate γ 0.1 0.9

House 4.6527e-12 5.6187e-12
CTPOS 7.8949e-10 2.7222e-10

Execution time 8.9901e-10 2.7222e-10

Table 7: Distance between closed-form min-norm solutions of TD(0) and LS ∥wTD − wLS∥2 on
real world datasets. We subsample at most 2k points to speed up computation.
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Figure 5: Learning curves of binary classification with imbalance: balanced testing error v.s. training
steps. The results have been smoothed using a 5-point window before averaging over 5 runs.

Image datasets. On all image datasets, Adam optimizer is used and the learning rate sweeps over
{0.003, 0.001, 0.0003}, γ ∈ {0.01, 0.1, 0.2}, τ ∈ {0.01, 0.1}. The neural network is trained with
mini-batch size 128.

B.3 ON THE IMPLEMENTATION OF P

As we mentioned in Section 5, to investigate the effect of transition matrix, we implemented three
types of transition matrices: P(x′|x) is larger when the two points x, x′ 1) are similar; 2) when they
are far apart; 3) P(x′|x) = 1/n,∀x,x′ ∈ X . We now describe the implementation details.

For first choice, given two points (x1, y1), (x2, y2), the formulae to calculate the similarity is:

k(y1, y2) = exp(−(y1 − y2)
2/v) + 0.1 (63)

where v is the variance of all training targets divided by training set size. The second choice is
simply 1− exp(−(y1 − y2)

2/v).

Note that the constructed matrix may not be a valid probability transition matrix. To turn it into a
valid stochastic matrix, we want: P itself must be row-normalized (i.e., P1 = 1). To ensure fair
comparison, we want equiprobable visitations for all nodes/points, that is, the stationary distribution
is assumed to be uniform: π = 1

n1.

The following proposition shows the necessary and sufficient conditions of the uniform stationary
distribution property:1

Proposition 3. π = 1
n1 is the stationary distribution of an ergodic P if and only if P is a doubly

stochastic matrix (DSM).

Proof. If: Note that

πj =
∑
i

πipij and 1 =
∑
i

pij (64)

1We found a statement on Wikipedia (https://en.wikipedia.org/wiki/Doubly_
stochastic_matrix), but we are not aware of any formal work that formally supports this. If
such support exists, please inform us, and we will cite it accordingly.
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Subtracting these two gives

1− πj =
∑
i

(1− πi)pij and
1− πj

n
=
∑
i

1− πi

n
pij .

This last equation indicates that
(
1−π1

n , 1−π2

n , · · · , 1−πn

n

)⊤
is also the stationary distribution of P.

Due to the uniqueness of the stationary distribution, we must have

1− πi

n
= πi

and thus πi =
1
n ,∀i.

Only if: Since π = 1
n1 is the stationary distribution of P, we have

1

n
1⊤P =

1

n
1⊤

and thus 1⊤P = 1⊤ showing that P is also column-normalized.

With linear function approximation,

A = X⊤D(I− γλP)−1(I− γP)X (65)

b = X⊤D(I− γλP)−1(I− γP)y (66)

A = X⊤D(I− γP)X (67)

b = X⊤D(I− γP)y (68)

where X ∈ Rn×d is the feature matrix, and D is uniform when P is a DSM.

As a result, we can apply a DSM (Wang et al., 2010) projection method to our similarity matrix.
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