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ABSTRACT

To use generative question-and-answering (QA) systems for decision-making and
in any critical application, these systems need to provide well-calibrated confidence
scores that reflect the correctness of their answers. Existing calibration methods aim
to ensure that the confidence score is on average indicative of the likelihood that
the answer is correct. We argue, however, that this standard (average-case) notion
of calibration is difficult to interpret for decision-making in generative QA. To
address this, we generalize the standard notion of average calibration and introduce
β-calibration, which ensures calibration holds across different question-and-answer
groups. We then propose discretized posthoc calibration schemes for achieving
β-calibration. We establish distribution-free guarantees on the performance of
this method and validate our method on confidence scores returned by elicitation
prompts across multiple QA benchmarks and large language models (LLMs).

1 INTRODUCTION

Language models (LMs) built on transformer-based architectures are capable of producing texts that
are both coherent and contextually relevant for a large range of applications (Brown et al., 2020;
Chowdhery et al., 2023; Achiam et al., 2023). In question-and-answering (QA) systems, these models
generally perform well, but occasionally produce inaccurate answers – a phenomenon generally
referred to as hallucination (Huang et al., 2023). Confidence estimates that are paired with the
answers can be used as an interpretable indicator of the LM’s accuracy (Steyvers et al., 2024). But for
this, these confidence scores have to be well-calibrated, i.e., match the actual accuracy of the model.

To evaluate whether the obtained confidence scores are actually well-calibrated, a common criterion is
the expected (average-case) calibration error (Tian et al., 2023; Xiong et al., 2024). Suppose a model
claims that its answer has a confidence of p. Based on only this one answer it is not possible to know
whether this confidence was well-calibrated or not. But when considering multiple question-answer
pairs, let’s say Np with claimed confidence p, we can verify how many answers were actually correct
and measure the error between the claimed confidence and the model’s accuracy. By averaging over
all these errors, we can measure the calibration of the model’s confidence scores.1

While this average-case calibration measure makes sense for models trained and evaluated on specific
tasks, its applicability for generative QA is highly questionable due to the averaging is now over
all QA pairs. The reason being that generative QA systems can be applied in various domains and
topics, e.g., to answer questions about geography as well as about politics or medicine. Consider,
for instance, the QA pairs shown in Figure 1. On average this model has a calibration error of 0.5.
But as far as User 1 is concerned, the calibration is much worse with an error of 0.8. User 2, on the
other hand, makes a completely different experience, as for them the model seems to be much better
calibrated than indicated by the average calibration error. This motivates our notion of β-calibration,
where the calibration target is conditional on the group of the question-and-answer pair.

Previous works have explored group-wise calibration for classifiers, using pre-specified groupings of
their covariates (e.g., race or gender) (Kleinberg et al., 2017; Pleiss et al., 2017). However, it is not
clear how this idea can be transplanted to the generative QA setting.

A common approach to obtain calibrated confidence scores in LMs is to use confidence elicitation
via prompting (Tian et al., 2023; Xiong et al., 2024). The advantage of this approach is that it can

1Note that the accuracy of the LM is itself unaffected by calibration, as the latter does not change the weights
of the LM model.
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Figure 1: Two users interact separately with an LM by inputting questions and obtaining answers
and confidence scores from the LM. The LM could be calibrated on average across user types, but
each individual user may not have calibrated confidence scores. See Example 2.1 for more details.

be executed with only black-box access to LMs.2 However, the issue with a pure elicitation via
prompting approach is that the performance is sensitive to choice of prompts and model (Sclar et al.,
2024), and it does not have any rigorous calibration guarantees. These issues can be mitigated by
performing a posthoc calibration of the elicited confidence scores. Our proposed approach is such a
posthoc calibration method.

A limitation of relying on LM-elicited confidence directly, or post-hoc calibrated using temperature
scaling (Tian et al., 2023), is that the output probability is not discretized, making performance
difficult to assess (Kumar et al., 2019). We overcome this problem by developing posthoc β-
calibration schemes on elicited confidence scores that use ideas of (histogram) binning (Zadrozny &
Elkan, 2001) and scaling-binning (Kumar et al., 2019) that are by construction discretized.

Our Contributions: We make the following contributions in this paper:

1. We define β-calibration, a principled and interpretable notion of calibration in the generative
QA setting. The β here refers to any fixed mapping of all possible question-and-answer pairs
to a finite set. Our β-calibration notion generalizes the standard average-case calibration
notion by requiring calibration conditional on β. Due to this conditioning on β, the guarantee
of β-calibration is stronger than the standard calibration guarantee. By instantiating this
framework with different β’s, we have the flexibility of defining question-and-answer groups
across which we would like calibration guarantees to hold. In this paper, we present an
instantiation of β as a kd-tree, an adaptive multivariate histogram method that provides
cohesive groupings of QA pairs.

2. We propose two posthoc calibration techniques for β-calibration: (a) β-binning and (b)
scaling-β-binning. The latter uses the former as a subroutine. This is particularly useful
in the practical setting where some β-induced groups may lack data. We show that both
methods satisfy a distribution-free approximate β-calibration guarantee. In both cases, the
approximation level is used to decide on the number of points per bin, a key hyperparameter.

3. Finally, we experiment on newly developed elicitation prompts across 5 commonly used QA
benchmark datasets of various sizes. We find that β-binning and scaling-β-binning achieve
lower β-calibration error than elicited confidence scores and other baselines. We further
justify our framework by demonstrating its performance in a downstream selective QA
task. Our posthoc calibration algorithms achieve around 10-40% increase in β-calibration
performance and up to 30% increase in selective answering performance.

2 DEFINING β-CALIBRATION

2.1 NOTATION

We first define the question-and-answering process with verbalized confidence elicitation. In the
most minimal form of interaction, a question q, is embedded into a prompt using a prompt function
m(q). The user obtains an answer a = c(m(q)) from an answering function c : Q → A. Note that c
could be a randomized function, as typical LMs are. Confidence elicitation (Xiong et al., 2024; Tian

2Recent research indicates that, even in a setting where one has access to token-based likelihood, it does not
necessarily capture the overall semantic uncertainty (Kuhn et al., 2023).
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Question q Answer a Confidence h(q, a) P(Y = 1|q, a)

q11 a11 0.8 0.6
q12 a12 0.8 0.7

q21 a21 0.8 0.9
q22 a22 0.8 1.0

Table 1: QA pairs with confidence and correctness for Example 2.1.

et al., 2023) enhances the prompt to let the user obtain confidence h(m(q), a) from the confidence
function h : Q×A → [0, 1]. Note that both answering and confidence functions are implicit in the
LM interaction. In the following, for simplicity, we omit the dependence on prompt function m,
and use c(q) for c(m(q)) and h(q, a) for h(m(q), a). We assume that we have access to the binary
ground truth y for each pair (q, a), which indicates whether the answer a is correct (y = 1) for the
question q. Our N -element dataset is then D = {(qi, ai, hi, yi)}i∈[N ] where qi is the ith question,
ai = c(qi), hi = h(qi, ai) and yi is the label which indicates whether the answer ai is correct for the
question qi. For more details, refer to Table 3. We assume that each instance (q, a, h, y) of D is an
i.i.d. realization of r.v. (Q,A = c(Q), H = h(Q,A), Y ) drawn from a fixed distribution P over the
Q×A× [0, 1]× [0, 1] where

P := PQ × PA|q × PH|q,a × PY |q,a . (1)

Definition 2.1 (Calibration). We say that h is calibrated for distribution P if:

E [Y | h(Q,A) = p] = p, a.s. for all p ∈ [0, 1]3 (2)

In words, that the conditional distribution on Y conditional on the prediction that h(Q,A) = p is a
Bernoulli distribution with bias p. In the following, we refer to Eq. ( 2) as average-case calibration to
distinguish it from β-calibration.

While perfect calibration is impossible in finite samples, a standard measure for calibration error of h
is defined as follows.

Definition 2.2 (Expected (Average-case) Calibration Error). The expected (average-case) calibration
error of h is defined as:

CE(h) = EQ,A [|E[Y | h(Q,A)]− h(Q,A)|] (3)

2.2 β-CALIBRATION INSTEAD OF STANDARD CALIBRATION

In practice, a user who obtains an answer a to their question q with confidence p wants to know the
probability that y = 1 among “similar” (q, a) pairs with confidence p (e.g., within the same topic of
interest). A perfectly calibrated h however, may not satisfy this requirement, as we illustrate in the
following example4:

Example 2.1. Suppose the dataset consists of two sets of QA pairs, β1 = {(q11, a11), (q12, a12)},
and β2 = {(q21, a21), (q22, a22)} with confidence function h and P(Y = 1|q, a) as shown in Table 1.

It can easily be seen that h is perfectly calibrated according to Eq. ( 2) when we assume that each QA
pair have the same sampling probability. However, when we consider the sets β1 and β2 separately,
each set is not well-calibrated.

E[Y |h(q, a) = 0.8, β1] =
1

2
(P[Y = 1 | q11, a11] + P[Y = 1 | q12, a12]) =

1

2
(0.6 + 0.7) = 0.65,

E[Y |h(q, a) = 0.8, β2] =
1

2
(P[Y = 1 | q21, a21] + P[Y = 1 | q22, a22]) =

1

2
(0.9 + 1.0) = 0.95.

Practically, when a user is only concerned with a particular set β1 or β2, the calibration claim does
not align with reality. For β1, h is overconfident, and underconfident for β2.

3As Y is a Bernoulli r.v., the LHS can also be written as Pr[Y = 1 | h(Q,A) = p].
4We give the smallest example where each group has more than one pair, since we are illustrating group

calibration, but the argument holds when there is only one element per group.
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In the above, the expectation E[Y | h(q, a)] is not interpretable from a decision-making perspective.
The space of generative QA pairs Q×A is intuitively too large for a user, particularly since they are
typically only interested in a smaller subset of (q, a) pairs. We hence consider a generalization of Eq.
( 2) necessary to perform adequate calibration for generative QA.
Definition 2.3. (β-calibration) h is β-calibrated for the distribution P in Eq. ( 1) if:

E [Y | h(Q,A) = p, β(Q,A)] = p, (4)

a.s. for all p ∈ [0, 1], where β : Q×A → S for some embedding space S.

In this work, we focus on a finite set S and β is a (deterministic) discretization scheme that maps (q, a)
to a finite set S, i.e., β induces a partitioning of the QA space according to the output of β. Note that
this β-calibration reduces to calibration in Eq. ( 2) if β(q, a) is the same for all question-and-answers
(q, a). Intuitively, β is chosen such that the pre-image of a specific value of β represents a grouping
that an end-user might be interested in.

Going back to Example 2.1, β-calibration would tell us the following: “among question and answer
pairs with confidence p that are mapped to the same β value (as the user’s (q, a) pair), the fraction
who are correct (y = 1) is also p”. Further, we also extend Eq. ( 3) to propose an error metric for
β-calibration:
Definition 2.4 (β-calibration error). The β-calibration error of h is defined as:

CE(h;β) = EQ,A [|E[Y | h(Q,A), β(Q,A)]− h(Q,A)|] .

2.3 GENERALIZING (AVERAGE-CASE) CALIBRATION VIA KD-TREE INSTANTIATION OF β

The definition of β-calibration (Definition 2.3), requires a predefined β mapping. While our schemes
developed in Section 3 can work with any arbitrary β mapping, we propose a general approach for
β in the language model QA setting: the embed-then-bin method. This involves computing vector
embeddings from question-and-answer pairs and then creating a multidimensional histogram over
these embeddings. The range of β is then set to index over the histogram bins of the embeddings.
We write β = βbin ◦ βemb, where βemb : Q×A → RM computes an M -dimensional embedding and
βbin : RM → S computes the index of the embedding histogram bin containing the embedding.5

Specifically, we use the [CLS] token embedding from the pre-trained DistilBERT model (Sanh
et al., 2019): βemb : Q×A → R768 (M = 768). As for the histogram, we adapt a kd-tree (Bentley,
1975) to bin each vector to an integer representing the index of the partition containing the vector:
βbin : R768 → S, where S is the set of partition indices. See Appendix C for details on our kd-tree
construction. An important hyperparameter is the maximum depth of the tree d, which determines
the number of partitions.

While DistilBERT is designed to be smaller and faster than its alternatives, it is still able to generate
high-quality contextual embeddings that are rich in semantic information. Next, a kd-tree performs
efficient and adaptive binning for the high-dimensional embedding space by successively splitting
along different dimensions. Each partition of the tree contains semantically-similar (q, a) pairs that
are “near” each other in the embedding space.

The choice of kd-tree generalizes the standard calibration as when d = 0, CE(h;β) reduces to CE(h).
The hyperparameter d should be chosen based on the downstream metric that needs to be optimized.
In the experiments section, we further describe how βbin are constructed.

3 ACHIEVING POSTHOC β-CALIBRATION

As discussed earlier, an elicited confidence score function (h) of LM-model is not guaranteed to be
β-calibrated (or even calibrated under average-case). For any β : Q×A → S , the goal of posthoc β-
calibration is to design a scheme that that can take any h and transform it to a β-calibrated confidence
score. We wish to learn a posthoc calibrator g : [0, 1] → [0, 1] such that g ◦ h is (approximately)
β-calibrated using a calibration dataset D = {(qi, ai, hi, yi)}i∈[N ]. Additional missing details from
this section are collected in Appendix A.

Our recalibration schemes utilize the existing building blocks in posthoc calibration literature,
like histogram binning (Zadrozny & Elkan, 2001) and scaling (Platt, 1999). The novelty of our
recalibration methods lies how we generalize and combine these building blocks achieving the best

5For better notational accuracy, we have changed the notation from βhist to βbin.
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Algorithm 1: β-binning: Train-time Subroutine

Input: Calibration data: D = {(qi, ai, hi, ti)}i∈[n]. Hyperparameters: Minimum number of points
per bin b ∈ N (say 50), tie-breaking parameter δ > 0 (default: 10−10)

Output: Hash table G of fitted UMD calibrators gUMD’s, keyed by partition index s ∈ S
/* First construct UMD calibrator for points outside of bounded kd-tree spaces and store in G
with a default key, say root*/

1: gD ← UMD(D, B = ⌊|D|/b⌋, δ = δ).
2: G[root]← gD
3: for s ∈ S do
4: Ds ← {(hi, ti) : β(qi, ai) = s}i∈[n]

5: /* If Ds is empty then continue to the next s */
6: ns ← |Ds|
7: G[s]← UMD(D = Ds, B = ⌊ns/b⌋, δ = δ)
8: end for
9: return G

Algorithm 2: β-binning: Test-time Subroutine

Input: Test question, answer and confidence score: (qtest, atest, htest), Hash table G
Output: (Approximately) β-calibrated confidence score

1: if β(qtest, atest) ∈ G then
2: gUMD ← G[β(qtest, atest)]
3: return gUMD(htest)
4: else
5: /* In this case, the test input (qtest, atest) does not lie in any of the bounded kd-tree spaces*/
6: gD ← G[root]
7: return gD(htest)
8: end if

of both worlds: our binning component generalizes histogram binning to any partitioning and enables
distribution-free guarantees, and our hierarchical scaling component reduces overfitting, enabling
learning to be performed across partitions which may have varied number of data points.

Our schemes take the β function as input, and all our schemes and theoretical results hold for
any β. In our experiments, we will use the kd-trees based β instantiation from Section 2.3. We
focus on methods that output discretized scores, since this has been shown to be easier to assess
(Appendix A.1). We achieve this by first discretizing the QA space using β and then ensuring that for
each QA partition s ∈ S we output a calibrated confidence score. We start by describing an adaptation
of the classical histogram binning (Zadrozny & Elkan, 2001) idea for achieving β-calibration. In
Section 3.2, we build upon this to provide a more robust algorithm that also uses S before binning.

3.1 APPROACH 1: β-BINNING

β-binning is a standalone posthoc β-calibration algorithm. It uses as a subroutine, uniform-mass-
double-dipping histogram binning(UMD) (Gupta & Ramdas, 2021), which we describe in Algo-
rithm 4. Informally, the UMD procedure partitions the interval [0, 1] into B bins using the histogram
of h values from the calibration dataset D, ensuring that each bin has approximately the same
number of calibration points. It returns a calibrator function gUMD that takes as input an uncalibrated
confidence score, then allocates it to one of the B bins, and returns the probability of label being 1
(estimated as the average of the y values from the calibration dataset D that are mapped into that bin).

In Algorithm 1, we present a subroutine that uses the UMD procedure to construct a different
calibrator for each QA-partition, which we will invoke with different inputs. Algorithm 1 takes as
input a dataset D = {(qi, ai, hi, ti)}i∈[n] where hi is the (elicited) confidence score for the answer ai
and ti is the (potentially noisy) label of the correctness of answer ai for the question qi. Algorithm 1
partitions the input dataset D to {Ds}s∈S , where Ds = {(qi, ai, hi, ti) : β(qi, ai) = s}. For each
s ∈ S , UMD is fit using Ds to construct a gUMD calibrator that is stored in a hash table G, keyed by s.
We next describe the training and test processes of β-binning.

Training Process. We invoke Algorithm 1 on our calibration dataset D, i.e., D = D. Hence, ti in
Algorithm 1 is set to the ground truth yi. The output is a hash table of UMD calibrator functions
indexed by the entries in the range S of β.

5
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Algorithm 3: Scaling-β-binning: Train-time Subroutine

Input: Calibration data for scaling: D1 = {
(
q1i , a

1
i , h

1
i , t

1
i

)
}i∈[n1]. Calibration data for binning:

D2 = {
(
q2i , a

2
i , h

2
i , t

2
i

)
}i∈[n2]. Hyperparameters: Minimum number of points per bin b ∈ N (say

50), tie-breaking parameter δ > 0 (default: 10−10)
Output: Hash table G of fitted UMD calibrators gUMD’s, keyed by partition index s ∈ S

1: gscaler ← Fit Eq. ( 5) on {
(
h1
i , t

1
i

)
}i∈[n1]

2: /* Construct proxy ground truth ỹ. See Definition 3.2./
3: {ỹ2i }i∈[n2] ← {gscaler(h

2
i )}i∈[n2]

4: G ← Execute Algorithm 1 with parameters D = {
(
q2i , a

2
i , h

2
i , ỹ

2
i

)
}i∈[n2], b = b, δ = δ

5: return G

Test Process. For a test input (qtest, atest, htest), we invoke Algorithm 2. A fitted UMD (gUMD) for
this (qtest, atest) pair is retrieved from the hash table G using β(q, a) as key, which is then invoked to
obtain a β-calibrated confidence score gUMD(htest). In our kd-tree instantation, if G does not have
a calibrator for a β(qtest, atest), we use UMD to calibrate that pair. This corresponds to points that
lie outside of the bounded kd-tree spaces (refer to Appendix C). Since we can generate a large
amount of question-and-answer pairs without requiring ground truth, the number of test points in our
experiments that fall outside the bounded spaces is negligible.

Note that while we assumed here access to the true labels yi’s, we can also operate β-binning with
proxy labels generated by say another LM on QA pairs, as discussed more in following subsections.
In practice, users are likely to define large S (for example, large maximum depth of tree d) in order to
obtain more cohesive groups of QA pairs. UMD, and therefore β-binning, may overfit if the number
of data points within Ds is small — a highly likely scenario if β induces very fine partitions. We
overcome these issues with our next approach that combines scaling with binning.
3.2 APPROACH 2: SCALING-β-BINNING

Scaling-β-binning is a standalone posthoc β-calibration algorithm, that is based on performing
a scaling step prior to β-binning. In the original scaling-binning approach (Kumar et al., 2019),
confidence scores are first scaled to their (maximum likelihood) fitted values using logistic regression,
and the fitted values are then used as proxy ground truth for histogram binning. Adapting this
paradigm, in our scaling-β-binning, we use a scaling subroutine (defined below) to produce fitted
values, which are then used as proxy ground truth for β-binning (e.g., t in Algorithm 1is set to these
fitted values).

We adapt the scaling procedure from Kumar et al. (2019) with a crucial change. The confidence
score distributions in different partitions s ∈ S may have different miscalibration profiles, since an
LM may be underconfident for a partition but overconfident for another. While scaling is useful for
average-case recalibration (Platt, 1999), for β-calibration, we propose to use a hierarchical logistic
regression model with partial pooling (Goldstein, 2011). Hierarchical model distinguishes between
fixed effects (consistent across different partitions) and random effects (allowing for variations at
different partitions). The latter explains the variability between partitions that may not be captured by
fixed effects alone. Partial pooling allows for information sharing across partitions, which improves
estimates for partitions with few data points. In our kd-tree instantiation, as the maximum depth
parameter d increases, some partitions may have only a few data points.

We next describe the training and test processes of scaling-β-binning.

Training Process. With an abuse of notation, let s[i] denote the partition index containing (qi, ai).
We define the scaler gscaler : [0, 1]→ [0, 1] via the following likelihood of yi:

Yi ∼ Bernoulli
(
logit−1

(
B0 + Us[i] + (B1 + Vs[i])hi

))
, (5)

where B0 is a fixed intercept, Us[i] is the random intercept for partition s[i], B1 is the fixed slope for
confidence score hi, and Vs[i] is the random slope for partition s[i]. On top of random intercepts,
which assumes a different additive baseline per partition, we use random slopes which allow the
relationship between the accuracy and confidence score to differ for each partition.

We first split the calibration dataset D (by default equally) into 2 sets, D1 and D2, and invoke
Algorithm 3 on D1 and D2. Similar to the β-binning approach (Algorithm 1), this produces a hash
table G of gUMD’s. The partition of each instance s determines which random intercept Us and slope
Vs to use. In our kd-tree instantiation, if a point lies outside of bounded kd-tree spaces, we set the
random effects to zero, thus assuming that this point behaves similarly to the overall population
average.

6
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Test Process. Similar to β-binning, for a test input (qtest, atest, htest), we invoke Algorithm 2.

Due to the scaling step, the computational cost of scaling-β-binning training process is more expensive
than that of β-binning. Both schemes have the same test process.

3.3 DISTRIBUTION FREE ANALYSIS OF β-BINNING AND SCALING-β-BINNING

In the next result, we prove a high probability bound on the β-calibration error (Definition 2.4) of the
above schemes. To formalize the guarantee, we adapt the conditional calibration notion from Gupta
et al. (2020); Gupta & Ramdas (2021) to the β-calibration setting, defined below:6

Definition 3.1 (Conditional β-calibration). Let ϵ, α ∈ (0, 1) be some given levels of approximation
and failure respectively. Confidence function h : Q×A → [0, 1] is (ϵ, α)-conditionally β-calibrated
for discretization scheme β : Q×A → S if for every distribution P defined in Eq. ( 1),

P (∀s ∈ S, p ∈ range(h), |E[Y | h(Q,A) = p, β(Q,A) = s]− p| ≤ ϵ) ≥ 1− α.

This is a distribution-free (DF) guarantee since they are required to hold for all distributions P over
Q×A× [0, 1]× {0, 1} without restriction. In order to estimate ϵ for both our posthoc algorithms,
we permit label misspecification defined as follows:

Definition 3.2. (Misspecified proxy ground truth) Let the random variable Ỹ ∈ [0, 1] with distribution
PỸ |(q,a) be a proxy for ground truth Y . We constrain the misspecification in the following way:
assume that there is some (minimal) ν ∈ [0, 1] such that for all p ∈ [0, 1],

max(E[Y | h(Q,A) = p]− ν, 0) ≤ E[Ỹ | h(Q,A) = p] ≤ min(E[Y | h(Q,A) = p] + ν, 1),

In practice, ỹ can come from two sources: 1) an LM-constructed ground truth (see ground truth
proxy in Table 3), and 2) the fitted values from our S step in scaling-β-binning. Let D̃ =
{(qi, ai, hi, ỹi)}i∈[N ], denote a (proxy) dataset with samples from P = PQ×PA|q×PH|q,a×PỸ |q,a.
To prove calibration guarantees for our schemes, we rely on the following result.

Theorem 3.1 (Distribution-free β-calibration guarantee). Consider an input calibration dataset D̃
defined above with misspecification factor ν from Definition 3.2. Assume that the hi’s are distinct,
number of points per bin b ≥ 2, and number of instances within each partition ns ≥ b for every
s ∈ S . The calibrator gUMD retrieved in Line 2 of Algorithm 2, trained using Algorithm 1 with input

D = D̃, is (ϵ, α)-conditionally β-calibrated for any α ∈ (0, 1), with ϵ =
√

log(2N/bα)
2(b−1) + ν.

The proof is in Appendix A.3. The dependence on ≈ 1/
√
b factor comes because the Algorithm 1

delegates at least b points to every bin. We now discuss how Theorem 3.1 is applicable for both
β-binning and scaling-β-binning with different ν’s.

Applying Theorem 3.1 to β-binning & Scaling-β-binning. In our description of β-binning (Sec-
tion 3.1), we assumed t is set to the ground truth y (in Algorithm 1), hence, by definition ν = 0.
Theorem 3.1 can also be used to choose b, see the plots for ν = 0 in Figure 2.

If the true labels are not available, then we can still use β-binning say by using an LM to produce
proxy ground truth. In this case, the misspecification constant ν depends on the data generating
process of misspecified labels. When an LM is used to produce proxy ground truth, if there is a
hold-out set containing the ground truth, then a bound on ν can be estimated empirically.

In scaling-β-binning, where ỹ is set to be the fitted values of a hierarchical logistic regression model,
the magnitude of misspecification factor ν depends on the goodness-of-fit of the fitted values. In
practice, we can estimate ν empirically using a hold-out dataset. This estimate can be used to choose
b. For some levels of ϵ, the same ϵ as in the case of ν = 0 can be attained by setting b to be a higher
number. In our kd-tree instantiation, this amounts to using a smaller maximum depth hyperparameter.

4 RELATED WORK

Calibration for Language Models. Reinforcement learning from human feedback objective may
prioritize adherence to user instructions in dialogue over producing well-calibrated predictions. (Ka-
davath et al., 2022). Lin et al. (2022) introduced the concept of verbalized confidence that prompts

6One could define (ϵ, α)-marginal β-calibration: P (|E[Y | h(Q,A), β(Q,A)]− h(Q,A)| ≤ ϵ) ≥ 1− α.
Conditional calibration is a stronger definition than marginal, as it requires the deviation between E[Y |
h(Q,A), β(Q,A)] and h(Q,A) to be at most ϵ for every (s, r), including rare ones, not just on average.
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Figure 2: The relationship between ϵ, number of
points per bin b and misspecification constant ν
in Theorem 3.1. Based on the plot, when ν = 0,
practitioners should set b ≃ 300 when N = 1000,
b ≃ 400 when N = 5000, b ≃ 500 when N =
20000 (attaining ϵ = 0.1). When a ground truth
proxy is misspecified (Definition 3.2), e.g., ν =
0.1, for certain levels of ϵ, the same bound can be
attained with a larger b. For example, for achieving
the same ϵ = 0.15, if ν = 0 then b needs to be only
approximately 250, whereas if ν = 0.1 then b has
to be > 1000.

LMs to express confidence directly, focusing on fine-tuning, instead of zero-shot verbalized confi-
dence. Mielke et al. (2022) uses an external calibrator for a white-box large language model. Other
methods use consistency measures to improve LM calibration (Lyu et al., 2024). Our experimental
setup closely relates to recent works in LM confidence elicitation (Tian et al., 2023; Xiong et al.,
2024). These methods lack novel post-hoc calibrators and do not offer the rigorous calibration guar-
antees that ours provide. Calibration has been shown to impact selective QA performance Kamath
et al. (2020), but they focus on uncertainty quantification and assumes that the LM allows access to
the model likelihood.

Group Notions of Calibration. Previous works highlight the limitations of average-case calibration.
Group-wise calibration, which uses predefined groupings (Kleinberg et al., 2017; Pleiss et al., 2017),
has been adapted for language models (LMs). Li et al. (2024) train a model that approximates the
precision-threshold curve for a given group by using few-shot samples to predict the LM’s empirical
precision at various confidence thresholds. Ulmer et al. (2024) train an auxiliary model using accuracy
per group as target to predict an LM’s confidence based on textual input and output. Detommaso et al.
(2024) achieves multicalibration — simultaneous calibration across various intersecting groupings of
the data. Our work complements multicalibration, and our methods could extend to this by adapting
Algorithm 3 in Detommaso et al. (2024). Luo et al. (2022) measure calibration over a set of similar
predictions, quantified by a kernel function on feature space. Again, the notions of calibrations and
their guarantees are incomparable.

Other Metrics for Measuring Calibration Error. Brier score (Brier, 1950) measures the accuracy of
probabilistic predictions but while it can be decomposed into calibration and refinement (Blattenberger
& Lad, 1985), it doesn’t directly assess calibration. As a result, a model with lower squared error may
still be less well-calibrated. Maximum Calibration Error examines the maximum miscalibration across
confidence bins (Guo et al., 2017), but in a QA setting, it faces the same issues as calibration error
(CE(h)), as shown in Example 2.1. Through β-calibration, we present a principled and interpretable
calibration target for QA settings.

5 EXPERIMENTS

Datasets, Models, and Prompts. We use 5 QA datasets: TriviaQA (Joshi et al., 2017), SciQ (Welbl
et al., 2017), BigBench (Srivastava et al., 2022), OpenBookQA (Mihaylov et al., 2018), and
MMLU (Hendrycks et al., 2021) (see Table 4 for more details). We use two performant mod-
els: Mistral (Jiang et al., 2023) and Gemma (Team et al., 2024). To elicit confidence scores, we use
two prompt techniques recently suggested in literature: Verb1S-Top1 & Ling1S-Top1 from Tian et al.
(2023). See Table 5, (Appendix B.1) for details about the prompts.

Central to the implementation of posthoc calibration and evaluation of calibration is the availability
of a label for a question-and-answer pair — specifically, whether the answer provided by the LM
is accurate for the question posed by the user. In practice, a common idea to generate this label is
to take an LM provided answer, and then use another LM to assess whether the proposed answer is
semantically equivalent to the true (ground truth) answer (Tian et al., 2023). To construct the ground
truth proxy for y, we use Llama 3.1 (Dubey et al., 2024).

Our Methods. We compare the performance of our calibrators: β-binning (BB) from Subsection 3.1
and hierarchical scaling-β-binning (HS-BB) from Subsection 3.2. We also include a fully pooled
version of scaling-β-binning (S-BB), by setting s[i] to a constant (thus, one partition) in Eq. ( 5). To
set the hyperparameter minimum number of points per bin b (Algorithm 1), we set an ϵ that is not too
large as per Figure 2 and use root finding with the ϵ expression in Theorem 3.1 to choose b. We then
search over a range of b’s by allowing for a misspecification range between 0 and 0.05 and a range of
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maximum kd-tree depths depending on the size of the dataset such that each partition admits a 3–10
bins. To set B in UMD, we follow the guidelines in Gupta & Ramdas (2021). Note that their bound
does not involve misspecification factor.

Baselines. We consider the following baselines: no recalibration (None) which returns state-of-the-art
elicited confidence scores (Tian et al., 2023), histogram binning (UMD) (Gupta & Ramdas, 2021),
Platt scaling (S) (Platt, 1999), and scaling-binning (S-B) (Kumar et al., 2019). These baselines consist
of the state-of-the-art ideas in posthoc calibration. Note that the techniques UMD, S, and S-B, aim to
minimize the expected calibration error CE (Definition 2.2) and do not take the partitions induced by
β into account.

Metrics. In this section, we primarily use two metrics for comparison. First, is the β-calibration error
CE(h;β) (Definition 2.4), which is the metric that our methods (presented in Section 3) optimize
for. A lower CE(h;β) indicates a more effective scheme for achieving β-calibration. As explained in
Section 2, β-calibration error generalizes the expected calibration error (CE(h)).

Second, to measure the downstream impact of using β-calibration as the confidence calibration notion
in a QA setting, we adapt selective question answering (Kamath et al., 2020) to our setting: given
a threshold γ ∈ [0, 1], the answer a is returned for a question q to the end user if h(q, a) ≥ τ , and
abstains (no answer is returned) otherwise.7 We adapt the area under risk-coverage curve, which is a
standard way to evaluate selective prediction methods (El-Yaniv & Wiener, 2010) to our setting. Our
post-hoc schemes produce discretized confidence scores h, often with large number of ties, which lead
to unreliable risk-coverage calculations. Therefore, we consider the area under accuracy-confidence
curve (AUAC): set grid points between 0 and 1, and for each grid point, record the accuracy (again,
based on a ground truth proxy of y) of all points with a confidence score greater than or equal to that
grid point. This accuracy is then used as the height of the curve. A higher AUAC indicates a more
effective scheme for selective QA.

Training. We perform a 4-way (20:60:10:10) split of each dataset: the first is used to construct the
kd-tree, second is used for posthoc calibration training, third is used for hyperparameter tuning and
fourth is for testing. We find it crucial to optimize for AUAC during hyperparameter tuning as our
schemes already aim to minimize CE(h;β), obtaining the appropriate maximum kd-tree depth d and
binning parameters b and B. Missing experimental details are presented in Appendix B.1.

Results. Table 2 shows the performance of the posthoc calibrators on MMLU and BigBench datasets.
More results are provided in Tables 6 and 7. Our methods (BB, HS-BB, and S-BB) generally achieve
the best β-calibration error CE(h;β) and best area under the accuracy-confidence curve (AUAC).
While the first result, in itself, may not be surprising as our proposed schemes aim to minimize
CE(h;β), the gap between our techniques and baselines is significantly huge. For example, notice the
difference in the calibration error when just using the SOTA confidence elicitation prompts (None)
from (Tian et al., 2023) vs. our schemes in Table 2. Among our schemes, HS-BB generally performs
best. This is because a parametric model (especially a partially pooled model like hierarchical scaling)
helps reduce the variance of the downstream binning averages.

For selective QA, we again notice that our proposed schemes consistently outperforms the baselines.
In some cases, the underlying LLM using confidence elicitation prompts (None) is performant
in selective answering and attains high AUAC (similar results using different LLMs were noted
by Tian et al. (2023)), but are not well-calibrated as demonstrated by their high β-calibration score.
Our schemes, S-BB and HS-BB are generally the top-two performing schemes for this task with
comparable and in many cases better AUAC scores than the None scheme. Since the accuracy-
confidence curve is generated by examining the accuracy of answers above a confidence threshold,
the results demonstrate the desirable quality that the confidence scores provided by our proposed
schemes are better at ranking accurate answers higher than inaccurate ones. Crucially, the lower
performance of other baselines (like S-B, S, and B) demonstrates that the advantage of having a better
calibration target that comes through our definition of β-calibration. In particular, our β-calibration
framework identifies the optimal kd-tree depth, which is never equal to zero (the depth corresponding
to standard average-case calibration) in our experiments.

6 CONCLUSIONS

We proposed β-calibration, a new notion of calibration which conditions on groups of QA pairs. We
propose two new posthoc calibration schemes for LM-elicited confidence scores. Our algorithms
are effective on various QA datasets. For future work, we plan to investigate alternative notions

7For example, when τ = 0, all answers are returned irrespective of the confidence score.
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Dataset Prompt LLM Calibrator CE(h;β) AUAC

MMLU Ling1s-Top1 Mistral BB (ours) 0.171± 0.005 0.20± 0.023
MMLU Ling1s-Top1 Mistral HS-BB (ours) 0.16± 0.005 0.269± 0.022
MMLU Ling1s-Top1 Mistral S-BB (ours) 0.163± 0.003 0.19± 0.045
MMLU Ling1s-Top1 Mistral S-B 0.393± 0.004 0.141± 0.003
MMLU Ling1s-Top1 Mistral S 0.249± 0.005 0.122± 0.002
MMLU Ling1s-Top1 Mistral B 0.392± 0.003 0.139± 0.007
MMLU Ling1s-Top1 Mistral None 0.532± 0.008 0.269± 0.007

MMLU Ling1s-Top1 Gemma BB (ours) 0.232± 0.005 0.211± 0.032
MMLU Ling1s-Top1 Gemma HS-BB (ours) 0.182± 0.005 0.26± 0.01
MMLU Ling1s-Top1 Gemma S-BB (ours) 0.181± 0.009 0.275± 0.029
MMLU Ling1s-Top1 Gemma S-B 0.382± 0.006 0.184± 0.002
MMLU Ling1s-Top1 Gemma S 0.201± 0.009 0.19± 0.003
MMLU Ling1s-Top1 Gemma B 0.385± 0.003 0.183± 0.008
MMLU Ling1s-Top1 Gemma None 0.603± 0.006 0.249± 0.01

MMLU Verb1s-Top1 Mistral BB (ours) 0.197± 0.004 0.198± 0.046
MMLU Verb1s-Top1 Mistral HS-BB (ours) 0.149± 0.004 0.306± 0.035
MMLU Verb1s-Top1 Mistral S-BB (ours) 0.16± 0.004 0.217± 0.057
MMLU Verb1s-Top1 Mistral S-B 0.362± 0.005 0.139± 0.004
MMLU Verb1s-Top1 Mistral S 0.258± 0.005 0.126± 0.001
MMLU Verb1s-Top1 Mistral B 0.352± 0.004 0.132± 0.011
MMLU Verb1s-Top1 Mistral None 0.639± 0.006 0.255± 0.008

MMLU Verb1s-Top1 Gemma BB (ours) 0.197± 0.006 0.345± 0.035
MMLU Verb1s-Top1 Gemma HS-BB (ours) 0.151± 0.006 0.3± 0.035
MMLU Verb1s-Top1 Gemma S-BB (ours) 0.161± 0.006 0.227± 0.074
MMLU Verb1s-Top1 Gemma S-B 0.361± 0.007 0.133± 0.005
MMLU Verb1s-Top1 Gemma S 0.228± 0.005 0.137± 0.004
MMLU Verb1s-Top1 Gemma B 0.352± 0.004 0.144± 0.011
MMLU Verb1s-Top1 Gemma None 0.636± 0.007 0.258± 0.006

BigBench Ling1S-Top1 Mistral BB (ours) 0.195± 0.002 0.622± 0.009
BigBench Ling1S-Top1 Mistral HS-BB (ours) 0.138± 0.006 0.690± 0.031
BigBench Ling1S-Top1 Mistral S-BB (ours) 0.157± 0.010 0.641± 0.02
BigBench Ling1S-Top1 Mistral S-B 0.387± 0.006 0.523± 0.006
BigBench Ling1S-Top1 Mistral S 0.224± 0.003 0.52± 0.004
BigBench Ling1S-Top1 Mistral B 0.379± 0.003 0.612± 0.017
BigBench Ling1S-Top1 Mistral None 0.245± 0.004 0.684± 0.007

BigBench Ling1S-Top1 Gemma BB (ours) 0.198± 0.006 0.41± 0.012
BigBench Ling1S-Top1 Gemma HS-BB (ours) 0.142± 0.009 0.421± 0.021
BigBench Ling1S-Top1 Gemma S-BB (ours) 0.193± 0.002 0.321± 0.052
BigBench Ling1S-Top1 Gemma S-B 0.326± 0.002 0.302± 0.005
BigBench Ling1S-Top1 Gemma S 0.180± 0.006 0.298± 0.005
BigBench Ling1S-Top1 Gemma B 0.468± 0.001 0.293± 0.014
BigBench Ling1S-Top1 Gemma None 0.427± 0.006 0.412± 0.01

Table 2: Performance of our β-calibration methods, β-binning (BB), Pooled scaling-β-binning
(S-BB) and Hierarchical scaling-β-binning (HS-BB)), compared to the baselines, UMD, (B, (Gupta
& Ramdas, 2021)), Platt Scaling (S, (Platt, 1999)), and Scaling-binning (S-B, (Kumar et al., 2019)),
and prompt-based approach None (Tian et al., 2023) . The bold entry in the columns for CE(h;β)
and AUAC represent the best performing schemes for that metric. However, note that in some case
the confidence intervals overlap, especially between our schemes.

of calibration for groups, such as multi-calibration. Other choices of β that generalize expected
calibration error can also be used, such as random projection tree (Dasgupta & Freund, 2008), which
adapts to the intrinsic low-dimensional structure in the data.

Limitations. The interpretability of the calibration guarantee for the user largely depends on the
choice of β — if users want the partitions to be very fine- or coarse-grained, then β must be built with
the appropriate depth. Furthermore, our algorithms assume that the output space of β is fixed, which
may be a limited assumption, given that the “information” space of generative QA may increase
indefinitely over time.
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Name Notation Description Example

Question q Inputted question. What happens to you if you
eat watermelon seeds?

Ground truth agt Intended output answer. Note that we omit this
in our mathematical description and work directly
with the ground truth label y. In practice we use
agt to construct the ground truth proxy.

The watermelon seeds pass
through your digestive system

Prompting
function

m() A function that converts the question into a specific
form by inserting the question q. The example
prompting function is Verb. 1S top-k in Tian et al.
(2023), with k = 3. We denote the filled (by
the question) prompt as m(q). Note that multiple
prompts may be generated (see the 2S prompts in
Tian et al. (2023))

Provide your three best
guesses and the probability
that each is correct (0.0 to 1.0)
for the following question.
Give ONLY the guesses and
probabilities, no other words
or explanation. For example:
G1: <first most likely guess,
as short as possible; not a
complete sentence, just the
guess! >P1: <the probability
between 0.0 and 1.0 that G1
is correct, without any extra
commentary whatsoever;
just the probability!>... G3:
<third most likely guess,
as short as possible; not a
complete sentence, just the
guess!>P3: <the probability
between 0.0 and 1.0 that G3
is correct, without any extra
commentary whatsoever;
just the probability!>. The
question is: <q>

Answering
function

c(q) An answering function c(q) = c(m(q)), that mod-
els the pipeline, that takes as input m(q) and out-
puts an answer a. This is invoked k times to obtain
k answers. The function subsumes the postpro-
cessing performed on the LM response to obtain
answer a.

Implicitly-defined in the LM
interaction

Answers (a1, a2, a3) Three sampled answers, obtained after text normal-
ization of the LLM raw output.

(nothing, grow watermelon,
stomachache)

Confidence
function

h(q, a) A confidence function h(q, a) = h(m(q), a), that
models the pipeline, that takes as input m(q) and
answer a and outputs the confidence that the an-
swer a is correct for question q. This is invoked k
times to obtain k confidences. The function sub-
sumes the postprocessing performed on the LM
response to obtain a float confidence value.

Implicitly-defined in the LM
interaction

Confidence
values

(h1, h2, h3) Three confidence values associated with the three
answers. Note that they may not be normalized.

(0.95, 0,05, 0.2)

Ground truth
proxy (proxy
of y)

g(q, a, agt) The returned truth value is postprocessed to map
Yes/No to 1/0. In practice, this is used as a proxy
ground truth. We also experimented with the query
(checking for semantic equivalence) from Tian
et al. (2023), but we observe a high false nega-
tive rate.

We query an LLM using the
following prompt: Do follow-
ing two answers to my ques-
tion Q agree with each other?
Q: <q>, A1: <a1>, A2: <a2>.
Please answer with a single
word, either “Yes." or “No.",
and explain your reasoning.

Table 3: Important variables. Note that in our mathematical description, we treat the k = 3 output
answers and confidences as 3 binary instances. Given a prompt function m() and question q, at the
end of an LM’s interaction, we obtain answers and confidences.
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A ADDITIONAL DETAILS FOR SECTION 3

A.1 LIMITATIONS OF NON-DISCRETIZED METHODS

Estimation of E[Y |H] when H = h(Q,A) is continuous is a difficult task (Kumar et al., 2019). The
confidence must also be discretized for it to achieve guarantees of marginal calibration (Gupta &
Ramdas, 2021). Prompts used to elicit confidence (Tian et al., 2023; Xiong et al., 2024) are not
guaranteed to induce a discretized confidence score (both in the average-case- and β-calibration
cases).

In practice, the estimation of CE(h;β) is done by partitioning D according to β: D = ∪Ms=1Ds,
where Ds = {(qi, ai, hiyi) : β(qi, ai) = s}, and taking the weighted average of CE(h)’s (from Eq.
( 3)) from each Ds with weight |Ds|. For each Ds, H is typically binned into intervals, and the
calibration error in each bin is estimated as the difference between the average of confidence values
and labels in that bin.

Lastly, estimation of CE(h) for non-discretized methods may involve binning and can underestimate
the error (Proposition 3.3 in (Kumar et al., 2019)). In our case, this is a possibility when comparing
scaling against the other approaches.

A.2 UNIFORM-MASS-DOUBLE-DIPPING HISTOGRAM BINNING (UMD)

We adapt UMD (Algorithm 1 from Gupta & Ramdas (2021)) to our notation in Algorithm 4. UMD
takes as input calibration data D = {(hi, ti)}i∈[N ], where hi’s are (uncalibrated) confidence scores
and ti’s are the corresponding target labels. The function order-stats returns ordered confidence
scores (h(1), . . . , h(n) where h(1) < h(2) < . . . < h(n).

Algorithm 4: UMD

Input: Number of bins B, Calibration data D = {(hi, ti)}i∈[N ] (dataset cardinality n depends on
the inputted dataset, we refer to the dataset within the algorithm as D.)

Output: Calibrator function gUMD : [0, 1]→ [0, 1]
1: (h(1), . . . , h(n))← order-stats(h1, . . . , hn)
2: (t(1), . . . , t(n) ← (t1, . . . , tn) ordered as per the ordering of (h(1), . . . , h(n))

3: ∆← (n+1)
B

4: Π̂← empty array of size B
5: A← 0-indexed array([0, ⌈∆⌉, ⌈2∆⌉), . . . , n+ 1]
6: for b← 1 to B do
7: l← Ab−1

8: u← Ab

9: Π̂b ← mean(t(l+1) . . . , t(u−1))
10: end for
11: (h(0), h(n+1))← (0, 1)

12: Define the calibrator function, gUMD: gUMD(htest) =
∑B

b=1 1{h(Ab−1) ≤ htest < h(Ab)}Π̂b

13: return gUMD

A.3 DISTRIBUTION-FREE GUARANTEES

In Gupta et al. (2020), UMD procedure (Algorithm 4) is assumed to take ground truth y as input
(t = y). Since in our setting, it is possible to pass a proxy ground truth, we now describe a
generalization of conditional calibration guarantees of UMD procedure (Gupta & Ramdas, 2021,
Theorem 3).
Theorem A.1 (Conditional Calibration Guarantee of Algorithm 4 under Label Misspecification).
Consider an input calibration dataset D̃ defined in Section 3.3 with misspecification factor ν from
Definition 3.2. Assume that the hi’s are distinct and N ≥ 2B. Then calibrator gUMD outputted by
Algorithm 4, with input D = D̃, is (ϵ, α)-conditionally calibrated for any α ∈ (0, 1), with

ϵ =

√
log(2B/α)

2(⌊N/B⌋ − 1)
+ ν. (6)
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Proof. For b ∈ {0, 1, . . . , B}, define kb = ⌈b(N + 1/B)⌉. Fix h(0) := 0 and h(N+1) := 1 as the
smallest and largest order statistics, respectively. As per Algorithm 4, we compute the order statistics
of the input data and gather the following points into a set:M := {h(k1), . . . , hk(B−1)

}.

Let B : [0, 1]→ [B] be the binning function: B(H) = b ⇐⇒ h(kb−1) ≤ gUMD(H) < h(kb). Given
M, the function B is deterministic, i.e., for every b ∈ [B], E[Ỹ |B(H) = b] is deterministic.

Consider some b ∈ {0, 1, . . . , B} and denote l = kb−1, u = kb. By Lemma 2 from (Gupta
& Ramdas, 2021), the unordered (denoted by h{·}) confidence scores h{l+1}, h{l+2}, . . . , h{u+1}
are i.i.d given M, with the same conditional distribution as that of H given B(H) = b. There-
fore, ỹ{l+1}, ỹ{l+2}, . . . , ỹ{u−1} are i.i.d given S, with the conditional distribution Bernoulli(E[Ỹ |
B(H) = b].

We now show that Π̂b (defined in Line 9 and returned by gUMD in Line 12 in Algorithm 4), the average
of the ỹ in a bin b values, concentrates around E[Ỹ | B(H) = b]. For any γ ∈ (0, 1), by Hoeffding’s
inequality, w.p. at least 1− γ:

∣∣∣E[Ỹ |B(H) = b]− Π̂b

∣∣∣ ≤√ log(2/γ)

2⌊u− l − 1⌋
≤

√
log(2/γ)

2(⌊N/B⌋ − 1)
, (7)

where the second inequality holds since for any b, u− l = ⌊(b+ 1)(N + 1)/B⌋ − ⌊b(N + 1)/B⌋ ≥
⌊N/B⌋. Using law of total probability (partitioning {B(h) = b} to {h : B(h) = b}), we obtain:

E[Ỹ | B(H) = b] ≤ |E[Y | B(H) = b]− ν| ,
which implies that ∣∣∣E[Y | B(H) = b]− Π̂b

∣∣∣ ≤√ log(2/γ)

2(⌊N/B⌋ − 1)
+ ν. (8)

Set γ = α/B in Eq. ( 8), and take a union bound over all b ∈ B. With probability at least 1− α, for
every b ∈ B,

∣∣∣E[Y |B(H) = b]− Π̂b

∣∣∣ ≤ ϵ, where ϵ is the RHS of Eq. ( 8). This implies that:

|E[Y | H]−H| = |E[E[Y | B(H), H] | H]−H|
= |E[E[Y | B(H)] | H]−H|
= |E[E[Y | B(H)]−H | H|

=
∣∣∣E[E[Y | B(H)]− Π̂B(H) | H

∣∣∣
≤ E

[∣∣∣E[Y | B(H)]− Π̂B(H)

∣∣∣ | H]
≤ ϵ,

Where the first equality is due to the law of total expectation, the fourth equality is by the definition
of the quantity returned by gUMD, and the first inequality is due to Jensen’s inequality. This completes
the proof, showing that gUMD is (ϵ, α)-conditionally calibrated for any α ∈ (0, 1).

Theorem 3.1 (Distribution-free β-calibration guarantee). Consider an input calibration dataset D̃
defined above with misspecification factor ν from Definition 3.2. Assume that the hi’s are distinct,
number of points per bin b ≥ 2, and number of instances within each partition ns ≥ b for every
s ∈ S . The calibrator gUMD retrieved in Line 2 of Algorithm 2, trained using Algorithm 1 with input

D = D̃, is (ϵ, α)-conditionally β-calibrated for any α ∈ (0, 1), with ϵ =
√

log(2N/bα)
2(b−1) + ν.

Proof. For s ∈ S, let Ps denote the distribution of (h, ỹ) conditional on β(q, a) = s. The tuples in
Ds are i.i.d. samples from Ps and gs = G[s] is the corresponding fitted UMD calibrator. The number
of bins is Bs = ⌊ns/b⌋. Since, ns ≥ b⌊ns/b⌋ ≥ 2Bs,

Let B =
∑S

s=1 Bs and αs = αBs/B. Note that B ≤
∑

s∈S ns/b = N/b. We apply the bound in
Theorem A.1 to obtain:
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P

(
∀p ∈ range(gs),

∣∣∣E [Ỹ |β(q, a) = s, gs(h) = p
]
− p
∣∣∣ ≤√ log(2Bs/α)

2(⌊ns/Bs⌋ − 1)
+ ν

∣∣∣∣∣ β(q, a) = s

)
≥ 1− αs.

Note that√
log(2Bs/αs)

2(⌊ns/Bs⌋ − 1)
=

√
log(2B/α)

2(⌊ns/Bs⌋ − 1)
≤

√
log(2N/bα)

2(⌊ns/Bs⌋ − 1)
≤

√
log(2N/bα)

2(b− 1)
.

For every s ∈ S:

P

(
∀p ∈ range(gs),

∣∣∣E [Ỹ |β(q, a) = s, gs(h) = p
]
− p
∣∣∣ ≤ ϵ

∣∣∣∣∣ β(q, a) = s

)
≥ 1− αs.

Taking union bound over S gives:

P

(
∀s ∈ S,∀p ∈ range(gs),

∣∣∣E [Ỹ |β(q, a) = s, gs(h) = p
]
− p
∣∣∣ ≤ ϵ

∣∣∣∣∣ β(q, a) = s

)
≥ 1−

∑
s∈S

αs

= 1− α.

This completes the proof.

To remove the assumption that hi’s are distinct in Theorem 3.1, we could use the randomized version
of UMD (Algorithm 2 in Gupta & Ramdas (2021)). This adds an additive factor to ϵ in Theorem 3.1
but can be made arbitrarily small. For simplicity, we have chosen to provide the guarantees for the
non-randomized version of UMD.

B ADDITIONAL DETAILS FOR SECTION 5

B.1 MISSING EXPERIMENTAL DETAILS

Details on LM Querying. We set the LM temperature to close to 0 to minimize output stochastic-
ity and set max tokens to be able to process the prompt m(q). We include the prompts in Table 5.
The variable EXPRESSION_LIST in Ling1S-Top1 prompt is taken from Fagen-Ulmschneider (2015).

Compute resources. The experiments were run using a 3090Ti GPU and 64 GB of RAM.

Training Details. We perform random splitting 8 times using different seeds and use the repeated
measures to form our confidence intervals. We set the number of bins B in the UMD baseline and
scaling-binning by deriving hyperparameter search ranges from setting different ϵs in Theorem 3
in (Gupta & Ramdas, 2021). We describe how we set the number of points per bin b in Algorithm 1
and Algorithm 3 in Section 5. We have also attempted to ensure that for every B we can find in its
hyperparameter tuning range, there is a b in its hyperparameter tuning range, such that B = ⌊N/b⌋.
This correspondence, coupled with the same target variable to optimize, helps isolate the impact of β
on post-hoc calibration.

Dataset Size Type

SciQ 11609 QA
Bigbench 20320 QA
MMLU 13869 Multiple-choice QA
OpenBookQA 4835 Multiple-choice QA
TriviaQA 11313 QA

Table 4: Dataset statistics. Multiple-choice QA datasets provide a set of possible answers. We add
additional prompt text for them, see Table 5.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Prompt Name Prompt Template

Verb1S-Top1 Provide your best guess and the probability that it is correct (0.0 to 1.0) for the
following question. Give ONLY the guess and probability, no other words or
explanation. For example: Guess: <most likely guess, as short as possible; not a
complete sentence, just the guess! > Probability: <the probability between 0.0
and 1.0 that your guess is correct, without any extra commentary whatsoever;
just the probability! > The question is: <q>.

Ling1S-Top1 Provide your best guess for the following question, and describe how likely it
is that your guess is correct as one of the following expressions: $EXPRES-
SION_LIST. Give ONLY the guess and your confidence, no other words or
explanation. For example: Guess: <most likely guess, as short as possible; not
a complete sentence, just the guess!> Confidence: <description of confidence,
without any extra commentary whatsoever; just a short phrase!> The question
is: <q >

Additional prompt
text for multiple-
choice QA task with
a set of choices C

The answer must be chosen from the following list of size <|C|>: <C >. Only
the actual answer (not the choice number or index) from the list should be used
in the response.

ground truth proxy See the example for ground truth Proxy in Table 3.

Table 5: Prompts used in the experiments.
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.

Dataset Prompt LLM Calibrator CE(h;β) AUAC

SciQ Ling1S-Top1 Mistral BB (ours) 0.165± 0.003 0.482± 0.024
SciQ Ling1S-Top1 Mistral HS-BB (ours) 0.175± 0.004 0.437± 0.028
SciQ Ling1S-Top1 Mistral S-BB (ours) 0.171± 0.006 0.426± 0.034
SciQ Ling1S-Top1 Mistral S-B 0.466± 0.003 0.21± 0.007
SciQ Ling1S-Top1 Mistral S 0.255± 0.005 0.21± 0.005
SciQ Ling1S-Top1 Mistral B 0.457± 0.003 0.356± 0.025
SciQ Ling1S-Top1 Mistral None 0.366± 0.011 0.451± 0.009

SciQ Ling1S-Top1 Gemma BB (ours) 0.158± 0.011 0.357± 0.023
SciQ Ling1S-Top1 Gemma HS-BB (ours) 0.148± 0.011 0.363± 0.032
SciQ Ling1S-Top1 Gemma S-BB (ours) 0.146± 0.006 0.366± 0.085
SciQ Ling1S-Top1 Gemma S-B 0.485± 0.003 0.194± 0.014
SciQ Ling1S-Top1 Gemma S 0.211± 0.008 0.191± 0.008
SciQ Ling1S-Top1 Gemma B 0.486± 0.003 0.195± 0.011
SciQ Ling1S-Top1 Gemma None 0.446± 0.011 0.403± 0.018

SciQ Verb1S-Top1 Mistral BB (ours) 0.262± 0.009 0.428± 0.027
SciQ Verb1S-Top1 Mistral HS-BB (ours) 0.203± 0.006 0.474± 0.048
SciQ Verb1S-Top1 Mistral S-BB (ours) 0.182± 0.006 0.474± 0.095
SciQ Verb1S-Top1 Mistral S-B 0.472± 0.003 0.237± 0.006
SciQ Verb1S-Top1 Mistral S 0.228± 0.005 0.27± 0.02
SciQ Verb1S-Top1 Mistral B 0.458± 0.002 0.377± 0.012
SciQ Verb1S-Top1 Mistral None 0.451± 0.013 0.451± 0.015

SciQ Verb1S-Top1 Gemma BB (ours) 0.268± 0.005 0.278± 0.021
SciQ Verb1S-Top1 Gemma HS-BB (ours) 0.194± 0.006 0.386± 0.034
SciQ Verb1S-Top1 Gemma S-BB (ours) 0.182± 0.005 0.279± 0.023
SciQ Verb1S-Top1 Gemma S-B 0.477± 0.002 0.149± 0.013
SciQ Verb1S-Top1 Gemma S 0.243± 0.007 0.246± 0.008
SciQ Verb1S-Top1 Gemma B 0.464± 0.003 0.344± 0.021
SciQ Verb1S-Top1 Gemma None 0.495± 0.01 0.421± 0.01

TriviaQA Ling1S-Top1 Mistral BB (ours) 0.26± 0.003 0.467± 0.024
TriviaQA Ling1S-Top1 Mistral HS-BB (ours) 0.195± 0.007 0.499± 0.014
TriviaQA Ling1S-Top1 Mistral S-BB (ours) 0.184± 0.005 0.541± 0.021
TriviaQA Ling1S-Top1 Mistral S-B 0.441± 0.003 0.275± 0.006
TriviaQA Ling1S-Top1 Mistral S 0.266± 0.005 0.28± 0.006
TriviaQA Ling1S-Top1 Mistral B 0.432± 0.003 0.441± 0.009
TriviaQA Ling1S-Top1 Mistral None 0.326± 0.008 0.537± 0.01

TriviaQA Ling1S-Top1 Gemma BB (ours) 0.268± 0.007 0.310± 0.034
TriviaQA Ling1S-Top1 Gemma HS-BB (ours) 0.188± 0.02 0.359± 0.035
TriviaQA Ling1S-Top1 Gemma S-BB (ours) 0.18± 0.005 0.351± 0.051
TriviaQA Ling1S-Top1 Gemma S-B 0.235± 0.015 0.310± 0.007
TriviaQA Ling1S-Top1 Gemma S 0.211± 0.012 0.086± 0.005
TriviaQA Ling1S-Top1 Gemma B 0.468± 0.003 0.199± 0.019
TriviaQA Ling1S-Top1 Gemma None 0.486± 0.01 0.349± 0.007

TriviaQA Verb1S-Top1 Mistral BB (ours) 0.242± 0.006 0.618± 0.016
TriviaQA Verb1S-Top1 Mistral HS-BB (ours) 0.191± 0.01 0.573± 0.024
TriviaQA Verb1S-Top1 Mistral S-BB (ours) 0.18± 0.006 0.545± 0.029
TriviaQA Verb1S-Top1 Mistral S-B 0.436± 0.005 0.324± 0.007
TriviaQA Verb1S-Top1 Mistral S 0.27± 0.005 0.352± 0.014
TriviaQA Verb1S-Top1 Mistral B 0.409± 0.005 0.525± 0.019
TriviaQA Verb1S-Top1 Mistral None 0.38± 0.01 0.582± 0.011

TriviaQA Verb1S-Top1 Gemma BB (ours) 0.249± 0.006 0.381± 0.02
TriviaQA Verb1S-Top1 Gemma HS-BB (ours) 0.192± 0.006 0.417± 0.034
TriviaQA Verb1S-Top1 Gemma S-BB (ours) 0.183± 0.008 0.337± 0.038
TriviaQA Verb1S-Top1 Gemma S-B 0.444± 0.003 0.231± 0.012
TriviaQA Verb1S-Top1 Gemma S 0.258± 0.008 0.225± 0.006
TriviaQA Verb1S-Top1 Gemma B 0.429± 0.004 0.37± 0.015
TriviaQA Verb1S-Top1 Gemma None 0.527± 0.008 0.417± 0.008

Table 6: (Continuation of Table 2) Performance of our β-calibration methods, β-binning (BB),
Pooled scaling-β-binning (S-BB) and Hierarchical scaling-β-binning (HS-BB)), compared to the
baselines, UMD, (B, (Gupta & Ramdas, 2021)), Platt Scaling (S, (Platt, 1999)), and Scaling-binning
(S-B, (Kumar et al., 2019)).
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.

Dataset Prompt LLM Calibrator CE(h;β) AUAC

OpenBookQA Ling1S-Top1 Mistral BB (ours) 0.285± 0.009 0.353± 0.043
OpenBookQA Ling1S-Top1 Mistral HS-BB (ours) 0.211± 0.015 0.37± 0.065
OpenBookQA Ling1S-Top1 Mistral S-BB (ours) 0.193± 0.012 0.34± 0.062
OpenBookQA Ling1S-Top1 Mistral S-B 0.477± 0.002 0.135± 0.004
OpenBookQA Ling1S-Top1 Mistral S 0.32± 0.006 0.133± 0.005
OpenBookQA Ling1S-Top1 Mistral B 0.471± 0.004 0.255± 0.023
OpenBookQA Ling1S-Top1 Mistral None 0.441± 0.013 0.38± 0.015

OpenBookQA Ling1S-Top1 Gemma BB (ours) 0.316± 0.01 0.25± 0.028
OpenBookQA Ling1S-Top1 Gemma HS-BB (ours) 0.221± 0.016 0.261± 0.032
OpenBookQA Ling1S-Top1 Gemma S-BB (ours) 0.215± 0.011 0.257± 0.082
OpenBookQA Ling1S-Top1 Gemma S-B 0.415± 0.005 0.129± 0.009
OpenBookQA Ling1S-Top1 Gemma S 0.421± 0.01 0.152± 0.013
OpenBookQA Ling1S-Top1 Gemma B 0.483± 0.003 0.12± 0.017
OpenBookQA Ling1S-Top1 Gemma None 0.434± 0.015 0.31± 0.017

OpenBookQA Verb1S-Top1 Mistral BB (ours) 0.288± 0.008 0.338± 0.035
OpenBookQA Verb1S-Top1 Mistral HS-BB (ours) 0.232± 0.012 0.344± 0.018
OpenBookQA Verb1S-Top1 Mistral S-BB (ours) 0.225± 0.011 0.316± 0.027
OpenBookQA Verb1S-Top1 Mistral S-B 0.445± 0.006 0.331± 0.011
OpenBookQA Verb1S-Top1 Mistral S 0.282± 0.01 0.3± 0.009
OpenBookQA Verb1S-Top1 Mistral B 0.447± 0.003 0.28± 0.02
OpenBookQA Verb1S-Top1 Mistral None 0.561± 0.018 0.311± 0.021

OpenBookQA Verb1S-Top1 Gemma S-BB (ours) 0.228± 0.011 0.343± 0.027
OpenBookQA Verb1S-Top1 Gemma S-B 0.410± 0.006 0.301± 0.011
OpenBookQA Verb1S-Top1 Gemma S 0.298± 0.01 0.280± 0.011
OpenBookQA Verb1S-Top1 Gemma B 0.447± 0.003 0.293± 0.04
OpenBookQA Verb1S-Top1 Gemma None 0.561± 0.018 0.315± 0.036
OpenBookQA Verb1S-Top1 Gemma BB (ours) 0.261± 0.008 0.332± 0.048
OpenBookQA Verb1S-Top1 Gemma HS-BB (ours) 0.228± 0.012 0.321± 0.011

BigBench Verb1S-Top1 Mistral BB (ours) 0.161± 0.003 0.665± 0.031
BigBench Verb1S-Top1 Mistral HS-BB (ours) 0.132± 0.009 0.672± 0.079
BigBench Verb1S-Top1 Mistral S-BB (ours) 0.134± 0.004 0.679± 0.012
BigBench Verb1S-Top1 Mistral S-B 0.361± 0.006 0.513± 0.016
BigBench Verb1S-Top1 Mistral S 0.208± 0.004 0.522± 0.018
BigBench Verb1S-Top1 Mistral B 0.351± 0.002 0.592± 0.014
BigBench Verb1S-Top1 Mistral None 0.248± 0.005 0.671± 0.005

BigBench Verb1S-Top1 Gemma BB (ours) 0.171± 0.003 0.503± 0.019
BigBench Verb1S-Top1 Gemma HS-BB (ours) 0.159± 0.006 0.502± 0.011
BigBench Verb1S-Top1 Gemma S-BB (ours) 0.215± 0.005 0.465± 0.024
BigBench Verb1S-Top1 Gemma S-B 0.456± 0.001 0.289± 0.011
BigBench Verb1S-Top1 Gemma S 0.259± 0.004 0.292± 0.007
BigBench Verb1S-Top1 Gemma B 0.431± 0.002 0.441± 0.014
BigBench Verb1S-Top1 Gemma None 0.458± 0.01 0.499± 0.01

Table 7: (Continuation of Table 2) Performance of our β-calibration methods, β-binning (BB),
Pooled scaling-β-binning (S-BB) and Hierarchical scaling-β-binning (HS-BB)), compared to the
baselines, UMD, (B, (Gupta & Ramdas, 2021)), Platt Scaling (S, (Platt, 1999)), and Scaling-binning
(S-B, (Kumar et al., 2019)).
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C KD-TREE CONSTRUCTION FOR β-CALIBRATION

We adapt kd-tree (Bentley, 1975) to construct our β partitions. We first recall the standard construction
of a kd-tree. Let Zi = (Zi1, . . . , Zim, . . . , ZiM ), i = 1, . . . , N be the M -dimensional dataset to bin
and let Hk with k = 0 represent {Z1, . . . , ZN}. Let zkm denote the median of all the mth coordinates
of the Zs in Hk. Let Z[p] denote the pth coordinate of a Z vector. Set base case value of k = 0.

The partitioning scheme to be applied recursively is as follows: split Hk into two halfspaces by piv-
oting on zkm, to obtain H2k+1 :=

{
Z ∈ Hk : Z[p] ≤ zkm

}
and H2k+2 :=

{
Z ∈ Hk : Z[p] > zkm

}
.

The coordinate index m is set to ⌊log 2⌋(k + 1) + 1, i.e., as we split the nodes, we only change the
coordinate index when we switch to another level. When we reach m = M , we reset m = 0.

In our setting, we form bounded spaces so that our calibrators that contain a β-binning subroutine
can generalize well during test time (outliers that are the closest to the boundary of a space will not
be assigned to that space). We take the observations with the smallest and largest order statistic in
each coordinate used for pivoting, and use them as bounding values for that coordinate.

At test-time, an M -vector instance is inserted into one of the leaves by following the same rule as in
the partitioning scheme. If any coordinate value is outside its bounding values, assign it to none of
the leaves. Otherwise, cycle through the M coordinates and assign the instance to the left tree if the
coordinate is less than or equal to zkm, or to the right tree otherwise. Repeat until a leaf is reached.

D GENERALIZING MAXIMUM CALIBRATION ERROR (MCE) TO β MAXIMUM
CALIBRATION ERROR (β-MCE)

Guo et al. (2017) defined the maximum calibration error (MCE) as:

MCE(h;β) = sup
r∈range(h)

[|E[Y | h(Q,A) = r]− r|] .

We generalize this definition by incorporating β:
Definition D.1. (β-maximum calibration error). The β-maximum calibration error (β-MCE) of h is
defined as:

β-MCE(h;β) = max
s∈range(β)

sup
r∈range(h)

[|E[Y | h(Q,A) = r, β(Q,A) = s]− r|] .

This metric assesses the maximum deviation between the confidences and true probabilities over all
confidences and partitions. Intuitively, the confidence r that achieves the supremum in MCE may
differ from the one that maximizes over partitions in β-MCE, as the latter is also conditioned on the
specific partition.

E QUALITATIVE EXAMPLES OF PARTITION CONTENT

Examples of question-and-answer pairs assigned to β partitions are presented in Table 8.

F EXTRA EXPERIMENTS WITH VARYING β CHOICES.

In addition to using kd-tree as βbin and DistilBERT embedding as βemb, we also use k-means as βbin
and XLNet (Yang et al., 2019) embeddings as βemb We utilize the [CLS] token embedding from a
pre-trained XLNet and conduct a hyperparameter search over the number of centroids, using AUAC
as the validation metric. We present the results in Table 9. Similar patterns to those in Table 2 are
observed: our methods, S-BB and HS-BB, achieve the highest performance for CE(h;β) and AUAC.

G SCATTERPLOT OF RECALIBRATED CONFIDENCE SCORES OVER THE
CONFIDENCE ELICITATION BASELINE.

We examine how the recalibrated confidence scores differ for baseline confidence scores obtained
using the Ling1STop1 (Figure 3). The confidence scores obtained by our method β-binning have
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.
Question LLM Answer

If weather is stormy then there is a greater chance of everything getting wet
Bill missed high tide, so he had to wait until when to see it again tomorrow
Great lakes may have come to be thanks to ice pillars
If a flood is occurring there was most likely great droplets repeating

Some animals are aided in finding food sources by aroma
Flowers make themselves attractive to hummingbirds with an optimal angle
Hummingbirds gather nectar using their bills
An example of an adult animal laying eggs is all aside from kittens

When a human’s organs stop working and he stops breathing, that person perished
If a thing experiences a burning combustion, then it is damaged
An exertion on a thing that is going against the thing’s intended direction, when in motion will oppose it
When we think of bees, we also think of pollen. This is because bees consume it

Table 8: Qualitative examples of three random partitions and four random question-and-answer
pairs from the OpenBookQA dataset, a multiple-choice dataset. The prompt used is Ling1STop1
(Table 5) and answers are generated using Mistral. The partitioning function β leverages DistilBERT
embeddings and a kd-tree with a maximum depth of 7. The underlying topic for the first two partitions
seem clear: “water” and “animal”, and the third partition is likely to have identified the form of the
question.

.
Dataset Prompt LLM Calibrator βemb βbin CE(h;β) AUAC

OpenBookQA Verb1S-Top1 Mistral BB (ours) DistilBERT kd-tree 0.288± 0.008 0.338± 0.035
OpenBookQA Verb1S-Top1 Mistral HS-BB (ours) DistilBERT kd-tree 0.232± 0.012 0.344± 0.018
OpenBookQA Verb1S-Top1 Mistral S-BB (ours) DistilBERT kd-tree 0.225± 0.011 0.316± 0.027
OpenBookQA Verb1S-Top1 Mistral S-B DistilBERT kd-tree 0.445± 0.006 0.331± 0.011
OpenBookQA Verb1S-Top1 Mistral S DistilBERT kd-tree 0.282± 0.01 0.3± 0.009
OpenBookQA Verb1S-Top1 Mistral B DistilBERT kd-tree 0.447± 0.003 0.28± 0.02
OpenBookQA Verb1S-Top1 Mistral None DistilBERT kd-tree 0.561± 0.018 0.311± 0.021

OpenBookQA Verb1S-Top1 Mistral BB (ours) DistilBERT k-means 0.310± 0.009 0.334± 0.012
OpenBookQA Verb1S-Top1 Mistral HS-BB (ours) DistilBERT k-means 0.240± 0.013 0.340± 0.019
OpenBookQA Verb1S-Top1 Mistral S-BB (ours) DistilBERT k-means 0.255± 0.012 0.321± 0.019
OpenBookQA Verb1S-Top1 Mistral S-B DistilBERT k-means 0.450± 0.007 0.331± 0.011
OpenBookQA Verb1S-Top1 Mistral S DistilBERT k-means 0.285± 0.011 0.3± 0.009
OpenBookQA Verb1S-Top1 Mistral B DistilBERT k-means 0.452± 0.004 0.28± 0.02
OpenBookQA Verb1S-Top1 Mistral None DistilBERT k-means 0.565± 0.018 0.311± 0.021

OpenBookQA Verb1S-Top1 Mistral BB (ours) XLNet kd-tree 0.295± 0.010 0.337± 0.034
OpenBookQA Verb1S-Top1 Mistral HS-BB (ours) XLNet kd-tree 0.238± 0.012 0.341± 0.021
OpenBookQA Verb1S-Top1 Mistral S-BB (ours) XLNet kd-tree 0.220± 0.011 0.347± 0.017
OpenBookQA Verb1S-Top1 Mistral S-B XLNet kd-tree 0.442± 0.008 0.331± 0.011
OpenBookQA Verb1S-Top1 Mistral S XLNet kd-tree 0.280± 0.012 0.3± 0.009
OpenBookQA Verb1S-Top1 Mistral B XLNet kd-tree 0.450± 0.004 0.28± 0.02
OpenBookQA Verb1S-Top1 Mistral None XLNet kd-tree 0.561± 0.018 0.311± 0.021

OpenBookQA Verb1S-Top1 Mistral BB (ours) XLNet k-means 0.312± 0.011 0.335± 0.033
OpenBookQA Verb1S-Top1 Mistral HS-BB (ours) XLNet k-means 0.246± 0.013 0.342± 0.019
OpenBookQA Verb1S-Top1 Mistral S-BB (ours) XLNet k-means 0.235± 0.010 0.350± 0.018
OpenBookQA Verb1S-Top1 Mistral S-B XLNet k-means 0.448± 0.007 0.331± 0.011
OpenBookQA Verb1S-Top1 Mistral S XLNet k-means 0.283± 0.011 0.3± 0.009
OpenBookQA Verb1S-Top1 Mistral B XLNet k-means 0.455± 0.005 0.28± 0.02
OpenBookQA Verb1S-Top1 Mistral None XLNet k-means 0.565± 0.018 0.311± 0.021

Table 9: We vary βemb ∈ {DistilBERT,XLNet} and βbin ∈ {kd-tree, k-means}. Note that AUAC
metrics for S-B, S, B and None remain constant as they do not utilize β. In this experiment, we
observe that across the four variations listed above, the optimal βbin results in a comparable number
of partitions.
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Figure 3: Scatter plot and regression lines for posthoc-calibrated scores vs confidence scores from
Ling1STop1. Note that confidence scores from Ling1STop1 (shown in the the x-axis) are discretized
since confidence statement is drawn from an expression list (Table 5). We use the OpenBookQA
dataset and Mistral LLM.
higher sharpness (Brier, 1950; Gneiting et al., 2007) since we are fitting a UMD fitter per partition.
The baseline UMD (B), shown in blue, maps an elicited confidence score from Ling1STop1 to either
a single value or a small set of nearby values, due to the delta-randomization in UMD. In contrast, our
method, β-binning (BB), shown in grey, applies a partition-specific UMD that adapts to the specific
question-and-answer pair. As a result, the scores calibrated by β-binning span a broader range. This
is intuitively reasonable, as a prompt-elicited confidence score of 0.1 from a topic like “geography”
may require a different recalibration compared to the one from the “politics”.

H RELIABILITY ANALYSIS β-PARTITIONED DATA

In this section, we demonstrate reliability analysis using ECE and reliability plot through an example.
We perform an analysis for each of the four β partitions (derived using a kd-tree with a maximum
depth of two) in Figure 4. We compare the baselines None (from Ling1S-Top1 prompt) and UMD
(which is known to best optimize ECE) against our method β-binnning. Partition-wise analysis
reveals that the ECE for each partition (representing question-and-answer pairs that are semantically
similar) is best achieved by our method, β-binning. However, performing this reliability analysis
becomes increasingly challenging and unwieldy as the cardinality of the range of β grows.
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Figure 4: The reliability plot compares the baselines None , UMD (B), and our method, β-binning
(BB), across each β-partition. Using the OpenBookQA dataset, Ling1S-Top1 prompt, a Mistral
LLM, and a kd-tree with a maximum depth of two, four β-partitions are generated, and we conduct
an analysis on each partition. UMD (B) and β-binning (BB), provide confidence scores that are
better calibrated at each of the partition compared to None. However, β-binning (BB) yields better
calibrated confidence scores than UMD (B).

24


	Introduction
	Defining -Calibration
	Notation
	-calibration Instead of Standard Calibration
	Generalizing (Average-case) Calibration via kd-tree Instantiation of 

	Achieving Posthoc -Calibration
	Approach 1: -binning
	Approach 2: Scaling–binning
	Distribution Free Analysis of -binning and Scaling–binning

	Related Work
	Experiments
	Conclusions
	Additional Details for Section 3
	Limitations of Non-discretized Methods
	Uniform-mass-double-dipping Histogram Binning (UMD)
	Distribution-free Guarantees

	Additional Details for Section 5
	Missing Experimental Details

	KD-tree construction for -calibration
	Generalizing maximum calibration error (MCE) to  maximum calibration error (-MCE)
	Qualitative examples of partition content
	Extra experiments with varying  choices.
	Scatterplot of recalibrated confidence scores over the confidence elicitation baseline.
	Reliability analysis -partitioned data

