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Abstract

Orientation-rich images, such as fingerprints and textures, often exhibit coherent
angular directional patterns that are challenging to model using standard generative
approaches based on isotropic Euclidean diffusion. Motivated by the role of phase
synchronization in biological systems, we propose a score-based generative model
built on periodic domains by leveraging stochastic Kuramoto dynamics in the dif-
fusion process. In neural and physical systems, Kuramoto models capture synchro-
nization phenomena across coupled oscillators – a behavior that we re-purpose here
as an inductive bias for structured image generation. In our framework, the forward
process performs synchronization among phase variables through globally or locally
coupled oscillator interactions and attraction to a global reference phase, gradually
collapsing the data into a low-entropy von Mises distribution. The reverse process
then performs desynchronization, generating diverse patterns by reversing the dy-
namics with a learned score function. This approach enables structured destruction
during forward diffusion and a hierarchical generation process that progressively
refines global coherence into fine-scale details. We implement wrapped Gaussian
transition kernels and periodicity-aware networks to account for the circular geom-
etry. Our method achieves competitive results on general image benchmarks and
significantly improves generation quality on orientation-dense datasets like finger-
prints and textures. Ultimately, this work demonstrates the promise of biologically
inspired synchronization dynamics as structured priors in generative modeling.
Code is available at:https://github.com/KingJamesSong/OrientationDiffusion.

1 Introduction

Synchronization phenomena, characterized by coordinated rhythmic activity across coupled oscilla-
tors, are ubiquitous in nature. Such patterns are fundamental in biological neural networks, where
synchronous neural firing supports critical cognitive functions including attention, sensory integration,
and memory [9]. Similarly, in physical and engineering systems, synchronization underpins the col-
lective behavior of coupled oscillatory circuits, chemical reactions, and mechanical structures [36, 62].
Central to understanding these phenomena is the Kuramoto model [36], a canonical framework arising
from nonlinear dynamics that elegantly describes how global coherence emerges spontaneously from
interactions among oscillatory units.

In this work, we explore how these principles of synchronized coherence can be harnessed to tackle a
persistent challenge in generative modeling for orientation-rich data, such as fingerprints, textures,
and directional fields. These data appear in numerous applications, including fingerprint generation
for biometric security [17], material characterization through crystal orientation analysis [43], and
fiber orientation modeling for improved medical diagnostics [47, 64]. The defining structures of these
data types are characterized primarily by the orientations of local features (i.e., piece-wise constant
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Figure 1: Governing stochastic differential equations (SDEs) and representative image samples from
our globally and locally coupled Kuramoto orientation diffusion models. Pixels are mapped onto
periodic domains as angular phase variables. In the globally coupled model, each pixel interacts
with all other pixels via Kuramoto sinusoidal coupling (highlighted in red). The locally coupled
variant corresponds to a similar SDE but restricts this sinusoidal coupling to a local neighborhood
around each pixel. Unlike standard diffusion models, our approach introduces non-isotropic noise
dynamics via pulling similar phases together, enabling a more structured destruction process. These
dynamics help preserve the global structure in the early stages of diffusion (e.g., the overall shape
of the bird), while allowing for faster adaptation to noise as the process progresses. The forward
SDE synchronizes phase variables through oscillator interactions and a global reference phase. The
reverse process desynchronizes these variables using learned score functions to synthesize images.

signals with sharp transitions) rather than by raw pixel intensities. Crucially, such orientation patterns
exist on periodic domains where angular discontinuities are problematic for conventional models
that do not explicitly account for periodicity. Early attempts to handle these issues date back to the
seminal work on orientation diffusions for image denoising [48], which highlighted how treating
angular data without considering its circular nature can lead to artifacts and loss of coherence. Those
findings underscore the need for specialized generative frameworks that explicitly account for the
periodic structure inherent in directional data.

In this paper, we introduce a novel nonlinear score-based generative framework that leverages
stochastic Kuramoto dynamics to operate directly on periodic domains. Synchronization offers a
powerful inductive bias here: it encourages local patterns and orientations to reinforce one another
– edges to align, ridges to remain coherent, and flows to stay smooth – before noise erodes these
features. In our framework, pixel values are first mapped to angular phase variables, which enables
natural compatibility with circular geometry and allows the diffusion process to evolve through
interactions among phase coupling. We present our governing SDEs and illustrative examples of
diffusion dynamics in Fig. 1. Our forward diffusion process performs structured destruction by
progressively synchronizing angular phase variables through phase coupling and attraction to a
common reference phase, driving the data distribution toward a low-entropy von Mises state. The
Kuramoto interactions induce non-isotropic dynamics by pulling similar phases together, helping
preserve local orientation and making the model particularly suitable for orientation-dense images.

The reverse generative process then performs desynchronization, leveraging learned periodic score
functions to gradually reintroduce variability and reconstruct the image. The generation thus follows
a hierarchical process, where the global structure is established first, and finer details are subsequently
introduced, following a coarse-to-fine paradigm. We also propose a locally coupled variant of the
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model that aligns with the spatial correlations of image data. Due to the coherence imposed by
synchronization, our model converges faster to the terminal distribution during the forward process,
which in turn enables the reverse process to generate high-quality samples within fewer diffusion
steps. To handle periodicity robustly, we employ periodicity-aware neural networks with sinusoidal
embeddings and define forward transitions using wrapped Gaussian kernels. The score function is
then estimated by sampling from these local transitions derived from the forward dynamics.

Experiments on orientation-rich datasets, such as fingerprints, textures, and terrains, demonstrate that
our Kuramoto orientation diffusion model consistently produces higher-fidelity images compared
to standard diffusion baselines, often requiring fewer diffusion steps. Furthermore, our method
remains competitive even on general CIFAR-10 benchmarks. Beyond images, we also report results
on Earth/climate datasets on the 2D sphere and on Navier–Stokes fluid velocity fields, where the
synchronization prior aligns with natural periodicity and angular structure, delivering consistent
gains. Overall, this work bridges neural oscillation theory and modern score-based generative models,
underscoring the potential of biologically inspired synchronization dynamics as structured priors.

2 Kuramoto Orientation Diffusion Models

2.1 Preliminary: Score-based Generative Models

In score-based generative models [3, 60], the forward and reverse processes of diffusion models are
formulated as a pair of coupled SDEs:

Forward-SDE: dx = f(x, t) dt+g(t) dw

Reverse-SDE: dx = [f(x, t)− g2(t) ∇x log p(x) ] dt+g(t) dw̄
(1)

where f(x, t) represents the vector-valued drift function, g(t) denotes the scalar function of the
diffusion coefficient, and w and w̄ are the standard Wiener processes. The boxed term represents the
score function, which corresponds to the gradient of the log-density. A neural network s(xt, t) is
trained to approximate the score function by minimizing the following objective:

L = Et∼U(1,T )Ex0Ext∼p(xt|x0)

[
g2(t)

∥∥∥s(xt, t)−∇xt log p(xt|x0)
∥∥∥2
2

]
(2)

Common choices for the forward SDE include the Variance-Preserving (VP) and Variance-Exploding
(VE) formulations [59, 60, 23]. Typically, the drift function is chosen to be linear, ensuring that the
conditional distribution p(xt|x0) remains analytically Gaussian and the corresponding score function
∇xt log p(xt|x0) can be computed in closed form.

2.2 Stochastic Kuramoto Models with Reference Phase

Fig. 2 illustrates the forward and reverse processes in our Kuramoto orientation diffusion model.
During the forward process (left-to-right), we progressively destroy image information through
synchronization, modeled by the following stochastic Kuramoto dynamics [36]:

dθit
dt

=
1

N

N∑
j=1

K(t) sin(θjt − θit) +Kref(t) sin(ψref − θit) +
√
2Dtξ

i (3)

where each colored circle represents an oscillator with periodic phase θit ∈ [−π, π], K(t) is the
time-varying coupling strength among oscillators, Kref(t) is the coupling strength to a reference
phase ψref, 2Dt denotes the variance of Gaussian noise, and N denotes the number of oscillators.
The white rectangle represents the global reference phase ψref, serving as an attractor to guide the
population of oscillators toward a synchronized target. To measure the level of synchronization, we
compute the complex ordering parameter:

r(t)eiψ(t) =
1

N

N∑
j=1

eiθ
j
t (4)

where ψ(t) ∈ [−π, π] denotes the mean phase, and r(t) ∈ [0, 1] measures the coherence of these
phases. They correspond to the angle and length of the arrow in Fig. 2, respectively. When r = 0,
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the system is completely desynchronized. When r = 1, the oscillators are perfectly synchronized.
For intermediate values 0 < r < 1, the system exhibits partial synchronization, where phases are
clustered around the mean phase ψ(t) with dispersion induced by noise.

Synchronization

Desynchronization

von Mises

-π π

Figure 2: Illustration of our Kuramoto orientation diffusion
model. In the forward process (left-to-right), angular phase
variables (colored circles) synchronize toward a low-entropy
von Mises distribution, guided by attraction to a reference
phase (white rectangle). The reverse process (right-to-left)
uses learned score functions to desynchronize these phases.

Phase Wrapping. After each Ku-
ramoto update step, we apply phase
wrapping to ensure that all phase
variables remain within the interval
[−π, π]. Specifically, the wrapping is
performed as θ = (θ+π) mod (2π)−
π where mod denotes the modulo oper-
ation. This guarantees that the period-
icity of the phase variables is consis-
tently maintained throughout the for-
ward process.

Quasi-equilibrium. In the thermo-
dynamic limit (N → ∞), the collec-
tive dynamics of the oscillator popu-
lation can be effectively described by
the mean-field evolution of a single representative oscillator with phase θ. The mean-field dynamics
of Eq. (3) follow the Fokker–Planck equation:

∂p(θ, t)

∂t
= − ∂

∂θ

[(
K(t)r(t) sin(ψ(t)− θ) +Kref(t) sin(ψref − θ)

)
p(θ, t)

]
+Dt

∂2p(θ, t)

∂θ2
(5)

In our framework, akin to standard diffusion models, the coupling strengths and noise variance
gradually increase over time. Consequently, the system does not reach a true stationary distribution.
Instead, after an initial transient phase, the evolution of p(θ, t) becomes sufficiently slow such that, at
each moment, the system can be approximated well by an instantaneous steady state – a regime we
refer to as quasi-equilibrium, characterized by ∂pst(θ)/∂t ≈ 0.

Under quasi-equilibrium, the phase distribution approximately satisfies:

pst(θ) ≈
1

Z
exp

(
K(T )r(T )

DT
cos(ψ(T )− θ) + Kref(T )

DT
cos(ψref − θ)

)
(6)

where Z is the normalization constant, and T denotes the final timestep. The proof is given in the
Appendix. In the long-time limit, as the average phase ψ(T ) synchronizes toward the reference phase
ψref, the distribution further simplifies to a well-known von Mises form (Gaussian on a circle):

von Mises Distribution: pst(θ) ≈
1

Z
exp

(
K(T )r(T ) +Kref(T )

DT
cos(ψref − θ)

)
(7)

Local Coupling. A natural variant of the Kuramoto model is to introduce local coupling, where each
oscillator interacts only with its neighboring oscillators:

dθit
dt

=
1

|Ni|
∑
j∈Ni

K(t) sin(θjt − θit) +Kref(t) sin(ψref − θit) +
√
2Dtξ

i
(8)

where Ni denotes the set of neighbors for the i-th oscillator. In contrast to the globally coupled case,
local interactions introduce spatial inhomogeneity and break the mean-field approximation. As a
result, the system exhibits diffusion-like behavior, with oscillatory phases progressively smoothing
out over space and time. This manifests as blurring effects during the forward process, analogous to
phenomena observed in heat dissipation models [51] and blurring diffusion models [24].

Interestingly, while local coupling prevents analytical simplification of the dynamics, the strong
reference phase (via Kref) still guides the system toward global synchronization. After sufficiently
long evolution, the terminal distribution concentrates around the reference phase and can be effectively
approximated by a von Mises distribution, despite the absence of mean-field symmetry.

Coupling Strength and Noise Variance. In the forward process, we maintain the relationship
Kref(t) > Dt > K(t) to balance structure and noise. Dt > K(t) ensures that the stochastic noise is
strong enough to disrupt image details, while Kref(t) > Dt guarantees that the stronger reference
coupling dominates over noise and local/global coupling to guide the system toward synchronization.
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Algorithm 1 Training algorithm for Kuramoto orientation diffusion models.

Require: Score prediction network s(·, ·), noise variance schedule {2Dt}T−1
t=0 , forward Kuramoto

drift f(·, ·), noise ϵ ∼ N (0, I), number of MC samples M .
1: repeat
2: Sample initial phase variable: θ0 ∼ p(θ0)
3: Sample a timestep: t ∼ U(1, T )
4: Simulate the forward Markov chain to obtain θt−1 ∼ p(θt−1|θ0)
5: Initialize sample counter m = 0
6: while m < M do
7: Sample: θmt = θt−1 + f(θt−1, t− 1) +

√
2Dt−1ϵ

8: Wrap phase: θmt = (θmt + π) mod (2π)− π
9: Compute local score: ∇θm

t
log p(θmt |θt−1)

10: m← m+ 1
11: end while
12: Compute training loss: L = 1

M

∑M−1
m=0

(
2Dt

∥∥∥s(θmt , t)−∇θm
t
p(θmt |θt−1)

∥∥∥2)
13: until converged

2.3 Learning the Score Function

In the reverse process (right-to-left in Fig. 2), we perform desynchronization guided by learned score
functions, progressively restoring image complexity from a synchronized von Mises distribution back
to diverse angular states. Below we illustrate how the score function is learned.

Local Score Matching. In our stochastic Kuramoto models, the presence of the nonlinear drift
renders the marginal distribution p(θt) intractable, and consequently the score function∇θt

log p(θt)
is also unavailable in closed form. As a result, typical score-matching algorithms that rely on direct
access to the marginal density cannot be applied. Nevertheless, we can still train a score network by
exploiting the local Markov transition kernel p(θt|θt−1), based on the following general identity:

∇θt
log p(θt) = Eθt−1∼p(θt−1|θt)

[
∇θt

log p(θt|θt−1)
]

(9)

where the expectation is taken over the reverse transition p(θt−1|θt). A detailed derivation of this
identity is provided in the Appendix. Although the reverse transition is intractable in practice,
Denoising Score Matching (DSM) [65] shows that the score function can be learned by sampling
from the forward transition p(θt|θt−1) instead. Specifically, the training objective can be written as:

Et∼U(1,T )Eθ0
Eθt−1∼p(θt−1|θ0)Eθt∼p(θt|θt−1)

[
2Dt∥s(θt, t)−∇ log p(θt|θt−1)∥2

]
(10)

where s(θt, t) denotes the score network being optimized. At each training step, we simulate the
forward Markov chain to obtain θt−1, and then sample multiple θt from the local transition kernel
p(θt|θt−1) to estimate the training loss via Monte Carlo (MC) approximations.

Wrapped Gaussian Transition. Due to the phase wrapping on a periodic domain, the local transition
probability p(θt|θt−1) follows a wrapped Gaussian distribution:

p(θt|θt−1) =WN
(
θt−1 + f(θt−1, t− 1), 2Dt−1I

)
≈ 1√

4πDt−1

K∑
k=−K

exp
−
(
θt − θt−1 − f(θt−1, t− 1) + 2πk

)2

4Dt−1

(11)

where f(θt, t) denotes the forward drift of the Kuramoto model, i.e., the coupling and reference
terms weighted by the coupling strength. Since the wrapped Gaussian involves an infinite series,
neither the transition density nor its score function admits a simple closed-form. We thus approximate
the transition by truncating the summation to a small finite number of terms K.

Periodicity-aware Networks. To incorporate the inherent periodicity of the phase variables into the
score network, we embed the input phases using sinusoidal features [sin(θ), cos(θ)] as input to the
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Table 1: FID Scores (↓) on SOCOFing fingerprint dataset [56].

Diffusion Steps 100 300 1000

SGM [60] 104.92 62.66 23.84
Kuramoto Orientation Diffusion (Globally Coupled) 74.41 47.93 20.64
Kuramoto Orientation Diffusion (Locally Coupled) 67.49 43.57 18.75

Table 2: FID Scores (↓) on Brodatz texture dataset [1, 8].

Steps 100 300 1000

SGM [60] 38.33 22.40 20.37
Kuramoto Orientation Diffusion (Globally Coupled) 20.26 18.51 15.42
Kuramoto Orientation Diffusion (Locally Coupled) 18.47 15.93 14.19

network. The network predicts two outputs [s1(θ, t), s2(θ, t)] corresponding to the two Cartesian
components. We then project the output back onto the angular domain via:

s(θ, t) = s1(θ, t) cos(θ) + s2(θ, t) sin(θ) (12)

This operation ensures that the score prediction respects the circular geometry of the phase space.

Training Algorithms. We summarize the training algorithms in Alg. 1. To adapt non-periodic
image data to the periodic phase domain, input pixels in the range [−1, 1] are linearly mapped to
[−0.9π, 0.9π]. This margin near the boundaries helps distinguish values near −1 and 1, which would
otherwise collapse under phase wrapping. Throughout both training and inference, we enforce the
periodic geometry by wrapping all phase variables into the interval [−π, π] after each SDE step.
Our training procedure relies on estimating local scores using Monte Carlo samples from truncated
wrapped Gaussian transitions. We find that using K=3 and M=5 samples per step provides a good
balance between training stability and computational efficiency.

3 Experiments

3.1 Setup

Datasets, Baselines, and Metrics. We evaluate our proposed method across both general-purpose and
orientation-rich image generation tasks. For standard benchmarking, we first test on CIFAR10 [35]. To
specifically assess performance on orientation-dense data, we then apply our model to the SOCOFing
fingerprint dataset [56], the Brodatz texture dataset [1, 8], and the ground terrain dataset [68]. The
input image resolutions are 3×32×32 for CIFAR10 and 1×96×96 for SOCOFing. The Brodatz

100 steps 300 steps 1000 steps

100 steps 300 steps 1000 steps

Figure 3: Samples generated by our Kuramoto orientation diffusion model on SOCOFing fingerprint
and Brodatz texture datasets under varying denoising steps.
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Table 3: FID Scores (↓) on the ground terrain dataset [68].

Diffusion Steps 100 300 1000

SGM [60] 114.90 56.72 33.79
Kuramoto Orientation Diffusion (Globally Coupled) 101.65 54.17 33.56
Kuramoto Orientation Diffusion (Locally Coupled) 92.86 49.68 30.62

100 steps 300 steps 1000 steps

Figure 4: Samples generated by our Kuramoto model on the ground terrain dataset.

texture dataset originally consists of high-resolution samples depicting various textures (e.g., grass,
water, sand, wool) with sizes of 1×512×512 or 1×1024×1024. Due to the limited number of
available images, we increase the dataset size by dividing these high-resolution textures into smaller
patches of 1×32×32. Compared to Brodatz textures, the ground terrain dataset [68] contains a
broader set of orientation-rich material textures (e.g., plastic, turf, steel, asphalt, leaves, stone, and
brick) at the higher resolution of 128×128. We primarily compare with the standard variance-
preserving (VP) score-based generative model (SGM) [60]. To evaluate the quality of generated
images, we use the Fréchet Inception Distance (FID) [21], a widely used metric for assessing visual
fidelity and diversity. All models are trained until the FID score converges to ensure fair comparison.

In the Supplementary, we extend evaluation beyond images to (i) Earth and climate science datasets
on the 2D Sphere [46, 45, 5, 18], and (ii) Navier-Stokes fluid velocity fields [6]. The former suite of
datasets is defined on naturally periodic grids, while the latter one constitutes intrinsically angular
data. Together with the image datasets, the benefit of the synchronization inductive bias built into
our model will be consistently validated across three distinct domains – standard orientation-dense
images (with pixels mapped to phases), spherical geophysical fields, and fluid velocity phases.

Timesteps. Due to the phase coupling in our Kuramoto diffusion model, the forward process leads to
faster convergence toward the terminal distribution compared to conventional diffusion models. To
explore this advantage, we evaluate our model under varying diffusion step counts: 100, 300, and
1000 steps. These comparisons reveal how efficiently our model captures structural information with
fewer steps. Details of the noise and coupling schedules are provided in the Supplementary.

3.2 Results

Fingerprints and Textures. Tables 1 and 2 report FID scores on the SOCOFing fingerprint and
Brodatz texture datasets, respectively. Across all diffusion step settings, both globally and locally
coupled variants of our Kuramoto orientation diffusion model consistently outperform the standard
SGM [60]. The improvement is especially notable on the Brodatz texture dataset, where our 100-
step Kuramoto model achieves performance comparable to or better than SGM using 1000 steps –
demonstrating a substantial gain in sampling efficiency. These results underscore the advantage of
incorporating structured coupling dynamics for modeling orientation-dense data. The synchronization-
based inductive bias helps preserve coherent directional patterns, which are critical for the perceptual
quality of textures and fingerprints. Notably, the locally coupled variant offers further improvements
by aligning with the local spatial correlations. Fig. 3 provides qualitative examples, illustrating that
our method produces sharp and consistent patterns under varying diffusion steps.

Ground Terrain. Table 3 reports FID on the ground terrain dataset [68], comparing our Kuramoto
diffusion model with SGM. The trend mirrors fingerprints and textures: across denoising step counts,
our method consistently attains lower FID. This indicates that the synchronization prior continues
to help at orientation-dense scenes of higher resolutions. Qualitative results in Fig. 4 illustrate that,
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Table 4: FID Scores (↓) on CIFAR10 [35].

Diffusion Steps 100 300 1000

SGM [60] 38.04 25.76 3.17
Kuramoto Orientation Diffusion (Globally Coupled) 29.96 25.83 11.58
Kuramoto Orientation Diffusion (Locally Coupled) 28.17 24.86 10.79

100 steps 300 steps 1000 steps

Figure 5: Samples generated by our Kuramoto model on CIFAR10 under varying denoising steps.

even under fewer denoising steps, our samples exhibit coherent directional structure and material
appearance, while additional steps further refine detail realism and texture alignment.

CIFAR10. Table 4 presents the FID scores for our Kuramoto orientation diffusion models against
SGM on CIFAR10. At 100 diffusion steps, both Kuramoto models substantially outperform SGM,
highlighting the effectiveness of structured synchronization as an inductive bias in low-step regimes.
At 300 steps, Kuramoto models achieve comparable or slightly better performance than SGM,
demonstrating their ability to maintain sample quality as diffusion progresses. At 1000 steps, SGM
achieves the best overall score, though both Kuramoto models remain competitive.

Fig. 5 displays generated samples under different step counts. As diffusion steps increase, the
benefits of structured synchronization become less prominent. We expect that in longer trajectories,
the structured reverse dynamics may inhibit the flexibility to fully capture fine-grained details,
especially in datasets that lack strong orientation priors. These results suggest that Kuramoto-based
synchronization dynamics are particularly advantageous in generating high-quality images within
limited steps, even on general-purpose datasets. However, this structured bias may slightly limit
expressiveness under excessive denoising steps on natural images lacking strong orientation patterns.

3.3 Discussions

Structured Destruction. Our Kuramoto forward process introduces a very structured destruction
process, leveraging either global or local coupling mechanisms to achieve more controlled noising
dynamics. Unlike conventional isotropic diffusion which quickly loses object structure, our model
preserves the objects in the early stages through synchronized coupling (see also Fig. 1). This struc-
tured noising progressively aligns similar phase variables while maintaining orientation consistency,
allowing the model to better retain structural information. As noise levels increase, the coupling
interactions expedite the convergence to the noise distribution, enabling a faster transition compared
to standard diffusion models. This unique dual-phase dynamic – initial structured synchronization
followed by rapid noise adaptation – allows our model to converge faster while maintaining orienta-
tion coherence. The empirical SNR plot in Fig. 6 clearly demonstrates the advantage described above,
highlighting how the coupling-driven dynamics allow for efficient and structured noise progression.

Hierarchical Generation Process. Figs. 7 and 8 depict the hierarchical generation process of our
Kuramoto orientation diffusion model. The generation starts from a synchronized state sampled
from the von Mises distribution, representing a low-entropy configuration with highly aligned phase
variables. In the reverse process, the large-scale structure is established first, as global coherence
from the initial synchronized state is preserved. This occurs because the forward diffusion inherently
maintains global coherence in the later stages, which correspond to the early stages in the reverse
process. Once the primary structure is set, finer-scale details gradually emerge through successive
diffusion steps, driven by anti-coupling dynamics that introduce local variability, allowing the image
to evolve into more complex and nuanced patterns. Our model follows a coarse-to-fine paradigm,
where the global structure remains consistent while localized, intricate features evolve flexibly.
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Figure 7: Hierarchical generation process of our locally coupled Kuramoto diffusion model applied to
CIFAR-10. The generation follows a coarse-to-fine progression, starting from a structured von Mises
sample and progressively adding fine-scale details. These results correspond to 100 diffusion steps.

Figure 8: Hierarchical generation of our locally coupled Kuramoto diffusion model on the SOCOFing
fingerprint dataset (left) and Brodatz texture dataset (right). The model first establishes large-scale
orientation patterns, followed by finer texture details. These results correspond to 300 diffusion steps.

Figure 6: Empirical SNR over time.

The hierarchical nature of the Kuramoto diffusion enhances
interpretability by providing a clear generative pathway from
global coherence to local variability. This hierarchical genera-
tion approach aligns with the spectral biases observed in coarse-
to-fine generation of diffusion models [34, 51]. In typical score-
based diffusion models, this hierarchy arises implicitly from
the progressive noise attenuation, preserving low-frequency
components longer while high-frequency details emerge later.
In contrast, Rissanen et al. [51] use heat equations for the for-
ward process, resulting in isotropic blurring as high-frequency
components dissipate. Our Kuramoto model explicitly encodes
hierarchical progression through synchronization dynamics.
This structured, non-isotropic phase alignment offers a more
interpretable pathway from global to local patterns.

4 Related Work

Generative Models. Deep generative models have made remarkable progress in the last decade, both
in the creation of powerful foundation models [52] and in the design of sample-efficient optimization
algorithms [66, 49]. Early advances in deep generative modeling, such as Variational Autoencoders
(VAEs) [33] and Generative Adversarial Networks (GANs) [19], pushed the frontiers of generative
capabilities but faced distinct limitations: VAEs often produced blurry samples, while GANs suffered
from instability in training. Recently, diffusion models [57, 23, 60, 58, 13, 25, 32] have emerged as
a powerful, principled alternative. These models learn to reverse a noising process by estimating
the score function∇x log p(xt) of intermediate Gaussian-corrupted distributions. Building on the
view of generative modeling as a continuous transformation from noise to data, Flow Matching [38]
and Rectified Flow [39] directly learn velocity fields connecting noise and data without relying on
stochastic diffusion, sidestepping the need for score estimation. Stochastic Interpolants [2] further
generalize diffusion and flow models by learning stochastic trajectories interpolating between the
data and prior, providing a unifying perspective across two modeling paradigms. Several recent
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efforts extend flow matching and diffusion models to non-Euclidean geometries. For example,
Riemannian Flow Matching [10] formulates generative models directly on Riemannian manifolds,
respecting underlying geometric constraints. Other Riemannian diffusion models account for manifold
curvature to enable generative modeling over geometries such as hyperspheres, tori, and hyperbolic
spaces [11, 37, 26, 12, 69, 28, 14]. These advances highlight the growing interest in incorporating
geometric inductive biases into generative modeling.

Our work contributes to this landscape by exploring nonlinear diffusion models grounded in stochastic
Kuramoto dynamics. Instead of linear drifts in conventional diffusion models, we introduce structured
phase dynamics driven by nonlinear Kuramoto coupling, evolving on the periodic domain. Unlike
classical score-based models that assume a Gaussian forward process, our framework leads to non-
Gaussian, wrapped distributions that evolve according to nonlinear SDEs. This extends recent interest
in geometry-aware generative models and interpretable generation process.

Neural Oscillations in Machine Learning. Oscillatory dynamics are central to understanding
biological neural systems, where phase-locked rhythms and traveling waves are believed to support
functions such as sensory binding, working memory, and attention [9, 42, 16]. Motivated by their
computational relevance, recent machine learning research has increasingly incorporated oscilla-
tory and wave-based dynamics into neural representations, treating them as inductive biases that
promote generalization and structured behaviors [54, 55, 15, 61, 30, 31]. A key focus has been on
synchronization, where multiple units align their oscillatory phases to form stable or emergent
patterns. This phenomenon has been studied through the lens of the Kuramoto model [36], a classical
framework from nonlinear dynamics that describes how populations of coupled oscillators evolve
toward synchronization. In computational neuroscience and machine learning, Kuramoto-inspired
models have been applied to tasks such as modeling neural connectivity [7], clustering through
emergent synchrony [50], and mitigating over-smoothing in graph neural networks [44]. A recent
notable example is the Artificial Kuramoto Oscillatory Neuron (AKOrN) framework [41], which
replaces thresholding units with oscillatory ones to bind neurons together through synchronization
dynamics. These efforts reflect the growing interest in integrating principles of neural oscillations
and synchronization into machine learning frameworks, offering novel perspectives and tools for
modeling complex, dynamic systems.

5 Conclusion

This paper introduces a nonlinear score-based generative framework that incorporates stochastic
Kuramoto dynamics to model orientation-rich data. By formulating the forward process as syn-
chronization and the reverse process as desynchronization, our method brings biologically inspired
inductive biases into the diffusion process. Through wrapped Gaussian transitions and periodicity-
aware networks, the model naturally captures the geometry of angular data. Experiments show that
our approach outperforms conventional baselines on orientation-dense datasets and remains competi-
tive on general image generation tasks. This work highlights the potential of integrating biologically
inspired synchronization dynamics as structured priors in generative modeling of orientation-dense
data, paving the way for incorporating nonlinear dynamics into generative models.

Limitations and Future Work. A primary limitation lies in the training efficiency: each training step
incurs an O(T ) time cost due to the need to explicitly simulate the forward Markov chain. Actually,
this cost actually can be nearly eliminated with pre-computation & cache: before training, we can
run the forward SDE on the entire dataset, save all pairs to disk, and then load them directly during
training. This makes the simulation cost effectively O(0) at each training step. Otherwise if disk
space is limited, we can simply re-generate and cache one epoch’s worth of pairs at the start of each
epoch. This still dramatically reduces the simulation overhead.

Beyond computational improvements, applying this framework to neural spiking data offers a
compelling opportunity to further explore the biological plausibility of synchronization-driven
generative models and to bridge the gap between theoretical neuroscience and machine learning.

Broader Impacts. Our approach may benefit socially relevant domains such as biometric security
(e.g., synthetic fingerprint generation), medical imaging (e.g., fiber orientation modeling in MRI), and
scientific visualization (e.g., materials analysis). As with other generative technologies, we advocate
for responsible research and deployment in accordance with ethical and societal guidelines.
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Justification: The code is released in a GitHub link. All used datasets are publicly available.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: The key implementation details are given in the main paper, while the rest
details are given in the Appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No] .
Justification: The main evaluation metric is the FID score, which usually does not vary much
for different training runs.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: We report the used GPUs in the implementation details of the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: The research respect the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: We have discussed the broader impacts in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: All used existing assets get cited properly.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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18

paperswithcode.com/datasets
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Justification: The paper does not involve any research with crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve any research with crowdsourcing nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: The development of the core methodology does not involve any usages of
LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Math Derivations and Intuitions

A.1 Mean-field Dynamics of Fokker-Planck Equation for Stochastic Kuramoto Models

In the thermodynamic limit of infinite oscillators (N →∞), the collective dynamics of the oscillator
population can be effectively described by the mean-field evolution of a single representative oscillator
with phase variable θ. The corresponding probability density p(θ, t) evolves according to the
Fokker–Planck equation:

∂p(θ, t)

∂t
= − ∂

∂θ

[(
K(t)r(t) sin(ψ(t)− θ) +Kref(t) sin(ψref − θ)

)
p(θ, t)

]
+Dt

∂2p(θ, t)

∂θ2
(13)

where r(t) and ψ(t) denote the magnitude and phase of the complex order parameter, respectively.
In the long-time limit, the quasi-equilibrium satisfies ∂pst(θ)/∂t ≈ 0. At this point, the stationary
solution p(θ, T ) approximately follows:

DT
∂2p(θ, T )

∂θ2
≈ ∂

∂θ

[(
K(T )r(T ) sin(ψ(T )− θ) +Kref(T ) sin(ψref − θ)

)
p(θ, T )

]
DT

∂p(θ, T )

∂θ
≈

(
K(T )r(T ) sin(ψ − θ) +Kref(T ) sin(ψref − θ)

)
p(θ, T ) + C1

1

p(θ, T )

∂p(θ, T )

∂θ
≈ K(T )r(T ) sin(ψ(T )− θ) +Kref(T ) sin(ψref − θ)

DT

log p(θ, T ) ≈ K(T )r(T )

DT
cos(ψ(T )− θ) + Kref(T )

DT
cos(ψref − θ) + C2

p(θ, T ) ≈ 1

Z
exp(

K(T )r(T )

DT
cos(ψ(T )− θ) + Kref(T )

DT
cos(ψref − θ))

(14)

where C1, C2 are constants, and Z is the normalization constant. We assume C1 = 0 because the
distribution is periodic, and C2 is absorbed into Z. Since the average phase ψ(T ) will synchronize to
the reference ψref, the quasi-stationary solution is given by:

pst(θ) ≈
1

Z
exp

(
K(T )r(T ) +Kref(T )

DT
cos(ψref − θ)

)
(15)

This final form follows a von Mises distribution, reflecting the low-entropy steady state induced by
synchronized interactions and reference phase attraction.
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A.2 Local Score Matching

At any timestep t of the Markov chain, the marginal distribution p(θt) can be expressed as:

p(θt) =

∫
p(θt−1)p(θt|θt−1) dθt−1

∇θt
p(θt) =

∫
p(θt−1)∇θt

p(θt|θt−1) dθt−1

(16)

For any score ∇θt log p(θt), we have ∇θt log p(θt) = ∇θtp(θt)/p(θt). Then we can rewrite the
above equation leveraging this identity:

p(θt)∇θt
log p(θt) =

∫
p(θt−1)p(θt|θt−1)∇θt

log p(θt|θt−1) dθt−1

���p(θt)∇θt
log p(θt) =

∫
���p(θt)p(θt−1|θt)∇θt

log p(θt|θt−1) dθt−1

∇θt log p(θt) = Eθt−1∼p(θt−1|θt)

[
∇θt log p(θt|θt−1)

] (17)

The above results indicate that the score can be effectively approximated by the local transition kernel.

A.3 Fourier Interpretation of Kuramoto Coupling

From a spectral standpoint, local phase coupling behaves like an angular low-pass filter. In the
small-angle approximation (sin(θj − θi) ≈ θj − θi) and without a global reference phase, the
forward SDE reduces to a stochastic heat equation (or a graph Laplacian form equivalently):

dθit
dt

= K(t)∇2θit +
√
2Dtξ

i (18)

where ∇2 denotes the Laplacian operator. Each Fourier component decays like e−K(t)k2t, where
k denotes the spatial frequency. Modes with very high spatial frequency k (pixel-scale noise) are
damped almost instantly, while moderate-frequency modes (coherent, edge-defining structures) decay
much more slowly. Consequently, the Kuramoto drift effectively filters away pixel-scale noise while
preserving the smooth, orientation-rich patterns that constitute edges.

A.4 Why Kuramoto Diffusion Falls Short on General Natural Images

Our Kuramoto coupling is foremost a synchronization mechanism: it excels at pulling similar phases
together, thereby preserving edges and repetitive patterns. On orientation-rich data where the data
are dominated by the simple outlines and repeating ridge structures, this yields sharp samples in
fewer steps. By contrast, natural images (e.g., CIFAR-10) demand modeling e.g., complex, global
semantics (object shapes, color gradients, backgrounds), often characterized by higher-order
and longer-range correlations. In this setting, the local synchronization bias becomes less relevant
and potentially even detrimental; an isotropic diffusion process with a global drift may be better
suited to capture these large-scale, non-repetitive features. As a result, our method trades some global
fidelity (reflected in higher CIFAR-10 FID) in exchange for strong local coherence.

B More Experimental Results

B.1 Implementation Details

Alg. 2 outlines the inference procedure for our model. We adopt the SDE formulation by default, but
it can be optionally replaced with an ODE solver for improved efficiency by modifying Line 4 to:
θt−1 = θt − f(θt, t) +Dt · s(θt, t). We use AdamW optimizer with a learning rate of 1e−4 and
apply exponential moving average (EMA) updates with decay rate 0.995. A single NVIDIA A100
GPU is used for all the training and inference processes.

Network Architectures. We use a U-Net architecture following the design of [13, 60], equipped with
three self-attention layers [63]. These are applied at spatial resolutions of 16, 8, and 4 for CIFAR-10
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Algorithm 2 Inference algorithm for Kuramoto orientation diffusion models.
Require: Trained score network s(·, ·), noise variance schedule {2Dt}Tt=1, forward Kuramoto drift

f(·, ·), noise ϵ ∼ N (0, I).
1: Sample initial phase: θT ∼ p(θT )
2: Initialize timestep counter t = T
3: while t > 0 do
4: Update: θt−1 = θt − f(θt, t) + 2Dt · s(θt, t) +

√
2Dtϵ

5: Wrap phase: θt−1 = (θt−1 + π) mod (2π)− π
6: t← t− 1
7: end while

and Brodatz, and 24, 12, and 6 for SOCOFing. Timestep conditioning is implemented via sinusoidal
positional embeddings. Each block uses group normalization [67] and GELU activations [20]
throughout. The same architecture is shared across both our method and SGM for fair comparison.

Table 5: Linear schedules of noise variance and coupling strength under varying diffusion steps.

Steps Global Coupling Local Coupling
2D K Kref 2D K Kref

100 [1e−4,0.1] [3e−5,0.03] [4.5e−5,0.045] [1e−4,0.1] [5e−5,0.05] [5e−5,0.05]
300 [1e−4,0.07] [3e−5,0.02] [4.5e−5,0.03] [1e−4,0.07] [5e−5,0.03] [5e−5,0.03]
1000 [1e−4,0.015] [3e−5,0.0045] [4.5e−5,0.00675] [1e−4,0.025] [5e−5,0.01] [5e−5,0.01]

Schedules of Noise and Coupling Strength. Table 5 summarizes the linear schedules for the noise
variance 2Dt, internal coupling strength K, and reference phase coupling Kref. In the globally
coupled variant, we maintain the relation Kref > 2D > K to ensure synchronization toward a
reference phase while allowing sufficient noise injection. In the locally coupled variant, we increase
the internal coupling strength K to compensate for its restricted spatial influence, which is limited
to a 5 × 5 neighborhood around each pixel. We keep Kref = K in this case, since the reference
coupling term inherently has a broader impact by acting across the entire image domain. For the
SGM baseline, we adopt the VP-SDE formulation with linear variance schedules: [1e−4, 0.1] for
100 steps, [1e−4, 0.07] for 300 steps, and [1e−4, 0.02] for 1000 steps.

B.2 Ablation Study and Alternative Metrics

Table 6: FID Scores (↓) on Brodatz texture dataset [1, 8].

Steps 100 300 1000

SGM [60] 38.33 22.40 20.37
Reference-only Process (K(t) = 0) 33.76 20.54 19.01

Kuramoto Orientation Diffusion (Globally Coupled) 20.26 18.51 15.42
Kuramoto Orientation Diffusion (Locally Coupled) 18.47 15.93 14.19

Ablation of the Kuramoto Coupling. To isolate the impact of Kuramoto coupling, we include a
model variant by setting K(t) = 0 in Eq. (3), which keeps only the phase-reference drift in the SDE:

dθit
dt

= Kref(t) sin(ψref − θit) +
√
2Dtξ

i (19)

Table 6 presents the evaluation results on Brodatz textures. Removing the non-linear Kuramoto cou-
pling raises 100-step FID by over 15 points, which confirms that non-isotropic phase synchronization
is the key driver of both rapid convergence and thhe performance gain on orientation-rich data.

Alternative Metric. The FID metric is known for several limitations – its dependence on Inception
embeddings, its Gaussian-moment matching assumption, and occasional misalignment with human
judgment. As a more robust alternative, we adopt CLIP-MMD (CMMD) [29], which computes a
nonparametric Maximum Mean Discrepancy in the pretrained CLIP feature space, which combines
the benefits of distribution-free sample efficiency with the strong embedding power of CLIP.
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Table 7: CMMD Scores (↓) on Brodatz texture dataset [1, 8].

Steps 100 300 1000

SGM [60] 0.183 0.165 0.141
Kuramoto Orientation Diffusion (Locally Coupled) 0.072 0.045 0.030

Table 7 evaluates our local Kuramoto model versus SGM on the Brodatz textures dataset using the
CMMD score. Our model achieves substantially lower CMMD at every step count. Remarkably,
the 100-step Kuramoto model outperforms the 1000-step SGM by a large margin. These results
mirror and amplify our FID improvements, demonstrating the superior sample fidelity even under a
distribution-free, CLIP-based evaluation.

B.3 Earth and Climate Science Datasets on Spheres

To further evaluate our Kuramoto orientation diffusion model on naturally periodic data, we consider
four real-world datasets of Earth and climate events: significant volcanic eruptions, earthquakes,
floods, and wildfires [46, 45, 5, 18]. These datasets capture empirical spatial distributions of geo-
physical events on the surface of the Earth and are inherently defined over a 2D spherical domain.
We map longitude to [−π, π] and linearly scale latitude from [−π2 ,

π
2 ] to the same interval to ensure

compatibility with the periodic modeling framework. We compare our approach against a suite of
Riemannian geometry-aware generative models, including Riemannian CNFs [40], Moser flows [53],
CNF matching [4], and Riemannian score-based or flow-based generative models [26, 12, 10].

VolcanoQuakeFloodFire

Figure 9: Learned density plot of our method on each Earth and climate science dataset. The X-axis
denotes the longitude while the Y-axis represents the latitude.

Table 8: Test NLL on Earth and climate science datasets averaged across 5 runs.

Dataset Volcano Earthquake Flood Fire

Riemannian CNF [40] -6.05±0.61 0.14±0.23 1.11±0.19 -0.80±0.54
Moser Flow [53] -4.21±0.17 -0.16±0.06 0.57±0.10 -1.28±0.05

CNF Matching [4] -2.38±0.17 -0.38±0.01 0.25±0.02 -1.40±0.02
Riemannian score-based [12] -4.92±0.25 -0.19±0.07 0.48±0.17 -1.33±0.06

Riemannian diffusion model [26] -6.61±0.96 -0.40±0.05 0.43±0.07 -1.38±0.05
Riemannian flow matching [10] -7.93±1.67 -0.28±0.08 0.42±0.05 -1.86±0.11

Our Kuramoto orientation diffusion model -5.18±0.17 -0.18±0.06 0.49±0.18 -1.44±0.05

Fig. 9 visualizes the learned densities produced by our method, capturing both highly concentrated
regions (e.g., volcanic and fire clusters) and dispersed patterns. Table 8 presents the test negative
log-likelihood (NLL) on each dataset. Our method achieves comparable performance against these
baselines. We compute NLL using the change-of-variables formula under the time-reversed ODE
solver: log p(θ0) = log p(θT ) +

∑1
t=T Tr(Jb(θt,t)) where p(θT ) denotes the von Mises prior and

b(θt, t) denotes the backward drift, i.e., b(θt, t) = −f(θt, t) +Dt · s(θt, t). The Jacobian trace is
estimated via Hutchinson’s stochastic estimator [27].

While our method achieves competitive NLL scores across datasets, we note that direct comparison
across models can be influenced by the choice of different priors. In particular, von Mises distributions
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with higher concentration can artificially boost log-likelihood scores, whereas broader priors can
deflate them. Thus, while our results confirm the effectiveness of our model, qualitative evaluations
remain critical for comprehensive assessments.

B.4 Navier-Stokes Fluid Velocity Field

To demonstrate the applicability to real angular data, we evaluate our Kuramoto diffusion model
on 2D incompressible Navier–Stokes (NS) velocity fields from [6]. Each velocity frame (vx,vy) is
converted to polar form:

r =
√
v2
x + v2

y, θ = arctan2(vy,vx) (20)

where r ≥ 0 is the amplitude and θ ∈ (−π, π] is the phase. Since r is positive, we work in
log–magnitude z = log r and apply a VP SDE there in the log space, while phases evolve via the
locally coupled Kuramoto SDE. The forward processes are defined as:

Amplitude:
dzit
dt

= −1

2
βtz

i
t +

1

|Ni|
∑
j∈Ni

K(t) cos(θjt − θit) +
√
βtξ

i, z0 = log r0

Phase:
dθit
dt

= rit

[ 1

|Ni|
∑
j∈Ni

K(t) sin(θjt − θit) +Kref(t) sin(ψref − θit)
]
+

√
2Dtξ

i

(21)

where the boxed terms couple the two channels: (i) local phase coherence accelerates amplitude
growth (via cos in the z-SDE), and (ii) larger amplitude strengthens phase synchronization (amplitude
factor rit in the θ-SDE). To avoid over-coupling late in diffusion (when noise dominates), we enable
coupling only in the early stage, i.e., for t < T/α with a constant α > 1; for t ≥ T/α the two SDEs
evolve independently under their native log-VP/Kuramoto dynamics.

In the reverse process we train two score models, one in log–magnitude space and one on phases, to
solve the corresponding reverse SDEs and jointly synthesize (r,θ).

Unconditional Generation. Following fluid–dynamics practice, we assess realism in the spectral
domain at the final time step. From each 2D velocity field, we compute the radial energy spectrum
E(k) and then: (i) fit a line to logE(k) vs. log k over the mid–wavenumber band k ∈ [0.1, 0.4]·kmax
(with kmax = min(H,W )/2) and report the absolute slope difference, and (ii) compute the 1D
Wasserstein distance between the normalized mean spectra of real and generated samples.

Table 9: Spectral evaluation of generated Navier-Stokes fluid velocity fields.

Metrics Slope Difference (↓) Wasserstein Distance (↓)
SGM (Amplitude-Phase Decomposition) 0.7435 0.0015

SGM (Cartesian Coordinates) 0.5590 0.0029
Ours (Naive Kuramoto Phase + Log-VP Amplitude) 0.6954 0.0011

Ours (Coupled Kuramoto Phase + Log-VP Amplitude) 0.3343 0.0005

Table 9 shows that the Coupled Kuramoto Phase + Log-VP Amplitude model achieves the best
spectral realism among all methods, with the lowest slope error and Wasserstein distance. Relative
to the SGM (Amplitude–Phase Decomposition) baseline, this corresponds to a 55% reduction in
slope error and a 67% reduction in Wasserstein distance. It also improves over SGM (Cartesian
Coordinates) by 40% in slope error and 83% in Wasserstein, and over the Naive Kuramoto + Log-VP
variant by 52% (slope) and 55% (Wasserstein). These gains indicate that explicitly coupling phase
synchronization with amplitude evolution yields more physically plausible velocity spectra than
treating angle and magnitude independently or modeling them without coupling. Fig. 10 plots the
average energy spectra with fitted lines, where the coupled model shows a visibly tighter fit in the
mid-frequency band and a closer overall spectral shape.

Conditional Forecasting. Building on the unconditional results above, we next consider a setting
that is arguably even more useful in PDE modeling: forecasting future states from history. Unlike
unconditional generation which tests realism in distribution, forecasting probes whether the model
has learned the dynamics well enough to extrapolate in time.
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SGM (Cartesian Coordinates)Coupled Kuramoto Phase + Log-VP Amplitude

Figure 10: The average energy spectra with fitted lines.

We keep the coupled representations and train two conditioned score models sc – one for phases
θ and one for log-magnitudes z – together with their unconditioned counterparts su via condition
dropout. At inference, each pair is fused with classifier-free guidance (CFG) [22]:

Amplitude:s̃ω(z) = su(z) + ω
(
sc(z|c)− su(z)

)
Phase:s̃ω(θ) = su(θ) + ω

(
sc(θ|c)− su(θ)

) (22)

where c denotes the two-step Navier–Stokes history, and ω is a guidance temperature that controls
adherence to the condition (larger ω denotes stronger conditioning). We evaluate accuracy using
Mean Squared Error (MSE) between predicted and ground-truth velocity fields.

Table 10: MSE of Navier-Stokes fluid velocity predictions.

Methods MSE (↓)
SGM (Cartesian Coordinates) 0.0260

Ours (Coupled Kuramoto Phase + Log-VP Amplitude) 0.0188

As shown in Table 10, the Coupled Kuramoto Phase + Log-VP Amplitude model reduces MSE from
0.0260 to 0.0188 compared with the SGM (Cartesian Coordinates) baseline, indicating more accurate
conditional forecasts. Fig. 11 illustrates two examples; predictions closely match the ground truth in
both horizontal and vertical velocity components.

history prediction

X velocity

Y velocity

truth history prediction

X velocity

Y velocity

truth

Figure 11: Conditional one-step forecasts of our method on Navier–Stokes velocity: history (left),
predictions (middle), and ground truth (right).

B.5 More Examples of Generative Samples

Figs. 12, 13, 14, and 15 present additional randomly generated samples from our 1000-step locally
coupled Kuramoto orientation diffusion model on the SOCOFing fingerprint, Brodatz texture, ground
terrain, and CIFAR10 datasets, respectively.
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Figure 12: Randomly generated samples on SOCOFing fingerprint dataset.
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Figure 13: Randomly generated samples on Brodatz textures dataset.
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Figure 14: Randomly generated samples on the ground terrain dataset.
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Figure 15: Randomly generated samples on CIFAR10 dataset.
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