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Abstract

The widespread existence of wrongly labeled001
instances is a challenge to distantly supervised002
relation extraction. Most of the previous works003
are trained in a bag-level setting to alleviate004
such noise. However, sentence-level training005
better utilizes the information than bag-level006
training, as long as combined with effective007
noise alleviation. In this work, we propose008
a novel Transitive Instance Weighting mecha-009
nism integrated with the self-distilled BERT010
backbone, utilizing information in the inter-011
mediate outputs to generate dynamic instance012
weights for denoised sentence-level training.013
By down-weighting wrongly labeled instances014
and discounting the weights of easy-to-fit ones,015
our method can effectively tackle wrongly la-016
beled instances and prevent overfitting. Exper-017
iments on both held-out and manual datasets018
indicate that our method achieves state-of-the-019
art performance and consistent improvements020
over the baselines.021

1 Introduction022

Distantly Supervised Relation Extraction (DSRE)023

(Mintz et al., 2009) is designed to automatically024

annotate the sentences mentioning the entity pairs,025

which enables a significant way for constructing026

large-scale datasets. However, distant supervision027

(DS) works under an unrealistic assumption that028

all sentences mentioning the same entity pair ex-029

press the same relation. This introduces many noisy030

(wrongly labeled) instances into the dataset. To031

tackle this challenge, previous works mostly adopt032

the bag-level setting as shown at the top of Figure 1,033

where the vector representations of sentences are034

aggregated as the bag-level representation using035

multi-instance learning (MIL) (Riedel et al., 2010),036

and the prediction is thus produced from the bag037

representation. The optimization is conducted at038

the bag level to minimize the loss of bag prediction.039

Only a small subset of previous works leverage040

the sentence-level setting (Zhang et al., 2019b; Liu041

et al., 2020a) as in the bottom of Figure 1, where 042

the sentence-level predictions are produced and 043

then aggregated into the bag prediction. In fact, 044

sentence-level training can directly optimize the 045

loss from each sentence, enabling higher informa- 046

tion utilization than bag-level training. However, 047

sentence-level training is vulnerable to the noise 048

brought by DS, which limits its application. There- 049

fore, sentence-level training should be combined 050

with effective noise-alleviation mechanisms to im- 051

prove its robustness.
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Figure 1: The bag-level and sentence-level pipelines of
DSRE.

052

The mainstream encoders of DSRE models 053

are Piecewise Convolutional Neural Network 054

(PCNN) (Zeng et al., 2015) and Recurrent Neu- 055

ral Network (RNN) (Zhou et al., 2016; Liu et al., 056

2018) over the years. It is reasonable for most pre- 057

vious works to take the simple encoder as a black 058

box and only utilize its final output during train- 059

ing and inference. However, as large models like 060

BERT (Devlin et al., 2019) becomes popular in re- 061

cent years, the information within the outputs from 062

their intermediate layers is a non-trivial source of 063

knowledge but is rarely utilized in DSRE. In this 064

work, we apply self-distillation to extract interme- 065

diate information as output probabilities and utilize 066

them to denoise from wrong labels. Furthermore, 067

we use soft target selection and set up transitive 068

knowledge passing among the students to alleviate 069
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the effects of noisy target probabilities from the070

teacher.071

The instances in DSRE can be roughly divided072

into easy, hard and noisy ones. Both easy and hard073

instances are correctly labeled but the model learns074

from hard instances slower (Huang et al., 2021).075

Noisy instances have wrong labels and can be fur-076

ther divided into False Positives (FPs) and False077

Negatives (FNs). FPs are instances with NA rela-078

tion but are wrongly labeled as non-NA relations079

by DS, while FNs are non-NA instances wrongly080

labeled as NA. We hope to avoid learning from081

noisy instances since they contain misleading in-082

formation. Moreover, we also need to avoid over-083

fitting easy instances to improve the learning of084

deeper knowledge. To tackle the above challenges,085

we propose a novel Transitive Instance Weight-086

ing (TIW) mechanism for DSRE. Our method087

adopts the sentence-level setting in both stages:088

fine-tuning and distillation. After fine-tuning the089

BERT encoder using a linear classifier (teacher)090

in the first stage, we append an auxiliary classi-091

fier (student) to each relevant layer and train them092

with TIW during distillation. TIW first filters FNs093

using binary weights (0 or 1). Then the soft tar-094

get probabilities are chosen between the outputs of095

the teacher and the previous peer. Finally, the in-096

stance weights for the positive (non-NA) instances097

are generated by combining two factors: the uncer-098

tainty (Liu et al., 2020b) and the soft confidence099

score. We apply uncertainty to prevent overfitting100

easy instances and use the soft confidence score as101

the assessment of learning difficulty, where easy102

and hard instances tend to have higher scores than103

noisy ones. During filtering and weighting, each104

student receives information from both the teacher105

and the previous peer, enabling the alleviation of106

noise from the teacher and transitive knowledge107

passing among the students. The experiments on108

both held-out and manual datasets show that our109

approach achieves state-of-the-art performance and110

consistent improvements over the teacher and the111

baselines. We also provide a detailed ablation study112

to explore the effects of the modules. Finally, we113

analyse the errors and discuss the limitations of our114

method.115

Our contributions are summarized as follows:116

• We are the first to denoise sentence-level117

DSRE with dynamic instance weights and har-118

ness intermediate knowledge to improve noise119

resistance and information utilization.120

• We propose a novel Transitive Instance 121

Weighting mechanism with multiple func- 122

tions, including noise alleviation, overfitting 123

prevention, soft target selection and transitive 124

knowledge passing. 125

• Experiment and analysis show that our 126

method achieves state-of-the-art performance 127

with good generalization and robustness. 128

2 Related Work 129

Distant supervision (DS) for relation extrac- 130

tion (Mintz et al., 2009) enables automatic an- 131

notation of large-scale datasets, but its strong as- 132

sumption introduces a large number of wrongly 133

labeled instances. Following Riedel et al. (2010), 134

various multi-instance learning methods are pro- 135

posed to denoise from noisy instances, and they 136

broadly fall into two categories: instance selec- 137

tion (Zeng et al., 2015; Qin et al., 2018; Feng 138

et al., 2018) and instance attention (Lin et al., 2016; 139

Yuan et al., 2019b,a; Ye and Ling, 2019). Apart 140

from multi-instance learning, many of the previ- 141

ous works try to improve the effectiveness of train- 142

ing. Liu et al. (2017) and Shang et al. (2020) 143

try to convert wrongly labeled instances to useful 144

information through relabeling. Huang and Du 145

(2019) proposes collaborative curriculum learning 146

for denoising. Hao et al. (2021) adopts adversarial 147

training to filter noisy instances in the dataset. Hao 148

et al. (2021) adopts adversarial training to filter 149

noisy instances in the dataset. Nayak et al. (2021) 150

designs a self-ensemble framework to filter noisy 151

instances despite information loss. Li et al. (2022) 152

proposes a hierarchical contrastive learning frame- 153

work to reduce the effect of noise. Nevertheless, the 154

above approaches are trained with bag-level loss, 155

leading to lower utilization of information. In our 156

work, we adopt sentence-level training to directly 157

utilize sentence-level information and effectively 158

tackle noise and overfitting using dynamic instance 159

weights. 160

Knowledge distillation (Hinton et al., 2015) is 161

an effective way to improve model generalization, 162

though it has difficulty in transferring knowledge 163

effectively (Stanton et al., 2021). By sharing some 164

parameters between teacher and students, self- 165

distillation (Zhang et al., 2019a) improves knowl- 166

edge transfer from teacher to students. Liu et al. 167

(2020b) applies self-distillation on BERT (Devlin 168

et al., 2019) to improve inference efficiency. How- 169

ever, In our work, we apply self-distillation as the 170
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tool to extract intermediate knowledge for denois-171

ing and further reduce the noise from the teacher172

with transitive information passing among the stu-173

dents.174

There are some epoch-level techniques to detect175

noisy instances like Swayamdipta et al. (2020) and176

Huang et al. (2021). But in sentence-level DSRE177

which is highly noisy and contains bias from the178

entity mentions (Peng et al., 2020), larger mod-179

els like BERT can overfit noisy instances faster,180

even before an epoch ends. Therefore, we adopt a181

dynamic instance weighting mechanism which is182

more suitable for DSRE.183

3 Methodology184

Our model is illustrated in Figure 2. The back-185

bone of our model is the BERT encoder on the left,186

with a teacher classifier on the top. Each student187

contains a subencoder and an auxiliary classifier.188

For example, the student 7 has a subencoder end-189

ing with the 7th BERT layer and a linear classifier190

appended to it. The BERT encoder is fine-tuned191

with the teacher classifier on the dataset before dis-192

tillation. As discussed in Jawahar et al. (2019),193

the shallow layers may not be able to encode the194

information needed for the DSRE task. Therefore,195

TIW starts from layer L, which is empirically set196

and will be called the head layer in the rest of the197

paper.
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Figure 2: The overall framework of our model. Dotted
arrows indicate the generation of instance weight.

198

3.1 Backbone199

BERT (Devlin et al., 2019) is a powerful200

transformer-based pretrained network with broad201

applications in natural language processing. Its202

intermediate layers encode a rich hierarchy of sen-203

tence features, ranging from surface features, and204

syntactic features, to semantic features (Jawahar 205

et al., 2019). However, previous BERT applica- 206

tions in DSRE (Alt et al., 2019; Rao et al., 2022) 207

only utilize the output from the final layer, neglect- 208

ing the possibility that hierarchical intermediate 209

information can be useful in denoising. Therefore, 210

we apply auxiliary classifiers as in Figure 2 to ex- 211

tract information from the hierarchical features in 212

the form of output probabilities and utilize them to 213

distinguish noisy instances in the distillation stage. 214

Before distillation, we fine-tune the BERT en- 215

coder on DSRE as in Gao et al. (2021). The 216

structure of the embedding layer and BERT lay- 217

ers follow those in the previous works with the 218

number of transformer layers n = 12 and hidden 219

size dh = 768. 220

Firstly, the input sentence is transformed 221

to a sequence of vector representations s = 222

[w1, w2, ..., wm] by the embedding layer, where 223

m is the maximum length of the sentence. Then, 224

BERT conducts layer-wise feature extraction with 225

the input s, the output of ith layer (1 ≤ i ≤ n) is 226

described as: 227

hi = BERTi(s) (1) 228

where BERTi refers to the subencoder containing 229

transformer layers from the first to the ith. The 230

encoder is fine-tuned with a simple feedforward 231

classifier on the top: 232

xi = [hi(p1);hi(p2)] (2) 233

234

FFN(hi) = M2(M1xi + b1) + b2 (3) 235
236

pt = softmax(FFNt(hn)) (4) 237

where M1 ∈ Rdh×dh and M2 ∈ Rnc×dh are 238

weight matrices and b1 ∈ Rdh and b2 ∈ Rnc are 239

bias terms. p1 and p2 are the start positions of the 240

head entity and tail entity respectively. [a : b] indi- 241

cates the concatenation of vectors a and b. xi is the 242

entity-aware sentence representation generated by 243

concatenating the hidden vectors of the entity pair. 244

nc is the number of classes and pt is the output 245

probability of the teacher. 246

The student i can be formulated as follows: 247

psi = softmax(FFNi(hi)) (5) 248

After fine-tuning, the parameters of the teacher 249

model including the BERT encoder stay fixed. 250
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Algorithm 1 Transitive Instance Weighting

Input: DS label Y , teacher’s output probability pt and students’ ps for the instance.
Output: The soft target ptg and the instance weight w of the instance from the students .

1: Initialize wl ← 1, ptgl ← pt

2: for i = l + 1→ n do
3: Compute the PoAs of ith student: cti ← psi · pt csi ← psi · psi−1

4: if cti > csi then ptgi ← pt else ptgi ← psi ▷ Soft Target Selection
5: if Y = rel2id(NA) then ▷ False Negative Filtering
6: if Y = argmaxj(p

s
i−1(j)) then wi ← 1 else wi ← 0

7: else ▷ Positive Weighting

8: Compute the uncertainty of soft target: ui ←
∑nc

j=1
ptgi (j)logptgi (j)

log 1
nc

9: Compute instance weight: wi ← max(cti, c
s
i )ui

10: end if
11: end for

3.2 Transitive Instance Weighting251

The algorithm of TIW is shown in Algorithm 1,252

where re2id(r) is a function that maps the relation253

class r to its id for generating the one-hot label.254

TIW provides dynamic instance weights for each255

student except the first one (layer L), it sets up a256

transitive way to share knowledge (output probabil-257

ities) among the students. Note that we use the last258

student for the final prediction and the rest of the259

students aim to provide robust instance weights for260

the last one.261

Most previous works in knowledge distillation262

directly use the teacher’s output probability as the263

soft target. However, the teacher can constantly264

make mistakes if trained with noisy data, as in265

DSRE. Therefore, as in Line 4 of our algorithm,266

instead of blindly following the output from the267

teacher, each student except the first one chooses268

between the teacher pt and the previous peer psi−1269

to follow. The criterion of choosing is consistency,270

which can be described as the probability of making271

the same predictions as each other. We call it the272

Probability of Agreement (PoA) and compute it273

as the dot product of two probability distributions.274

The selection of soft targets provides additional275

referential probability distributions for the learning276

students and they can switch to a smoother target277

probability when the output from the teacher is too278

hard to learn.279

In TIW, we adopt different strategies for negative280

(NA) instances and positive (non-NA) ones because281

their characteristics are quite different. We conduct282

False Negative Filtering (FNF) as in Lines 5-6 of283

the algorithm. Since we have sufficient negative in-284

stances in the dataset, it is acceptable to avoid more 285

FNs at the cost of slight information loss. There- 286

fore, we assign 0 weight to all the possible FNs and 287

1 weight to the rest. To correctly identify FNs, we 288

adopt a dynamic approach that if the previous peer 289

agrees with distant supervision and also labels the 290

instance as NA, then we classify the instance as a 291

true negative. Otherwise, we assume it to be a false 292

negative that the DS label is unreliable. The stu- 293

dent follows the peer’s view in FNF instead of the 294

teacher’s because the teacher already overfits the 295

noisy data and mostly follows the DS label, though 296

the probabilities of label relations may vary. 297

In order to preserve more information for train- 298

ing, we use soft weights for the positive instances 299

instead of hard filtering. We call it Positive Weight- 300

ing (PW) and determine the instance weight wi of 301

student i by two factors: uncertainty and the soft 302

confidence score. 303

The uncertainty term is the normalized entropy 304

as in Liu et al. (2020b) of the chosen soft target. 305

It evaluates how well an instance is fitted so we 306

can leverage it to detect overfitted instances dy- 307

namically. Easy instances contain shallow features 308

like London, UK indicating a location/contains re- 309

lation, so the model fits them easily and fast. But 310

we do not hope the model becomes overdependent 311

on them and lose focus on deeper features hidden 312

in semantics. Therefore we discount their weights 313

with uncertainty to prevent overfitting. 314

The maximum between the PoAs from the 315

teacher and the previous peer is the Soft Confi- 316

dence (SC) score which evaluates the learning dif- 317

ficulty of the instance for the student. If the SC 318

score is high, the student successfully follows the 319
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idea of the teacher or the peer, indicating that the320

instance is easy to learn for the student. If the SC321

score is low, the student is unable to follow the322

referential probabilities and the instance may be323

noisy or very hard to learn.324

The instance weight for ith student (l < i ≤ n)325

is computed as the product of the SC score and326

the uncertainty term, as in Line 9 of the algorithm.327

Note that during distillation, the student is trained328

with both soft target distribution and DS labels, as329

shown in Equation 7. We present the discussions330

on the SC scores and losses of easy, noisy and hard331

instances in the following.332

Easy instances mostly have high SC scores and333

are well-fitted by the teacher or the peer, so the opti-334

mizations using soft labels and hard labels conform335

with each other.336

Noisy instances are mostly underfitted and very337

hard to optimize because the soft labels and hard338

labels are mostly inconsistent. They have low SC339

scores because the teacher and the students are not340

likely to provide consistent predictions.341

Hard instances are underfitted clean instances342

with low SC scores at first. However, their soft and343

hard labels are consistent, leading to smoother op-344

timizations. When clean background knowledge is345

established by learning from clean instances, learn-346

ing from hard ones becomes easier so the SC scores347

of hard instances grow larger.348

Based on the above discussions, it is safe to say349

that both easy and hard instances are faster to fit350

and tend to have larger SC scores than noisy ones.351

The uncertainty term only takes effect when easy in-352

stances are well-fitted and clean background knowl-353

edge is established, so it will not lead to overfitting354

noisy instances.355

To sum up, TIW is robust against noise and over-356

fitting and thus can be combined with sentence-357

level training to utilize more information for better358

performance than previous bag-level methods.359

3.3 Optimization360

The teacher model may overfit noisy instances dur-361

ing fine-tuning. Therefore, we apply a dynamic362

temperature τ to the teacher in the following form:363

τi = 1 + γ(1− ui) (6)364

where γ is a hyperparameter empirically set as 3.365

The idea of τ is to further smooth the well-fitted366

instances to produce softer targets.367

The loss function of our model follows the gen- 368

eral form of knowledge distillation with the in- 369

stance weight w we propose: 370

L =
n∑
i=l

wi(αKLτi(p
s
i , p

tg
i )+(1−α)CE(psi , Y ))

(7) 371

where α is a hyper-parameter empirically set as 0.5. 372

KLτ (p, q) computes the KL-divergence between 373

distributions p and q with temperature τ for the 374

teacher. Y is the label from distant supervision and 375

CE(p, Y ) is the cross entropy loss with one-hot 376

label obtained from Y . 377

4 Experiments 378

In this section, the datasets, settings and hyperpa- 379

rameters are specified first. Then, we present the 380

performance of our model compared with previous 381

baselines and the teacher model. We also conduct 382

an ablation study and error analysis to enable a 383

deeper understanding of the mechanisms. 384

4.1 Datasets and Settings 385

We use two datasets for evaluation, the widely used 386

held-out dataset NYT-10 (Riedel et al., 2010) and 387

recent manual dataset NYT-10m (Gao et al., 2021). 388

As a standard dataset for DSRE, NYT-10 is con- 389

structed by aligning the relations in Freebase (Bol- 390

lacker et al., 2008) with the New York Times (NYT) 391

corpus (English). The training set includes sen- 392

tences from 2005 to 2006, and the test set uses sen- 393

tences from 2007. NYT-10m is a manual dataset 394

constructed also from NYT corpus, with a human- 395

labeled test set and a new relation ontology. For 396

NYT-10, we divide the dataset into five parts for 397

cross-validation. For NYT-10m, we use the pro- 398

vided validation set. The details of the datasets are 399

shown in Table 1. 400

Dataset
Train (k) Test (k)

Rel.
Sen. Fac. Sen. Fac.

held-out 522.6 18.4 172.4 2.0 53
manual 417.9 17.1 9.7 3.9 25

Table 1: The statistics of datasets. Sen., Fac. and Rel.
indicate the numbers of sentences, relation facts and
relation types (including NA) respectively.

In the experiments, we use the bert-base- 401

uncased checkpoint with about 110M parameters 402

for initialization as in Han et al. (2019). We apply 403
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the AdamW (Loshchilov and Hutter, 2017) opti-404

mizer during distillation and fix the random seed405

as 42. Apart from the hyperparameters previously406

mentioned, the batch size is 32 and the learning407

rate is 2e− 5. The maximum length of sentences408

m is 128. The head layer L is set as layer 7 in our409

experiments.410

We compare the Area Under precision-recall411

Curve (AUC), the F1 score and the mean of preci-412

sion at top N predictions (N=100, 200, 300), which413

is denoted as P@M. Following the at-least-one414

assumption (Riedel et al., 2010), we adopt ONE415

strategy (Zeng et al., 2015) for bag-level evaluation,416

which takes the maximum score for each relation417

to generate bag-level predictions. As mentioned418

in Section 3, We use the output probabilities of419

the last student as the output of our model. In the420

appendix, we also display the results from other421

students and the results using other settings of L.422

4.2 Overall Performance423

We compare the performance of our model against424

that of the following baselines:425

PCNN+ATT (Lin et al., 2016) proposes PCNN426

with selective attention mechanism.427

RESIDE (Vashishth et al., 2018) integrates side428

information into Graph Convolution Networks to429

improve relation extraction.430

DISTRE (Alt et al., 2019) extends and fine-431

tunes GPT on DSRE.432

Intra+inter (Ye and Ling, 2019) combines intra-433

bag attention with inter-bag attention to tackle the434

noisy bags.435

CIL (Chen et al., 2021) applies contrastive in-436

stance learning to reduce noise from DS.437

Teacher follows the implementation in Gao438

et al. (2021).439

Among the baselines, DISTRE and CIL use pre-440

trained language models for initialization. CIL441

adopts the same BERT pretrained encode as ours.442

The held-out dataset is the mainstream for DSRE443

evaluation, but it contains wrongly labeled test in-444

stances leading to inaccurate evaluation. The man-445

ual dataset provides an accurate test set but is lim-446

ited by its scale in generalization. Therefore, we447

use both of the datasets for better evaluation.448

4.2.1 Evaluation on Held-out Dataset449

Table 2 shows the experimental results on the held-450

out dataset. We use the results reported in the pa-451

pers of previous work. We also plot the precision-452

recall curves as in Figure 3.453

Model AUC F1 P@M

PCNN+ATT 33.8 40.7 71.1
RESIDE 41.5 45.7 79.4
DISTRE 42.2 48.6 66.8
Intra+inter 42.3 46.5 84.8
CIL 50.8 52.2 86.0
Teacher 50.6 52.2 83.6
Student 53.9 55.3 84.9

Table 2: The performance (%) of the models on the
held-out dataset. The best scores are marked as bold
and the second best scores are underlined, as in other
tables of the experiments.

As shown in the results, our model achieves the 454

best AUC and F1 score among all the compared 455

methods. The P@M of the student is relatively 456

lower than bag-level methods, but still significantly 457

higher than the teacher model. We can see that 458

sentence-level training leads to a slight decline in 459

the P@M due to the existence of noisy sentences 460

but achieves better overall performance on the test 461

set because of its advantage in information utiliza- 462

tion. Our method further alleviates noise and over- 463

fitting with TIW, thus achieving state-of-the-art 464

performance. 465
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Figure 3: PR curves of the models on the held-out
dataset.

4.2.2 Evaluation on Manual Dataset 466

Table 3 shows the experimental results on the man- 467

ual dataset. We use the original implementations 468

of the baselines. The precision-recall curves are 469

plotted in Figure 4. 470

In the results, the bag-level methods still per- 471

form better at P@M, however, our method out- 472

performs them in AUC and F1 by large margins. 473
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Model AUC F1 P@M

PCNN+ATT 57.7 57.0 89.2
Intra+inter 53.6 53.5 91.8
CIL 60.2 58.8 91.7
Teacher 61.3 62.4 84.3
Student 63.9 63.8 90.8

Table 3: The performance (%) of our model and the
baselines on the manual dataset.
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Figure 4: PR curves of the models on the manual
dataset.

It shows that previous bag-level methods overfit474

easy instances, leading to the loss of overall gen-475

eralization. The student also achieves significant476

improvements over the teacher, especially in P@M.477

The results further demonstrate the effectiveness of478

TIW in improving sentence-level training.479

According to Gao et al. (2021), the performance480

of the model may be inconsistent if evaluated in481

both the held-out and manual datasets. Good perfor-482

mance on the held-out set may indicate overfitting483

to the bias from DS. However, our model is robust484

enough to perform well on both datasets.485

4.3 Ablation Study486

Model AUC F1 P@M

Our method 53.9 55.3 84.9
a: - STS 53.2 54.5 83.3
b: - PW 51.9 52.5 84.8
c: - FNF 53.3 54.9 82.5
d: - TIW 52.1 52.6 84.6
e: Probe 50.6 52.5 80.0

Table 4: Ablation study of our method.

As shown in Table 4, all the modules improve 487

the overall performance. Detailed discussions are 488

given below: 489

a: removes Soft Target Selection (STS) and fol- 490

lows the output probabilities from the teacher all 491

the time. The noise from the teacher is not ad- 492

dressed, leading to performance declines. 493

b: removes PW and all the positive instances are 494

treated equally, including the noisy ones. There- 495

fore, the model is heavily affected by noise and the 496

FNF may be inaccurate, leading to further declines 497

in performance. In this case, high P@M indicates 498

that the model overfits easy instances and loses 499

generalization. 500

c: removes FNF. The false negative instances 501

only make up a small part of the dataset, so the 502

effect is relatively small. However, the noise from 503

FNs significantly reduces P@M. We suspect that 504

the fitting of false negatives affects that of true pos- 505

itives. If a false negative fn has similar syntactic 506

and semantic features to a true positive tp, fitting 507

fn is similar to fitting tp using an incorrect label. 508

d: removes TIW totally and all the instances are 509

weighted as 1. The label smoothness of knowledge 510

distillation is able to alleviate some noise from DS, 511

so there are improvements in performance over 512

e. However, the student is still trained with much 513

noise and overfits easy instances, so the overall 514

performance declines significantly. 515

e: is the probing result of 12th layer using the 516

DS label. It shows that without effective denoising 517

mechanisms, simply retraining the classifier does 518

not help in performance. 519

The above results and discussions further demon- 520

strate the effectiveness of TIW designs in alleviat- 521

ing noise and overfitting. 522

4.4 Error Analysis 523

For accurate analysis of the errors, we use the test 524

set of the manual dataset for statistical discussions. 525

Each positive label is considered an item. The in- 526

stances with multiple positive labels are considered 527

to have multiple items. We classify the items based 528

on the predictions of the teacher and student, then 529

count the number and percentage of each class as 530

in Table 5. The goal is to explore where the errors 531

of the student come from: a) from the teacher, 532

meaning that the knowledge from the teacher is 533

noisy and leads to the student’s errors, or b) from 534

the student itself, meaning that the teacher gives 535

correct knowledge but the student fails to follow. 536
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Sentence Teacher Student

Carl Friedrich von Weizsäcker was born in Kiel, Germany, on June 28, 1912. /people/person/place_of_birth /people/person/place_lived

Presented by Brooklyn College and the office of Borough President Marty Markowitz. /business/person/company /people/person/place_lived

Furthermore, the relationship between the central government, dominated by three small A

rab tribes living along the Nile, and Darfur’s Arabs, who claim a heritage going back to th

e Prophet Muhammad, is often antagonistic.

/people/person/ethnicity /people/person/place_of_birth

Figure 5: TCSI examples. The entities are underlined.

Class Num. of items Percentage (%)

BC 3,044 78.07
BI 742 19.03
TISC 94 2.41
TCSI 19 0.49

Table 5: Numbers and percentages of different classes
of items. BC stands for both correct, BI stands for both
incorrect, TISC stands for teacher incorrect, student
correct and TCSI stands for teacher correct, student
incorrect.

In the results, the student achieves slightly higher537

(about 2%) accuracy than the teacher and shows538

high fidelity with 97.1% of all predictions being539

the same as the teacher. BI represents the student’s540

errors caused by the errors from the teacher. TISC541

indicates the student’s corrections on the errors542

from the teacher and TCSI represents the errors543

from the student itself. From the results, we can544

conclude that almost all (about 97.5%) of the errors545

come from the teacher, and the corrections made546

by the student are much more than the errors made547

by the student itself. This demonstrates the effec-548

tiveness of our method in reducing the occurrence549

of errors and the limitation that it requires a good550

teacher for good performance.551

For further analysis of the student’s errors, we552

inspect the TCSI items and select some represen-553

tative ones for discussions as in Figure 5. Most554

of the instances with place_of_birth relation are555

correctly classified and the first example should556

be an easy instance in the form, yet misclassified557

by the student as place_lived. We observe several558

similar items and suspect that long and uncommon559

names like Carl Friedrich von Weizsäcker some-560

times confuse the student to make conservative561

predictions, which is the more common relation562

place_lived. The second example, however, con-563

fuses the student with a compound noun Brooklyn564

College. Brooklyn appears very often in the dataset565

in the form of location, making the student believe566

that Brooklyn College is a location rather than an 567

organization. The third example is mostly related 568

to ambiguity, where the word Arab may refer to 569

the Arab people (ethnic group) or the Arab world 570

(location). The latter two examples indicate that 571

the lack of entity-related information may lead to 572

inconsistency between the student and the teacher. 573

The first example shows that the student may be 574

confused to lose focus on key phrases like was 575

born in, which may be solved by combining with 576

word-level attention in the future. 577

5 Conclusions and Limitations 578

In this paper, we propose a novel Transitive In- 579

stance Weighting mechanism integrated with self- 580

distillation to denoise from sentence-level training 581

of DSRE. We employ the self-distilled BERT back- 582

bone to extract intermediate information for gener- 583

ating reliable instance weights. TIW combines the 584

soft confidence score with uncertainty to tackle 585

noisy instances and alleviate overfitting, it also 586

enables soft target selection and transitive knowl- 587

edge passing among the students to tackle the noise 588

from the teacher. The experiment results show 589

that our method improves the general resistance 590

to DS noise and prevents overfitting from harming 591

its generalization, thus can achieve state-of-the-art 592

performance and consistent improvements over the 593

baselines on both the held-out and manual datasets. 594

However, our work still has some limitations. 595

Firstly, since our model is built on the basis of 596

the teacher-student network, the performance of 597

the student is highly affected by the teacher. If 598

the teacher provides too much noisy information, 599

our instance weighting mechanism might not work. 600

Secondly, in some cases, the student fails to fol- 601

low the correct predictions from the teacher due 602

to ambiguity, lack of information or word-level 603

noise, which indicates that further extension of 604

our method is plausible. Finally, we haven’t ex- 605

plored other instance weighting methods in this 606

paper. There might be better solutions yet to be 607

discovered. 608
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A Hyperparameter Analysis839

There are two key hyperparameters in our experi-840

ments, the student selected and the head layer L.841

In our best model, we select the last student (12th)842

for evaluation and set layer 7 as the head layer.843
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Figure 6: PR curves of the students and auxiliary classi-
fiers of the teacher on the held-out dataset.

As shown in Figure 6, the higher students(≥ 9)844

improve significantly over the teacher. The last stu-845

dent performs the best and the students from 9th to846

11th also achieve comparable performances. Lower847

layers of BERT encode shallower features and the848

instance weighting in lower students is more af-849

fected by noise, so the performances of 7th and850

8th students show little advantage over the teacher.851

With knowledge passed and noise alleviated student852

by student, the performance gradually improves.853

Setting AUC F1 P@M

L = 11 53.4 55.1 82.8
L = 10 53.5 54.9 83.6
L = 9 53.6 55.0 84.0
L = 8 53.7 55.1 84.7
L = 7 53.9 55.3 84.9
L = 6 53.8 55.3 84.8
L = 5 53.7 55.1 84.6
L = 3 53.5 55.0 84.7
L = 2 53.5 54.9 84.6
L = 1 53.4 54.9 84.5

Table 6: Results of using different head layer L settings.
The best results are marked as bold.

To study the effect of head layer L, we run exper-854

iments with L from 1 to n. In Table 6, we present855

the results where L = 7 achieves the best perfor-856

mance. For L > 7, the head layer is too close to857

the top, and TIW filters fewer false negatives. So 858

the P@M declines quickly, which is similar to the 859

effect of removing FNF as in Table 4. For L < 7, 860

the lower layers of BERT are not able to encode 861

sufficient information for accurate relation extrac- 862

tion, so the lower students are not able to provide 863

reliable instance weights, leading to the transfer 864

of some noise among students. Though other set- 865

tings are less effective than the best, their perfor- 866

mances still dominate the baselines. The above 867

results show that our method is not dependent on 868

the empirical settings of hyperparameters and fur- 869

ther demonstrate the effectiveness and robustness 870

of our method. 871
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