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Abstract

Large language models (LLMs) are essential001
in natural language processing (NLP) but are002
costly in data collection, pre-training, fine-003
tuning, and inference. Task-specific small lan-004
guage models (SLMs) offer a cheaper alter-005
native but lack robustness and generalization.006
This paper proposes LEGO, a novel technique007
to extract SLMs from an LLM and recom-008
bine them. Using state-of-the-art LLM pruning009
strategies, we can create task- and user-specific010
SLM building blocks that are efficient for fine-011
tuning and inference while also preserving user012
data privacy. LEGO utilizes Federated Learn-013
ing and a novel aggregation scheme for the014
LLM reconstruction, maintaining robustness015
without high costs and preserving user data pri-016
vacy. We experimentally demonstrate the ver-017
satility of LEGO, showing its ability to enable018
model heterogeneity and mitigate the effects019
of data heterogeneity while maintaining LLM020
robustness. Our codebase will be released021
upon publication.022

1 Introduction023

Large Language Models (LLMs) represent a sig-024

nificant advance in Natural Language Processing025

(NLP) with their remarkable ability to generalize026

across queries and tasks. These models are typi-027

cally fine-tuned using large, diverse datasets de-028

rived from high-quality instruction data (Gupta029

et al., 2022).030

LLMs are not, however, a one-size-fits-all so-031

lution. Running LLMs on small devices like IoT032

devices or smartphones is not possible due to their033

resource limitations. Downstream LLM applica-034

tions that prioritize privacy, such as personal con-035

versational AI, become untenable due to data pri-036

vacy concerns, as user data must stay on personal037

devices or private networks and cannot be shared038

globally. These privacy constraints apply to both039

fine-tuning and inference.040

LLMs are traditionally fine-tuned in a central- 041

ized manner, where data is aggregated from raw 042

user interactions and shared globally to fine-tune a 043

single global model. In contrast, Federated Learn- 044

ing (FL) is a collaborative learning approach that 045

allows client models to learn from users while pre- 046

serving their privacy (McMahan et al., 2017). FL 047

utilizes distributed fine-tuning with localized client 048

models trained on localized user interactions, re- 049

sulting in a global model created by aggregating 050

client model weights. While FL preserves data pri- 051

vacy and addresses the complexity of fine-tuning, 052

it does not resolve the high cost of inference with 053

LLMs. 054

Small Language Models (SLMs) address the 055

high cost of inference and fine-tuning, allowing 056

for a greater range of client devices. While SLMs 057

are more efficient, the cheaper performance comes 058

at the expense of robustness and generalization 059

across broad tasks, conversational interactions, and 060

advanced LLM capabilities. Furthermore, SLMs 061

are not typically designed to be composable, con- 062

straining FL architecture to an either-or choice: 063

choose SLMs at the cost of robustness, or choose 064

the original LLMs that limit their utility due to size 065

and complexity. 066

For resource-constrained scenarios like chatbots 067

on small devices, there is a critical need for com- 068

putationally efficient, robust, general, and private 069

methods that facilitate different sizes and architec- 070

tures of models depending on the computational 071

resources of the device. 072

To enhance client flexibility in distributed con- 073

versational AI systems, we introduce Language 074

ModEl BuildinG BlOcks (LEGO), a model- 075

agnostic technique for federating small language 076

models (SLMs) with diverse heterogeneous archi- 077

tectures. LEGO enables efficient fine-tuning and in- 078

ference, preserves privacy, optimizes performance 079

across varied resource constraints, and aids in de- 080

veloping robust and generalizable large language 081
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models (LLMs). Our approach utilizes an SLM-082

based FL system where each SLM is derived from083

an LLM, allowing them to be combined to recon-084

struct the original LLM. By treating SLMs as build-085

ing blocks, LEGO effectively assembles them into086

a cohesive LLM.087

Through the use of LEGO, we demonstrate a088

flexible FL system that broadens the range of possi-089

ble client devices by enabling different-sized mod-090

els for different-sized devices. Experiments show091

that when using LEGO, SLMs are better learners092

and therefore yield more robust models. We also093

demonstrate that SLMs can better adapt to data094

heterogeneity when compared to LLMs. Through095

LEGO, we can leverage the advantages of SLMs,096

and treat them as composable building blocks that097

combine to form an LLM.098

With the proposed LEGO approach, the major con-099

tributions of this work include100

• A method to compose SLMs together to yield101

a robust and generalizable LLM102

• A privacy-preserving FL architecture to serve103

these composable client-side heterogeneous104

SLMs105

• A method to optimize client-side SLMs106

against heterogeneous resource budgets for107

efficient fine-tuning and inference108

The rest of this paper is organized as the follow-109

ing: Section 2 gives background information. Sec-110

tion 3 details the methodology behind the LEGO111

approach and its components. Section 4 covers the112

experiments we performed to validate LEGO and113

houses their results. Section 5 discusses the related114

work. Section 6 concludes the paper and Section 7115

lists our study’s limitations.116

2 Background117

2.1 Model Compression118

In recent years, pruning has become widely used119

in NLP to compress LLMs (LeCun et al., 1989).120

Pruning involves the selective omission of model121

parameters with minimal contributions to the learn-122

ing process. Pruning techniques have proven suc-123

cessful, enhancing the cost-effectiveness of large124

pre-trained models (Xia et al., 2023).125

Recently, more nuanced pruning approaches126

have been discussed in the literature, improv-127

ing over more traditional methods like magni-128

tude pruning. Specifically, two state-of-the-art129

pruning methods are widely discussed in the 130

literature—SparseGPT (Frantar and Alistarh, 2023) 131

and Wanda (Sun et al., 2023). Whereas traditional 132

magnitude pruning operates by pruning weights 133

with the largest magnitude, these pruning tech- 134

niques instead track weight activations, and prune 135

weights with the lowest amount of activation. 136

SparseGPT creates and solves a layer-wise re- 137

construction problem to determine the weight ac- 138

tivations, whereas Wanda takes the product of a 139

weight’s magnitude and the norm of its associated 140

input activations. 141

2.2 Federated Fine-Tuning 142

Federated Learning (FL) is a distributed training 143

methodology that trains a model across multiple de- 144

centralized devices while allowing data to remain 145

on user machines (McMahan et al., 2017). In con- 146

ventional FL, each client device has its own native 147

model and trains it on local user inputs. Instead of 148

sharing this client data globally, the models instead 149

share their own model weights, aggregating them 150

with other client weights. This creates a global up- 151

date that encodes knowledge gained from all model 152

updates without compromising data privacy. 153

FedIT is a technique (Zhang et al., 2023) which 154

leverages FL as the learning framework for the 155

instruction tuning of LLMs. FedIT is motivated 156

by the recent success of instruction-tuned genera- 157

tive large language models on generalizing to new 158

tasks. This FL method mitigates the dependence 159

and associated cost, accessibility, and lost privacy 160

of instruction-tuned LLMs on large amounts of cen- 161

tralized high-quality human-written instructions by 162

federating the learning phases. 163

Two fundamental assumptions are often made 164

in both traditional FL and the fine-tuning of LLMs 165

with FL (FedIT). The first is that all data is i.i.d., 166

meaning that not only do all clients have the same 167

amounts of data, but that the ratio of content within 168

each is the same. The study of non-i.i.d. data distri- 169

butions in FL is often referred to as heterogeneous 170

FL (Ye et al., 2023; Ghosh et al., 2019). 171

The second assumption is that all model archi- 172

tectures in FL systems are identical, allowing for 173

the aggregation of model weights when creating 174

global updates. Heterogeneity in model architec- 175

ture therefore presents unique challenges in FL, 176

such as impeding the use of aggregation techniques 177

like FedAvg (Li et al., 2019) that average the feder- 178

ated weights assuming homogeneity. 179
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Figure 1: The LEGO workflow. An LLM is first pruned to create SLMs, then each SLM is assigned to a client.
Each client then fine-tunes its SLM on its local data. After fine-tuning, the models are aggregated to create a global
update. The global update is then applied to all the client SLMs as well as a global LLM. Eventually, after enough
updates, a final global LLM is derived.

We seek an approach that not only leverages180

the distributed nature of FL to preserve user data181

privacy on client devices but also allows for each182

client to host heterogenous SLMs and heteroge-183

neous data sets of various sizes and makeup (e.g.,184

task-dependent). This new architecture would facil-185

itate the optimization of client-side SLMs against186

heterogeneous resource budgets in both data size187

and compute.188

3 Methodology189

Motivated by the need for efficient fine-tuning190

and inference for private, resource-constrained191

scenarios, we propose a model-agnostic FL sys-192

tem Language ModEl BuildinG BlOcks (LEGO).193

Much like stacking small building blocks together194

to create a larger structure, we stack small language195

models (SLMs) together to create a larger, more196

robust Large Language Model (LLM).197

LEGO employs a two-step approach. First, we198

obtain SLMs of different sizes by pruning an LLM.199

We then deploy these SLMs in an FL environment,200

eventually aggregating them into an LLM. Figure 1201

shows the LEGO workflow in greater detail. The202

SLMs produced by the pruning process are the203

local client models in the FL environment. We204

produce SLMs of different sizes to better match205

the various computational budgets of client devices.206

We use a full-sized LLM as the global model, mean-207

ing that every client model is a sub-network of the208

global model. 209

To produce a fine-tuned LLM using the client 210

SLMs, we begin the process of federated fine- 211

tuning. First, the selected client SLMs for each 212

round are fine-tuned on their respective client’s lo- 213

cal data. They are then aggregated with each other, 214

creating a global update. This global update is then 215

applied to all client SLMs and the global LLM. We 216

repeat this process for every round of FL, eventu- 217

ally forming a robust, fine-tuned LLM built from 218

the updates supplied by the fine-tuned client SLMs. 219

For all studies and experiments, we impose the 220

following conditions: 221

• All fine-tuning is done using LoRA (Hu et al., 222

2021), resulting in a more computationally 223

efficient fine-tuning process. The LoRA 224

adapters preserve model sparsity. We provide 225

more configuration details in Appendix A.4. 226

• All aggregation occurs over the LoRA 227

adapters, allowing for decreased communi- 228

cation cost and more efficient aggregation. 229

• All fine-tuning is done over the databricks- 230

dolly-15k dataset or a subset of it. This dataset 231

was generated by Databricks and covers eight 232

different capability domains from the Instruct- 233

GPT paper (Ouyang et al., 2022). 234

3.1 Model Pruning 235

For our experiments, we simulate an FL system 236

on our cluster. We examine 4 model sparsity lev- 237

els (0%, 25%, 50%, and 75%), where each per- 238
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centage indicates the proportion of weights that239

have been removed. To create the SLMs, we use240

SparseGPT (Frantar and Alistarh, 2023) to remove241

the weights from a LLaMA-7B LLM, inducing the242

specified level of sparsity in each model. We com-243

pare SparseGPT against Wanda and Layer prun-244

ing in A.1 and determine that SparseGPT is the245

strongest pruning strategy for LEGO.246

3.2 Model-agnostic Federated Learning247

If SLMs are the building blocks, then FL is the248

process of assembling the blocks into a structure,249

and the resulting global LLM is the final, com-250

pleted structure. We create a model-agnostic FL251

environment to allow aggregation between differ-252

ent sized SLMs, and the global LLM. At the end of253

the FL process, we obtain a fine-tuned global LLM254

constructed through the aggregation of SLMs.255

Algorithm 1 Federated Fine-Tuning with
Heterogeneous Models

Initialization:
Each client n initializes LLM with parameter sparsity wn.
M ← ∅; K communication rounds; k ← 0.
Training Loop:
while k ≤ K do

Update M to select clients based on sparsity.
for each client n ∈M do

Select model for n with wn.
∆wk+1,n ← InstructionTune(∆wk,n).

end for
∆wk+1 ← HeteAgg({∆wk+1,n : n ∈M}).
k ← k + 1.

end while
Outcome:
Derive final adapters ∆wK ; update global LLM w.

Algorithm 1 details our FL system, where clients256

would be assigned their respective SLMs with wn257

sparsity, representing the sparsity present in both258

the model and the LoRA adapter. During the train-259

ing loop, clients fine-tune their LoRA adapters on260

local data created from a subset of the databricks-261

dolly-15k dataset. After fine-tuning, each of the262

selected clients has their LoRA adapters aggregated263

with each other to form a global update through264

the HeteAgg method—our heterogeneous model265

aggregation scheme detailed in Algorithm 2 . This266

global update is then applied to each of the client267

SLMs in addition to the global LLM. After the268

training loop is complete, we can derive our final269

adapters and global updates.270

In our HeteAgg approach, we begin by instan-271

tiating a global LLM to hold the eventual global272

update. This global update is formed by aggre-273

Algorithm 2 Model Heterogeneous Aggregation
(HeteAgg)

Load initial global model state dictionary: g
Define the number of clients n.
Derive global parameter sums Psums & counts Pcounts.
for each client i ∈ {1, . . . , n} do

Load client model state dictionary: si
Identify Pg , the set of global model parameters.
for each parameter p ∈ Pg do

Load pi from si
Define mask Mi ← (pi ̸= 0)
Update Psums[p]← Psums[p] + where(Mi, pi, 0)
Update Pcounts[p]← Pcounts[p] +Mi

end for
end for
for each parameter p ∈ Pg do

pavg ← Psums[p]/max(Pcounts[p], 1)
Update global model with pavg

end for
for each client i ∈ {1, . . . , n} do

for each parameter p ∈ Pg do
Load pi from si
Define mask Mi ← (pi ̸= 0)
si[p]← where(Mi, pavg, pi)

end for
end for

gating the client SLMs. This is done by access- 274

ing each of the selected client’s LoRA adapters, 275

and creating a mask for it based on its sparsity. 276

This sparse mask is then aggregated with the global 277

LLM’s LoRA adapter wherever there is overlap 278

between the mask and the adapter. Since sparsity 279

is represented by a parameter magnitude ’0’ in the 280

SLM’s LoRA adapters, this process effectively av- 281

erages the nonzero parameters between the client 282

and global models. 283

By only aggregating across the nonzero weights, 284

we can retain the sparsity in the client model’s 285

adapter without halving the global adapter’s 286

weights when there is no corresponding nonzero 287

value. This process of mask creation and aggrega- 288

tion occurs for every client in the selected client 289

group, forming a global update through the global 290

LLM’s adapter. Since every client SLM is a sub- 291

model of the LLM, we can apply the global up- 292

date to each client in the same manner again using 293

HeteAgg, averaging across each client’s nonzero 294

weights. 295

Figure 2 represents our heterogeneous aggrega- 296

tion method, where the blue matrix represents the 297

global LoRA adapter, and the red matrix represents 298

a sparsified client LoRA adapter. The left-hand 299

side displays each adapter at timestep ti, before 300

aggregation. During aggregation, the blue and red 301

parameters average to create purple parameters for 302

non-zero red (client) parameters. For zero-valued 303
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Figure 2: A symbolic representation of our heteroge-
neous aggregation method.

red (client) parameters, the updated client model304

retains its sparsity (upper right matrix), whereas the305

updated global LoRA adapter uses the blue (global)306

parameter values. As a result, the updated global307

adapter is a 0% sparsity adapter. Thus, the right-308

hand side displays each adapter at timestep ti+1,309

where the parameters are aggregated only when310

there is an overlap between the corresponding non-311

zero parameters of each model.312

4 Experiments313

To examine the efficacy of our LEGO methodology,314

we conduct experiments to answer the following315

questions:316

• With i.i.d. task-independent data and client-317

distributed SLMs as LEGO blocks, does the318

recombination of the SLMs yield a robust319

LLM?320

• What is the effect of fine-tuning each321

client SLM in LEGO with non-i.i.d. task-322

dependent data?323

• Does LEGO enable the combination (stack-324

ing) of differently shaped blocks?325

In each experiment, we follow the LEGO work-326

flow as illustrated in Figure 1. We first prune an327

LLM to create SLMs, instantiate the SLMs as client328

models, fine-tune each client on their respective lo-329

cal client data, then aggregate them together to330

form a global update. The global update is then331

applied to a 0% sparsity global model and the client332

models, which are then evaluated.333

We compare LEGO with these baselines:334

• A FedIT-produced global model resulting 335

from 4 LLaMA-7B client models fine-tuned 336

over i.i.d. data. This baseline is the ideal case 337

for FedIT. 338

• A FedIT-produced global model resulting 339

from 8 task-specific LLaMA-7B client models 340

where each model is only fine-tuned on one 341

of the 8 different domain areas of databricks- 342

dolly-15k. 343

For all LEGO experiments, we use our HeteAgg 344

method to aggregate the client weights, accounting 345

for their heterogeneity (as opposed to the simple 346

averaging of all weights in FedAvg). Since the 347

computational cost of HeteAgg is the same as Fe- 348

dAvg, all speedups in LEGO are a direct result of 349

model pruning (Sun et al., 2023; Frantar and Alis- 350

tarh, 2023). During our experiments, we observe 351

up to a 1.6× speedup in inference and up to a 1.4× 352

speedup in fine-tuning using SparseGPT-produced 353

SLMs when compared to 0% sparsity LLMs. Given 354

the approach is decoupled from the specific prun- 355

ing method, LEGO will see further speedups as 356

pruning methods improve. 357

4.1 LEGO with Task-Independent Data 358

When building large structures, it is common to as- 359

semble smaller sub-units individually before com- 360

bining them into the final form. Similarly, with 361

LEGO, we can fine-tune smaller models individ- 362

ually, treating them as sub-units that are then ag- 363

gregated together to produce a final LLM. This 364

experiment tests the transferability of knowledge 365

from SLMs to an untouched LLM using LEGO. 366

We prune an LLM to create four 75% sparsity 367

SLMs with an i.i.d. client data distribution. The 368

dataset is partitioned into 4 i.i.d. segments, such 369

that each client dataset covers the same domains in 370

the same ratios. Each round, one client will fine- 371

tune off their local data, and then be aggregated 372

with the global 0% sparsity LLM. A global up- 373

date is then derived and applied to all of the client 374

models. 375

The results of this experiment with 4 SLMs and 376

i.i.d. data for fine-tuning are shown in Table 1. As 377

expected, due to the i.i.d. nature of the data, LEGO 378

matches FedIT’s accuracy on the recombined 0% 379

sparsity global LLM (shown in the last column, 380

’LLM Recombined’), despite only fine-tuning the 381

parameter equivalent of a single LLM. 382
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Table 1: Average Model Accuracy Over Benchmarks

Composition LLM
Initial

SLMs
Averaged Initial

SLMs
Globally Updated

LLM
Recombined

LEGO 4 SLMs With i.i.d. Data 0.559 0.240 0.416 0.568
FedIT: 4 LLMs With i.i.d. Data 0.559 N/A N/A 0.567
LEGO 8 Task-Dependent SLMs 0.559 0.240 0.411 0.571
FedIT: 8 Task-Dependent LLMs 0.559 N/A N/A 0.563

4.2 LEGO with Task-Dependent Data383

This experiment evaluates knowledge transfer in a384

task-dependent non-i.i.d. data distribution scenario.385

We use eight client SLMs with 75% sparsity. We386

split the databricks-dolly-15k dataset into each of387

its 8 domain areas, and each client model fine-tunes388

over one of these 8 segments. This means the client389

models do not have the same amount of local data,390

and each one only covers a single domain. Similar391

to the previous experiment, in each round a client392

will fine-tune on their local data and aggregate with393

the global LLM. A global update will be derived394

and applied to the client models.395

The results of 8 task-dependent SLMs are shown396

in the last two rows of Table 1. The results high-397

light the advantage of LEGO for heterogenous data.398

LEGO outperforms FedIT as shown in the last col-399

umn ‘LLM Recombined’ with an accuracy of 0.571400

versus 0.563. Despite each SLM being fine-tuned401

on a different task, the knowledge transfers be-402

tween models, resulting in a more robust global 0%403

sparsity recombined LLM than any of the previous404

experiments.405

We additionally evaluate the effect of non-i.i.d.406

data on the quality of LEGO-produced global up-407

dates for SLMs. To do so, we track the performance408

of client SLMs over time, evaluating their average409

performance after every global update.410

Figure 3: The performance of clients after each global
update.

Figure 3 demonstrates that after every global411

update, the performance of the client SLMs in-412

crease almost linearly, despite the local data for 413

each client not being the same length (with some 414

having 5× the amount of others). This demon- 415

strates that SLMs are able to capture the knowledge 416

from small amounts of data without underfitting, 417

offsetting data heterogeneity. 418

4.3 Combining Differently Shaped Blocks 419

Just as not all (SLM) building blocks are the same 420

size, they may not necessarily be the same shape. 421

Regardless of the size or shape, the requirement is 422

that they can stack together. LEGO demonstrates 423

this principle. 424

Figure 4: Combining differently shaped building blocks
to create a larger block

Figure 4 shows three blocks of differing shapes 425

being combined to create a new, larger block that 426

encompasses the different shapes. The same can 427

be done with SLMs, where each SLM can cover a 428

different task or sparsity level, but be aggregated 429

together to create a robust LLM that covers the 430

diverse tasks of its components. 431

The results of the previous sections suggest that 432

with LEGO, knowledge is transferred between 433

SLMs fine-tuned with task-independent or task- 434

dependent data. This section investigates if this 435

same knowledge transfer occurs between SLMs 436

that are strictly of different shapes (sizes). 437

We initialize the FL environment with four het- 438

erogeneous client SLMs, each configured with 439

a different sparsity level: 0%, 25%, 50%, and 440

75%. All SLMs, including the 0% sparsity SLM 441

(LLM), are fine-tuned on their respective local 442

client data: one of four segments of i.i.d. data 443

from the databricks-dolly-15k dataset. This seg- 444

mentation is the same as Section 4.1, ensuring that 445

the local datasets are of equal size and cover the 446

same domain areas in identical proportions. 447
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For this experiment, we first choose to fine-tune448

all the client models, and then we conduct a single449

round of aggregation, applying the resulting global450

updates uniformly across all client models.451

Sparsity 0% 25% 50% 75%
Pruned 0.559 0.554 0.529 0.384

Fine-Tuned 0.563 0.561 0.526 0.412
Globally Updated 0.568 0.565 0.542 0.396

Table 2: Average Model Accuracy over benchmarks for
4 SLM LEGO Components, each with different sparsity.

Table 2 displays the performance of the different-452

sized models. We benchmarked their performance453

at three different stages: when the LLM was ini-454

tially pruned, resulting in the base SLM perfor-455

mance before fine-tuning (Pruned), when each456

client SLM is fine-tuned on its local data (Fine-457

Tuned), and the final adapters after the global up-458

dates (Globally Updated). As displayed in the table,459

we see that fine-tuning improves performance for460

all model sizes, with a significant performance gain461

at the 75% sparsity level. The aggregation stage462

(Globally Updated row) improves performance for463

all models except the 75% sparsity SLM.464

The 75% sparsity model’s degraded performance465

after aggregation is likely due to the SLM’s lim-466

ited size. Previous work has shown that smaller467

models are better learners (Turc et al., 2019; Raffel468

et al., 2020), creating an effect similar to dropout,469

forcing the limited neurons to create stronger and470

more general representations. During aggrega-471

tion with the larger models, the small model’s472

strongly learned representation becomes diluted473

by the larger model’s weaker representation, de-474

grading performance in the smaller model.475

When comparing against the FedIT-produced476

baselines in Table 1, we see in Table 2 that the477

heterogeneous models produce an equally robust478

aggregated 0% sparsity LLM, demonstrating suc-479

cessful knowledge transfer between models.480

These results demonstrate that LEGO allows for481

flexible client model selection, enabling knowledge482

transfer between models of different sizes and tai-483

loring client models to suit device capabilities, as484

opposed to being limited by the weakest client de-485

vice.486

To further understand the knowledge transfer be-487

tween sizes, we repeat this experiment four times,488

each time omitting one of the client language mod-489

els from the aggregation. This lets us view and490

analyze the individual contributions that each client 491

model makes. 492

Figure 5: The accuracy of LEGO components on Hel-
laSwag after aggregation with one omission. The solid
blue line is the accuracy of the fine-tuned model, and the
dotted black line is the globally updated performance,
as listed in Table 2.

Figure 5 shows that in the 0% and 50% spar- 493

sity models, performance degrades when the 75% 494

sparsity model is omitted from aggregation. These 495

results demonstrate that LEGO allows for knowl- 496

edge transfer from strictly smaller models to a 497

larger model in an effective manner, confirming 498

that smaller models are better learners. 499

Despite any degradation relative to the globally 500

updated performance from Table 2, there is always 501

an improvement over fine-tuning, except for the 502

75% sparsity model. The 75% sparsity model 503

shows that as all aggregations degrade its perfor- 504

mance, with the larger, denser models degrading it 505

more. This confirms that larger models dilute its 506

learned representation. 507

Given these results, we can come to two conclu- 508

sions. First, smaller models create greater contri- 509

butions to the 0% sparsity LLM. Secondly, larger 510

models do not transfer knowledge as effectively to 511

smaller models. 512

While these experiments show potential for 513

higher performance in a heterogeneous setting, the 514

results are better underscored by already being on 515

par with the FedIT baselines. This indicates that 516

LEGO-produced models can further exceed the 517

performance of their homogeneous counterparts. 518
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5 Related Work519

Works on heterogeneous FL in the context of pre-520

trained language models are sparse. We explain521

why this context is important in Appendix A.3. The522

first paper to cover model-agnostic FL in-depth was523

InclusiveFL (Liu et al., 2022), where the authors524

used layer-pruned BERT models in a federated sys-525

tem and aggregated across layers. The authors526

found layer-pruning to have a negligible effect on527

BERT’s performance - something that does not528

apply to modern LLMs due to large magnitude fea-529

tures distributed across the layers (Dettmers et al.,530

2022). We experimentally prove this in Appendix531

A.2.532

We can extend this reasoning to similar ap-533

proaches focused on layer selection that are534

only tested on encoder-style LLMs, like FedPep-535

TAO (Che et al., 2023), since these all disregard536

large magnitude features.537

We then look to homogeneous model FL applied538

to larger, decoder-style LLMs. FedIT (Zhang et al.,539

2023) acts as the representation of traditional FL540

throughout our work, using FedAvg for aggregation541

as mentioned in Section 4. However, FedAvg can-542

not adapt to heterogeneous models, and as pointed543

out by other works, cannot account for heteroge-544

neous ranks in the LoRA adapter(Bai et al., 2024).545

Newer works have continued to model them-546

selves after FedIT’s use of LoRA. Recently, en-547

abling heterogeneous LoRA ranks in FL has been548

discussed in the literature. For example, FlexLORA549

computes a weighted average of LoRA adapters550

with different LoRA ranks, and then uses SVD551

for redistribution (Bai et al., 2024). However,552

FlexLoRA assumes model homogeneity among553

client models, which is what allows for adaptive554

rank pruning in the LoRA adapter.555

The advantages of rank pruning do not trans-556

late to the advantages of model pruning. Model557

pruning allows for more efficient fine-tuning and558

inference, whereas pruning LoRA only translates559

to more efficient fine-tuning, with the same infer-560

ence costs as the initial LLM. Thus, in FlexLoRA,561

model selection is constrained by weakest device.562

In LEGO, pruning allows larger models (LLMs) to563

run on more powerful devices, and smaller models564

(SLMs) to run on weaker devices.565

Additionally, their aggregation technique relies566

on multiplying each client’s LoRA modules, A and567

B, together, where A ∈ Rr×n and B ∈ Rn×r.568

The multiplication results in the server creating the569

full-sized weights for every client model before ag- 570

gregating them together. This extremely resource 571

intensive operation limits the scalability of the tech- 572

nique relative to ours, where the LoRA modules 573

stay separate. 574

However, LEGO does not have to exclusively 575

operate over PEFT adapters. The same approach 576

and aggregation methods used for LoRA adapters 577

can be performed with the actual client weights, or 578

with the multiplied LoRA adapters. This means 579

that rank-pruning techniques can be applied with 580

or on top of LEGO, further decreasing SLM size, 581

at the cost of increased computation for the server. 582

There are numerous other pruning techniques in 583

the literature, but we choose to use the literature- 584

standard pruning technique for our experiments, 585

SparseGPT (Frantar and Alistarh, 2023). However, 586

LEGO would be compatible with any pruning tech- 587

nique, including different client-structured pruning 588

patterns, since LEGO preserves sparsity patterns in 589

client models. 590

To the best of our knowledge, our work is the 591

only work that looks to leverage pruned decoder- 592

style LLMs for FL, allowing for fine-tuning and 593

inference speedups for client models. Additionally, 594

by pruning LLMs, we can scale client SLMs down 595

to match heterogeneous client capabilities without 596

limiting model size for computationally stronger 597

clients. 598

6 Conclusions 599

In this work, we have introduced LEGO, a build- 600

ing block methodology for federated fine-tuning of 601

LLMs. By allowing for the use of pruned LLMs, 602

we can use SLMs as task-specific learners for 603

resource-constrained devices, and stack them into a 604

fully robust LLM. This is enabled through our sim- 605

ple, yet effective, aggregation scheme, HeteAgg, 606

which allows for the aggregation of heterogeneous 607

SLMs. Through experimentation we demonstrate 608

that LEGO can leverage SLMs, allowing for better 609

adaptation to small amounts of data, stronger learn- 610

ing over non-i.i.d. client data distributions, and 611

greater client flexibility by allowing for tailored 612

client models for client devices. By enabling het- 613

erogeneous client resource budgets, LEGO creates 614

a more scalable and resource-efficient FL system 615

for private conversational AI. 616
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7 Limitations617

Our approach has limitations caused by prioritizing618

efficiency. As mentioned in Section 3, we operate619

over client LoRA adapters. Each LoRA module A620

and B is aggregated separately, which introduces621

noise to the resulting weights, as622 ∑
A×

∑
B︸ ︷︷ ︸

LEGO

̸=
∑

(A×B)︸ ︷︷ ︸
Noise-Free Aggregation.

623

Despite the noise, however, we show experimen-624

tally that LEGO produces robust models.625
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A Appendix741

A.1 Comparison of Pruning Methods742

As discussed in the Background section, there are743

two pruning techniques that dominate the literature.744

We test both SparseGPT and Wanda and analyze745

the best pruning technique to use.746

The results in table 3 show that SparseGPT pro-747

duces more robust models on average, with a sig-748

nificant advantage at higher levels of sparsity. How-749

ever, SparseGPT is more computationally expen-750

sive when pruning, while Wanda is computationally751

inexpensive.752

This provides us a few insights. The first is753

that regardless of pruning strategy, performance754

degrades significantly beyond 50% sparsity. The755

second is that while more computationally expen-756

sive, SparseGPT may be necessary at high sparsity757

levels or more resource constrained client devices,758

as it not only produced a more robust model, but759

the increase in performance due to fine-tuning was760

almost double that of Wanda.761

Given these insights, the superior pruning762

method depends on the use case scenario. If we are763

defining rigid model sizes and assert that client de-764

vices will be initialized with one of these ’default’765

model sizes, then SparseGPT would be superior.766

This is especially true given our compute budget767

is capable of fine-tuning LLMs and performing in- 768

ference, since SparseGPT is relatively cheap com- 769

pared to those tasks if not being performed for ever 770

device initialization. Thus, we can use SparseGPT 771

to generate various model sizes/sparsity’s before 772

the FL process begins, and assign models accord- 773

ingly. 774

However, in practice, creating a methodology to 775

calculate the ideal model size given the device’s 776

compute budget would return more robust client 777

models for users in the FL system. In this sce- 778

nario, when a client is initialized, a model would be 779

pruned according to their compute budget, mean- 780

ing a lightweight process like Wanda would be 781

superior. 782

However it is worth noting that, with the ex- 783

ception of high sparsity scenarios, the difference 784

between the two pruning method’s performances is 785

negligible. Therefore, our results should be gener- 786

alizable to both pruning methods. 787

Additionally, as pruning methods continue to 788

evolve, the performance of pruned models will 789

improve. Therefore its important evaluate model 790

performance in our experiments with the limita- 791

tions of current pruning techniques, but as pruning 792

techniques improve, our methodologies and results 793

would generalize to them and should scale accord- 794

ingly. 795

In order to confirm if our experimental results 796

are generalizable to other pruning techniques, we 797

also test the Wanda-pruned SLMs for our HeteAgg 798

experiment. We perform the same experiment in- 799

volving 4 models at different sparsity levels, with 800

its results displayed in table 5. 801

Figure 6: Performance of federated SparseGPT-pruned
models relative to federated Wanda-pruned models
when evaluated on HellaSwag (Zellers et al., 2019)

When plotted against SparseGPT’s performance 802

in figure 6, we see that the effects of our FL ap- 803

proach are near identical. For sparsity ≥ 50%, we 804

see that the results are nearly identical, and the 805

performance gap displayed by the fine-tuned 50% 806

sparsity SparseGPT-pruned model is corrected after 807

model aggregation. 808
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Table 3: Comparison of SparseGPT and Wanda Pruned Models

Sparsity Level SparseGPT Wanda
Pruned Fine-tuned Pruned Fine-tuned

0% 0.5694 0.5760 0.5694 0.5741
25% 0.5654 0.5784 0.5672 0.5731
50% 0.5144 0.5244 0.5195 0.5377
75% 0.2989 0.3631 0.2692 0.2916

Table 4: All models were pruned from LLaMA-7B and evaluated over HellaSwag (Zellers et al., 2019). The
Fine-tuned models were fine-tuned over databricks-dolly-15k. Bolded scores are the best in sparsity level.

Table 5: Performance of Wanda pruned models on HellaSwag (Zellers et al., 2019)

Sparsity Level Pruned Fine-Tuned Aggregated
0% 0.5694 0.5741 0.5799
25% 0.5672 0.5731 0.5802
50% 0.5195 0.5377 0.5393
75% 0.2692 0.2916 0.2717

While the performance on HellaSwag is dif-809

ferent at high sparsity, that can be attributed to810

Wanda’s weaker pruning ability at high sparsity811

levels. When viewing the Wanda and SparseGPT812

pruned 75% sparsity models, we see the drop in813

performance due to aggregation after fine-tuning is814

nearly identical.815

Therefore, since the performance is nearly iden-816

tical, and the only significant difference in perfor-817

mance can be attributed to the initial model per-818

formance as opposed to our FL system, we can819

generalize our FL method to other current pruning820

techniques.821

A.2 Experimental Comparison with822

InclusiveFL823

To confirm the effect of emergent large-magnitude824

features in LLMs discussed in Section 5, we exper-825

imentally compare InclusiveFL and layer pruning826

to LEGO and activation pruning. To do so, we827

layer-prune LLaMA-7B and modify our HeteAgg828

function to perform layer-wise aggregation.829

We pruned LLaMA-7B to 24 and 16 layers,830

equivalent to 25% and 75% sparsity. We then put831

these two models and a 0% sparsity LLaMA-7B832

model in the federated environment from Algo-833

rithm 1, modifying the HeteAgg function to follow834

the pseudocode in the InclusiveFL paper. For the835

closest comparison we take select results from Sec-836

tion 4.1 and Table 1.837

In Table 6, we can see that even before feder-838

ation, layer pruning fails to conserve model per-839

formance after pruning. This can be attributed to 840

the emergent large-magnitude features in LLMs, 841

as described in Section 5 (Dettmers et al., 2022). 842

After federation, the fine-tuning and aggregation 843

process degraded the performance, proving that 844

this approach does not work for LLMs. 845

A.3 Unique FL challenges 846

Federated Learning for LLMs comes with nume- 847

orus unqiue challenges. The overwhelming major- 848

ity of model-heterogeneous FL literature is written 849

in the context of computer vision (CV) based mod- 850

els. 851

These previously proposed solutions cannot be 852

applied to LLMs, due to challenges in language 853

data and model architecture. 854

The first major challenge is the difference in 855

data. Language data and image data are funda- 856

mentally different. Text data is significantly more 857

complex, being a high dimensional data where se- 858

quence context matter much more. In the context 859

of transformer models, token dependencies across 860

long sequences make many of the aggregation tech- 861

niques discussed in CV much less effective. 862

Text data presents higher dimensional complex- 863

ity than image data due to the sequential and contex- 864

tual nature of language. Transformers must account 865

for token dependencies across long sequences, mak- 866

ing model compression and aggregation methods 867

less effective than in vision models. This applies to 868

ordered dropout from techniques like FjORD (Hor- 869

vath et al., 2021) which relies on simple low dimen- 870
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Table 6: Performance of layer-pruning (Liu et al., 2022) compared to activation pruning (our study).

Sparsity / Layers Pruned Fine-tuned & Aggregated
SparseGPT Layer-Pruning SparseGPT Layer-Pruning

Full Sized 0.5694 0.5694 0.5836 0.5148
25% Sparsity / 24 Layers 0.5654 0.3957 0.5801 0.3658
50% Sparsity / 16 Layers 0.5144 0.3021 0.5411 0.3014

sional input data for its DNNs. These techniques871

cannot capture the complex, dynamic token depen-872

dencies that transformers do.873

Architecturally, language models and CNNs dif-874

fer by more than just the use of transformers.875

CNNs, regardless of size, typically retain a sim-876

ilar architecture (convolutional and pooling layers).877

Most CNNs use most of their layers to learn how to878

"see", e.g. edge detection, color contrast, etc. This879

is why federated dropout or partial training meth-880

ods work for CNNs. Methods like FedRolex, where881

stochasitc sub-model extraction occurs, rely on us-882

ing CNNs because convolutional layers can func-883

tion somewhat independently (Alam et al., 2022).884

Contemporary LLMs do not have such a standard-885

ized structure, where the layers can function inde-886

pendently.887

This can be partially attributed to the large mag-888

nitude features in LLMs. These large magnitude889

features. These are parameters with significantly890

higher magnitudes than the rest of the parameters,891

and are sparse and distributed randomly across lay-892

ers and have a significant effect on LLM perfor-893

mance. This is a phenomenon unique to transform-894

ers, something with which many FL methods do895

not adapt to.896

This also extends to model compression. Prun-897

ing techniques such as filter and layer pruning are898

commonly used in CNNs, but are less effective899

for transformers, as demonstrated in appendix A.2.900

These techniques are often the basis of heteroge-901

nous FL techniques for CV or DNNs. Without902

pruning, many CNNs are small enough to commu-903

nicate, like in904

A.4 Experimental Setup and Performance905

For all of the experiments, due to hardware limita-906

tions we use a client selection strategy that sequen-907

tially chooses clients. We use a client participation908

rate of 0.1, with a local batch size of 64 and only909

fine-tune for one epoch. For our LoRA adapter910

settings, we chose a rank and alpha of 16, and only911

target the q_proj.912

Table 1 showed the average model performance 913

for each model. The individual results for each 914

benchmark of each model is held in Table 7. We 915

evaluate each model on HellaSwag (Zellers et al., 916

2019), MMLU (Hendrycks et al., 2021), SciQ, and 917

ARC (Clark et al., 2018). We evaluate the models 918

using the EleutherAI Language Model Evaluation 919

Harness (Gao et al., 2023). 920
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Sparsity (%) Stage HellaSwag MMLU SciQ Arc
4 SLMs With i.i.d. Data Distribution

0 Pruned 0.569 0.299 0.947 0.419
0 Aggregated 0.586 0.294 0.944 0.447

75 Pruned 0.299 0.230 0.809 0.197
75 Aggregated 0.364 0.294 0.944 0.4471

FedIT: 4 LLMs
0 Aggregated 0.575 0.286 0.956 0.453

8 Task-Dependent SLMs
0 Pruned 0.569 0.299 0.947 0.419
0 Aggregated 0.586 0.298 0.953 0.446

75 Pruned 0.299 0.230 0.233 0.197
75 Aggregated 0.359 0.241 0.813 0.233

FedIT: 8 Task-Specific LLMs
0 Aggregated 0.570 0.279 0.951 0.452

4 Strictly Heterogeneous Models
0 Pruned 0.569 0.299 0.947 0.419
0 Fine-Tuned 0.576 0.295 0.950 0.429
0 Aggregated 0.584 0.301 0.953 0.435

25 Pruned 0.565 0.292 0.938 0.422
25 Fine-Tuned 0.578 0.286 0.944 0.437
25 Aggregated 0.580 0.295 0.944 0.442

50 Pruned 0.514 0.292 0.935 0.375
50 Fine-Tuned 0.524 0.267 0.932 0.379
50 Aggregated 0.541 0.292 0.932 0.404

75 Pruned 0.299 0.230 0.809 0.197
75 Fine-Tuned 0.363 0.237 0.828 0.221
75 Aggregated 0.317 0.229 0.832 0.206

Table 7: Model Performance Across Different Configurations and Datasets
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