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Abstract

Parameter-efficient tuning methods such as001
LoRA could achieve comparable performance002
to model tuning by tuning a small portion of003
the parameters. However, substantial computa-004
tional resources are still required, as this pro-005
cess involves calculating gradients and perform-006
ing back-propagation throughout the model.007
Much effort has recently been devoted to uti-008
lizing the derivative-free optimization method009
to eschew the computation of gradients and010
showcase an augmented level of robustness in011
few-shot settings. In this paper, we prepend012
the low-rank modules into each self-attention013
layer of the model and employ two derivative-014
free optimization methods to optimize these015
low-rank modules at each layer alternately. Ex-016
tensive results on various tasks and language017
models demonstrate that our proposed method018
achieves substantial improvement and exhibits019
clear advantages in memory usage and con-020
vergence speed compared to existing gradient-021
based parameter-efficient tuning and derivative-022
free optimization methods in few-shot settings.023

1 Introduction024

In recent years, there has been a rapid development025

in large language models (LLMs) (Radford et al.,026

2019; Brown et al., 2020; OpenAI, 2023; Touvron027

et al., 2023), which have showcased impressive ca-028

pabilities across various natural language process-029

ing tasks. However, the sheer number of param-030

eters of large models leads to a linear increase in031

tuning cost and poses challenges for fine-tuning on032

common hardware. To this end, parameter-efficient033

tuning methods (He et al., 2022; Houlsby et al.,034

2019; Chen et al., 2022b,a) have emerged as a solu-035

tion that could achieve comparable performance to036

full fine-tuning while only tuning a small portion of037

the parameters in large language models. Although038

these methods can reduce GPU memory require-039

ments by approximately 30% (Sung et al., 2022),040

tuning a small subset of parameters still involves041
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Figure 1: The results of our proposed methods F-LoRA
and C-LoRA compared to gradient-based and gradient-
free methods on average performance over seven lan-
guage understanding tasks. We evaluate all the methods
on RoBERTa-large.

the computation of gradients and back-propagation, 042

which presents challenges for utilizing and deploy- 043

ing large language models. Currently, the prevail- 044

ing approach to harness the power of large language 045

models is through in-context learning, treating the 046

model as a service (Brown et al., 2020). The ap- 047

proach only involves forward computation and re- 048

quires designing appropriate prompts or demonstra- 049

tions without updating model parameters. However, 050

in-context learning demands a meticulous selection 051

of prompts and demonstrations, and the model’s 052

performance relies entirely on the chosen prompts 053

and demonstrations (Gao et al., 2021). 054

Recently, much effort has been devoted to black- 055

box tuning methods (Sun et al., 2022b,a; Zhao et al., 056

2023; Xu et al., 2023; Oh et al., 2023), which uti- 057

lizes the derivative-free optimization method to op- 058

timize the introduced continuous prompts. Black- 059

box tuning methods achieve comparable perfor- 060

mance to parameter-efficient tuning methods and 061

full fine-tuning in a few-shot setting without need- 062

ing gradient computation and back-propagation 063

through the entire LLM. However, it is acknowl- 064

edged that training the prompt vectors in few-shot 065
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settings is prone to instability and exhibits slow con-066

vergence (Lester et al., 2021; Li and Liang, 2021;067

Liu et al., 2021b), making it challenging to gener-068

alize to large language models.069

In this paper, we propose a derivative-free op-070

timization approach to address the challenges as-071

sociated with the introduced low-rank modules in072

large language models that eschews the computa-073

tion of gradients and showcases an augmented level074

of robustness in few-shot settings. Our method075

eliminates the need for gradient computation and076

back-propagation, resulting in improved stability077

and faster convergence compared to previous base-078

lines. We prepend low-rank modules into each self-079

attention layer of the language model and initialize080

these modules by computing the mean and variance081

of hidden states for each layer. To optimize the pa-082

rameters of the low-rank modules, we employ two083

derivative-free optimization methods. Recognizing084

that directly optimizing all low-rank modules of085

each layer using derivative-free methods in a high-086

dimensional space may slow down convergence,087

we adopt a divide-and-conquer strategy. The strat-088

egy entails optimizing the low-rank modules of089

each layer separately. To enable the optimization of090

the low-rank modules through derivative-free meth-091

ods, we introduce a linear mapping matrix. The ma-092

trix maps the parameters obtained after derivative-093

free optimization to the desired low-rank modules094

at each layer. We initialize the linear mapping ma-095

trix based on normal distributions, with standard096

deviations related to the hidden states of each layer.097

We conduct comprehensive experiments on098

RoBERTa-large (Delobelle et al., 2020), GPT2-099

large, and GPT2-XL (Radford et al., 2019) to as-100

sess the effectiveness of our method. The results101

demonstrate that our proposed method has a signif-102

icant improvement on average across seven natural103

language understanding tasks in a few-shot setting.104

As shown in the Figure 1, our proposed approach105

achieves substantial improvement compared to ex-106

isting gradient-based parameter-efficient methods107

(e.g., Adapter tuning, LoRA, P-Tuning v2, and108

BitFit) and derivative-free optimization methods109

(e.g., BBT, GAP3, and BBTv2) on RoBERTa-large.110

Additionally, our proposed method demonstrates111

superior performance, clear advantages regarding112

GPU memory usage, and faster model convergence113

speed compared to existing derivative-free opti-114

mization methods in larger models.115

2 Preliminaries 116

2.1 Derivative-free Optimization 117

Derivative-free optimization (DFO) algorithms 118

(Wierstra et al., 2014; Rios and Sahinidis, 2013; 119

Qian et al., 2016) are capable of tackling com- 120

plex problems without relying on the back- 121

propagation. Typically, these DFO algorithms em- 122

ploy a sampling-and-updating framework to en- 123

hance the solution iteratively. These algorithms 124

have broad applications spanning various fields, 125

from automatic machine learning (Snoek et al., 126

2012) to reinforcement learning (Salimans et al., 127

2017; Bai et al., 2023) and objective detection 128

(Zhang et al., 2015b). Representative DFO algo- 129

rithms include CMA-ES (Covariance Matrix Adap- 130

tation Evolution Strategy) (Hansen and Ostermeier, 131

2001), Fireworks algorithm (Li and Tan, 2018; 132

Chen and Tan, 2021; Li and Tan, 2020), Genetic al- 133

gorithms (Mitchell, 1998), among others. CMA-ES 134

is a widely adopted evolutionary algorithm for non- 135

linear and non-convex continuous optimization. It 136

generates new potential solutions by sampling from 137

a multivariate normal distribution model at each 138

iteration. Besides, we have a Fireworks algorithm 139

(FWA) based on simulating the explosion process 140

of fireworks, introducing randomness and diversity 141

to aid in escaping local minima and conducting a 142

more comprehensive search of the problem space. 143

FWA presents a new search manner that searches 144

the potential space by a stochastic explosion pro- 145

cess within a local space. Based on CMA-ES and 146

FWA, we propose two derivative-free optimization 147

methods for low-rank adaptation: C-LoRA and 148

F-LoRA. We detail the optimization processes of 149

the two gradient-free optimization methods in Ap- 150

pendix A.1 and A.2. 151

2.2 Black-Box-Tuning 152

Common language understanding tasks can be for- 153

mulated as classification tasks by incorporating 154

task-specific prompts and a few labeled samples or 155

by carefully engineering prompts and verbalizers 156

(Brown et al., 2020; Schick and Schütze, 2021a). 157

For example, an input sentence combined with tem- 158

plate P that includes a <MASK> token can be rep- 159

resented as X = {x1, x2, · · · , xL, P,<MASK>.}, 160

and L corresponds to the length of the input sen- 161

tence. When X is fed into model f , the model can 162

determine whether the corresponding label token 163

of class Y (e.g., "Yes" or "No") is more appropriate 164

to replace the <MASK> token (Gao et al., 2021). 165
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Prompt tuning (Lester et al., 2021) and P-tuning166

(Liu et al., 2021b) insert continuous prompt vectors167

p ∈ RD into the input X at the embedding layer,168

where the objective can be formulated as follows:169

p⋆ = argmin
p∈Θ

L(f(p;X), Y ) (1)170

where L is the loss function, Θ is the search space,171

and p⋆ is the optimal prompt vector after a gradient-172

based optimization through the model of f .173

Recently, a gradient-free prompt tuning method,174

BBT (Sun et al., 2022b), was proposed to learn175

the continuous prompts without back-propagation176

through the model. BBT utilizes derivative-free177

optimization algorithms to optimize the continuous178

prompt as follows:179

z⋆ = argmin
z∈Z

L(f(Az;X), Y ) (2)180

where A ∈ RD×d is the random projection ma-181

trix, Z is the search space, and z ∈ Rd is a low-182

dimensional subspace. BBT adopts the Covari-183

ance Matrix Adaptation Evolution Strategy (CMA-184

ES) (Hansen and Ostermeier, 2001) to obtain the185

optimal prompt z⋆. Inspired by the success of186

deep prompt tuning (Li and Liang, 2021; Liu et al.,187

2021a), BBTv2 (Sun et al., 2022a) extends BBT188

by optimizing the deep prompt with derivative-free189

methods injected at every intermediate layer of the190

language model.191

3 Approach192

The intrinsic dimensionality refers to the minimum193

dimension required to address high-dimensional194

optimization problems. It plays a crucial role in195

explaining the effectiveness of fine-tuning in lan-196

guage models (Li et al., 2018; Aghajanyan et al.,197

2021). Previous research on the intrinsic dimen-198

sionality of pre-trained language models has led to199

the development of approaches such as LoRA (Hu200

et al., 2022). LoRA introduces down-sampling and201

up-sampling matrices at each layer of the Trans-202

former and employs a low-rank decomposition opti-203

mization method to modify the original weight ma-204

trices within the self-attention modules. However,205

LoRA requires gradient back-propagation through-206

out the entire model, which may be computation-207

ally intensive when dealing with large language208

models. To further explore the potential benefits of209

combining low-rank adaptation optimization with210

derivative-free optimization, as depicted in Figure211

2, we formally introduce our method, a derivative- 212

free optimization for low-rank adaptation in large 213

language models. 214

Similar to the manual prompt learning family of 215

models (Schick and Schütze, 2021a,b; Gao et al., 216

2021), we first design our model to be close to 217

the pre-training stage (e.g., keeping consistent ob- 218

jective function) by converting each input X to 219

masked language model (MLM) input, which con- 220

tains a <MASK> token. Then, the model deter- 221

mines the corresponding verbalizers of class Y to 222

substitute for the <MASK> token. 223

Building upon the success of Low-rank adap- 224

tation (LoRA) (Hu et al., 2022) and Black-Box 225

prompt tuning (BBT) (Sun et al., 2022b,a), we in- 226

corporate low-rank matrices into the self-attention 227

module of each layer in the pre-trained language 228

model. We optimize the introduced low-rank ma- 229

trix parameters using derivative-free optimization 230

methods. As shown in Figure 2, the LoRA mod- 231

ule consists of two low-rank matrices: A ∈ Rr×k 232

and B ∈ RD×r. Here, r represents the rank 233

size, typically chosen as 2, 4, 8, 16, etc. For 234

the weight matrices in the self-attention module 235

W ∈ RD×k of the self-attention layer, the parame- 236

ter updates are performed through matrix decom- 237

position W +∆W = W +BA. During training, 238

the parameters of W are frozen and do not receive 239

gradient updates, while the parameters of A and B 240

are updated using gradient-free methods. 241

Considering that large language models have a 242

low intrinsic dimensionality, we further optimize 243

the parameters within a low-rank space using two 244

gradient-free optimization methods. Figure 2 il- 245

lustrates this process. At the self-attention module 246

of each layer in the language model, we optimize 247

the vectors m1
L ∈ Rd, m2

L ∈ Rd, m3
L ∈ Rd, 248

and m4
L ∈ Rd using gradient-free optimizers such 249

as FWA (Li and Tan, 2018; Chen and Tan, 2021; 250

Li and Tan, 2020) and CMA-ES (Hansen and Os- 251

termeier, 2001), where d is the intrinsic dimen- 252

sion. These optimized vectors are then projected 253

into the low-rank space using specific random pro- 254

jection modules G1
L ∈ Rr×k×d, G2

L ∈ RD×r×d, 255

G3
L ∈ Rr×k×d, and G4

L ∈ RD×r×d. The compu- 256

tation can be expressed as follows: 257

AQ = G1
Lm

1
L

BQ = G2
Lm

2
L

AK = G3
Lm

3
L

BK = G4
Lm

4
L

(3) 258
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Figure 2: An illustration of derivative-free optimization for low-rank adaptation. We apply the low-rank matrices
(green boxes) at the self-attention module of each layer and initialize them with model-specific normal distributions.
We use two derivative-free methods (e.g., CMA-ES and Firework algorithm) to alternately optimize low-rank
modules at the self-attention module of each layer.

After obtaining AQ ∈ Rr×k, BQ ∈ RD×r, AK ∈259

Rr×k, and BK ∈ RD×r as low-rank matrices, we260

explore the weight matrices in self-attention mod-261

ules with the application of CMA-ES for LoRA in262

Appendix D and update the weight matrices WQ263

and WK as follows:264

WQ = WQ +BQAQ

WK = WK +BKAK
(4)265

This process is performed separately for each266

model layer, treating the optimization of the low-267

rank matrices concatenated to the self-attention268

layer as a subproblem optimization process. In-269

spired by the divide-and-conquer approach, we em-270

ploy a gradient-free optimization strategy for the271

introduced parameters across the entire model.272

mi⋆
L = argmin

mi
L∈M

L(f(Gi
Lm

i
L;X), Y ) (5)273

where M is the search space, L is the loss function,274

and mi⋆
L is the optimal vector after a derivative-275

free optimization through the model f . A detailed276

description is shown in Algorithm 1.277

The initialization of the modules G1
L, G2

L, G3
L,278

and G4
L plays a crucial role in the performance of279

the model. We analyze two different initialization280

methods: random initialization with the normal dis-281

tribution (e.g., initially set to N (0, 0.5)) and initial-282

ization with the distribution of the hidden states at283

each layer of the language model similar to BBTv2 284

(Sun et al., 2022a). We show the details in Ap- 285

pendix E. In section 5.4, our findings reveal that 286

random initialization with the normal distribution 287

leads to a slight decline in the performance of the 288

language model and slows down the convergence. 289

Therefore, we initialize the modules G1
L, G2

L, G3
L, 290

and G4
L using the distribution of the hidden states 291

at each layer of the language model. This initializa- 292

tion strategy helps maintain the performance and 293

convergence speed of the model, leading to better 294

results. 295

4 Experiments 296

This section details the experimental results of 297

several natural language understanding (NLU) 298

tasks. The results demonstrate that our proposed 299

method outperforms the current gradient-based and 300

gradient-free methods on several tasks in a few- 301

shot setting. 302

4.1 Dataset Statistics 303

We conduct extensive experiments on seven stan- 304

dard NLU datasets, which cover a range of tasks, 305

including natural language inference, paraphrase 306

identification, sentiment analysis, and topic classi- 307

fication. The detailed statistics of these datasets are 308

shown in Appendix C. 309
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Method #Params
SST-2

Acc.

Yelpp

Acc.

AG’s News

Acc.

DBPedia

Acc.

MRPC

F1.

SNLI

Acc.

RTE

Acc.
Avg.

Gradient-Based Methods

Model tuning 355M 85.49(2.84) 91.82(0.79) 86.36(1.85) 97.98(0.14) 77.35(5.70) 54.64(5.29) 58.60(6.21) 78.88

Adapter Tuning 2.4M 83.91(2.90) 90.99(2.86) 86.01(2.18) 97.99(0.07) 69.20(3.58) 57.46(6.63) 48.62(4.74) 76.31

BitFit 172K 81.19(6.08) 88.63(6.69) 86.83(0.62) 94.42(0.94) 66.26(6.81) 53.42(10.63) 52.59(5.31) 74.76

LoRA 786K 88.49(2.90) 90.21(4.00) 87.09(0.85) 97.86(0.17) 72.14(2.23) 61.03(8.55) 49.22(5.12) 78.01

Prompt Tuning 50K 68.23(3.78) 61.02(6.65) 84.81(0.66) 87.75(1.48) 51.61(8.67) 36.13(1.51) 54.69(3.79) 63.46

P-Tuning v2 1.2M 64.33(3.05) 92.63(1.39) 83.46(1.01) 97.05(0.41) 68.14(3.89) 36.89(0.79) 50.78(2.28) 70.47

Gradient-Free Methods

Manual Prompt 0 79.82 89.65 76.96 41.33 67.40 31.11 51.62 62.56

In-Context Learning 0 79.79(3.06) 85.38(3.92) 62.21(13.46) 34.83(7.59) 45.81(6.67) 47.11(0.63) 60.36(1.56) 59.36

Feature-MLP 1M 64.80(1.78) 79.20(2.26) 70.77(0.67) 87.78(0.61) 68.40(0.86) 42.01(0.33) 53.43(1.57) 66.63

Feature-BiLSTM 17M 65.95(0.99) 74.68(0.10) 77.28(2.83) 90.37(3.10) 71.55(7.10) 46.02(0.38) 52.17(0.25) 68.29

GAP3 2.5K 89.70(2.80) 93.00(2.30) 83.20(3.20) 83.70(2.90) 70.20(4.50) 51.10(4.60) 49.70(1.50) 74.40

BBT 2.5K 89.56(0.25) 91.50(0.16) 81.51(0.79) 79.99(2.95) 61.56(4.34) 46.58(1.33) 52.59(2.21) 71.90

BBTv2 60K 90.33(1.73) 92.86(0.62) 85.28(0.49) 93.64(0.68) 77.01(4.73) 57.27(2.27) 56.68(3.32) 79.01

C-LoRA 38K 90.70(1.30) 93.37(0.44) 85.55(0.57) 93.70(0.88) 80.12(1.88) 59.11(1.89) 57.34(2.34) 79.98

F-LoRA 38K 91.56(0.87) 94.84(0.57) 86.64(0.55) 94.95(0.54) 79.99(1.67) 61.42(1.47) 60.93(1.42) 81.48

Table 1: Performance of gradient-based and gradient-free methods on RoBERTa-large. We report average and
standard deviation performance over five different seeds. Bold fonts indicate the best results on derivative-free
methods.

Algorithm 1 DFOs for Low-Rank Adaptation

Require: L-layer language model f ,
Budget of API calls: B,
Optimizers: {Oi}Li=1,
Loss function L

1: Hidden variable: mi
L, i = 1, 2, 3, 4

2: Random projections: Gi
L, i = 1, 2, 3, 4

3: Low-rank modules of each layer: A and B
4: repeat
5: for each hidden layer do
6: Evaluate: loss = L(f(Gi

Lm
i
L))

7: Update mi
L by DFOs: Oi

L(m
i
L, loss)

8: Update the Low-rank modules A and B
through Gi

Lm
i
L while keep Gi

L frozen
9: end for

10: until B/L times f call

4.2 Experimental Settings310

Datasets The implementation of our method is311

based on HuggingFace (Wolf et al., 2020) and Py-312

torch (Paszke et al., 2019). Considering the incred-313

ible power of large language models in a few-shot314

setting (Brown et al., 2020), we conduct our ex-315

periments with the same procedure as Zhang et al.316

(2021), Gu et al. (2022), and Sun et al. (2022a) to317

construct the true few-shot learning settings (Perez318

et al., 2021). We sample n instances for each class 319

Y from the original training set to form the true 320

few-shot training set Dtrain and validation sets Ddev, 321

and ensure that |Dtrain| = |Ddev|. In particular, in 322

our experiments, the size of the test sets is signifi- 323

cantly larger than that of the training and validation 324

sets. 325

Hyperparameters We use a default setting train- 326

ing with a population size of 20 and a budget of 327

6,000 API calls to all the tasks for CMA-ES and 328

a default setting training with a population size of 329

5 and a budget of 6,000 API calls to all the tasks 330

for FWA. We set the rank r of the low-rank matrix 331

to be 2 or 4. We train our proposed method on one 332

NVIDIA 3090 with 24G of memory and report the 333

accuracy or F1 score for several NLU tasks. For 334

generating random projections, we use normal dis- 335

tributions with standard deviations initialized with 336

the distribution of the hidden states at each layer of 337

the language model. 338

4.3 Baselines 339

To ensure a fair comparison, we use RoBERTa- 340

large (Delobelle et al., 2020) as the pre-trained 341

model for both gradient-based and gradient-free 342

methods in our experiments. Specifically, to verify 343

the effectiveness of our method on large language 344

models, we chose GPT2-XL (Radford et al., 2019) 345
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Method #Params
SST-2

Acc.

Yelpp

Acc.

AG’s News

Acc.

DBPedia

Acc.

MRPC

F1.

SNLI

Acc.

RTE

Acc.
Avg.

GPT2-large

BBT 2.5K 75.53(1.98) 80.75(0.53) 77.63(1.89) 77.46(0.69) 65.56(2.34) 32.28(2.43) 52.44(3.32) 65.95

BBTv2 60K 83.72(3.05) 85.46(2.33) 79.96(0.75) 91.36(0.73) 75.92(3.42) 35.79(1.47) 55.78(1.42) 72.57

C-LoRA 38K 84.86(2.02) 87.75(0.91) 79.46(0.87) 92.23(0.57) 76.20(1.22) 37.08(0.99) 57.40(1.67) 73.56

F-LoRA 38K 85.88(1.51) 88.52(0.55) 79.21(3.01) 92.44(0.76) 76.44(0.67) 37.56(0.33) 57.88(1.38) 74.00

GPT2-XL

BBT 5K 78.56(1.46) 82.34(2.46) 78.21(2.46) 79.76(3.65) 68.44(2.74) 33.42(2.63) 54.08(2.49) 67.83

BBTv2 120K 85.86(2.45) 86.43(0.53) 79.10(3.20) 92.14(1.35) 76.03(2.22) 35.98(1.12) 55.23(2.47) 72.97

C-LoRA 76K 86.96(1.50) 88.70(0.72) 79.55(2.20) 92.83(0.55) 77.45(1.67) 38.13(1.22) 58.65(1.44) 74.61

F-LoRA 76K 87.33(1.67) 88.47(1.24) 79.84(1.88) 93.87(0.94) 78.09(1.26) 38.89(1.34) 58.45(0.97) 74.99

Table 2: Performance of gradient-free methods on GPT2-large. We report average and standard deviation perfor-
mance over five different seeds. Bold fonts indicate the best results.

as a large language model for gradient-free meth-346

ods. We compare our proposed method (C-LoRA)347

and FW-LoRA (F-LoRA) with several baselines as348

follows:349

Gradient-based methods For Gradient-based350

methods, we compare with (1) Model tuning: The351

vanilla transformer fine-tuning (Delobelle et al.,352

2020). (2) Adapter tuning: Inserting a small task-353

specific module between the self-attention module354

(and the MLP module) and the subsequent resid-355

ual connection at each Transformer layer (Houlsby356

et al., 2019). (3) BitFit: Tuning the biases of the357

pre-trained language model in our few-shot settings358

(Ben Zaken et al., 2022). (4) LoRA: Merging the359

low-rank and trainable matrices with the frozen360

weights at each layer of the Transformer (Hu et al.,361

2022). (5) P-Tuning v2: Appending trainable con-362

tinuous prompt vectors at each layer of the Trans-363

former (Liu et al., 2021a). (6) Prompt tuning:364

Appending trainable continuous prompt vectors at365

embedding layer of the Transformer (Lester et al.,366

2021).367

Gradient-free methods For Gradient-free meth-368

ods, we compare with (1) Manual Prompt: Using369

the templates and label words to conduct zero-shot370

evaluation (Gao et al., 2021). (2) In-context learn-371

ing: Selecting up several training samples and372

concatenating them with the input texts (Brown373

et al., 2020). (3) Feature-MLP and (4) Feature-374

BiLSTM: Training a MLP/BiLSTM classifier on375

the features extracted by the language model (Pe-376

ters et al., 2019). (5) GAP3: Black-box prompt377

tuning with genetic algorithm (Zhao et al., 2023). 378

(6) BBT: Black-box prompt tuning with CMA-ES 379

algorithm. (7) BBTv2: Black-box deep prompt 380

tuning with CMA-ES algorithm. 381

4.4 Main Results 382

Overall Comparison on RoBERTa Model. As 383

illustrated in Table 1, we demonstrate the exper- 384

imental results of our proposed methods and the 385

baselines across seven datasets. We observe that the 386

proposed methods outperform gradient-based and 387

gradient-free methods, exhibiting varying levels of 388

improvement across different NLP tasks in a few- 389

shot settings, on average. Specifically, for gradient- 390

based methods, the proposed method improves the 391

performance compared to Model tuning, Adapter 392

tuning, BitFit, LoRA, and P-Tuning v2 by an aver- 393

age of 2.60, 5.17, 6.72, 3.47, and 11.01 points, re- 394

spectively, across the seven NLU datasets. Further- 395

more, compared to these parameter-efficient fine- 396

tuning methods, we introduce fewer parameters, 397

yielding superior model performance. For gradient- 398

free methods, the proposed method improves the 399

performance compared to Manual Prompt, In- 400

Context-Learning, GAP3, BBT, and BBTv2 by an 401

average of 18.92, 22.12, 7.05, 9.58, and 2.47 points, 402

respectively, across the seven NLU datasets. Our 403

proposed methods perform better than gradient-free 404

methods across all datasets (e.g., especially on RTE, 405

MRPC, and SST-2), demonstrating the effective- 406

ness of our methods. It is important to emphasize 407

that the primary distinction between LoRA and our 408
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proposed method lies in the optimization algorithm409

employed. LoRA utilizes gradient descent (Adam410

optimizer), whereas our method employs the DFOs411

algorithm (C-LoRA and F-LoRA). Our experimen-412

tal results indicate that gradient-based optimization413

may lead to overfitting on limited training data,414

while DFOs, with their exploration mechanism,415

tend to discover more effective solutions.416

Overall Comparison on GPTs Models. To evalu-417

ate the efficacy of our proposed approach on larger418

models, we conduct experiments on the GPT2-419

large and GPT2-XL models, as illustrated in Table420

2. We show the performance of the two gradient-421

free optimization methods across models of vary-422

ing sizes compared to other baselines. Specifically,423

for GPT2-large, the proposed method improves the424

performance compared to BBT and BBTv2 by 8.05425

and 1.43 points, respectively, on average. It even426

outperforms BBTv2 across 6/7 datasets (e.g., SST2,427

Yelpp, DBPedia, MRPC, SNLI, and RTE). For the428

larger model GPT2-XL, the proposed method im-429

proves the performance by 7.16 and 2.02 points430

on average, respectively, and even outperforms431

BBTv2 across all datasets. Moreover, as the pa-432

rameters of the model continue to increase, it can433

be found that the proposed method is still effective434

and performs better than other gradient-free opti-435

mization methods when fewer parameters are in-436

troduced, demonstrating that the proposed method437

can generalize to more large language models.438

5 Analysis439

5.1 Memory Usage and Training Time440

Table 3 compares our proposed methods (C-LoRA441

and F-LoRA) with BBTv2 regarding memory us-442

age and training time on SST2, AG’s News, and443

MRPC datasets. The experiments are conducted444

with a batch size of 16 and a sequence length 512445

in GPT2-XL. To monitor GPU memory usage dur-446

ing training, we use Nvidia-smi. Our proposed447

methods demonstrate superior performance with448

reduced GPU memory consumption compared to449

BBTv2. To ensure a fair comparison of training450

time, we utilize a single NVIDIA 3090 GPU with451

24GB of memory, implementing early stopping452

if the development accuracy does not improve af-453

ter 1,500 steps. Our methods exhibit faster con-454

vergence than BBTv2, achieving improvements455

of 8.7 minutes on SST2, 15.4 minutes on AG’s456

News, and 7.7 minutes on MRPC. This indicates457

that our approach has the potential to be applied to458
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Figure 3: The results of different dimensions on the
SST2 and SNLI datasets with GPT2-XL model.

large language models, offering parameter-efficient, 459

memory-efficient, and faster convergence. 460

5.2 Effect of Subspace Dimensionality 461

In exploring the impact of subspace dimensionality 462

on our proposed method, we employ the GPT2-XL 463

model and conduct experiments on the SST2 and 464

SNLI datasets, as illustrated in Figure 3. We ex- 465

plore the dimensionality ranges from 10 to 1600 466

using BBTv2, C-LoRA, and F-LoRA while main- 467

taining a consistent batch size and population size. 468

As observed in Figure 3, our proposed method con- 469

sistently outperforms BBTv2 with the increasing 470

subspace dimensionality. Simultaneously, we note 471

that the performance improvement of the model 472

gradually stabilizes when the subspace dimension 473

d > 500. Considering that increasing the dimen- 474

sion d may cost much training time for gradient- 475

free algorithms, we keep the range of d between 476

500 and 1600. 477

5.3 Effect of Low-Rank r 478

Considering the impact of the low-rank r on the 479

performance of our proposed method, we conduct 480

experiments on SST2 and Yelpp datasets with the 481

GPT2-XL model to analyze the importance of r. 482

As indicated in Figure 4, we observe that as the low 483

rank r increases, the performance of our two pro- 484

posed methods gradually decreases on the model. 485

This suggests that when optimizing with gradient- 486

free methods, the model does not require optimiza- 487

tion in high dimensions, and achieving good results 488

only requires optimization in a low rank r. In our 489

experiments, we choose r = 2 or r = 4, allowing 490

the model to achieve good results by introducing 491

very few parameters. 492

5.4 Effect of Initialization of Module G 493

In Table 4, we analyze two different initialization 494

methods for module G using DFO (C-LoRA) on 495

Yelpp and RTE datasets: one involves random 496
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Datasets/Methods
SST2 AG’s News MRPC

BBTv2 C-LoRA F-LoRA BBTv2 C-LoRA F-LoRA BBTv2 C-LoRA F-LoRA

Accuracy (%) 85.86 86.96 87.33 79.10 79.55 79.84 76.03 77.45 78.09

Memory Usage (MB) 12698 12044 12044 17838 17037 17037 13388 12780 12780

Training Time (mins) 20.8 16.4 12.1 35.8 25.7 20.4 22.6 18.5 14.9

Table 3: Comparison of BBTv2, C-LoRA, and F-LoRA on accuracy, memory usage and training time on a single
NVIDIA 3090 GPU with 24GB of memory. Batch sizes are 16 and sequence lengths are 512.
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Figure 4: The results of different low-rank r on the
SST2 and Yelpp datasets with GPT2-XL model.

Methods Yelpp (Acc.) RTE (Acc.)

RI 82.22(2.56) 52.71(3.11)
RI+DFO 87.12(2.41) 57.10(2.69)
RIL 83.42(1.34) 53.01(2.11)
RIL+DFO 88.70(0.72) 58.65(1.44)

Table 4: Test accuracy on Yelpp and RTE with GPT2-
XL on different types of initialization of module G. ’RI’
denotes random initialization with the normal distri-
bution. ’RIL’ denotes random initialization with the
distribution of the hidden states at each layer of lan-
guage model.

initialization with a normal distribution, and the497

other utilizes the distribution of hidden states at498

each layer of the language model for initialization.499

Experimental analysis reveals a significant perfor-500

mance degradation with the random initialization501

while initializing based on the distribution of the502

language model’s hidden states further mitigates503

this phenomenon. Additionally, we observe that504

both the application of DFO (C-LoRA) and these505

projection matrices yield gains, with DFO making506

a more pronounced contribution. This suggests the507

effectiveness of gradient-free optimization methods508

in optimizing low-rank matrices.509

6 Related Work510

Gradient-free Optimization of LLMs Gradient-511

free optimization methods have always been widely512

used in practice. It shows powerful potential in513

large language models. Sung et al. (2022) intro- 514

duced a method that eliminates the need for gradi- 515

ent updates by directly applying a pruned model 516

to downstream tasks. Xiao et al. (2023) and Jin 517

et al. (2023b) propose an efficient transfer learning 518

framework that can adapt large language models 519

to downstream tasks without access to full model 520

parameters. Recently, black-box tuning methods 521

(Sun et al., 2022b,a; Xu et al., 2023; Oh et al., 522

2023) have employed Covariance Matrix Adapta- 523

tion Evolution Strategy (CMA-ES) (Hansen and 524

Ostermeier, 2001; Hansen et al., 2003) to optimize 525

continuous prompt vectors, bringing substantial 526

benefits to the application of large models with low 527

complexity. However, it is acknowledged that train- 528

ing the introduced prompt vectors is unstable and 529

exhibits slower convergence (Lester et al., 2021; 530

Li and Liang, 2021; Liu et al., 2021b). Therefore, 531

we propose gradient-free optimization for low-rank 532

adaptation to overcome training instability and im- 533

prove the speed of convergence. 534

7 Conclusion 535

In this work, we introduce a novel method for 536

optimizing low-rank modules in large language 537

models in a derivative-free way. The method in- 538

volves integrating low-rank modules into each self- 539

attention layer of the model and employing two 540

derivative-free optimization methods to optimize 541

these modules at each layer iteratively. Extensive 542

experiments on different tasks and language models 543

show that our proposed method demonstrates supe- 544

rior performance, lower GPU memory usage, and 545

faster model convergence speed compared to ex- 546

isting derivative-free optimization methods in few- 547

shot settings, suggesting that our method presents 548

a promising direction for effectively and economi- 549

cally utilizing LLMs. 550
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Limitations551

The proposed method is limited in its applicability552

to large models where obtaining weights is not fea-553

sible, as it requires modifying the specific model554

structure. Additionally, it is crucial to highlight that555

our method has only been validated in the context556

of language understanding tasks. Further explo-557

ration and investigation are necessary to assess its558

effectiveness in generation tasks.559
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A Evolution Strategy838

A.1 The CMA Evolution Strategy839

CMA-ES, short for Covariance Matrix Adaptation840

Evolution Strategy, is an evolutionary optimization841

algorithm designed explicitly for tackling optimiza-842

tion problems that are continuous and non-convex.843

One of the key distinguishing features of CMA-ES844

is its ability to dynamically adapt the population’s845

covariance matrix, which facilitates efficient explo-846

ration and exploitation of the search space. The847

algorithm maintains a distribution of candidate so-848

lutions generated based on a multivariate normal849

distribution. Through a series of iterations, CMA-850

ES continuously adjusts this distribution’s mean851

and covariance matrix. This adaptive process en-852

ables the algorithm to explore and exploit promis-853

ing regions within the search space. During each it-854

eration, CMA-ES refines the distribution by replac-855

ing less promising solutions with new candidate856

solutions generated from the current distribution.857

By dynamically adjusting the covariance matrix,858

the algorithm can focus on regions that show poten-859

tial for improved solutions. This iterative process860

of adaptation and refinement allows CMA-ES to861

converge towards optimal or near-optimal solutions862

for the given optimization problem.863

A.2 The Fireworks Algorithm864

The Fireworks Algorithm (FWA) utilizes a heuris-865

tic search approach based on two critical opera-866

tions: the explosion and selection operations. Dur-867

ing the explosion operation, multiple sparks are868

generated around existing fireworks within speci-869

fied explosion amplitudes. These sparks serve as870

potential solutions for the next generation. Subse-871

quently, the fireworks for the new generation are872

selected from these sparks. We employ the loser-873

out tournament-based FWA (LoTFWA) to optimize874

the low-rank modules. In LoTFWA, fireworks com-875

pete, and the losers are forced to restart their search876

from a new location. This competitive mechanism877

relies on evaluating the fitness of each firework. If878

a firework’s fitness fails to match the best fitness879

achieved so far, considering its current progress880

rate, it is considered a loser. The loser is then elim-881

inated and reinitialized, as continuing its search882

process would be ineffective. This reinitialization883

step significantly reduces the likelihood of the al-884

gorithm becoming trapped in local minima.885

B Patterns and Verbalizers 886

SST-2 887

• Pattern ["text", "It", "was", "<mask>", "."] 888

• Verbalizers {"0": "bad", "1": "great"} 889

Yelpp 890

• Pattern ["text", "It", "was", "<mask>", "."] 891

• Verbalizers {"0": "bad", "1": "great"} 892

AG’s News 893

• Pattern ["<mask>", "News", "text", "."] 894

• Verbalizers { "0": "World", "1": "Sports", "2": 895

"Business", "3": "Tech"} 896

DBPedia 897

• Pattern ["Category: <mask>", "text"] 898

• Verbalizers { "0": "Company", "1": "Educa- 899

tion", "2": "Artist", "3": "Athlete", "4": "Of- 900

fice", "5": "Transportation", "6": "Building", 901

"7": "Natural", "8": "Village", "9": "Animal", 902

"10": "Plant", "11": "Album", "12": "Film", 903

"13": "Written"} 904

SNLI 905

• Pattern ["text1", "?", "<mask>", ",", "text2"] 906

• Verbalizers { "0": "Yes", "1": "Maybe", "2": 907

"No"} 908

RTE 909

• Pattern ["text1", "?", "<mask>", ",", "text2"] 910

• Verbalizers {"0": "Yes", "1": "No"} 911

MRPC 912

• Pattern ["text1", "?", "<mask>", ",", "text2"] 913

• Verbalizers { "0": "No", "1": "Yes"} 914

C Datasets 915

Table 5 shows the statistics of datasets used in 916

this work. Specifically, We evaluate our method 917

on AG’s News (Zhang et al., 2015a) and DB- 918

Pedia (Zhang et al., 2015a) for topic classifica- 919

tion, RTE (Wang et al., 2018) and SNLI (Bow- 920

man et al., 2015) for natural language inference, 921

SST-2 (Socher et al., 2013) and Yelp (Zhang et al., 922

2015a) for sentiment analysis, and MRPC (Dolan 923

and Brockett, 2005) for semantic paraphrasing. 924
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Datasets |Y | |Train| |Test| Task

Single-sentence

SST-2 2 67k 0.9k Sentiment analysis
Yelpp 2 560k 38k Sentiment analysis
AG’s News 4 120k 7.6k Topic classification
DBPedia 14 560k 70k Topic classification

Sentence-pair

SNLI 3 549k 9.8k Natural language inference
RTE 2 2.5k 0.3k Natural language inference
MRPC 2 3.7k 0.4k Semantic paraphrasing

Table 5: The datasets evaluated in this work. We sample N ×|Y | instances from the original training set to form the
few-shot training and validation sets.

Weight Type WQ WK WV WQ, WK WQ, WV WK , WV WQ, WK , WV

Rank r 2 2 2 2 2 2 2
Yelpp (Acc.) 87.64 86.45 85.66 88.70 87.34 86.48 86.95
SNLI (Acc.) 37.23 36.67 35.44 38.13 37.25 37.22 37.68

Table 6: Test accuracy on Yelpp and SNLI after applying the derivative-free optimized method on different types of
weight matrices.

D Applying Gradient-free LoRA to925

Which Weight Matrices ?926

In our investigation of weight matrices in self-927

attention modules with the application of CMA-928

ES for LoRA, we have conducted experiments on929

the GPT2-XL model. Table 6 shows that utiliz-930

ing the derivative-free optimized LoRA only on931

the WQ, WK , and WV matrices leads to decreased932

performance. However, we have observed that si-933

multaneous application of the derivative-free opti-934

mized LoRA to the WQ and WK matrices yields935

the best performance. These findings underscore936

the significance of selecting the weight matrices937

for derivative-free optimization using the LoRA938

method. Through exploring various combinations,939

we can identify the most effective configuration for940

maximizing performance on the GPT2-XL model.941

It is imperative to highlight a noteworthy dis-942

tinction between our findings and the conventional943

LoRA approach. Traditionally, LoRA has demon-944

strated optimal outcomes by concatenating low-945

rank matrices on the K and V dimensions. How-946

ever, our novel method, employing a gradient-free947

optimization approach, exhibits a predilection for948

achieving superior results by concatenating low-949

rank matrices on the Q and K dimensions. It is950

essential to underscore that this empirical observa-951

tion is derived solely from experimental results and 952

currently lacks a comprehensive theoretical anal- 953

ysis. We defer the in-depth examination of this 954

intriguing phenomenon to future research endeav- 955

ors. 956

E How to Initialize the Module G 957

Inspired by BBTv2, we first set the µ = 0. Then 958

we initialize module G with a normal distribution 959

using the standard deviation as follows: 960

σm =
ασ̂√
dσz

(6) 961

where σ̂ represents the observed standard deviation 962

of hidden states, σz denotes the standard deviation 963

of the normal distribution maintained by DFOs, 964

and α is a constant scalar used to stretch the distri- 965

bution. 966

F More Related Work 967

Efficient Few-shot Learners Peters et al. (2019) 968

and Dodge et al. (2020) show that fine-tuning all 969

parameters of language models in few-shot settings 970

can be sub-optimal. As an efficient alternative, 971

parameter-efficient tuning is a promising way of 972

stimulating LLMs. We list mainstream parameter- 973

efficient tuning models as follows: a) Adapter tun- 974

ing methods learn the task-specific information 975
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(Houlsby et al., 2019) by inserting small-scale task-976

specific modules within layers of Transformer and977

only tune the added adapters and layer normaliza-978

tion for model adaptation. b) Prefix tuning meth-979

ods (Li and Liang, 2021; Liu et al., 2021a) also980

introduce additional prompt vectors within layers981

of Transformer to learn task-specific information.982

Only the parameters of trainable prompt vectors are983

updated during training while keeping the model984

parameters frozen. Recently, several prompt tun-985

ing methods learn the instance-dependent informa-986

tion (Jin et al., 2023a; Gu et al., 2021; Wu et al.,987

2022) by inserting the instance-dependent trainable988

continuous tokens to the input or hidden states of989

each Transformer layer. c) BitFit (Ben Zaken et al.,990

2022), a simple but effective method, only opti-991

mizes the bias terms inside the model while keep-992

ing other parameters frozen. d) LoRA (Hu et al.,993

2022) merges the low-rank and trainable matrices994

with the frozen weights at each layer of the Trans-995

former. These parameter-efficient tuning methods996

still need gradient computation and backpropaga-997

tion. However, our proposed method utilizes the998

gradient-free methods and optimizes the model in999

a memory-efficient and parameter-efficient way.1000
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