
A Data-Efficient Visual-Audio Representation
with Intuitive Fine-tuning for Voice-Controlled Robots

Peixin Chang, Shuijing Liu, Tianchen Ji, Neeloy Chakraborty,
Kaiwen Hong, Katherine Driggs-Campbell
University of Illinois at Urbana-Champaign

{pchang17, sliu105, tj12, neeloyc2, kaiwen2, krdc}@illinois.edu

Abstract: A command-following robot that serves people in everyday life must
continually improve itself in deployment domains with minimal help from its end
users, instead of engineers. Previous methods are either difficult to continuously
improve after the deployment or require a large number of new labels during fine-
tuning. Motivated by (self-)supervised contrastive learning, we propose a novel
representation that generates an intrinsic reward function for command-following
robot tasks by associating images with sound commands. After the robot is de-
ployed in a new domain, the representation can be updated intuitively and data-
efficiently by non-experts without any hand-crafted reward functions. We demon-
strate our approach on various sound types and robotic tasks, including navigation
and manipulation with raw sensor inputs. In simulated and real-world experi-
ments, we show that our system can continually self-improve in previously unseen
scenarios given fewer new labeled data, while still achieving better performance
over previous methods.

Keywords: Command Following, Multimodal Representation, Reinforcement
Learning, Human-in-the-Loop

1 Introduction

Audio command following robots is an important application that paves the way for non-experts
to intuitively communicate and collaborate with robots in their daily lives. Ideally, a command-
following robot should ground both speech and non-speech commands to visual observations and
motor skills. For example, a household robot must open the door when it hears a doorbell or some-
one saying “open the door.” The robot should also be customizable and continually improve its
interpretation of language and skills from non-experts [1, 2].

The need for command-following robots has spurred a wealth of research. Learning-based language
grounding agents were proposed to perform tasks according to visual observations and text/speech
instructions [3, 4, 5, 6, 7]. However, these approaches often fail to completely solve a common prob-
lem in learning-based methods: performance degradation in a novel target domain, such as the real
world [8, 9, 10]. Fine-tuning the models in the real world is often expensive due to the requirement
of expertise, extra equipment and large amounts of labels, none of which can be easily provided by
non-expert users in everyday environments. Without enough domain expertise or abundant labeled
data, how can we allow users to customize such robots to their domains with minimal supervision?
Some prior works have attempted to reduce data usage when fine-tuning the robot in new domains.
However, the efficiency of the methods usually relies on task-specific assumptions [11], extra sensor
instrumentation [12], and limited task variations [13, 14].

In this paper, we propose a novel framework that builds on (self-)supervised contrastive learning
to realize more effective training and more efficient fine-tuning for rewards and skills learning. As
shown in Fig. 1, we first learn a joint Visual and Audio Representation, which is Data-efficient and
can be Intuitively Fine-tuned(Dif-VAR). In the second stage, we use the representation to compute

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

Figure 1: Our pipeline. Contrastive learning is used to group images and audio commands of the same intent.
The resulting Dif-VAR supports the downstream RL training by encoding the auditory and visual signals and
providing reward signals and states to the agent. Users improve the Dif-VAR intuitively by providing the visual-
audio pairs in their own domain, and the updated Dif-VAR supervises the RL fine-tuning.

intrinsic reward functions to learn various robot skills with reinforcement learning (RL) without
any reward engineering. When the robot is deployed in a new domain, the fine-tuning stage is data
efficient in terms of label usage and is natural to non-experts, since users only need to provide a
relatively small number of images and their corresponding sounds. For example, a user can teach
Dif-VAR by saying that “this is an apple” when the robot sees an apple. Then, RL policies are
self-improved with the updated Dif-VAR.

We apply this learning approach to diverse navigation and manipulation environments. Given a
sound command, the robot must identify the commander’s goal (intent), draw the correspondence
between the raw visual and audio inputs, and develop a policy to finish the task. To develop a gener-
ally applicable pipeline, we make minimal assumptions. We do not assume the availability of human
demonstrations, prior knowledge about the environment, or image and sound recognition modules
that have perfect accuracy after the deployment. The robot is equipped with only a monocular uncal-
ibrated RGB camera and a microphone. Our method works with various sound signals (e.g. voice,
environmental sound) and various types of robots (e.g. mobile robots, manipulators).

Our main contributions are: (1) We propose a voice-controlled robot pipeline for everyday house-
hold tasks. This framework is intuitive for non-experts to continually improve and is agnostic to a
wide range of voice-controlled tasks. (2) Inspired by (self-)supervised contrastive loss, we propose
a novel representation of visual-audio observations named Dif-VAR, which generates intrinsic RL
rewards for robot skill learning. Only image-audio pairs are required to fine-tune Dif-VAR and the
RL policy. No reward engineering, state estimation, or other supervision is needed. (3) We pro-
pose a variety of voice-controlled navigation and manipulation benchmarks. In new simulated and
real-world domains, the adaptation of our method outperforms state-of-the-art baselines in terms of
performance and data efficiency, while requiring less expertise and environmental instrumentation.

2 Related Works

End-to-end language understanding. End-to-end spoken language understanding (SLU) sys-
tems extract the speaker’s intent directly from raw speech signals without translating the speech
to text [15, 16, 17]. Such an end-to-end system is able to fully exploit subtle information, such
as speaker emotions that are lost during speech-to-text transcription, and outperform pipelines that
preprocess the speech into text [16, 17]. However, they have not been widely applied in robotics.

Command following agents. Conventional command following agents consist of independent
modules for language understanding, language grounding, and planning [18, 19, 20]. But these
modular pipelines suffer from intermediate errors and do not generalize beyond their programmed
domains [21, 22, 23]. To address these problems, end-to-end command following agents are
used to perform tasks according to text-based natural language instructions and visual observa-
tions [3, 4, 23, 24, 25]. In addition, large language models are applied to program the robots given
the language prompts [26, 27]. However, these methods neglect the non-speech commands and
abstract away the practical challenges of auditory signal grounding. To make full use of audio com-
mands, Chang et al. [7] introduces an RL framework for skill learning directly from raw sounds.

2

However, all these works overlook the continual fine-tuning and customization by users, an essen-
tial step to ensure performance after the deployment. Fine-tuning such models is computationally
challenging and requires hand-tuned reward functions and prohibitive labeling efforts. Chang et al.
[1] partially addresses the problem by learning a visual-audio representation (VAR) with triplet loss
to generate an intrinsic reward function for RL. However, this method requires negative pairs in the
triplet loss, which is not intuitive to non-experts and inefficient to deploy in new target domains.

Visual and language representation for robotics. Representation learning has shown great poten-
tial in learning useful embeddings for downstream robotic tasks [28, 29]. Deep autoencoders have
been used to learn a latent space which generates states or rewards for RL [30, 31, 32]. Contrastive
learning has also been used to learn representations for downstream skill learning [33, 34]. However,
in task execution, a goal image has to be provided, which is less natural in terms of human-robot
communication compared to language.

To this end, visual-language representations have been widely used to associate human instructions
with visual observations in navigation [27, 35] and manipulation [12, 36, 37]. However, similar to
text-based command following agents, these methods also lose information when the input is sound
instead of text. Although audio-visual representations such as AudioCLIP have been developed [38],
how to apply them in robot learning remains an open challenge. Our work and [1] address this chal-
lenge by proposing a visual-audio representation that generates RL rewards for robot skill learning,
while our method achieves better data efficiency and can be more easily fine-tuned than [1].

3 Methodology

In this section, we describe the two-stage training pipeline and fine-tuning procedure. In training,
we assume the availability of sufficiently large labeled datasets, simulators, and labels. However, in
fine-tuning, speech transcriptions, one-hot labels, and reward functions, are not available.

3.1 Visual-audio representation learning

In the first stage, we collect visual-audio pairs from the environment. Then, we learn a joint repre-
sentation of images and audios that associates an image with its corresponding sound command.

Data collection. Suppose there are M possible intents or tasks within an environment. We collect
visual-audio pairs defined as (I,S, y) from the environment, where I ∈ Rn×n is an RGB image
from the robot’s camera, S ∈ Rl×m is the Mel Frequency Cepstral Coefficients (MFCC) [39] of the
sound command, and y ∈ {0, 1, ...,M} is the intent ID. We call I and S two views of an intent y.
A visual-audio pair contains a goal image and a sound command of the same intent. For example,
when an iTHOR agent sees a lit lamp, the agent hears the sound “Switch on the lamp” from the
environment. In contrast, when the agent does not see any object in interest or is far away from all
objects so that it sees multiple objects at once, it receives only an image and hears no sound. The
image is paired with S = 0l×m and y = M . We define this situation as an empty intent.

Training Dif-VAR. Our goal is to encode both visual and auditory signals into a joint latent space,
where the embeddings from the same intents are pulled closer together than embeddings from dif-
ferent intents. For example, the embedding of an image with a TV turned on needs to be close
to the embedding of a sound command “Turn on the TV” but far away from other irrelevant com-
mands such as “Turn off the light.” We adopt the idea from (self-)supervised contrastive learning
for visual representations and formulate the problem as metric learning. As shown in Fig. 2a, the
Dif-VAR is a double-branch network with two main components. The first component contains the
encoders f I : Rn×n → RdI and fS : Rl×m → RdS which map an input image I and a sound
signal S to representation vectors hI and hS , respectively. In practice, any deep models for image
and sound processing can be used for f I and fS . The second component is the projection heads
gI : RdI → Rd, gS : RdS → Rd, and bI : RdI → R that map the representations hI and hS to the
space where losses are applied. We denote the vector embeddings gI(hI) and gS(hS) as zI and zS ,

3

Figure 2: Purposed framework. (a) The Dif-VAR is a double-branch network optimized with (self-)supervised
contrastive loss. (b) The latent space of the Dif-VAR is a unit hypersphere such that the images and audios of
the same intent are closer than those of different intent in the space. (c) The Dif-VAR decides which skill to
activate according to Sg .

respectively. We enforce the norm of zI and zS to be 1 by applying an L2-normalization, such that
the embeddings live on a unit hypersphere as shown in Fig. 2b.

We use supervised contrastive (SupCon) loss as the objective, which encourages the distance be-
tween zI and zS of the same intent to be closer than those of a different intent [40]. Suppose there
are N visual-audio pairs in a batch. Let k ∈ K := {1, ..., 2N} be the index of an image or a sound
signal within that batch and P (k) := {p ∈ K \ {k} : yp = yk} be the set of indices of all images
and sounds of the same intent except for index k. Then, the SupCon loss is

LSupCon = −
∑
k∈K

1

|P (k)|
∑

p∈P (k)

log
exp (zk · zp/τ)∑

j∈K\{k} exp (zk · zj/τ)
, (1)

where |·| is the cardinality, z∗ can be either zI or zS , and τ ∈ R+ is a scalar temperature parameter.
The use of SupCon loss allows attraction and repulsion among all images and sound within a batch,
which improves the training efficiency of the representation. We introduce a binary classification
loss for the image to distinguish between empty and non-empty intent. Let LBCE denote the binary
cross entropy loss and e denote the label of intent, which is 0 for empty intent and 1 for non-empty
intent. The batch loss for training the Dif-VAR is:

LDif-VAR = α1LSupCon + α2
1

N

N∑
j=1

LBCE(b
I(hI

j), ej) (2)

where α1 and α2 are the weights of losses. Depending on if the intent is predicted empty or not, the
output vI and vS of Dif-VAR can be determined for image and sound by:

vI = 1{êI ≥ 0.5} z
I , êI := bI(hI), vS = 1{Si ̸=0l×m} z

S . (3)

where 1 is an indicator function. The purpose of the binary classification is to set the image and
sound embeddings of the empty intent to the center of the joint latent space. This centralization
removes the biases caused by the location of the empty intent in the joint latent space, leading to
better intrinsic reward then previous methods.

While SupCon loss and other self-supervised visual representation learning frameworks are origi-
nally only applied to image modality [40, 41], we extend the framework to a multi-modality setting
and create a new representation for command following robots.

3.2 RL with visual-audio representation

The second stage of our pipeline is to train an RL agent using an intrinsic reward function generated
by a trained Dif-VAR. We model a robot command following task as a Markov Decision Process
(MDP), defined by the tuple ⟨X ,A, P,R, γ⟩. At each time step t, the agent receives an image

4

It from its RGB camera, and robot states Mt such as end-effector location or previous action.
At t = 0, an additional one-time sound command Sg containing an intent is given to the robot.
We freeze the trainable weights of Dif-VAR in this stage and define the MDP state xt ∈ X as
xt = [It,v

I
t ,v

S
g ,Mt], where vI

t and vS
g are the output of the Dif-VAR for It and Sg , respectively.

Then, based on its policy π(at|xt), the agent takes an action at ∈ A. In return, the agent receives
a reward rt ∈ R and transitions to the next state xt+1 according to an unknown state transition
P (·|xt, at). The process continues until t exceeds the maximum episode length T , and the next
episode starts.

Intrinsic rewards. Since vI and vS of the same intent are pulled together within the Dif-VAR by
the contrastive loss, intrinsic rewards can be derived as the similarity between vI and vS . Eq. 4 and
5 present two possible task-agnostic and robot-agnostic reward functions:

rit = vI
t · vS

g (4) rict = vI
t ·vS

g +vS
t ·vS

g (5)

where vS
t is the embedding of the current sound signal St, which can be triggered in the same way

as S as described in Section 3.1. Intuitively, the agent using rit receives high reward when the scene
it sees matches the command it hears. The agent trained using the reward rict additionally needs
to match the current sound it hears with the sound command to receive high rewards. Compared
to rict , the reward function rit does not depend on any real-time supervision signal such as current
sound vS

t from the environment, allowing the agent to perform self-supervised RL training with Dif-
VAR. Although RL agents trained with Eq. 4 can already achieve decent performance, providing
the current sound St can further improve the performance [1]. Since St can be difficult to obtain
especially in real environments, St is not part of the state xt and thus the robot policy does not
require St at test time.

Policy network. We purpose two architectures for RL policies. The first architecture is flat and
uses a single policy network to fulfill all the intents in an environment, which is suitable when the
skills to finish tasks are similar. The second architecture is hierarchical and contains multiple policy
networks individually designed to fulfill a subset of intents in an environment, as shown in Fig. 2c.
Given an Sg and a set of policies Π = {π1, π2, ...}, the Dif-VAR selects a policy πj by

j = L(ŷ), ŷ = argmax
i

vS
g · Ci

∥Ci∥2
. (6)

where Ci is the centroid of an intent in the joint latent space calculated from the training data and L
is a lookup table that maps an intent ID to a policy. For benchmarking purposes, we use Proximal
Policy Optimization (PPO) for policy and value function learning [42].

3.3 Intuitive and data-efficient fine-tuning

After the robot is deployed in a new domain such as the real world, its performance often degrades
due to domain shift from both perception and dynamics [43]. Our fine-tuning procedure allows
non-experts to continually improve the Dif-VAR to reduce perception gaps and improve robot skills
to reduce dynamics gaps. We only need to collect visual-audio pairs of the form (I,S) from non-
experts. Since we no longer have the underlying labels y for images and sounds, we replace the
SupCon loss in Eq. (2) with the following self-supervised contrastive loss (SSC) [41]:

LSSC = −
∑
k∈K

log
exp (zk · zp(k)/τ)∑

j∈K\{k} exp (zk · zj/τ)
, (7)

where p(k) is the index of the data paired with the data of index k with the same intent. We mix
the new data from the non-experts with a subset of the original training data to update the Dif-
VAR, producing a more accurate reward function by Eq. 4. The robot can then self-improve its
policy network with the reward function by randomly sampling a sound command as the goal. The
collection of the visual-audio pairs does not require special equipment other than an RGB camera
and a microphone. The users provide images and sound based on their common knowledge using
their own voices. The users do not need to type in speech transcriptions, draw bounding boxes and

5

masks, modify the network architectures, or design a reward function. To fine-tune VAR in [1],
non-experts have to provide a sound command with different intent S− for each image I to use
triplet loss. In contrast, Dif-VAR eliminates this requirement by utilizing the SSC, leading to a more
intuitive data collection experience for non-experts and better performance with fewer labeled data.
See Appendix A for the fine-tuning algorithm.

4 Experiments

In this section, we first describe the various environments and sound datasets. Then, we compare
the performance and data efficiency of our pipeline with several baselines and ablation models.

4.1 Environments and sound dataset

Figure 3: Simulation environments.

Robotic environments: We evaluate the perfor-
mance of all the methods on three different robotic
environments: iTHOR, Desk, and Row. In all envi-
ronments, the perception of the robot comes from a
monocular uncalibrated RGB camera, and the robot
must fulfill the sound command. See Appendix B
for details.

Sound data: We use several types of sounds from state-of-the-art datasets in training and testing.
Specifically, we use speech signals from Fluent Speech Commands (FSC) [16] and short speech
commands from Google Speech Commands (GSC) [44]. We also collect a synthetic speech dataset
using Google Text-to-Speech. We use single-tone signals from NSynth [45] and environmental
sounds from UrbanSound8K (US8K) [46] and ESC-50 [47]. The Wordset dataset was created from
the “0,” “1,” “2,” “3” in GSC. We also used a Mix dataset to show that the Dif-VAR can map multiple
types of sounds to a single object or idea, by mixing speech data with environmental sound. See
Appendix C for more sound examples and intent we choose for the environment.

4.2 Evaluation of the RL policy

Evaluation metrics. We evaluate the model with two metrics: (1) success rate (SR) and (2) the
number of labels used for training (LU). We define SR as the percentage of successful test episodes.
We test the learned policy for 50 episodes for each intent across multiple random seeds, and an
agent succeeds if it fulfills the command. We compare the label usage of the models because a
command following robot deployed in the real world should require as few annotations as possible
from non-experts for fine-tuning.

Baselines and ablations. We compare the RL performance of our method against the following
baselines and ablations. (1) “E2E” is a representative end-to-end deep RL policy for voice-controlled
robots [7]. E2E uses hand-tuned task-specific reward functions and requires ground-truth class la-
bels for image and sound classification. (2) “VAR” trains an RL agent based on the output of the
VAR [1]. VAR utilizes triplet loss for training and fine-tuning. Both our method and VAR use Eq 5
for the downstream RL tasks. (3) We compare the performance between flat (F) and hierarchical
(H) architectures that have the same total trainable parameters. (4) “ASR+NLU+RL (ANR)” is a
common modular pipeline. Note that, unlike this baseline, our method does not rely on any tran-
scriptions or expertise to be fine-tuned. This baseline does not work with non-speech datasets such
as NSynth, which will be indicated by “-”. (5) “CLIP” uses ASR for speech recognition and uses the
dot product of the embeddings from the CLIP model as the reward [48]. We use “CLIP” as a rep-
resentative of pre-trained visual-language models that claim zero-shot transferability to downstream
tasks [48]. (6) “Oracle” is an RL agent which assumes perfect ASR and NLU modules and is trained
with hand-tuned reward functions and ground-truth class labels. See Appendix E for more details.

Definition of labels. In this paper, labels include all forms of annotation and measurement that
are used to train a model. For example, one-hot labels for image and sound classification and the

6

Table 1: Test success rate with various types of sound commands in the original visual domain.

Env Steps Dataset SR↑
(×106) CLIP ANR E2E VAR Ours(F) Ours(H) Oracle

Row
3.0 Wordset 1.5 85.5 95.5 97.0 98.0 96.0 98.0
3.0 NSynth - - 92.5 98.0 98.0 97.0 98.0
3.0 Mix - - 94.0 95.5 97.0 95.0 98.0

Desk 9.0 Mix - - 77.0 58.5 84.5 89.5 90.0

iTHOR 9.0 FSC 10.8 66.0 68.0 65.6 72.4 76.8 79.2

distance measurement between the robot and the goal are both labels. One visual-audio pair (I,S, y)
for training or (I,S) for fine-tuning used in Dif-VAR requires 1 label to indicate y or the same intent.
A visual-audio triplet used in VAR, (I,S+,S−), requires 2 labels to indicate the positive and the
negative. Every E2E training step requires about 3 labels, including the target object state checking
(e.g. check if the light is switched on), distance measuring to calculate the extrinsic reward, and a
one-hot label for auxiliary losses.

Control policies with unheard sounds. In this experiment, we test the performance of different
models with sound commands never heard by the agent during training (e.g. new speakers). All the
models are trained with the same number of RL steps and sufficient labels. They are tested in the
original Floor Plans 201-220 or desk. No fine-tuning is performed yet.

Table 1 suggests that the intrinsic rewards produced by our representation adequately support the RL
training across various robots, robotic tasks, and types of sound signals. Remarkably, our method
demonstrates satisfactory performance even without the inclusion of extrinsic rewards. CLIP suffers
from a severe domain shift problem in our task. As a general-purpose pretrained model, CLIP is
not tailored to generate an RL reward or designed for any specific downstream robotic applications.
ANR is limited to speech signals and has lower SR than the other methods due to intermediate
errors, which coincides with the findings in [1, 22]. Compared to our method, the VAR does not
perform well in every environment, which suggests that the Dif-VAR produces better representation
and more reliable rewards. The flat architecture outperforms the hierarchical architecture in only
the Row environment, indicating that the hierarchical architecture is more suitable when the skills
required to complete tasks vary. See Appendix D for examples of task execution of the agent.

Table 2: Average success rates over unseen domains
before and after fine-tuning.

iTHOR(sim) Desk(sim) Row(real)
LU 0 253 0 150 0 300

ANR 18.8 19.8 - - 13.8 15.0
E2E 18.4 19.8 44.5 45.0 15.0 15.0
VAR 19.6 57.9 35.5 58.0 18.8 56.3

Ours(F) 20.8 85.8 69.0 84.5 18.8 78.8
Ours(H) 23.2 88.4 70.0 90.0 16.3 75.0

Fine-tuning in novel domains. This ex-
periment aims to show the potential of
each method to be improved in a new do-
main. We consider the scenario where a
trained household robot is purchased to
serve in a new place. Each method is
given the same number of new labels, and
a data-efficient method should achieve the
highest success rate. We first test the per-
formance of trained models with unheard
sound commands in unseen domains with-
out any fine-tuning. For the iTHOR environment, the agent is tested in Floor Plans 226-230, which
have sets of furniture and arrangements that are unfamiliar to the robot. For the Desk environment,
the robot is placed in front of a new desk with unseen object appearances and locations. The results
are marked by “LU=0” in Table 2 as 0 new label is required for the test. We see that the perfor-
mance of all methods drops compared to the test results in the original domains shown in Table 1.
This phenomenon is due to the common problem of domain shift faced by learning systems [8].
We then manually collect an average of 253 new labels for each unseen floor plan to fine-tune each
method for that floor plan in the iTHOR environment, and 150 new labels for the unseen desk in
the Desk environment. We followed Sec. 3.3 to fine-tune the VAR and Dif-VAR and used Eq. 4
to self-improve RL policies without current sounds for 1M timesteps. For E2E, we collect one-hot

7

labels and use simulator queries during the fine-tuning. The fine-tuning is terminated after it reaches
the label limit. See Appendix D.4 and D.5 for task execution before and after the fine-tuning.

From Table 2, we find that the ANR and E2E can only be improved by less than 1.5%, suggesting
the inefficiency of fine-tuning these methods after deployment. The label quotas are depleted rapidly
due to the inefficient use of labels for policy network fine-tuning, which leads to less RL experience.
Our methods have higher data efficiency as labels were purely used to update the Dif-VAR, and
there was no label consumption during the self-supervised RL exploration. This leads to an overall
richer RL experience. Compared to VAR, our method achieves better performance using the same
number of labels because Dif-VAR does not need negative pairs for fine-tuning. Using around 250
image-sound pairs, our method successfully improves itself to fulfill 4 ∼ 5 tasks in a new domain.
We believe the effort is manageable by a non-expert. See Appendix E.6 for intermediate results
versus the label usage during fine-tuning.

Figure 4: Sim2real experiment setup.

Fine-tuning in the real world. This
experiment shows that our method
is practical and helps minimize the
sim2real gap. In this experiment, the
agent performs a grasping task with a
noisy background using a single un-
calibrated RGB camera. This setting
is challenging for user-involved sim2real because the performance of the models is sensitive to the
inevitable inconsistency in the camera pose between simulation and the real world [1], and it is un-
likely that non-experts know how to calibrate a camera. To solve the problem, the Dif-VAR learns to
associate valid pre-grasp poses with images and speech commands. Dif-VAR outputs a high reward
when the robot reaches the desired object with a correct grasping pose. We first train the agents with
domain randomization [8] in the simulator. Then, we deploy the model to a real Kinova-Gen3 arm
and perform 20 tests for each intent (80 in total). See Fig. 4 and Appendix B.2 for more details.
We spent an hour collecting the visual-audio pairs and fine-tuning the policy. The last two columns
of Table 2 shows that our methods minimized the domain shift with a reasonable number of newly
provided pairs. Qualitative results are shown in Fig. 5 and the supplementary video.

Figure 5: Before and after the fine-tuning in the real world.

5 Conclusion, Limitations and Future work

In conclusion, we propose a novel visual-audio representation named Dif-VAR for command fol-
lowing robots based on the recent advancement in (self-)supervised contrastive learning. Dif-VAR
requires much fewer labels from non-experts during fine-tuning but produces higher-quality rewards
for downstream RL agents. Our results suggest that visual-language association and skill develop-
ment are highly correlated and thus need to be designed together. Furthermore, we are the first to
demonstrate that (self-)supervised contrastive loss has the potential to enhance human-robot inter-
action. However, our work has the following limitations, which open up directions for future work.
First, empty intents may result in sparse intrinsic reward functions, which pose challenges in long-
horizon tasks. Our reward function can be combined with other intrinsic rewards [49]. To increase
robustness, we may take 3D information and history into reward calculation. Second, user studies
are needed to confirm that collecting visual-audio pairs is intuitive and convenient for end-users.
Third, our method can be combined with imitation learning to further improve data efficiency.

8

Acknowledgments

This work is supported by AIFARMS through the Agriculture and Food Research Initiative (AFRI)
grant no. 2020-67021-32799/project accession no.1024178 from the USDA National Institute of
Food and Agriculture. We thank Yunzhu Li and Karen Livescu for insightful discussions and all
reviewers for their feedback.

References
[1] P. Chang, S. Liu, and K. Driggs-Campbell. Learning visual-audio representations for voice-

controlled robots. In IEEE International Conference on Robotics and Automation (ICRA),
2023.

[2] C. Matuszek. Grounded language learning: Where robotics and nlp meet. In International
Joint Conference on Artificial Intelligence (IJCAI), 2018.

[3] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and
A. van den Hengel. Vision-and-language navigation: Interpreting visually-grounded naviga-
tion instructions in real environments. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3674–3683, 2018.

[4] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[5] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi. A persistent spatial semantic representa-
tion for high-level natural language instruction execution. In Conference on Robot Learning
(CoRL), pages 706–717, 2022.

[6] S. Y. Min, D. S. Chaplot, P. Ravikumar, Y. Bisk, and R. Salakhutdinov. Film: Following
instructions in language with modular methods. arXiv preprint arXiv:2110.07342, 2021.

[7] P. Chang, S. Liu, H. Chen, and K. Driggs-Campbell. Robot sound interpretation: Combining
sight and sound in learning-based control. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5580–5587, 2020.

[8] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization for
transferring deep neural networks from simulation to the real world. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 23–30, 2017.

[9] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz, S. Levine,
R. Hadsell, and K. Bousmalis. Sim-to-real via sim-to-sim: Data-efficient robotic grasping via
randomized-to-canonical adaptation networks. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12627–12637, 2019.

[10] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder, L. Weng,
Q. Yuan, W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[11] B. Wen, W. Lian, K. Bekris, and S. Schaal. You only demonstrate once: Category-level ma-
nipulation from single visual demonstration. In Robotics: Science and Systems (RSS), 2022.

[12] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning (CoRL), 2022.

[13] A. Yu and R. J. Mooney. Using both demonstrations and language instructions to efficiently
learn robotic tasks. In International Conference on Learning Representations (ICLR), 2022.

9

[14] M. Du, O. Y. Lee, S. Nair, and C. Finn. Play it by ear: Learning skills amidst occlusion through
audio-visual imitation learning. In Robotics: Science and Systems, 2022.

[15] D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B. Liu, and Y. Bengio. Towards end-to-end
spoken language understanding. In International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 5754–5758, 2018.

[16] L. Lugosch, M. Ravanelli, P. Ignoto, V. S. Tomar, and Y. Bengio. Speech model pre-training for
end-to-end spoken language understanding. In Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2019.

[17] M. Kim, G. Kim, S.-W. Lee, and J.-W. Ha. St-bert: Cross-modal language model pre-training
for end-to-end spoken language understanding. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), pages 7478–7482, 2021.

[18] F. Stramandinoli, V. Tikhanoff, U. Pattacini, and F. Nori. Grounding speech utterances in
robotics affordances: An embodied statistical language model. In Joint IEEE International
Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages
79–86, 2016.

[19] R. Paul, J. Arkin, D. Aksaray, N. Roy, and T. M. Howard. Efficient grounding of abstract spatial
concepts for natural language interaction with robot platforms. The International Journal of
Robotics Research, 37(10):1269–1299, 2018.

[20] A. Magassouba, K. Sugiura, A. T. Quoc, and H. Kawai. Understanding natural language
instructions for fetching daily objects using gan-based multimodal target–source classification.
IEEE Robotics and Automation Letters, 4(4):3884–3891, 2019.

[21] A. Vanzo, D. Croce, E. Bastianelli, R. Basili, and D. Nardi. Robust spoken language under-
standing for house service robots. Polibits, (54):11–16, 2016.

[22] Y. Tada, Y. Hagiwara, H. Tanaka, and T. Taniguchi. Robust understanding of robot-directed
speech commands using sequence to sequence with noise injection. Frontiers in Robotics and
AI, 6:144, 2020.

[23] K. M. Hermann, F. Hill, S. Green, F. Wang, R. Faulkner, H. Soyer, D. Szepesvari, W. M.
Czarnecki, M. Jaderberg, D. Teplyashin, et al. Grounded language learning in a simulated 3d
world. arXiv preprint arXiv:1706.06551, 2017.

[24] H. Yu, H. Zhang, and W. Xu. Interactive grounded language acquisition and generalization in
a 2d world. In International Conference on Learning Representations (ICLR), 2018.

[25] D. S. Chaplot, K. M. Sathyendra, R. K. Pasumarthi, D. Rajagopal, and R. Salakhutdinov.
Gated-attention architectures for task-oriented language grounding. In Conference on Artificial
Intelligence (AAAI), pages 2819–2826, 2018.

[26] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, A. Herzog, D. Ho, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J.
Ruano, K. Jeffrey, S. Jesmonth, N. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H. Lee,
S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao, K. Rao, J. Rettinghouse, D. Reyes,
P. Sermanet, N. Sievers, C. Tan, A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu,
M. Yan, and A. Zeng. Do as i can and not as i say: Grounding language in robotic affordances.
In arXiv preprint arXiv:2204.01691, 2022.

[27] C. Huang, O. Mees, A. Zeng, and W. Burgard. Visual language maps for robot navigation. In
IEEE International Conference on Robotics and Automation (ICRA), 2023.

[28] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning
(CoRL), pages 991–1002, 2022.

10

[29] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual represen-
tation for robot manipulation. In Conference on Robot Learning (CoRL), 2022.

[30] A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with
imagined goals. In Advances in Neural Information Processing Systems (NeurIPS), volume 31,
2018.

[31] Y. Wang, G. N. Narasimhan, X. Lin, B. Okorn, and D. Held. Roll: Visual self-supervised
reinforcement learning with object reasoning. In Conference on Robot Learning (CoRL), 2020.

[32] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and S. Levine. The in-
gredients of real world robotic reinforcement learning. In International Conference on Learn-
ing Representations (ICLR), 2020.

[33] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, S. Levine, and G. Brain. Time-
contrastive networks: Self-supervised learning from video. In IEEE International Conference
on Robotics and Automation (ICRA), pages 1134–1141, 2018.

[34] E. Jang, C. Devin, V. Vanhoucke, and S. Levine. Grasp2vec: Learning object representations
from self-supervised grasping. In Conference on Robot Learning (CoRL), 2018.

[35] D. Shah, B. Osiński, brian ichter, and S. Levine. LM-nav: Robotic navigation with large pre-
trained models of language, vision, and action. In Conference on Robot Learning (CoRL),
2022.

[36] A. Yu and R. Mooney. Using both demonstrations and language instructions to efficiently learn
robotic tasks. In Conference on Robot Learning (CoRL), 2023.

[37] O. Mees, J. Borja-Diaz, and W. Burgard. Grounding language with visual affordances over
unstructured data. In IEEE International Conference on Robotics and Automation (ICRA),
2023.

[38] A. Guzhov, F. Raue, J. Hees, and A. Dengel. Audioclip: Extending clip to image, text and au-
dio. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 976–980, 2022.

[39] S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences. IEEE transactions on acoustics, speech,
and signal processing, 28(4):357–366, 1980.

[40] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and D. Kr-
ishnan. Supervised contrastive learning. Advances in Neural Information Processing Systems,
33:18661–18673, 2020.

[41] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning (ICML), pages
1597–1607, 2020.

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[43] Y. Du, O. Watkins, T. Darrell, P. Abbeel, and D. Pathak. Auto-tuned sim-to-real transfer. In
IEEE International Conference on Robotics and Automation (ICRA), pages 1290–1296, 2021.

[44] P. Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

[45] J. Engel, C. Resnick, A. Roberts, S. Dieleman, D. Eck, K. Simonyan, and M. Norouzi. Neural
audio synthesis of musical notes with wavenet autoencoders. In International Conference on
Machine Learning (ICML), pages 1068–1077, 2017.

11

[46] J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban sound research. In
International Conference on Multimedia (ACM-MM), pages 1041–1044, 2014.

[47] K. J. Piczak. ESC: Dataset for Environmental Sound Classification. In Annual ACM Confer-
ence on Multimedia, pages 1015–1018. ACM Press, 2015.

[48] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages 8748–8763. PMLR, 2021.

[49] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation.
In International Conference on Learning Representations (ICLR), 2019.

[50] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2019.

[51] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv,
2017.

[52] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard. Calvin: A benchmark for language-
conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics and
Automation Letters (RA-L), 7(3):7327–7334, 2022.

[53] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh,
S. Sengupta, A. Coates, et al. Deep speech: Scaling up end-to-end speech recognition. arXiv
preprint arXiv:1412.5567, 2014.

[54] T. Bunk, D. Varshneya, V. Vlasov, and A. Nichol. Diet: Lightweight language understanding
for dialogue systems. arXiv preprint arXiv:2004.09936, 2020.

12

http://pybullet.org

A Algorithm for fine-tuning an agent

Algorithm 1 Fine-tuning the Dif-VAR (F) and an RL agent

1: Inputs: A trained Dif-VAR V, a trained policy πθ , a subset of the original training data Dold

2: Collect a small set of visual-audio pairs D = {(Ii,Si)}Ui=1
3: Dnew = Dold

⋃
D

4: for a sampled minibatch {(Ii,Si)}Ni=1 from Dnew do ▷ Fine-tune Dif-VAR
5: Calculate empty intent label ei by checking if Si = 0l×m

6: Calculate image and sound embeddings: hI , zI ,hS , zS ← V(Ii,Si)
7: Calculate LSSC by Eq. 7
8: Calculate loss by Lfinetune = α1LSSC + α2

1
N

∑N
j=1 LBCE(b

I(hI
j), ej)

9: Update V to minimize Lfinetune

10: for k = 0, 1, 2, ... do ▷ Self-supervised RL fine-tuning
11: Sample a sound command Sg from D as goal
12: for t = 0, 1, ..., T do
13: Receive RGB image It and robot state Mt

14: Calculate image and sound embeddings: vI
t ,v

S
g ← V(It,Sg) by Eq. 3

15: Calculate reward rt = vI
t · vS

g
16: if St then
17: Calculate embeddings: vS

t ← V(St)
18: rt = rt + vS

t · vS
g

19: Store {rt, It,Mt,v
I
t ,v

S
g } in a memory buffer DRL

20: Update πθ with data from DRL using PPO
21: Clear DRL

22: return V, πθ

B Robotic environment descriptions

The Row and Desk environments are developed in PyBullet [50] and focus mainly on manipulation
tasks. In contrast, the iTHOR environment is developed in AI2-THOR [51] and is challenging in
perception and designed for mobile robots.

B.1 Row

Four objects are placed in a line at a random location unknown to the robot on the table. A robot
arm needs to move its gripper and stay above the object corresponding to a given command based
on RGB images. The camera is placed at a fixed location on the side of the table such that it can
capture the gripper and the objects from a distorted perspective. The relative positions of the gripper
tip and the objects are initialized randomly at the beginning of an episode. A sound command
only mentions the orindal information about the target object, and the robot needs to develop spatial
reasoning skills to approach the target object using the relative positional information observed from
the camera.

Figure 6: Visualization of the Row environment using Kuka-iiwa robot arm with paired images and voices from
the Wordset. In this case, “zero” means the leftmost block, “one” means the second block from the left, and so
on. The red and green rays are just for illustration purposes. The possible locations of the blocks are limited
to the green rectangle and the end-effector location is indicated by the vertical ray. The rightmost figure shows
the camera view.

13

B.2 Row - real

This environment is modified from the original Row environment. The Four objects are a mug, a
soup can, a pudding box, and an orange. Different objects may require distinct grasping poses. See
Fig. 7 for examples. At the end of an episode, the gripper performs a grasp by lowering its height
from its current position, closing the fingers, and lifting the object up. For domain randomization,
we randomize the background, camera viewpoint, and relative offset among the objects.

Figure 7: Visualization of the Row environment with paired images and voices from the Synthetic dataset under
domain randomization setting. The grasping poses for the mug and the pudding box are different. The red and
green rays are just for illustration purposes. The rightmost figure shows the camera view.

B.3 Desk

The Desk environment is modified from the CALVIN dataset [52]. A Franka Panda robot arm is
placed in front of a desk with a sliding door and a drawer that can be opened and closed. On the
desk, there is a button connected to an alarm clock, a switch to control a light bulb, and a pill case.
The tasks of the robot include turning on or off the light bulb by manipulating the switch, pressing
the button to mute the alarm clock and turn the LED of the clock into red, and picking up the pill
case that could be on the top of the desk or inside a closed drawer. When the pill case is located
inside a closed drawer, the robot needs to open the drawer before picking up the pill case. The sound
commands come from FSC, ESC-50, and the Synthetic dataset.

Figure 8: Visualization of the Desk environment with paired images and voices. The rightmost figure shows
the camera view.

B.4 iTHOR

Our iTHOR environment uses real full-sentence speech commands to simulate a real-world applica-
tion of household robots. The environment has 30 different floor plans of living rooms, each with its
own set of decorations, furniture, and arrangements. The robot is given goal tasks such as switch-
ing the floor lamp or television on or off. The robot must navigate through the environment and
interact with the intended object given RGB images and a noisy local discrete occupancy grid as the
robot states. The complexity of the environment requires the agent to associate complicated speech
commands with high-fidelity visual observations, without a floor plan map. The floor plans can be
visualized and interacted with in https://ai2thor.allenai.org/demo/.

Figure 9: Visualization of the iTHOR environment with paired images and voices from the FSC dataset.

14

https://ai2thor.allenai.org/demo/

B.5 List of Tasks

Table 3: List of tasks in each environment.

Envs Tasks in the original domain Changes in the new domain

iTHOR

activate the floor lamp unseen furniture, room decoration, room
deactivate the floor lamp arrangement, and voices from new speakers
activate the TV
deactivate the TV
find the pillow

Desk

activate the light bulb unseen desk, object locations, object appearance, and
deactivate the light blub sound from new speakers or the alarms
mute the alarm clock
pick up the pill case

Row

first block unseen sound or voices
second block
third block
forth block

Row - real

first object unseen camera intrinsics, camera extrinsics,
second object background, relative locations among the objects, and
third object voices from new speakers
forth object

C Sound Data

Table 4: Sound signals used in the experiments.

Dataset Sound Examples

FSC

activate light “Turn on the lights,” “Lamp on”
deactivate light “Switch off the lamp,” “Lights off”
activate music “Put on the music,” “Play”
deactivate music “Pause music,” “Stop”
bring shoes “Get me my shoes,” “Bring shoes”

GSC “0,” “1,” “2,” “3” “zero,” “one,” “two,” “three”
names of 4 objects “house” “tree,” “bird,” “dog”

NSynth C4, D4, E4, F4 Various instruments, tempo, and volume

US8K bark, jackhammer Sound recorded in the wild

ESC-50 Clock alarm Alarm sound emitted from various alarm clocks

Synthetic

bring pill case “Pass over the pill box for me,” “Give me the pill case”
first object “I would like the first object,” “Give me the leftmost object”

second object “Would you mind giving me the second object from the left,”
“Bring the third object from the right to me”

third object “Take the third object,” “Bring me the second object from the right”
“Take the third object from the left”

fourth object “Give the rightmost object to me ,” “Hand over the fourth object”

15

D Visualization of task execution

D.1 Row

Figure 10: Visualization of the task execution in the Row environment after training without fine-tuning. The
sounds come from Wordset dataset. Kuka moves its gripper to the target block successfully in all episodes.

D.2 Desk

Figure 11: Visualization of the task execution in the Desk environment after training without fine-tuning.

16

D.3 iTHOR

Figure 12: Visualization of the task execution in the iTHOR environment after training without fine-tuning.
The sounds come from FSC dataset. iTHOR agent finishes household tasks successfully in all episodes.

17

D.4 iTHOR fine-tuning

Figure 13: Visualization of the task execution in the iTHOR environment before and after the fine-tuning in
unseen floor plans and the sound commands given by new speakers.

18

D.5 Desk fine-tuning

Figure 14: Visualization of the task execution in the Desk environment before and after the fine-tuning with a
unseen desk and the sound commands given by new speakers. The appearance of the desk and the pill case are
different from the original desk. The location of the light bulb, the button, the LED, and the drawer are different
from the original desk.

19

E Facts and details

E.1 Time efficiency

We evaluate the time efficiency of all the methods. All the models are running on a single Nvidia
GTX 1080 Ti GPU and a Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz. We report the average time
in second (s) for the model to take one action in the iTHOR environment with the FSC dataset. The
average is calculated from 12500 samples.

• ANR: 0.041s

• E2E: 0.018s

• VAR: 0.024s

• Dif-VAR: 0.022s

E.2 ANR

• Implementation: We first use an off-the-shelf automatic speech recognition (ASR) named
Mozilla DeepSpeech [53] to transcribe the speech to text. We then train a learning-
based natural language understanding (NLU) module to handle the noisy output from the
ASR [54]. For example, “Play the music” is sometimes transcribed as “by the music.”
Finally, a vision-based RL agent operates with the predicted intent from the NLU.

• Accuracy of intent prediction of ASR+NLU: FSC dataset: 86.0%; Wordset: 87.0%.

• Fine-tuning details: We fine-tune the RL agent of this pipeline because it is the major source
of performance degradation. The policy network is initialized with the weights obtained
during the training. During the fine-tuning, the input of the model includes images and
ground-truth intent IDs as if the ASR+NLU is perfect. The model also receives a one-hot
label of the images and reward signals from the simulator as supervision signals. The policy
network is updated based on the PPO loss and the auxiliary loss for the images.

E.3 E2E

Fine-tuning details: We fine-tune the whole policy network end-to-end. The policy network is
initialized with the weights obtained during the training. During the fine-tuning, the input of the
model includes images and raw sound signals. The model also receives a one-hot label of the
images, ground-truth intent IDs, and reward signals from the simulator as supervision signals. The
policy network is updated based on the PPO loss and the auxiliary losses for the images and audio.

E.4 VAR

Fine-tuning details: We fine-tune the VAR and let the VAR provide rewards and observations to
fine-tune the policy network. Both VAR and the policy network are initialized with the weights
obtained during the training. We collect visual-audio triplets consisting of an image, positive audio,
and negative audio from the environment and fine-tune the VAR using the triplet loss. During the
fine-tuning of the policy network, the input includes images and vector embeddings from the VAR.
The policy network is updated based on the PPO loss.

20

E.5 Dif-VAR

We show the statistics of training and fine-tuning data for Dif-VAR.

Table 5: Number of training and fine-tuning pairs
Envs # of training pairs # of fine-tuning pairs Ratio (Fine-tuning : training)

Row - real 5.0× 104 3.0× 102 0.6%
Desk 2.5× 104 1.5× 102 0.6%
iTHOR 6.0× 104 2.5× 102 0.4%

We report the change in success rate w.r.t. (1) label usage for fine-tuning Dif-VAR, and (2) number
of RL steps given the fine-tuned representations with the specific number of labels.

Table 6: Success rate with varying label usage and RL fine-tuning steps for Ours(F) in the Desk and
iTHOR environments.

Envs Episode Length LU RL Steps
0.1M 0.5M 1.0M

Desk 100
50 77.5 79.5 79.5
100 78.0 80.0 84.0
150 78.0 82.0 84.5

iTHOR 50
80 39.4 45.3 56.3
160 45.7 56.7 68.4
250 58.6 77.5 85.8

Table 7: Success rate with RL fine-tuning steps for Ours(F) in the Row-real environments.

Envs Episode Length LU RL Steps
1100 2200

Row-real 20 300 40.0 77.5

21

E.6 Intermediate fine-tuning performance

Figure 15: Success rate with varying number of labels in the iTHOR environment.

Figure 16: Success rate with varying number of labels in the Desk environment.

22

F Qualitative comparison of the representation

We visualize the VARs by projecting images and sounds to the joint space, as shown in Fig. 17. We
see that the embeddings of the same concept form a cluster and all clusters are separated from each
other. Compared to VAR, the clusters in Dif-VAR have better intra-cluster cohesion and inter-cluster
separation, suggesting that the two distinct concepts are better distinguished and the same concepts
are better related. During fine-tuning, although Dif-VAR does not have S− as an explicit indication
of negatives like VAR does in the input, Dif-VAR can still maintain relatively clear inter-cluster
separation and provide reliable rewards for the self-improvement of RL agents.

Figure 17: Visualizations of the VARs in the iTHOR environments with FSC. The colors indicate the ground
truth intent ID of embeddings of sound (marked by triangles) and image (marked by circles). (a) VAR after the
training. (b) VAR after the fine-tuning. (c) Dif-VAR after the training. (d) Dif-VAR after the fine-tuning.

G Illustration of data collection

Figure 18: Comparison among different data collection methods. Left: Our method only asks for pairing an
image with an audio without the need for a class label. Middle: VAR requires an additional pairing process than
our method. Right: ANR and E2E require two assignments of the underlying class label which is not intuitive
and need more effort.

23

	Introduction
	Related Works
	Methodology
	Visual-audio representation learning
	RL with visual-audio representation
	Intuitive and data-efficient fine-tuning

	Experiments
	Environments and sound dataset
	Evaluation of the RL policy

	Conclusion, Limitations and Future work
	Algorithm for fine-tuning an agent
	Robotic environment descriptions
	Row
	Row - real
	Desk
	iTHOR
	List of Tasks

	Sound Data
	Visualization of task execution
	Row
	Desk
	iTHOR
	iTHOR fine-tuning
	Desk fine-tuning

	Facts and details
	Time efficiency
	ANR
	E2E
	VAR
	Dif-VAR
	Intermediate fine-tuning performance

	Qualitative comparison of the representation
	Illustration of data collection

