LEGO: Language Model Building Blocks

Anonymous ACL submission

Abstract

Large language models (LLMs) are essential
in natural language processing (NLP) but are
costly in data collection, pre-training, fine-
tuning, and inference. Task-specific small lan-
guage models (SLMs) offer a cheaper alter-
native but lack robustness and generalization.
This paper proposes LEGO, a novel technique
to extract SLMs from an LLM and recom-
bine them. Using state-of-the-art LLM pruning
strategies, we can create task- and user-specific
SLM building blocks that are efficient for fine-
tuning and inference while also preserving user
data privacy. LEGO utilizes Federated Learn-
ing and a novel aggregation scheme for the
LLM reconstruction, maintaining robustness
without high costs and preserving user data pri-
vacy. We experimentally demonstrate the ver-
satility of LEGO, showing its ability to enable
model heterogeneity and mitigate the effects
of data heterogeneity while maintaining LLM
robustness. Our codebase will be released
upon publication.

1 Introduction

Large Language Models (LLMs) represent a sig-
nificant advance in Natural Language Processing
(NLP) with their remarkable ability to generalize
across queries and tasks. These models are typi-
cally fine-tuned using large, diverse datasets de-
rived from high-quality instruction data (Gupta
et al., 2022).

LLMs are not, however, a one-size-fits-all so-
lution. Running LLMs on small devices like IoT
devices or smartphones is not possible due to their
resource limitations. Downstream LLM applica-
tions that prioritize privacy, such as personal con-
versational Al, become untenable due to data pri-
vacy concerns, as user data must stay on personal
devices or private networks and cannot be shared
globally. These privacy constraints apply to both
fine-tuning and inference.

LLMs are traditionally fine-tuned in a central-
ized manner, where data is aggregated from raw
user interactions and shared globally to fine-tune a
single global model. In contrast, Federated Learn-
ing (FL) is a collaborative learning approach that
allows client models to learn from users while pre-
serving their privacy (McMahan et al., 2017). FL
utilizes distributed fine-tuning with localized client
models trained on localized user interactions, re-
sulting in a global model created by aggregating
client model weights. While FL preserves data pri-
vacy and addresses the complexity of fine-tuning,
it does not resolve the high cost of inference with
LLMs.

Small Language Models (SLMs) address the
high cost of inference and fine-tuning, allowing
for a greater range of client devices. While SLMs
are more efficient, the cheaper performance comes
at the expense of robustness and generalization
across broad tasks, conversational interactions, and
advanced LLM capabilities. Furthermore, SLMs
are not typically designed to be composable, con-
straining FL architecture to an either-or choice:
choose SLMs at the cost of robustness, or choose
the original LLMs that limit their utility due to size
and complexity.

For resource-constrained scenarios like chatbots
on small devices, there is a critical need for com-
putationally efficient, robust, general, and private
methods that facilitate different sizes and architec-
tures of models depending on the computational
resources of the device.

To enhance client flexibility in distributed con-
versational Al systems, we introduce Language
ModEl BuildinG BlOcks (LEGO), a model-
agnostic technique for federating small language
models (SLMs) with diverse heterogeneous archi-
tectures. LEGO enables efficient fine-tuning and in-
ference, preserves privacy, optimizes performance
across varied resource constraints, and aids in de-
veloping robust and generalizable large language

models (LLMs). Our approach utilizes an SLM-
based FL system where each SLM is derived from
an LLM, allowing them to be combined to recon-
struct the original LLM. By treating SLMs as build-
ing blocks, LEGO effectively assembles them into
a cohesive LLM.

Through the use of LEGO, we demonstrate a
flexible FL system that broadens the range of possi-
ble client devices by enabling different-sized mod-
els for different-sized devices. Experiments show
that when using LEGO, SLMs are better learners
and therefore yield more robust models. We also
demonstrate that SLMs can better adapt to data
heterogeneity when compared to LLMs. Through
LEGO, we can leverage the advantages of SLMs,
and treat them as composable building blocks that
combine to form an LLM.

With the proposed LEGO approach, the major con-
tributions of this work include

* A method to compose SLMs together to yield
a robust and generalizable LLM

* A privacy-preserving FL architecture to serve
these composable client-side heterogeneous
SLMs

* A method to optimize client-side SLMs
against heterogeneous resource budgets for
efficient fine-tuning and inference

The rest of this paper is organized as the follow-
ing: Section 2 gives background information. Sec-
tion 3 details the methodology behind the LEGO
approach and its components. Section 4 covers the
experiments we performed to validate LEGO and
houses their results. Section 5 discusses the related
work. Section 6 concludes the paper and Section 7
lists our study’s limitations.

2 Background
2.1 Model Compression

In recent years, pruning has become widely used
in NLP to compress LLMs (LeCun et al., 1989).
Pruning involves the selective omission of model
parameters with minimal contributions to the learn-
ing process. Pruning techniques have proven suc-
cessful, enhancing the cost-effectiveness of large
pre-trained models (Xia et al., 2023).

Recently, more nuanced pruning approaches
have been discussed in the literature, improv-
ing over more traditional methods like magni-
tude pruning. Specifically, two state-of-the-art

pruning methods are widely discussed in the
literature—SparseGPT (Frantar and Alistarh, 2023)
and Wanda (Sun et al., 2023). Whereas traditional
magnitude pruning operates by pruning weights
with the largest magnitude, these pruning tech-
niques instead track weight activations, and prune
weights with the lowest amount of activation.

SparseGPT creates and solves a layer-wise re-
construction problem to determine the weight ac-
tivations, whereas Wanda takes the product of a
weight’s magnitude and the norm of its associated
input activations.

2.2 Federated Fine-Tuning

Federated Learning (FL) is a distributed training
methodology that trains a model across multiple de-
centralized devices while allowing data to remain
on user machines (McMabhan et al., 2017). In con-
ventional FL, each client device has its own native
model and trains it on local user inputs. Instead of
sharing this client data globally, the models instead
share their own model weights, aggregating them
with other client weights. This creates a global up-
date that encodes knowledge gained from all model
updates without compromising data privacy.

FedIT is a technique (Zhang et al., 2023) which
leverages FL as the learning framework for the
instruction tuning of LLMs. FedIT is motivated
by the recent success of instruction-tuned genera-
tive large language models on generalizing to new
tasks. This FL. method mitigates the dependence
and associated cost, accessibility, and lost privacy
of instruction-tuned LLLMs on large amounts of cen-
tralized high-quality human-written instructions by
federating the learning phases.

Two fundamental assumptions are often made
in both traditional FL and the fine-tuning of LLMs
with FL (FedIT). The first is that all data is i.i.d.,
meaning that not only do all clients have the same
amounts of data, but that the ratio of content within
each is the same. The study of non-i.i.d. data distri-
butions in FL is often referred to as heterogeneous
FL (Ye et al., 2023; Ghosh et al., 2019).

The second assumption is that all model archi-
tectures in FL systems are identical, allowing for
the aggregation of model weights when creating
global updates. Heterogeneity in model architec-
ture therefore presents unique challenges in FL,
such as impeding the use of aggregation techniques
like FedAvg (Li et al., 2019) that average the feder-
ated weights assuming homogeneity.

Client Model

LLMPruning - Assignment /,MK .

/ '\\ / \ /

- ->
7
— —) - —) ->
S —

\ - -

B _E«B Wkt lp
dinnnn N —
T TTT L H [T

j L D‘ ' T
i i I L EE

Model Updates

4
¥

-

Aggregation

Figure 1: The LEGO workflow. An LLM is first pruned to create SLMs, then each SLM is assigned to a client.
Each client then fine-tunes its SLM on its local data. After fine-tuning, the models are aggregated to create a global
update. The global update is then applied to all the client SLMs as well as a global LLM. Eventually, after enough

updates, a final global LLM is derived.

We seek an approach that not only leverages
the distributed nature of FL to preserve user data
privacy on client devices but also allows for each
client to host heterogenous SLMs and heteroge-
neous data sets of various sizes and makeup (e.g.,
task-dependent). This new architecture would facil-
itate the optimization of client-side SLMs against
heterogeneous resource budgets in both data size
and compute.

3 Methodology

Motivated by the need for efficient fine-tuning
and inference for private, resource-constrained
scenarios, we propose a model-agnostic FL sys-
tem Language ModEl BuildinG BlOcks (LEGO).
Much like stacking small building blocks together
to create a larger structure, we stack small language
models (SLMs) together to create a larger, more
robust Large Language Model (LLM).

LEGO employs a two-step approach. First, we
obtain SLMs of different sizes by pruning an LLM.
We then deploy these SLMs in an FL environment,
eventually aggregating them into an LLM. Figure 1
shows the LEGO workflow in greater detail. The
SLMs produced by the pruning process are the
local client models in the FL environment. We
produce SLMs of different sizes to better match
the various computational budgets of client devices.
We use a full-sized LLM as the global model, mean-
ing that every client model is a sub-network of the

global model.

To produce a fine-tuned LLM using the client
SLMs, we begin the process of federated fine-
tuning. First, the selected client SLMs for each
round are fine-tuned on their respective client’s lo-
cal data. They are then aggregated with each other,
creating a global update. This global update is then
applied to all client SLMs and the global LLM. We
repeat this process for every round of FL, eventu-
ally forming a robust, fine-tuned LLM built from
the updates supplied by the fine-tuned client SLMs.

For all studies and experiments, we impose the
following conditions:

* All fine-tuning is done using LoRA (Hu et al.,
2021), resulting in a more computationally
efficient fine-tuning process. The LoRA
adapters preserve model sparsity. We provide
more configuration details in Appendix A.4.

* All aggregation occurs over the LoRA
adapters, allowing for decreased communi-
cation cost and more efficient aggregation.

* All fine-tuning is done over the databricks-
dolly-15k dataset or a subset of it. This dataset
was generated by Databricks and covers eight
different capability domains from the Instruct-
GPT paper (Ouyang et al., 2022).

31

For our experiments, we simulate an FL system
on our cluster. We examine 4 model sparsity lev-
els (0%, 25%, 50%, and 75%), where each per-

Model Pruning

centage indicates the proportion of weights that
have been removed. To create the SLMs, we use
SparseGPT (Frantar and Alistarh, 2023) to remove
the weights from a LLaMA-7B LLM, inducing the
specified level of sparsity in each model. We com-
pare SparseGPT against Wanda and Layer prun-
ing in A.1 and determine that SparseGPT is the
strongest pruning strategy for LEGO.

3.2 Model-agnostic Federated Learning

If SLMs are the building blocks, then FL is the
process of assembling the blocks into a structure,
and the resulting global LLM is the final, com-
pleted structure. We create a model-agnostic FL
environment to allow aggregation between differ-
ent sized SLMs, and the global LLM. At the end of
the FL process, we obtain a fine-tuned global LLM
constructed through the aggregation of SLMs.

Algorithm 1 Federated Fine-Tuning with
Heterogeneous Models

Initialization:
Each client n initializes LLM with parameter sparsity w,.
M <+ 0; K communication rounds; k <+ 0.
Training Loop:
while k£ < K do
Update M to select clients based on sparsity.
for each client n € M do
Select model for n with w,.
Awpy1,n, < InstructionTune(Awg,r,).
end for
Awgy1 + HeteAgg({Awgy1,n 1 n € M}).
k<< k+1.
end while
Outcome:
Derive final adapters Aw g ; update global LLM w.

Algorithm 1 details our FL system, where clients
would be assigned their respective SLMs with w,,
sparsity, representing the sparsity present in both
the model and the LoRA adapter. During the train-
ing loop, clients fine-tune their LoRA adapters on
local data created from a subset of the databricks-
dolly-15k dataset. After fine-tuning, each of the
selected clients has their LoRA adapters aggregated
with each other to form a global update through
the HeteAgg method—our heterogeneous model
aggregation scheme detailed in Algorithm 2 . This
global update is then applied to each of the client
SLMs in addition to the global LLM. After the
training loop is complete, we can derive our final
adapters and global updates.

In our HeteAgg approach, we begin by instan-
tiating a global LLLM to hold the eventual global
update. This global update is formed by aggre-

Algorithm 2 Model Heterogeneous Aggregation
(HeteAgg)

Load initial global model state dictionary: g
Define the number of clients n.
Derive global parameter sums Pyums & counts Peounts-
for each client: € {1,...,n} do
Load client model state dictionary: s;
Identify Py, the set of global model parameters.
for each parameter p € P, do
Load p; from s;
Define mask M; + (p; # 0)
Update Psums[p] < Psums[p] + where(M;, p;, 0)
Update Peounts [p} < Peounts [p] + M;
end for
end for
for each parameter p € P, do
Pavg Pums [p]/ maX(Pcoums [PL 1)
Update global model with paye
end for
for cachclient: € {1,...,n} do
for each parameter p € P, do
Load p; from s;
Define mask M; < (p; # 0)
si[p] <— where(M;, Pavg, Di)
end for
end for

gating the client SLMs. This is done by access-
ing each of the selected client’s LoRA adapters,
and creating a mask for it based on its sparsity.
This sparse mask is then aggregated with the global
LLM’s LoRA adapter wherever there is overlap
between the mask and the adapter. Since sparsity
is represented by a parameter magnitude 0’ in the
SLM’s LoRA adapters, this process effectively av-
erages the nonzero parameters between the client
and global models.

By only aggregating across the nonzero weights,
we can retain the sparsity in the client model’s
adapter without halving the global adapter’s
weights when there is no corresponding nonzero
value. This process of mask creation and aggrega-
tion occurs for every client in the selected client
group, forming a global update through the global
LLM'’s adapter. Since every client SLM is a sub-
model of the LLM, we can apply the global up-
date to each client in the same manner again using
HeteAgg, averaging across each client’s nonzero
weights.

Figure 2 represents our heterogeneous aggrega-
tion method, where the blue matrix represents the
global LoRA adapter, and the red matrix represents
a sparsified client LoRA adapter. The left-hand
side displays each adapter at timestep t;, before
aggregation. During aggregation, the blue and red
parameters average to create purple parameters for
non-zero red (client) parameters. For zero-valued

[
ENEEL =
B
EEEN N
i N = B EEEE
Py] B EEN
DDEDED j—\]j—\] Client Adapter at tj+1
Ly + R mEN
EEEEEE EEEECE
EEEEEN ELEEER
EEEEEN EOEEN
Global Adapter at t; Client Adapter at t; EEEEEE
EEENNN
EEEEEE
EEEENN
EEEEEE
) EEEEEN
Aggregation Global Adapter at tj+1
Step |
Resulting
Adapters

Figure 2: A symbolic representation of our heteroge-
neous aggregation method.

red (client) parameters, the updated client model
retains its sparsity (upper right matrix), whereas the
updated global LoRA adapter uses the blue (global)
parameter values. As a result, the updated global
adapter is a 0% sparsity adapter. Thus, the right-
hand side displays each adapter at timestep ¢;. 1,
where the parameters are aggregated only when
there is an overlap between the corresponding non-
zero parameters of each model.

4 Experiments

To examine the efficacy of our LEGO methodology,
we conduct experiments to answer the following
questions:

¢ With i.i.d. task-independent data and client-
distributed SLMs as LEGO blocks, does the
recombination of the SLMs yield a robust
LLM?

* What is the effect of fine-tuning each
client SLM in LEGO with non-i.i.d. task-
dependent data?

e Does LEGO enable the combination (stack-
ing) of differently shaped blocks?

In each experiment, we follow the LEGO work-
flow as illustrated in Figure 1. We first prune an
LLM to create SLMs, instantiate the SLMs as client
models, fine-tune each client on their respective lo-
cal client data, then aggregate them together to
form a global update. The global update is then
applied to a 0% sparsity global model and the client
models, which are then evaluated.

We compare LEGO with these baselines:

* A FedIT-produced global model resulting
from 4 LLaMA-7B client models fine-tuned
over i.i.d. data. This baseline is the ideal case
for FedIT.

* A FedIT-produced global model resulting
from 8 task-specific LLaMA-7B client models
where each model is only fine-tuned on one
of the 8 different domain areas of databricks-
dolly-15k.

For all LEGO experiments, we use our HeteAgg
method to aggregate the client weights, accounting
for their heterogeneity (as opposed to the simple
averaging of all weights in FedAvg). Since the
computational cost of HeteAgg is the same as Fe-
dAvg, all speedups in LEGO are a direct result of
model pruning (Sun et al., 2023; Frantar and Alis-
tarh, 2023). During our experiments, we observe
up to a 1.6 x speedup in inference and up to a 1.4 x
speedup in fine-tuning using SparseGPT-produced
SLMs when compared to 0% sparsity LLMs. Given
the approach is decoupled from the specific prun-
ing method, LEGO will see further speedups as
pruning methods improve.

4.1 LEGO with Task-Independent Data

When building large structures, it is common to as-
semble smaller sub-units individually before com-
bining them into the final form. Similarly, with
LEGO, we can fine-tune smaller models individ-
ually, treating them as sub-units that are then ag-
gregated together to produce a final LLM. This
experiment tests the transferability of knowledge
from SLMs to an untouched LLM using LEGO.

We prune an LLM to create four 75% sparsity
SLMs with an i.i.d. client data distribution. The
dataset is partitioned into 4 i.i.d. segments, such
that each client dataset covers the same domains in
the same ratios. Each round, one client will fine-
tune off their local data, and then be aggregated
with the global 0% sparsity LLM. A global up-
date is then derived and applied to all of the client
models.

The results of this experiment with 4 SLMs and
i.i.d. data for fine-tuning are shown in Table 1. As
expected, due to the i.i.d. nature of the data, LEGO
matches FedIT’s accuracy on the recombined 0%
sparsity global LLM (shown in the last column,
’LLM Recombined’), despite only fine-tuning the
parameter equivalent of a single LLM.

Table 1: Average Model Accuracy Over Benchmarks

Composition LLM SLMs SLMs LLM

Initial Averaged Initial Globally Updated Recombined
LEGO 4 SLMs With i.i.d. Data 0.559 0.240 0.416 0.568
FedIT: 4 LLMs Withi.i.d. Data 0.559 N/A N/A 0.567
LEGO 8 Task-Dependent SLMs 0.559 0.240 0.411 0.571
FedIT: 8 Task-Dependent LLMs 0.559 N/A N/A 0.563

4.2 LEGO with Task-Dependent Data

This experiment evaluates knowledge transfer in a
task-dependent non-i.i.d. data distribution scenario.
We use eight client SLMs with 75% sparsity. We
split the databricks-dolly-15k dataset into each of
its 8 domain areas, and each client model fine-tunes
over one of these 8 segments. This means the client
models do not have the same amount of local data,
and each one only covers a single domain. Similar
to the previous experiment, in each round a client
will fine-tune on their local data and aggregate with
the global LLM. A global update will be derived
and applied to the client models.

The results of 8 task-dependent SLMs are shown
in the last two rows of Table 1. The results high-
light the advantage of LEGO for heterogenous data.
LEGO outperforms FedIT as shown in the last col-
umn ‘LLM Recombined’ with an accuracy of 0.571
versus 0.563. Despite each SLM being fine-tuned
on a different task, the knowledge transfers be-
tween models, resulting in a more robust global 0%
sparsity recombined LLM than any of the previous
experiments.

We additionally evaluate the effect of non-i.i.d.
data on the quality of LEGO-produced global up-
dates for SLMs. To do so, we track the performance
of client SLMs over time, evaluating their average
performance after every global update.

Average Performance

3 i 5 .
Number of Aggregations

Figure 3: The performance of clients after each global
update.

Figure 3 demonstrates that after every global
update, the performance of the client SLMs in-

crease almost linearly, despite the local data for
each client not being the same length (with some
having 5x the amount of others). This demon-
strates that SLMs are able to capture the knowledge
from small amounts of data without underfitting,
offsetting data heterogeneity.

4.3 Combining Differently Shaped Blocks

Just as not all (SLM) building blocks are the same
size, they may not necessarily be the same shape.
Regardless of the size or shape, the requirement is
that they can stack together. LEGO demonstrates
this principle.

+EEE -

Figure 4: Combining differently shaped building blocks
to create a larger block

Figure 4 shows three blocks of differing shapes
being combined to create a new, larger block that
encompasses the different shapes. The same can
be done with SLMs, where each SLM can cover a
different task or sparsity level, but be aggregated
together to create a robust LLM that covers the
diverse tasks of its components.

The results of the previous sections suggest that
with LEGO, knowledge is transferred between
SLMs fine-tuned with task-independent or task-
dependent data. This section investigates if this
same knowledge transfer occurs between SLMs
that are strictly of different shapes (sizes).

We initialize the FL environment with four het-
erogeneous client SLMs, each configured with
a different sparsity level: 0%, 25%, 50%, and
75%. All SLMs, including the 0% sparsity SLM
(LLM), are fine-tuned on their respective local
client data: one of four segments of i.i.d. data
from the databricks-dolly-15k dataset. This seg-
mentation is the same as Section 4.1, ensuring that
the local datasets are of equal size and cover the
same domain areas in identical proportions.

For this experiment, we first choose to fine-tune
all the client models, and then we conduct a single
round of aggregation, applying the resulting global
updates uniformly across all client models.

Sparsity 0% 25% 50% 75%

Pruned 0.559 0.554 0.529 0.384
Fine-Tuned 0.563 0.561 0.526 0.412
Globally Updated 0.568 0.565 0.542 0.396

Table 2: Average Model Accuracy over benchmarks for
4 SLM LEGO Components, each with different sparsity.

Table 2 displays the performance of the different-
sized models. We benchmarked their performance
at three different stages: when the LLM was ini-
tially pruned, resulting in the base SLM perfor-
mance before fine-tuning (Pruned), when each
client SLM is fine-tuned on its local data (Fine-
Tuned), and the final adapters after the global up-
dates (Globally Updated). As displayed in the table,
we see that fine-tuning improves performance for
all model sizes, with a significant performance gain
at the 75% sparsity level. The aggregation stage
(Globally Updated row) improves performance for
all models except the 75% sparsity SLM.

The 75% sparsity model’s degraded performance
after aggregation is likely due to the SLM’s lim-
ited size. Previous work has shown that smaller
models are better learners (Turc et al., 2019; Raffel
et al., 2020), creating an effect similar to dropout,
forcing the limited neurons to create stronger and
more general representations. During aggrega-
tion with the larger models, the small model’s
strongly learned representation becomes diluted
by the larger model’s weaker representation, de-
grading performance in the smaller model.

When comparing against the FedIT-produced
baselines in Table 1, we see in Table 2 that the
heterogeneous models produce an equally robust
aggregated 0% sparsity LLM, demonstrating suc-
cessful knowledge transfer between models.

These results demonstrate that LEGO allows for
flexible client model selection, enabling knowledge
transfer between models of different sizes and tai-
loring client models to suit device capabilities, as
opposed to being limited by the weakest client de-
vice.

To further understand the knowledge transfer be-
tween sizes, we repeat this experiment four times,
each time omitting one of the client language mod-
els from the aggregation. This lets us view and

analyze the individual contributions that each client
model makes.

0% Sparsity Model Accuracy 25% Sparsity Model Accuracy

fffffffffff

Accuracy

NoSO% Nods
Model Removed

75% Sparsity Model Accuracy

NoS0% Nos%
Model Removed

50% Sparsity Model Accuracy

75% Nos0% No2s% No 5 5%
Model Removed Model Removed

Figure 5: The accuracy of LEGO components on Hel-
laSwag after aggregation with one omission. The solid
blue line is the accuracy of the fine-tuned model, and the
dotted black line is the globally updated performance,
as listed in Table 2.

Figure 5 shows that in the 0% and 50% spar-
sity models, performance degrades when the 75%
sparsity model is omitted from aggregation. These
results demonstrate that LEGO allows for knowl-
edge transfer from strictly smaller models to a
larger model in an effective manner, confirming
that smaller models are better learners.

Despite any degradation relative to the globally
updated performance from Table 2, there is always
an improvement over fine-tuning, except for the
75% sparsity model. The 75% sparsity model
shows that as all aggregations degrade its perfor-
mance, with the larger, denser models degrading it
more. This confirms that larger models dilute its
learned representation.

Given these results, we can come to two conclu-
sions. First, smaller models create greater contri-
butions to the 0% sparsity LLM. Secondly, larger
models do not transfer knowledge as effectively to
smaller models.

While these experiments show potential for
higher performance in a heterogeneous setting, the
results are better underscored by already being on
par with the FedIT baselines. This indicates that
LEGO-produced models can further exceed the
performance of their homogeneous counterparts.

5 Related Work

Works on heterogeneous FL in the context of pre-
trained language models are sparse. We explain
why this context is important in Appendix A.3. The
first paper to cover model-agnostic FL in-depth was
InclusiveFL (Liu et al., 2022), where the authors
used layer-pruned BERT models in a federated sys-
tem and aggregated across layers. The authors
found layer-pruning to have a negligible effect on
BERT’s performance - something that does not
apply to modern LLMs due to large magnitude fea-
tures distributed across the layers (Dettmers et al.,
2022). We experimentally prove this in Appendix
A2

We can extend this reasoning to similar ap-
proaches focused on layer selection that are
only tested on encoder-style LLMs, like FedPep-
TAO (Che et al., 2023), since these all disregard
large magnitude features.

We then look to homogeneous model FL applied
to larger, decoder-style LLMs. FedIT (Zhang et al.,
2023) acts as the representation of traditional FL
throughout our work, using FedAvg for aggregation
as mentioned in Section 4. However, FedAvg can-
not adapt to heterogeneous models, and as pointed
out by other works, cannot account for heteroge-
neous ranks in the LoRA adapter(Bai et al., 2024).

Newer works have continued to model them-
selves after FedIT’s use of LoRA. Recently, en-
abling heterogeneous LoRA ranks in FL has been
discussed in the literature. For example, Flex LORA
computes a weighted average of LoRA adapters
with different LoRA ranks, and then uses SVD
for redistribution (Bai et al., 2024). However,
FlexLoRA assumes model homogeneity among
client models, which is what allows for adaptive
rank pruning in the LoRA adapter.

The advantages of rank pruning do not trans-
late to the advantages of model pruning. Model
pruning allows for more efficient fine-tuning and
inference, whereas pruning LoRA only translates
to more efficient fine-tuning, with the same infer-
ence costs as the initial LLM. Thus, in FlexLoRA,
model selection is constrained by weakest device.
In LEGO, pruning allows larger models (LLMs) to
run on more powerful devices, and smaller models
(SLMs) to run on weaker devices.

Additionally, their aggregation technique relies
on multiplying each client’s LoRA modules, A and
B, together, where A € R™™ and B € R™*",
The multiplication results in the server creating the

full-sized weights for every client model before ag-
gregating them together. This extremely resource
intensive operation limits the scalability of the tech-
nique relative to ours, where the LoRA modules
stay separate.

However, LEGO does not have to exclusively
operate over PEFT adapters. The same approach
and aggregation methods used for LoORA adapters
can be performed with the actual client weights, or
with the multiplied LoRA adapters. This means
that rank-pruning techniques can be applied with
or on top of LEGO, further decreasing SLM size,
at the cost of increased computation for the server.

There are numerous other pruning techniques in
the literature, but we choose to use the literature-
standard pruning technique for our experiments,
SparseGPT (Frantar and Alistarh, 2023). However,
LEGO would be compatible with any pruning tech-
nique, including different client-structured pruning
patterns, since LEGO preserves sparsity patterns in
client models.

To the best of our knowledge, our work is the
only work that looks to leverage pruned decoder-
style LLMs for FL, allowing for fine-tuning and
inference speedups for client models. Additionally,
by pruning LLMs, we can scale client SLMs down
to match heterogeneous client capabilities without
limiting model size for computationally stronger
clients.

6 Conclusions

In this work, we have introduced LEGO, a build-
ing block methodology for federated fine-tuning of
LLMs. By allowing for the use of pruned LLMs,
we can use SLMs as task-specific learners for
resource-constrained devices, and stack them into a
fully robust LLM. This is enabled through our sim-
ple, yet effective, aggregation scheme, HeteAgg,
which allows for the aggregation of heterogeneous
SLMs. Through experimentation we demonstrate
that LEGO can leverage SLMs, allowing for better
adaptation to small amounts of data, stronger learn-
ing over non-i.i.d. client data distributions, and
greater client flexibility by allowing for tailored
client models for client devices. By enabling het-
erogeneous client resource budgets, LEGO creates
a more scalable and resource-efficient FL system
for private conversational Al

7 Limitations

Our approach has limitations caused by prioritizing
efficiency. As mentioned in Section 3, we operate
over client LoRA adapters. Each LoRA module A
and B is aggregated separately, which introduces
noise to the resulting weights, as

> AxY B # Y (AxB)
N———— N—_————

LEGO Noise-Free Aggregation.

Despite the noise, however, we show experimen-
tally that LEGO produces robust models.

References

Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang.
2022. Fedrolex: Model-heterogeneous federated
learning with rolling sub-model extraction. Advances
in neural information processing systems, 35:29677—

29690.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao,
and Yaliang Li. 2024. Federated fine-tuning of
large language models under heterogeneous lan-
guage tasks and client resources. arXiv preprint
arXiv:2402.11505.

Tianshi Che, Ji Liu, Yang Zhou, Jiaxiang Ren, Jiwen
Zhou, Victor S Sheng, Huaiyu Dai, and Dejing Dou.
2023. Federated learning of large language models
with parameter-efficient prompt tuning and adaptive
optimization. arXiv preprint arXiv:2310.15080.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. Advances in
Neural Information Processing Systems, 35:30318-
30332.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in

one-shot. In International Conference on Machine
Learning, pages 10323-10337. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Avishek Ghosh, Justin Hong, Dong Yin, and Kan-
nan Ramchandran. 2019. Robust federated learn-
ing in a heterogeneous environment. arXiv preprint
arXiv:1906.06629.

Samyak Gupta, Yangsibo Huang, Zexuan Zhong,
Tianyu Gao, Kai Li, and Dangi Chen. 2022. Recov-
ering private text in federated learning of language
models. Advances in Neural Information Processing
Systems, 35:8130-8143.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing.

Samuel Horvath, Stefanos Laskaridis, Mario Almeida,
Ilias Leontiadis, Stylianos Venieris, and Nicholas
Lane. 2021. Fjord: Fair and accurate federated learn-
ing under heterogeneous targets with ordered dropout.
Advances in Neural Information Processing Systems,
34:12876-128809.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yann LeCun, John Denker, and Sara Solla. 1989. Opti-
mal brain damage. Advances in neural information
processing systems, 2.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen
Wang, and Zhihua Zhang. 2019. On the conver-
gence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189.

Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang,
Lingjuan Lyu, Hong Chen, and Xing Xie. 2022. No
one left behind: Inclusive federated learning over
heterogeneous devices. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 3398-3406.

Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, and Blaise Aguera y Arcas. 2017.
Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and
statistics, pages 1273-1282. PMLR.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,

21(140):1-67.

https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300
http://arxiv.org/abs/2009.03300

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning.

Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and
Dacheng Tao. 2023. Heterogeneous federated learn-
ing: State-of-the-art and research challenges. ACM
Computing Surveys, 56(3):1-44.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence?

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan
Li, Ruiyi Zhang, Guoyin Wang, and Yiran Chen.
2023. Towards building the federated gpt: Federated
instruction tuning. arXiv preprint arXiv:2305.05644.

A Appendix

A.1 Comparison of Pruning Methods

As discussed in the Background section, there are
two pruning techniques that dominate the literature.
We test both SparseGPT and Wanda and analyze
the best pruning technique to use.

The results in table 3 show that SparseGPT pro-
duces more robust models on average, with a sig-
nificant advantage at higher levels of sparsity. How-
ever, SparseGPT is more computationally expen-
sive when pruning, while Wanda is computationally
inexpensive.

This provides us a few insights. The first is
that regardless of pruning strategy, performance
degrades significantly beyond 50% sparsity. The
second is that while more computationally expen-
sive, SparseGPT may be necessary at high sparsity
levels or more resource constrained client devices,
as it not only produced a more robust model, but
the increase in performance due to fine-tuning was
almost double that of Wanda.

Given these insights, the superior pruning
method depends on the use case scenario. If we are
defining rigid model sizes and assert that client de-
vices will be initialized with one of these ’default’
model sizes, then SparseGPT would be superior.
This is especially true given our compute budget

10

is capable of fine-tuning LLMs and performing in-
ference, since SparseGPT is relatively cheap com-
pared to those tasks if not being performed for ever
device initialization. Thus, we can use SparseGPT
to generate various model sizes/sparsity’s before
the FL process begins, and assign models accord-
ingly.

However, in practice, creating a methodology to
calculate the ideal model size given the device’s
compute budget would return more robust client
models for users in the FL system. In this sce-
nario, when a client is initialized, a model would be
pruned according to their compute budget, mean-
ing a lightweight process like Wanda would be
superior.

However it is worth noting that, with the ex-
ception of high sparsity scenarios, the difference
between the two pruning method’s performances is
negligible. Therefore, our results should be gener-
alizable to both pruning methods.

Additionally, as pruning methods continue to
evolve, the performance of pruned models will
improve. Therefore its important evaluate model
performance in our experiments with the limita-
tions of current pruning techniques, but as pruning
techniques improve, our methodologies and results
would generalize to them and should scale accord-
ingly.

In order to confirm if our experimental results
are generalizable to other pruning techniques, we
also test the Wanda-pruned SLMs for our HeteAgg
experiment. We perform the same experiment in-
volving 4 models at different sparsity levels, with
its results displayed in table 5.

Figure 6: Performance of federated SparseGPT-pruned
models relative to federated Wanda-pruned models
when evaluated on HellaSwag (Zellers et al., 2019)

When plotted against SparseGPT’s performance
in figure 6, we see that the effects of our FL ap-
proach are near identical. For sparsity > 50%, we
see that the results are nearly identical, and the
performance gap displayed by the fine-tuned 50%
sparsity SparseGPT-pruned model is corrected after
model aggregation.

http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/2310.06694
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830
http://arxiv.org/abs/1905.07830

Table 3: Comparison of SparseGPT and Wanda Pruned Models

Sparsity Level SparseGPT Wanda
Pruned Fine-tuned Pruned Fine-tuned
0% 0.5694 0.5760 0.5694 0.5741
25% 0.5654 0.5784 0.5672 0.5731
50% 0.5144 0.5244 0.5195 0.5377
75% 0.2989 0.3631 0.2692 0.2916

Table 4: All models were pruned from LLaMA-7B and evaluated over HellaSwag (Zellers et al., 2019). The
Fine-tuned models were fine-tuned over databricks-dolly-15k. Bolded scores are the best in sparsity level.

Table 5: Performance of Wanda pruned models on HellaSwag (Zellers et al., 2019)

Sparsity Level Pruned Fine-Tuned Aggregated
0% 0.5694 0.5741 0.5799
25% 0.5672 0.5731 0.5802
50% 0.5195 0.5377 0.5393
75% 0.2692 0.2916 0.2717

While the performance on HellaSwag is dif-
ferent at high sparsity, that can be attributed to
Wanda’s weaker pruning ability at high sparsity
levels. When viewing the Wanda and SparseGPT
pruned 75% sparsity models, we see the drop in
performance due to aggregation after fine-tuning is
nearly identical.

Therefore, since the performance is nearly iden-
tical, and the only significant difference in perfor-
mance can be attributed to the initial model per-
formance as opposed to our FL system, we can
generalize our FL. method to other current pruning
techniques.

A.2 Experimental Comparison with
InclusiveFL.

To confirm the effect of emergent large-magnitude
features in LLMs discussed in Section 5, we exper-
imentally compare InclusiveFL and layer pruning
to LEGO and activation pruning. To do so, we
layer-prune LLaMA-7B and modify our HeteAgg
function to perform layer-wise aggregation.

We pruned LLaMA-7B to 24 and 16 layers,
equivalent to 25% and 75% sparsity. We then put
these two models and a 0% sparsity LLaMA-7B
model in the federated environment from Algo-
rithm 1, modifying the HeteAgg function to follow
the pseudocode in the InclusiveFL paper. For the
closest comparison we take select results from Sec-
tion 4.1 and Table 1.

In Table 6, we can see that even before feder-
ation, layer pruning fails to conserve model per-

11

formance after pruning. This can be attributed to
the emergent large-magnitude features in LLMs,
as described in Section 5 (Dettmers et al., 2022).
After federation, the fine-tuning and aggregation
process degraded the performance, proving that
this approach does not work for LLMs.

A.3 Unique FL challenges

Federated Learning for LLMs comes with nume-
orus ungiue challenges. The overwhelming major-
ity of model-heterogeneous FL literature is written
in the context of computer vision (CV) based mod-
els.

These previously proposed solutions cannot be
applied to LLLMs, due to challenges in language
data and model architecture.

The first major challenge is the difference in
data. Language data and image data are funda-
mentally different. Text data is significantly more
complex, being a high dimensional data where se-
quence context matter much more. In the context
of transformer models, token dependencies across
long sequences make many of the aggregation tech-
niques discussed in CV much less effective.

Text data presents higher dimensional complex-
ity than image data due to the sequential and contex-
tual nature of language. Transformers must account
for token dependencies across long sequences, mak-
ing model compression and aggregation methods
less effective than in vision models. This applies to
ordered dropout from techniques like FjORD (Hor-
vath et al., 2021) which relies on simple low dimen-

Table 6: Performance of layer-pruning (Liu et al., 2022) compared to activation pruning (our study).

Sparsity / Layers Pruned Fine-tuned & Aggregated
SparseGPT Layer-Pruning | SparseGPT Layer-Pruning
Full Sized 0.5694 0.5694 0.5836 0.5148
25% Sparsity / 24 Layers 0.5654 0.3957 0.5801 0.3658
50% Sparsity / 16 Layers 0.5144 0.3021 0.5411 0.3014

sional input data for its DNNs. These techniques
cannot capture the complex, dynamic token depen-
dencies that transformers do.

Architecturally, language models and CNNs dif-
fer by more than just the use of transformers.
CNNs, regardless of size, typically retain a sim-
ilar architecture (convolutional and pooling layers).
Most CNNs use most of their layers to learn how to
"see", e.g. edge detection, color contrast, etc. This
is why federated dropout or partial training meth-
ods work for CNNs. Methods like FedRolex, where
stochasitc sub-model extraction occurs, rely on us-
ing CNNs because convolutional layers can func-
tion somewhat independently (Alam et al., 2022).
Contemporary LLMs do not have such a standard-
ized structure, where the layers can function inde-
pendently.

This can be partially attributed to the large mag-
nitude features in LLMs. These large magnitude
features. These are parameters with significantly
higher magnitudes than the rest of the parameters,
and are sparse and distributed randomly across lay-
ers and have a significant effect on LLM perfor-
mance. This is a phenomenon unique to transform-
ers, something with which many FL methods do
not adapt to.

This also extends to model compression. Prun-
ing techniques such as filter and layer pruning are
commonly used in CNNs, but are less effective
for transformers, as demonstrated in appendix A.2.
These techniques are often the basis of heteroge-
nous FL techniques for CV or DNNs. Without
pruning, many CNNs are small enough to commu-
nicate, like in

A.4 Experimental Setup and Performance

For all of the experiments, due to hardware limita-
tions we use a client selection strategy that sequen-
tially chooses clients. We use a client participation
rate of 0.1, with a local batch size of 64 and only
fine-tune for one epoch. For our LoRA adapter
settings, we chose a rank and alpha of 16, and only
target the q_proj.

12

Table 1 showed the average model performance
for each model. The individual results for each
benchmark of each model is held in Table 7. We
evaluate each model on HellaSwag (Zellers et al.,
2019), MMLU (Hendrycks et al., 2021), SciQ, and
ARC (Clark et al., 2018). We evaluate the models
using the EleutherAl Language Model Evaluation
Harness (Gao et al., 2023).

Sparsity (%) Stage HellaSwag MMLU SciQ Arc
4 SLLMs With i.i.d. Data Distribution
0 Pruned 0.569 0.299 0947 0.419
0 Aggregated 0.586 0.294 0.944 0.447
75 Pruned 0.299 0.230 0.809 0.197
75 Aggregated 0.364 0.294 0.944 0.4471
FedIT: 4 LLMs
0 Aggregated 0.575 0.286 0.956 0.453
8 Task-Dependent SLMs
0 Pruned 0.569 0299 0947 0419
0 Aggregated 0.586 0.298 0.953 0.446
75 Pruned 0.299 0.230 0.233 0.197
75 Aggregated 0.359 0.241 0.813 0.233
FedIT: 8 Task-Specific LLMs
0 Aggregated 0.570 0.279 0951 0452
4 Strictly Heterogeneous Models
0 Pruned 0.569 0.299 0947 0419
0 Fine-Tuned 0.576 0.295 0950 0.429
0 Aggregated 0.584 0.301 0.953 0.435
25 Pruned 0.565 0292 0938 0422
25 Fine-Tuned 0.578 0.286 0.944 0.437
25 Aggregated 0.580 0.295 0944 0.442
50 Pruned 0.514 0.292 0935 0.375
50 Fine-Tuned 0.524 0.267 0932 0.379
50 Aggregated 0.541 0.292 0932 0.404
75 Pruned 0.299 0.230 0.809 0.197
75 Fine-Tuned 0.363 0.237 0.828 0.221
75 Aggregated 0.317 0.229 0.832 0.206

Table 7: Model Performance Across Different Configurations and Datasets

13

