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ABSTRACT

The Multilayer Perceptron (MLP) serves as a fundamental architecture in deep
learning, leveraging the universal function approximation theorem through linear
regression combined with activation functions. Despite its widespread use, the
inclusion of activation functions contributes to the inherent nature of MLPs as
“black boxes,” limiting their interpretability. In this paper, we propose a novel
Curve Line Fitting (CLF) network, which introduces Bezier curve fitting to di-
rectly address nonlinear distributions. By replacing traditional linear regression
with Bezier curve regression, the CLF network offers a more efficient means of
fitting target distributions. Additionally, the removal of activation functions makes
the CLF model fully interpretable, enabling clear insights into the relationships
between input dimensions and target distributions, as well as the interdependen-
cies across different dimensions. (Sample code for the CLF model will be made
available on GitHub.)

1 INTRODUCTION

The MLP [Haykin (1998); Cybenko (1989); Hornik et al. (1989a)] is a widely used network struc-
ture in deep learning due to its ability to efficiently approximate any target distribution. It effectively
employs the universal function approximator theorem by using linear regression and activation func-
tions [He & Xu (2024); Hornik et al. (1989b)]. Consequently, many advanced network architectures
incorporate MLP as a fundamental component [Targ et al. (2016); Vaswani et al. (2023); Devlin
et al. (2019); Li et al. (2018); Zhao et al. (2018) ]. Despite its widespread application, the MLP ar-
chitecture is often considered “black box,” leading to three significant challenges. First, determining
the most efficient MLP structure for a specific target distribution is challenging [Bergstra & Bengio
(2012); Ngoc et al. (2021)]. Second, when an MLP fails to converge, it is difficult to diagnose the
underlying issue or implement a solution to ensure convergence [Várkonyi-Kóczy et al. (2014)].
Lastly, although an MLP may achieve high accuracy, it does not readily reveal the relationships
between the input space and the target distribution, limiting interpretability.

Considerable research has been devoted to demystifying the “black box” nature of the MLP. Some
approaches focus on enhancing the MLP structure itself, such as updating the activation functions
to be learnable [Liu et al. (2024)], while others aim to decipher the specific knowledge that MLP
acquires at each layer [Gorokhovatskyi et al. (2020)]. Although these efforts have yielded some
progress in various aspects [He (2020), Xiang et al. (2005)], the three primary challenges still persist.

The MLP utilizes linear regression combined with activation functions to model complex relation-
ships. While linear regression is straightforward and interpretable, the incorporation of activation
functions introduces ambiguity into the network. To fundamentally address this limitation, this pa-
per introduces the novel Curve Line Fitting (CLF) structure, which remove activation functions al-
together, thereby enhancing the transparency and explainability of the network. With the removal of
activation functions, the traditional linear regression approach proves inadequate for modeling com-
plex distributions. We adopt Bezier Curve fitting as an alternative. Bezier Curves [Floater (1992)],
defined by a set of control points, can approximate almost any shape, making them highly versa-
tile for modeling diverse target distributions. Although multiple researchers have explored Bezier
Curve fitting for single dimension target distributions [Shao & Zhou (1996), Mineur et al. (1998)],
no existing network architecture has been based solely on this approach.
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Figure 1: (a): Single-node CLF structure. (b): Multi-layer CLF structure.

This paper introduces the CLF model, a novel approach that utilizes Bezier Curves to develop a
multi-layer network structure. The CLF model offers two significant advantages: (1) It is fully
explainable and capable of clearly demonstrating the relationships it learns. Upon completion of
training, the CLF model can vividly illustrate both the relationship between the input space and
target distribution, and the interactions among different input dimensions. (2) The explainability of
the CLF model provides a clear guide during and after training. This transparency allows for an
assessment of whether using fewer parameters could achieve comparable results, by analyzing the
network’s structure and performance. Additionally, there is only one known issue that can prevent
the CLF from converging during training, which can be readily addressed by adjusting the CLF
settings.

2 METHOD

CLF employs the Bezier Curve to fit the target distribution, primarily leveraging its capability to
approximate any shape effectively [Floater (1992)]. Because Bezier Curves inherently fit nonlinear
distributions, the activation function is not used in CLF. This section elaborates on how CLF adapts
the target distribution across various configurations, including single-node, single-layer, and multi-
layer architectures.

2.1 SINGLE-NODE CLF

Figure 1 (a) illustrates the representation of a nonlinear distribution by a single-node CLF. In this
figure, X ∈ [0, 10] represents the input space, and Y denotes the target distribution. (Further details
on the limitations related to the input space X is discussed in the Appendix.) Specifically, input
space X is evenly divided into five segments, governed by control points labeled A through G.
These control points are positioned with a learnable y-coordinate and a fixed x-coordinate ranging
from −1 to 11.

Focusing on segment curve [4, 6], this curve is influenced by control points C, D, and E. More
precisely, it is regulated by points CD, D, and DE, where CD and DE represent the initial and
terminal points. The CD and DE are calculated as CD = C+D

2 and DE = D+E
2 respectively.

According to the properties of Bezier Curves, the curve [4, 6] at point CD possesses the same deriva-
tive value as the straight line [CD,D]. Similarly, the curve [2, 4] at point CD maintains the same
derivative value as the straight line [C,CD]. Therefore, the continuity and differentiability of the
curve [2, 6] at x = 4(CDx) are ensured. Consequently, the entire curve over the interval [0, 10] is
continuous and differentiable.
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2.1.1 GET ŷ

Previous example present that each segment curve is controlled by three control points, denoted
as P1, P2, and P3. The midpoints between P1 and P2 are calculated as P12 = P1+P2

2 . Denote
s = input range

segmentation number . Due to space constraints, the detailed derivation of the formulas is
provided in the Appendix. The parameter t and ŷ are:

t =
x− P12x

s
; ŷ = (

P1

2
− P2 +

P3

2
)t2 + (−P1 + P2)t+

P1 + P2

2
(1)

2.1.2 OPTIMIZATION FUNCTION

Derivative of equation (1) with respect to P1, P2, P3, get P ′
1 = 1

2 t
2 − t + 1

2 , P ′
2 = −t2 + t + 1

2 ,
and P ′

3 = 1
2 t

2, loss = y − ŷ, learning rate (LR) is a hyper-parameter. Because the control points’
x-positions are fixed, CLF only optimizes the control points’ y-positions. The new P1, P2, P3 y-
positions are:

[P1, P2, P3] = [P1, P2, P3] + [P ′
1, P

′
2, P

′
3] ∗ loss ∗ LR (2)

Equation (2) shows that 1) Optimizing the control points only depends on t and loss, which means
CLF Optimization Function does not require backward function. 2) During Optimization Function,
only a subset (2-3 parameters each dimension) of the network is optimized. Specifically, parameters
closer to the current sample receive higher optimization values, whereas those further away are
assigned lower or even zero optimization values. This optimization approach is analogous to neural
processes in the brain, where only specific regions interact and respond to particular stimuli [Kolb
& Whishaw (1998)].

2.1.3 TOQUADRATICLIST FUNCTION

The value of ŷ can be derived from Equation (1). However, each segment curve can alternatively
be represented by a part of quadratic equation, which necessitates significantly fewer computational
resources compared to Equation (1). The following outlines the process of transforming Equation
(1) into its equivalent quadratic form.

Set w1 = P1

2 − P2 +
P3

2 , w2 = −P1 + P2, w3 = P1+P2

2 , p = P12x

Equation(1) =
w1

s2
x2 + (−2w1p

s2
+

w2p

s
)x+ (

w1p
2

s2
− w2p

s
+ w3) (3)

Utilizing Equation (3), it is demonstrated that each segment curve, defined by three control points,
can be transformed into a quadratic equation of the form: ŷ = ax2+ bx+ c. This conversion allows
for a simplified representation of the segment curves and facilitating easier computation.

2.1.4 FORWARD FUNCTION

Transforming the control points into a list of quadratic equations significantly enhances the forward
function’s computational efficiency. This function initially employs a mask, x/s, to determine the
appropriate quadratic equation for a given input. Subsequently, it utilizes the selected quadratic
equation to compute the ŷ. This methodology streamlines the process, enabling faster and more
efficient calculations within the network. This forward approach also mirrors cognitive processes in
the human brain. When individuals tackle complex mathematical problems, they typically do not
derive all relevant formulas from scratch; instead, they rely on memory to recall necessary formulas.

2.1.5 INITIALIZATION

To initialize a single-node CLF, we need to define the maximum value of the input space, max, and
the number of segments, seg. The domain for the input space is set to [0,max]. The CLF model
then generates a list of control points, represented as conList = [Ay, By...] ∈ Rseg+2, and a list of
quadratic equations, represented as equList = [[a, b, c]] ∈ Rseg∗3.

3
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2.1.6 TRAINING

i n i t : LR ; [ 0 , max ] ; seg ; c o n L i s t ; e q u L i s t
f o r x i n X:

ŷ = Forward ( x ) / / use e q u L i s t , ax2 + bx+ c , g e t ŷ
l o s s = y − ŷ ; O p t i m i z a t i o n ( l o s s , LR ) / / u p d a t e c o n L i s t
e q u L i s t = T o Q u a d r a t i c L i s t ( c o n L i s t ) / / u p d a t e e q u l i s t

2.2 SINGLE-LAYER CLF

2.2.1 SINGLE-OUTPUT

In an MLP, the output can be expressed as w1x1 + w2x2 + ... + b, where w1, w2 ... are weights
computed from the MLP parameters and influenced by activation functions. Drawing inspiration
from this framework, the single output CLF aggregates the results across all dimensions, yielding
the output ŷ =

∑n
i=0 ŷi =

∑n
i=0 f(xi). This approach allows the CLF to integrate individual

dimension contributions into a collective output, similar to the summation method used in MLPs.

2.2.2 MULTI-OUTPUT

The CLF is also inspired by the MLP for multi-output tasks such as taxonomy classification. The
multi-output CLF utilizes multiple networks to compute each output independently, selecting the
highest value index as the definitive result.

In the single-layer CLF, the control point list is modified to conList ∈ RN∗(seg+2), and the
quadratic equation list is modified to equList ∈ RN∗seg∗3. This configuration effectively ad-
dresses the computation of outputs that are the sum of independent function variables, such as
y = f(x1) + f(x2). However, it is less effective for distributions that involve interactions between
variables, such as y = x1 ∗ x2. To overcome this limitation, a multi-layer CLF is proposed.

2.3 MULTI-LAYER CLF

Gradient boosting [Xiang et al. (2020)] is a machine learning technique wherein each iteration of
the model seeks to fit the negative gradient of the residuals from the prior iteration, thereby sys-
tematically reducing the total loss with each subsequent round. Inspired by this principle, the CLF
network architecture adapts and extends this concept within its multi-layer structure. Unlike gradi-
ent boosting focuses on fitting the negative gradient of residuals, the CLF involves different nodes
fitting the negative loss of each other, facilitating a more pronounced reduction in the overall loss of
the network.

The development of a multi-layer CLF entails three principal steps. Initially, a single-layer CLF
is trained to establish a baseline understanding of the data. Subsequently, dimension relations are
calculated using the data from the single-layer CLF, allowing for the grouping of related dimensions
based on their interactions. Finally, a multi-layer CLF is constructed based on these dimension
groups and then trained to model and predict complex interactions among the variables.

2.3.1 GROUP RELATED NODES

The training dataset X has M samples with N dimensions, X ∈ RM∗N . The target data is rep-
resented as Y ∈ RM . As discussed in the previous section, ŷ is the sum of individual predictions
across all dimensions, ŷ =

∑n
i=0 ŷi. In this section, Ŷall refers to the array of predictions be-

fore summation, Ŷall ∈ RM∗N . ŷij represents the predicted value for the ith sample in the jth

dimension. ŷ:,i indicates all predictions for the ith dimension across samples, ŷ:,i ∈ RM .

The loss L is formulated as L = Y − Ŷ. The dimension-specific loss Lall is computed as Lall =

Y/N−Ŷall;Lall ∈ RM∗N . lij represents the dimension loss for the ith sample in the jth dimension.
l:,i indicates all losses for the ith dimension across samples, l:,i ∈ RM .

The Relation(i, j) = Cov(l:,i, ŷ:,j) quantifies the relationship between dimensions i and j. A
higher value of Relation(i, j) suggests a stronger potential relationship between these dimensions.
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5 segmentation 10 segmentation 20 segmentation

Loss 0.5415 0.1973 0.0199

Table 1: Single-node CLF experiment result.

Figure 2: Single-node CLF experiment visualization.

The node relation matrix is calculated as [i, j, Relation(i, j)]; 0 < i, j < N . This matrix facilitates
the grouping of related nodes based on their interrelationships.

2.3.2 MULTI-LAYER STRUCTURE

In the multi-layer CLF, each group of dimensions identified in the previous step is organized into a
tree structure. In single-layer CLF, each dimension is represented by a single curve solely dependent
on its variables. In multi-layer CLF, the root dimension maintains a single curve influenced only by
itself. However, each child dimension possesses multiple curves, specifically one for each segment
curve of its parent dimension, and the shape of these child curves depends on both the child variables
and its parent segment curve variables. See Fig 1 Right. In terms of structural data, the control list
for child dimension in multi-layer CLF is modified to conList ∈ RN∗seglayer∗(seg+2), and the
equation list is modified to equList ∈ RN∗seglayer∗seg∗3.

3 EXPERIMENTS

For the experiments conducted in this section, the CLF model is implemented using Numpy, while
the MLP was developed with PyTorch. Firstly, this paper evaluates the CLF model using synthetic
mathematical distributions to test its efficiency in fitting the target distribution and in elucidating
the relationship between input space and target distribution. Secondly, the performance of CLF is
compared to MLP in a taxonomy classification task. Finally, the applicability of CLF to real-world
scenarios is assessed using the MNIST dataset.

The CLF model utilizes a quadratic equation list, equList, that stores all relationships learned by
the module, which can be readily converted into curve images. This paper extensively uses curve
images derived directly from the equation list to demonstrate how these curves can be employed
to analyze the relationships between input space and target distribution, as well as the interactions
among different dimensions. Furthermore, this paper discusses the application of these curves in
optimizing the CLF settings and addressing issues related to non-convergence.

3.1 SINGLE-NODE CLF: EFFICIENCY AND CAPABILITY

This experiment examines the effect of segmentation numbers on the accuracy of the CLF network.
It demonstrates the fitting efficiency and capability across various segmentation levels within single-
node CLF configurations. The experiment target distribution is y = cos5(0.8x+5)∗sin3(0.4x+3)∗
(0.2x+7)+0.2;x ∈ [0, 10]. The experiment compares the loss value of single-node CLF networks
with varying segmentations: 5, 10, and 20. The results are presented in Table 1 and depicted visually
in Figure 2.

Table 1 demonstrates that an increase in the segmentation number correlates with a decrease in
the loss. Additionally, Figure 2 visually illustrates that a higher segmentation number results more
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Input Length 5 segmentation 10 segmentation 20 segmentation

3-D 0.5918 0.2883 0.0351

4-D 0.5987 0.2932 0.0359

Table 2: Single-layer CLF experiment.

Figure 3: Single-layer CLF experiment visualization.

closely approximating the target distribution curve. This curve can also be interpreted as represent-
ing the relationship between the input space and the target distribution. Furthermore, it is possible to
directly calculate whether a curve with fewer segments can maintain the same shape. If feasible, this
implies that a CLF with fewer parameters could fit the target distribution with the same accuracy.

3.2 SINGLE-LAYER CLF: FROM INPUT SPACE TO TARGET DISTRIBUTION

This study assesses the performance of a single-layer CLF model in fitting the distribution y =
f(x1) + f(x2). It demonstrates how the CLF model captures the relationship between the input
space and the target distribution upon completion of training. The target distribution is defined as
y = 0.01x3

1+3sin5(x2)+7log(x3+1)−6;x1, x2, x3, x4 ∈ [0, 10]. In this setup, x4 acts as a noise
dimension. The experiment compares the CLF’s loss with different segmentations (5, 10, and 20)
and varying input lengths (3 and 4 dimensions). The results are presented in Table 2 and visualized
in Figure 3.

Table 2 presents three key findings regarding the performance of the CLF model. First, a single-layer
CLF can efficiently fit a target distribution defined by y = f(x1)+f(x2). Second, in alignment with
prior observations, an increase in the number of segments enhances the model’s fitting capability.
Lastly, the introduction of a noise dimension impacts the model’s fitting accuracy only marginally,
by approximately 2-4%.

Figure 3 provides a visualization of the equList for each input dimension, clearly illustrating how
CLF effectively discerns the relationship between each dimension and the target distribution. Specif-
ically, x1 corresponds to 0.01x3

1 + C, X2, x2 to 3sin5(x2) + C, x3 to 7log(x3 + 1) + C, and x4

simply matches C. These results demonstrate that the CLF model is capable of isolating and model-
ing the distinct contributions of various input dimensions to the overall target distribution. A clearly
defined curve shape for a dimension suggests its critical role in the model. Conversely, a shape
approximating a horizontal line indicates that the dimension has minimal significance.

3.3 SINGLE-LAYER VS MULTI-LAYER CLF: INTERACTIONS AMONG DIFFERENT DIMENSION

This experiment compares the performance of single-layer and multi-layer CLF models, examining
the effects of various grouping configurations within the multi-layer CLF model. It explores how
multi-layer CLF processes and represents the relationships between different input dimensions upon
the completion of training. The target distribution used for this experiment is y = 7sin(x1) ∗
log(x2 + 1) + 0.01 ∗ x3

3 − 5;x1, x2, x3, x4 ∈ [0, 10]. Five CLF models are assessed for their loss:
Model 1 is a single-layer CLF; Model 2 is a multi-layer CLF with correct grouping [[x1, x2], [x3]];
Model 3 incorporates a noise dimension, grouped as [[x1, x2], [x3], [x4]]; Model 4 is a multi-layer
CLF with incorrect grouping [[x1, x2, x3]]; and Model 5 is another multi-layer CLF with incorrect
grouping [[x1, x3], [x2]]. The results are presented in Table 3.
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Segmentation 5 10 20

Single-layer CLF [x1, x2, x3] 0.9850 0.9369 0.9389

Multi-layer CLF [[x1, x2], [x3]] 0.5926 0.2684 0.1365

Multi-layer CLF [[x1, x2], [x3], [x4]] 0.6023 0.2786 0.1397

Multi-layer CLF [[x1, x2, x3]] 0.5924 0.2658 0.1333

Multi-layer CLF [[x1, x3], [x2]] 0.9602 0.9305 0.9201

Table 3: The experiment results compare the performance of a single-layer CLF with various group-
ing configurations in multi-layer CLFs.

Figure 4: Single-layer VS Multi-layer visualization

Table 3 presents three significant outcomes from the experiment. Firstly, the single-layer CLF is
inadequate for efficiently fitting the complex target distribution y = f(x1, x2). This challenge is
effectively addressed by employing a multi-layer CLF with correctly grouped input dimensions.
Secondly, consistent with findings from the single-layer CLF, increasing the segmentation number
in the multi-layer CLF enhances the model’s fitting capabilities. Unlike the single-layer CLF, the
additional noise dimensions in the multi-layer configuration slightly improve the fitting accuracy.
Lastly, while grouping unrelated dimensions does not significantly impact the fitting ability, sepa-
rating related dimensions into different groups markedly reduces the model’s effectiveness in fitting
the target distribution.

In the multi-layer CLF structure, the root dimension features a single curve, whereas the child di-
mensions exhibit multiple curves. Figure 4 illustrates these relationships through a series of com-
parisons. The first row compares the shape of the root dimension, x1, across single-layer CLF,
multi-layer CLF with correct grouping, and multi-layer CLF with incorrect grouping. The second

7
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Figure 5: Left: Taxonomy dataset distribution. Middle: 2-layer 10-segment CLF for category 0
root dimension (x-coordinate) curve. Right: 2-layer 10-segment 0-category CLF child dimension
(y-coordinate) curve adjusting root [0.2, 0.3] segment curve.

Segmentation 3 5 10

CLF [[x1, x2]] 86.77± 0.21% 94.08± 0.13% 96.15± 0.07%

Configurations 2-6-4-3 2-8-6-3 2-8-16-6-3

MLP 83.81± 2.45% 89.91± 1.46% 92.91± 5.78%

Table 4: Taxonomy task experiment result.

row examines the shape of a child dimension, x2, which is related to the root dimension, while the
third row focuses on x3, a child dimension not related to the root dimension.

The analysis reveals several key observations. In the first row, the curves corresponding to the
root dimension x1 are highly similar across different CLF configurations, indicating a consistent
contribution regardless of the model settings. In the second row, where x2 is directly related to
the root dimension, the curves exhibit distinct shapes influenced by the root dimension’s behavior.
Specifically, the original feature log(x2 + 1) is modified by a coefficient derived from the root
dimension’s value. For instance, during segments [2, 3], the root value is positive, keeping the x2

curve as log(x2 + 1). In segments [4, 5], where the root value is negative, the x2 curve inverts. In
segments [6, 7], with the root value around zero, the x2 curve appears squeezed, and in segments
[8, 9], similar to segments [2, 3], the curve retains its original shape. These variations demonstrate
that a multi-layer CLF with correctly grouped dimensions can significantly enhance the model’s
fitting ability. Conversely, in the third row, the unrelated child dimension x3 shows similar curve
shapes across different root values, reflecting its independence from the root dimension. The x3

curves consistently represent its inherent feature, 0.01 ∗ x3
3, unaffected by the root dimension’s

fluctuations. This consistency allows the determination of whether there is a relationship between
child and root dimensions by comparing the shapes of the child dimension curves.

3.4 TAXONOMY CLASSIFICATION: CLF VS MLP

This study conducts a comparative analysis between CLF and MLP on a taxonomy classification task
involving three categories in two dimensions. The target distribution for this experiment is illustrated
in Figure 5 left, with the variable range for x1 and x2 set between 0 and 1. The experiment assesses
different configurations of 2-layer CLF with segmentation numbers of 3, 5, and 10, corresponding
to 90, 168, and 468 parameters, respectively. For a comparison in terms of model complexity, the
MLP configurations are adjusted to 2-6-4-3 with 96 parameters, 2-8-6-3 with 164 parameters, and
2-8-16-6-3 with 516 parameters. All MLP uses ReLU activation function. After completing the
training process, an additional 10 iterations are conducted. From these iterations, the average value
and the maximum deviation from the average are calculated. The outcomes of these configurations
are detailed in Table 4.

Although both the CLF and MLP models in this experiment have a comparable number of param-
eters, the author does not consider this a fair comparison. In MLPs, the forward pass requires the
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CLF 1-L CLF+ 1-L CLF 2-L CLF+ 2-L MLP 784-10 MLP 784-480-10

Training 96.93% 95.18% 99.97% 98.61% 92.90% 99.15%

Test 90.73% 92.85% 94.97% 95.67% 92.37% 97.92%

Table 5: MNIST experiment result.

involvement of all parameters in the computation, and the optimization process updates all param-
eters. The Method section details the operation of CLF, where the forward pass only necessitates
one quadratic equation per input dimension, and optimization updates merely three control points
for each input dimension. This efficiency arises because CLF opts for a trade-off of larger mem-
ory usage in exchange for reduced computational demand. Consequently, equating the two models
based solely on the number of parameters places CLF at a disadvantage. When parameter counts are
equal, CLF operates significantly faster than MLP, particularly in larger models.

Table 4 presents multiple findings from the experiment comparing CLF and MLP. Firstly, CLF
demonstrates greater stability than MLP. During the experiment, multiple MLP models were re-
trained due to non-convergence. Even among those that did converge, it was challenging to ascertain
whether they had achieved optimal performance. In contrast, each CLF was trained only once, and
upon completion, yielded highly consistent results, with deviations from the average value ranging
only from 0.07% to 0.21%. In comparison, MLP results varied from the average by 1.46% to 5.78%.

Secondly, despite having a similar number of parameters, MLPs consistently showed lower accuracy
than CLFs. Thirdly, CLF not only demonstrated superior accuracy but also operated significantly
faster than MLP in both the forward pass and optimization phases.

Lastly, CLF’s ability to visually represent the relationships it learns is notably advantageous. Figure
5 illustrates this with two images: the middle image depicts the root dimension (x-coordinate) shape
of a 2-layer, 10-segmentation CLF model for category 0, while the right image shows the corre-
sponding child dimension (y-coordinate) shape. These images demonstrate how the root dimension
influences the categorization, indicating that category 0 is likely when x is within the range [0.48,
0.85]. Despite the root dimension suggesting the absence of category 0 for x values in the range [0.2,
0.3], adjustments in the child dimension for y values in the range [0.1, 0.6] also result in category
0. This capacity to depict learned relationships is something that MLP lacks, highlighting a distinct
advantage of CLF in providing interpretable results.

3.5 MNIST: CLF IN REAL-WORLD TASK

This experiment evaluates the effectiveness of CLF models in a real-world classification task using
the MNIST dataset. It compares the performance of MLP, standard CLF, and CLF+. Specifically,
the experiment involves training 1-layer CLF and CLF+ models, each with 3 segmentations across
784 input dimensions. Upon completion of training, the 1-layer CLF model is used to identify and
eliminate non-essential input dimensions based on their importance. Subsequently, 2-layer CLF and
CLF+ models are trained using 3 segmentations but with reduced input dimensions, fewer than 400.
In contrast, the MLP models are configured with two different architectures: one with a single layer
of 10 neurons (784-10) and another with two layers containing 480 and 10 neurons respectively
(784-480-10). The results of these comparisons are presented in Table 5.

The analysis of Table 5 yields several insights. Firstly, CLF demonstrates higher accuracy on the
training dataset but lower accuracy on the test dataset than MLP. This suggests that while CLF can fit
the training data more precisely, it lacks the generalizability of MLP. Secondly, there is a noticeable
increase in overfitting issues as the layer number of CLF is increased. Lastly, the CLF+ model
mitigates these overfitting problems, indicating an improvement in model robustness. Due to space
limitations, further discussion of generalizability issues is provided in the Appendix.

3.6 EXPERIMENTS SUMMARY

The CLF model, by utilizing Bezier Curves, creates a network structure tailored to fit the target dis-
tribution and eliminates the need for activation functions when addressing nonlinear distributions.
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The control points of the Bezier Curve are further converted into quadratic lists, which store and dis-
play the relationships learned by the model. This approach renders the CLF model fully interpretable
and facilitates the clear presentation of the relationships or knowledge it has acquired.

Firstly, the CLF model’s ability to present learned relationships is demonstrated through experi-
ments. The single-layer CLF experiment visually confirms that the CLF can efficiently identify the
relationship between the input space and the target distribution (Fig 3). The multi-layer CLF exper-
iment visually confirms that the CLF can effectively discern the interactions between the root and
child dimensions (Fig 4).

Moreover, the CLF interpretability provides valuable guidance during and after training. In the
single-node CLF experiment, the model’s capability is assessed (Fig 2), aiding in determining the
minimal CLF structure necessary to represent a relationship. In the multi-layer CLF experiment, is-
sues such as incorrect dimension grouping leading to convergence problems (Table 3) or inefficient
use of parameters ((Fig 4)) are identified. These issues are detected either through non-convergence
of the model or by comparing different child dimensions’ curves, highlighting areas where improve-
ments can be made.

4 CONCLUSION

The CLF model offers two primary advantages. Firstly, it is fully transparent and explainable,
efficiently illustrating the relationship between input space and target distribution, the contributions
from different dimensions, and the interactions between these dimensions. Secondly, CLF provides
a clear guideline on how to initialize the model. Upon completion of training, the model allows for
the evaluation of the necessity of each segment curve. If the dimension curve can be represented with
fewer segments, then the number of segments should be reduced. Similarly, if child curves present
similar shapes, they should be removed from their parent structure. Despite its effectiveness in
fitting the target distribution accurately, CLF still encounters several challenges that need addressing,
including issues related to generalizability, grouping accuracy, and potential overfitting.
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A APPENDIX

A.1 METHOD APPENDIX

A.1.1 FORMULAS DERIVATION: GET ŷ

The Bezier Curve equation is given by y = x1 + (x2 − x1)t = (1− t)x1 + tx2, t ∈ [0, 1]. Previous
example present that each segment curve is controlled by three control points, denoted as P1, P2, and
P3. The midpoints between these control points are calculated as P12 = P1+P2

2 and P23 = P2+P3

2 .
To compute the parameter t, which determines the specific point on the Bezier Curve, the formula
is: t = x−P12x

P23x−P12x
. Given that all control points have fixed x-positions, the span s can be expressed

as: s = P23x − P12x = input range
segmentation number . Thus, the parameter t simplifies to t = x−P12x

s .
Utilize Bez() implement Bezier Curve function:

Bez(P12, P2) = (1− t)P12 + tP2;Bez(P2, P23) = (1− t)P2 + tP23

ŷ = Bez(P12, P2, P23) = (1− t)Bez(P12, P2) + tBez(P2, P23)

= (1− t)[(1− t)P12 + tP2] + t[(1− t)P2 + tP23]

= (1− t)2P12 + 2t(1− t)P2 + t2P23

= (P12 − 2P2 + P23)t
2 + (−2P12 + 2P2)t+ P12

= (
P1 + P2

2
− 2P2 +

P2 + P3

2
)t2 + (−2

P1 + P2

2
+ 2P2)t+

P1 + P2

2

= (
P1

2
− P2 +

P3

2
)t2 + (−P1 + P2)t+

P1 + P2

2
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A.1.2 CLF+

The CLF model is proficient in modeling target distributions, a feature that frequently leads to pro-
nounced overfitting issues. Various methods have been proposed to mitigate this problem, including
early stopping [Lodwich et al. (2009)] and momentum [Jelassi & Li (2022)]. Inspired by federated
learning [Zhang et al. (2023)], which involves comparing local network parameters before generat-
ing a master optimized value for updating the server network, CLF+ divides the training dataset into
several local datasets and trains corresponding local networks. Both CLF and CLF+ utilize identical
network architectures; however, they are differentiated by their respective training methodologies.

Before Training: A comparison group number, denoted as cpr, is established before training. The
training dataset X is then divided into cpr groups, each serving as a local dataset containing a
similar amount of samples across categories. Concurrently, cpr + 1 instances of the CLF models
are initialized with identical initializations. This ensures that all CLF models begin with the same
configuration, specifically having the same conList matrix.

Training: Initially, one of the CLF models is designated as the master network, while the remaining
cpr CLFs are classified as local networks. Each local network is paired with a corresponding local
dataset for training purposes. All local networks undergo one iteration of training, after which each
local network’s conList matrix will have diverged from that of the master network. The subsequent
step computes an optimization value matrix. This is achieved by subtracting the master network’s
conList from each local network’s conList, resulting in cpr optimization value matrices. For each
optimized value in the cpr matrices, if all cpr optimization values are positive, the minimum value is
selected; if all are negative, the maximum value is chosen; if there is a mix of positive and negative
values, zero is selected. These selected values are then used to construct the final optimization
value matrix. Lastly, this final optimization value matrix is added to the master network’s conList,
forming the new master conList. This updated conList is then broadcast to all local networks.
Subsequently, the next iteration of training commences.

This training strategy is designed to effectively regulate the overfitting issues. A higher cpr results
in low overfitting, whereas a lower cpr count leads to high overfitting. Further elaboration on the
CLF+ training strategy is provided in the ”Discussion Federated Learning Solutions to Overfitting”
section.

A.2 DISCUSSION

A.2.1 INPUT RANGE LIMITATION

MLP utilize linear equations, allowing them to cover the entire numerical range of inputs easily.
Conversely, CLF models employ Bezier Curves, which inherently have defined start and end points,
limiting their ability to cover the entire numerical range. To address this limitation, three potential
solutions are proposed:

Input Space Condensation: Although MLP models typically cover a broad input range, in practice,
the input space is often condensed into a smaller range [Ioffe & Szegedy (2015); Patro & Sahu
(2015)] to enhance computational efficiency and prevent gradient explosions. This method of con-
densing the input space can also be applied to CLF models. By scaling and translating input data
into a manageable range, the efficiency of CLF can be improved without altering its underlying
architecture.

Dynamic Range and Segmentation Adjustment: CLF models require a predefined input range and
segmentation number. If inputs fall outside the established range, the model can extend both the
input range and the number of segments without altering the existing configuration. For instance,
a CLF model with an initial range of [0, 10] and five segments can be expanded to cover [0, 12]
with six segments. This adjustment ensures that the original input range remains unchanged, and the
newly added segment curve shape from [10, 12] can be integrated using existing network parameters
from the [0, 10] range.

Transformation Methods: Techniques such as hyperbolic transformations [Rader & Steinhardt
(1986)] can shift and scale the entire numerical range to fit within a specific interval. Applying
such transformations to CLF models can enable them to handle inputs across the entire numerical
spectrum, thereby enhancing their applicability and flexibility.
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Figure 6: After certain operations, related dimension present the similar distribution.

These strategies collectively enable CLF models to overcome their inherent limitations regarding
input range, making them more versatile for various applications.

A.2.2 GROUPING

This grouping theory is inspired from the gradient boosting theory. It posits that in a function
such as y = f(x1, x2), the variables x1 and x2 must be capable of compensating for each other’s
negative loss. To derive Equation Relation(i, j), the method initially calculates the negative loss
and the estimated ŷ distribution for each dimension. Subsequently, it determines the relationship
score between dimensions using the covariance method, as visualized in Figure 6.

It is important to note that a higher relationship score indicates a greater likelihood of a relationship
between two dimensions, but it does not conclusively prove a connection. It is feasible for different
groups to exhibit similar distributions, which may lead to the erroneous grouping of unrelated di-
mensions. For instance, in the target distribution y = x1x2 + x3x4, x1 and x2 form one group, and
x3 and x4 form another; however, all four dimensions display identical distributions. To address this
potential misclassification, Figure ?? proposes a method to confirm the genuine relationships within
a group.

A.2.3 OPTIMIZE NETWORK ONLY WHEN TASK FAIL

In the CLF model, the optimization function is activated exclusively in instances of task failure. This
operational strategy is underpinned by two principal reasons. Firstly, relying on a single numerical
target fails to provide absolute right directional guidance for model training. As indicated in the dis-
tillation study [Hinton (2015)], the model utilizes probabilities from the teacher model as soft targets
and categorical numbers as hard targets. The findings from this study demonstrate that soft targets
offer more precise directional guidance and are less prone to overfitting than hard targets. While a
single categorical number can provide a general training direction, it does not furnish an absolute
right correct path. Therefore, the optimization function in CLF is triggered only when a task fails.
Secondly, the CLF model forward function demands minimal computational resources, whereas the
toQuadraticList function is extremely resource-intensive. Given this, CLF predominantly employs
the forward function, optimizing training efficiency and minimizing training duration by reserving
the toQuadraticList function for occasions when the task fails.
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