Learning Safety Constraints From Demonstration Using One-Class Decision Trees

Mattijs Baert, Sam Leroux, Pieter Simoens

IDLab, Department of Information Technology at Ghent University - imec
Technologiepark 126
B-9052 Ghent, Belgium
{mattijs.baert, sam.leroux, pieter.simoens } @ugent.be

Abstract

The alignment of autonomous agents with human values is a
pivotal challenge when deploying these agents within physi-
cal environments, where safety is an important concern. How-
ever, defining the agent’s objective as a reward and/or cost
function is inherently complex and prone to human errors.
In response to this challenge, we present a novel approach
that leverages one-class decision trees to facilitate learning
from expert demonstrations. These decision trees provide a
foundation for representing a set of constraints pertinent to
the given environment as a logical formula in disjunctive nor-
mal form. The learned constraints are subsequently employed
within an oracle constrained reinforcement learning frame-
work, enabling the acquisition of a safe policy. In contrast
to other methods, our approach offers an interpretable repre-
sentation of the constraints, a vital feature in safety-critical
environments. To validate the effectiveness of our proposed
method, we conduct experiments in synthetic benchmark do-
mains and a realistic driving environment.

Introduction

Reinforcement Learning (RL) has made significant strides
in training autonomous agents, but as these systems be-
come more advanced, ensuring their safety and alignment
with human intentions, often referred to as the alignment
problem (Russell 2019), is becoming a critical concern. As
a result, the objectives of autonomous agents extend be-
yond their primary task goals, also encompassing safety con-
straints, human values, legal regulations, and various other
factors. For instance, an autonomous vehicle’s objective is
not only to get passengers quickly to their destination but
also to abide by traffic laws and ensure passenger comfort.
To address these challenges and enhance the safety of RL
agents, Constrained Reinforcement Learning (CRL) meth-
ods have emerged. CRL is designed to obtain safe RL agents
by incorporating constraints into the learning process. CRL
methods help ensure that the RL agent operates within pre-
defined boundaries, reducing the risk of harmful or unin-
tended actions. However, one key limitation of CRL meth-
ods is that they assume the availability of a well-defined
set of constraints. Specifying these constraints correctly and
completely is a complex task on its own (Krakovna et al.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2020). It often requires a deep understanding of the environ-
ment, potential risks, and ethical considerations. Therefore,
addressing the alignment problem in RL goes beyond the de-
velopment of CRL methods; it also involves addressing the
challenge of correctly specifying constraints as necessary.
This research paper introduces a novel approach to reduce
the need for manual specification of constraints by learning
from expert demonstrations. First, a model of the expert be-
havior is learned as a one-class decision tree (Itani, Lecron,
and Fortemps 2020). From this tree a logical formula in dis-
junctive normal form is extracted defining the constraints.
Next, we demonstrate that the learned constraints can be
used by a CRL method to learn a constraint abiding (i.e.
safe) policy in synthetic and realistic environments. A no-
table advantage of this approach is the interpretability of
both the learned expert model and the constraints them-
selves. By monitoring the evaluation-violation ratio of the
constraints during training, we can refine the set of con-
straints after training, further enhancing interpretability. Ad-
ditionally, as constraints are frequently shared across mul-
tiple agents and tasks, once they have been acquired, they
can be seamlessly applied to other agents undertaking di-
verse tasks. This eliminates the need to separately learn con-
straints for each individual agent and task. We assess the
effectiveness of the proposed approach through an evalua-
tion on a series of synthetic benchmarks for safe RL (Ray,
Achiam, and Amodei 2019) and in a real-world driving sce-
nario (Krajewski et al. 2018).

Background
Markov Decision Process

A Markov decision process (MDP) is characterized by a
state space S, an action space A, a discount factor -y within
the range [0,1], a transition distribution denoted as p(s’ |
s,a), an initial state distribution represented by Z(s), and
a reward function R : S X A — [Fmin, "max|. Within this
framework, an agent interacts with the environment at dis-
crete time steps, generating a sequence of state-action pairs
known as a trajectory 7 = ((So,a0), -, (ST—1,07-1)),
where T is the length of the trajectory. The cumulative re-
ward of a trajectory is calculated as the sum of rewards, each
discounted by a factor of ¢, where t represents the time step:

R(r) = Zf:_ol vt R(s¢, ay). At each discrete time step, the

agent’s choice of action is governed by a policy 7, which
is a function that maps states from the state space S to a
probability distribution over actions from the action space
A. The primary objective of forward reinforcement learn-
ing is to find a policy 7 that maximizes the expected sum of
discounted rewards, expressed as J,.(7) = E, . R(7).

Constrained Reinforcement Learning

Constraints provide a natural and widely applicable means
of specifying safety requirements in various contexts (Ray,
Achiam, and Amodei 2019). Within the domain of Con-
strained Reinforcement Learning (CRL), the prevailing
framework for problem modeling is the Constrained Markov
Decision Process (CMDP) (Altman 1999). CMDPs extend
the traditional Markov Decision Processes (MDPs) by in-
troducing a non-negative bounded cost function, denoted as
C: 8 x A [emin, Cmax), and a budget parameter « > 0.
In this context, C(s,a) quantifies the cost associated with
taking action a in state s, while the cumulative cost of a
trajectory is defined as the summation of discounted costs:
C(r) = tTQOI v*C(st, ar). The objective in CRL is to find
an optimal policy that maximizes the expected sum of dis-
counted rewards, as denoted by .J,.(7), while adhering to
specific constraints defined by the cost function C'. Formally,
the optimal policy 7* is obtained through the following op-
timization problem:

7" = argmax J,. () s.t. Jo(7m) < o (1

Here, J.(7) = E,.C(7) represents the expected sum of
discounted costs, and « signifies a limit on the allowable
cost.

One-Class Decision Tree

One-class classification (OCC) is a machine learning
paradigm that involves training a model to classify instances
into a single well-defined class, treating all other data points
as anomalies or outliers. One-class classification trees (OC-
trees) (Itani, Lecron, and Fortemps 2020) provide an in-
terpretable approach for addressing OCC problems. Build-
ing on kernel density estimation, OC-trees aim to repre-
sent target areas in the input space that describe the train-
ing data. We consider the training data as a set of M in-
stances X = {xo,x1,...2p—1}. Bach instance is char-

acterized by a k-dimensional feature vector, with a:f rep-
resenting the j-th feature of the ¢-th instance. We define
x C RF as a k-dimensional hyper-rectangle that encom-
passes all training instances. The primary objective is to par-
tition the initial hyper-rectangle y into distinct subspaces
X¢, represented by tree nodes ¢, such that the learned sub-
spaces encompass the training data. The sub-space x; asso-
ciated with node ¢ is divided into one or more sub-spaces
Xt, = {x € x¢ : Ly, < a2l <Ry, }with L, Ry, €R,
n € {0,...,N — 1} and N the number of children of . At
a given node ¢, several steps are carried out for each dimen-
sion to determine the dimension j which best cuts the data
in multiple sub-spaces:

0 0.1 0.7 09 1 ¢°

Figure 1: Simple navigation environment with a two dimen-
sional feature space. The red region represents the ground
truth constraints. The solid lines represent expert trajecto-
ries and the dashed line, trajectories a learning agent would
take which is unaware of the constraints.

* Estimate the probability density function f](a:) along di-
mension j using kernel density estimation, based on the
available training samples € x;.

* Divide the subspace x; along dimension j based on the
modes of the estimated density function f;(x) into N

intervals defined by their left and right bound L, and
R;,. Note, that N depends on the number of modes of

fi(@).
* Evaluate the quality of the division using a measure of
impurity.
The dimension that yields the best purity score is selected to
partition the subspace ;.

Method

Our approach builds upon the insight, as discussed by Lind-
ner et al. (2023), that feature expectations of policies adher-
ing to the genuine constraints form a convex set (i.e. safe
set) within the feature vector space. If, for some policy, we
can guarantee that the feature expectations are enclosed by
the safe set then we can guarantee this policy is safe. Our
method encompasses four key steps: firstly, a safe convex
set is established through constructing an OC-tree; follow-
ing this, constraints are extracted in the form of a logical
formula; then, we employ a CRL method to train a policy
that conforms to these constraints; and lastly, we propose an
approach for pruning the learned formula after training.

Learning a Safe Set

In this section, we discuss the process of acquiring a rep-
resentation of safe behavior. We start with a collection of
expert trajectories denoted as 7. We define a fixed map-
ping from state-action tuples to a bounded k-dimensional
feature space as ¢ : S x A — RF. Our goal is to learn
a safe convex set in this feature space. To accomplish this,
we construct a dataset D from the set of trajectories, defined
as: D = {¢(s,a) : V (s,a) € 7;V 7 € T} Training an
OC-tree (Itani, Lecron, and Fortemps 2020) on the dataset D
constructs a region in the feature space by taking the union
of hyper-rectangles. Since hyper-rectangles themselves are

#° [0;1]
6! [0;1]

9"10.1;0.7) "10.7:0.9)

9'0.1;0.3) 9'10.1;0.9)

Figure 2: Expert behavior tree learned from trajectories pre-
sented in figure 1. The root of tree encompasses the complete
feature space. Every other node defines an interval along one
dimension such that the complete tree represents the safe set
as multiple hyper-rectangles. This tree represents two rect-
angles in the two dimensional feature space.

convex, and the union operation is known to maintain con-
vexity, it follows that the OC-tree effectively defines a con-
vex set. To illustrate this concept, let’s consider a simpli-
fied environment characterized by a two-dimensional feature
space. In this scenario, the first dimension, denoted as q§0,
corresponds to the agent’s x-coordinate, while the second
dimension, ¢!, represents the agent’s y-coordinate. Figure
1 visually represents this environment along with three ex-
pert trajectories depicted as solid lines. The agent is tasked
with a straightforward navigation assignment, starting from
an initial feature vector of [0.1,0.1] and aiming to reach a
goal vector of [0.9,0.9]. The red rectangle in Figure 1 rep-
resents a constrained area within the feature space. Figure 2
showcases the OC-tree that has been learned from the pro-
vided trajectories, which we refer to as the expert tree or
expert model. In this specific instance, the expert behavior is
enclosed by two rectangles within the feature space.

Formula Extraction

Our objective is to acquire a logic formula ¢ in Disjunctive
Normal Form (DNF) that captures the constraints governing
the expert’s behavior. ¢ should evaluate true for the portion
of the feature space not covered by the safe set represented
by the expert tree. For a tree defined by its root node ¢ and
a given feature vector ¢, the corresponding formula ; is
recursively defined as follows:

pr =LV \/ (((bj < Ltchild) v (¢j > thhild)
tenila €t)

\ ((¢j > Ltchild) A (d)] < thhild) A gotchi]d)))'

In this context, j denotes the split dimension corresponding
to node t. Note that ¢; evaluates to | if ¢ is a leaf node.
When ¢ evaluates to T, it signifies that the input feature
vector corresponds to a state-action tuple that violates the
constraints. For the simple navigation examples the follow-
ing formula can be extracted from the expert tree presented

in Figure 2:
= (4" <0.1) Vv (¢° > 0.9)

V((¢° > 0.1) A (¢° < 0.7) A (¢ <0.1))
V((¢° > 0.1) A (¢° < 0.7) A (¢ > 0.3))
V((¢° > 0.7) A (¢° < 0.9) A (¢ <0.1))
V((¢° > 0.7) A (¢° < 0.9) A (6" > 0.9))

Additionally, for each dimension j, two more rules are in-
corporated to invalidate feature representations where ¢ is
lower than the observed minimum in the expert trajectories:
min (¢’ : V¢ € D) or higher than the observed maximum:
max (¢/ : V¢ € D).

Constraint-Based Cost Function and Optimization

The extracted formula ¢ gives rise to a cost function that
can be utilized within a CRL framework. In cases where
a constraint is violated, the agent incurs a cost of 1; con-
versely, if all constraints are adhered to, the cost remains at
0. To tackle this constrained problem, we employ the La-
grangian method in conjunction with Proximal Policy Op-
timization (PPO) (Schulman et al. 2017). This constrained
problem can then be addressed as an unconstrained max-min
optimization problem, and we employ the implementation
provided by the Omnisafe framework (Ji et al. 2023). It’s
noteworthy that the PPO-Lagrangian approach, while con-
servative, has been shown to yield comparable or superior
results to other methods such as Constrained Policy Opti-
mization (CPO) (Achiam et al. 2017), Projected Constrained
Policy Optimization (PCPO) (Yang et al. 2020), and First-
Order Constrained Policy Optimization with Penalty (FO-
COPS) (Zhang, Vuong, and Ross 2020) on various safety
gym benchmark environments, as discussed by Ji et al.
(2023) and Ray, Achiam, and Amodei (2019).

Refining Constraint Definitions

It is important to mention that the learned tree could serve
directly as a cost function. However, if our intention is to
prune the set of constraints to improve interpretability, the
DNF description of the constraints becomes more practical.
We interpret each conjunction in ¢ as an individual rule or
constraint. During the training of the CRL agent, we main-
tain a record of the number of times each conjunction is
evaluated and how many times it evaluates to true (i.e. the
corresponding constraint is violated). Conjunctions that ex-
hibit a violation-evaluation ratio below a predefined thresh-
old are pruned from the constraint definition. The rationale
behind this approach lies in the fact that during training,
the learning agent strives to maximize the discounted sum
of rewards. When rules are violated during the execution of
highly rewarding behavior, it suggests that these rules likely
correspond to genuine constraints since the expert agent ac-
tively avoided these states. Conversely, when rules are never
violated, they are less likely to be true constraints, as they
pertain to regions in the feature space that are scarcely vis-
ited by the learning agent, indicating low reward potential.

20

Yoo 025 050 0.75 1.
timesteps le7

|
Ou

.00 0.25 0.50 0.75 1.
timesteps le7

¥

4°00 0.25 0.50 0.75 1.
timesteps le7

00 0.25 0.50 0.75 1.
timesteps le7

00

cost

00 0.25 0.50 0.75 1.
timesteps

(b) PointPushl

@00 025 050 0.75 1.
timesteps le7

(a) PointGoall

expert

00

le7

mce-

00 0.25 0.50 0.75 1.
timesteps le7

(d) CarPushl

00 0.25 0.50 0.75 1.
timesteps le7

(c) CarGoall

00

icrl ours

Figure 3: Reward (top) and ground truth cost (bottom) during training of agents in the synthetic benchmark environments.

When evaluating a feature representation, the conjunctions
are assessed in ascending order of complexity. As a result,
conjunctions with fewer literals are given preference over
more intricate rules. For the simple navigation example, the
pruned constraints are defined as follows:

¢ = (6" >0.1)A(¢° <0.7) A (o' > 0.3).

It is worth highlighting that if we examine the trajectories
taken by an initial learning agent, as depicted by the dashed
lines in Figure 1, we will observe a notably high violation-
evaluation ratio for this rule. On the contrary the rules which
are pruned describe areas within the feature space where
the potential rewards are limited, and consequently, these re-
gions are seldom explored by the learning agent.

Results

We evaluate our method on a set of synthetic safe RL
benchmark domains proposed by Ray, Achiam, and Amodei
(2019) and a realistic highway environment (Krajewski et al.
2018). All results are averaged over 10 trials with random
seeds. In the appendix, we provide examples of the learned
formulas.

Synthetic Environments

We assess two categories of agents: The Point agent, a basic
robot confined to a 2D plane, equipped with two actuators
for rotation and forward/backward movement, and the Car
agent, a somewhat more complex robot with two indepen-
dently driven parallel wheels and a free-rolling rear wheel.
In the case of the Car robot, both steering and forward/back-
ward movement necessitate coordination between the two

drives. Our evaluation encompasses two distinct tasks: Goal
and Push. In the Goal task, the agent’s aim is to reach a spec-
ified goal location while circumventing hazards. The Push
task involves the agent pushing a box to the designated goal
position while avoiding hazards. The feature space for the
various agents is characterized by the agent’s acceleration
and velocity along both the x and y axes, in addition to the
data from 16 lidar sensors: a,, Gy, Vg, Uy, dio:15. The lidar
sensor readings indicate the distance in each of the 16 direc-
tions around the agent to a hazard. The lidar values range
from O to 1, with a reading of 1 signifying that the agent is
in a hazardous area.

Figure 3 illustrates the acquired rewards and costs during
the training of different agents. These agents include one
provided with ground truth constraints and trained using
PPO-Lagrangian (i.e. expert), another trained with expert
demonstrations using Maximum Causal Entropy Inverse
Constrained Reinforcement Learning (MCE-ICRL) (Baert
et al. 2023) as a state-of-the-art inverse constrained rein-
forcement learning method, and an agent trained with expert
demonstrations using our proposed method (i.e. ours). We
leverage the expert agent’s policy, trained using the ground
truth constraints, to sample trajectories, which serve as in-
put expert trajectories for both MCE-ICRL and our method.
For both the Goal and Push tasks our method approximates
the reward and cost achieved by the expert. The Push task
presents a significantly greater challenge compared to the
Goal task, as is reflected by the lower rewards obtained.
Even when provided with ground truth constraints, current
CRL methods struggle to learn a satisfactory policy. Con-
sequently, the expert trajectories will be sub-optimal, in-

source/target \ PointGoall PointPushl CarGoall CarPushl
PointGoall 139+1.7 06=£0.3 49+21 07+£03
PointPush1 0.5+0.2 0.6 +0.1 01+£02 04=£0.1
CarGoall 122+£36 09+03 1514+3.1 0.7x0.2
CarPushl 0.1+0.1 0.5+0.1 03+£03 05%£0.1

Table 1: Transferring constraints between agents and tasks: reward

source/target \ PointGoall ~ PointPushl CarGoall CarPushl
PointGoall | 27.94+5.0 54.5+£16.7 35.1£11.6 474493
PointPush1 45+1.7 262£7.3 6.5+£3.9 18.7£8.2
CarGoall 41.0+£8.0 50.3+128 33.7£53 48.7+9.9
CarPushl 13.9+44 25.7£83 144+£35 24.6+10.6

Table 2: Transferring constraints between agents and tasks: ground truth cost

evitably impacting the performance of our method, as these
trajectories serve as its fundamental input. In essence, the ef-
ficacy of our method is upper bounded by the quality of the
expert demonstrations. Furthermore, the same oracle CRL
method is part of our proposed approach, which raises con-
cerns that its failure in cases where ground truth constraints
are available may also extend to situations where it oper-
ates with learned constraints. It is notable that MCE-ICRL
fails to recover a satisfactory policy in our experiments.
This can be attributed to the complexity of the environments
which significantly surpasses those utilized in the original
paper (Baert et al. 2023).

One key advantage of defining or learning constraints is that
they often are the same for various agents and tasks. This is
beneficial because we can learn the constraints once and use
them in multiple settings. To this end, we assess to what ex-
tent the constraints learned from demonstrations of an agent
of type A performing task X can be transferred to agents of
type B performing task Y. In table 1 and 2, we present the
reward and cost, respectively, acquired by agents after train-
ing. The rows indicate the environment in which the rules
are learned (source domain) and the columns correspond
with the environment in which the agent is trained (target
domain). The main diagonal contains the results when the
source and target domain are the same. The best results for a
given target domain are achieved when the source and target
domains are the same. Notably, the most favorable outcomes
are observed when transferring constraints between differ-
ent agents performing the same task (e.g. CarGoal to Point-
Goal). However, when constraints are transferred between
distinct tasks for the same agent, there is a noticeable de-
cline in performance (e.g. PointPush to PointGoal). Analyz-
ing the learned formula from expert trajectories performing
the Push task, we find that more restrictive constraints are
learned compared to when expert trajectories optimize the
Goal task. This discrepancy is reflected in the results, where
employing constraints learned in the Goal domain within the
Push domain leads to a higher frequency of constraint viola-
tions, suggesting that the constraints are excessively lenient.
Conversely, employing constraints acquired in the Push do-
main within the Goal domain results in lower costs but also
reduced rewards, indicating that the constraints are overly

reward

02525 050 0.75 1.00

timesteps le6

0.25 0.50 0.75 1.00
timesteps le6

6 7 — 8 9 10

Figure 4: Reward (left) and cost (right) during training in the
CarPush environment for constraints extracted from trees
with various depths.

restrictive.

For each environment, we determine the ideal tree depth for
achieving optimal results. It’s important to note that as the
tree depth increases, the learned formula becomes more re-
strictive. A more restrictive formula used as a cost function
tends to produce trajectories that closely resemble expert tra-
jectories, often leading to lower overall costs. However, it’s
essential to consider that in such scenarios, there is a risk of
overfitting the learned tree to the training data. This can re-
sult in a situation where the model does not allow for regions
within the feature space which are not observed in the expert
trajectories but not necessarily invalid. This could limit the
agent’s exploration and generalization capabilities and con-
sequently may lead to lower rewards. This reasoning is ex-
emplified in Figure 4 where we depict the acquired reward
and cost by agents trained on cost functions originating from
trees with various depths.

Realistic Highway Environment

Traffic is a real-world environment where agent behavior
is heavily governed by both explicit and implicit rules.
We extract expert demonstrations from the highD dataset
(Krajewski et al. 2018), a comprehensive repository of
annotated vehicle trajectories recorded on German high-

200 100
150
E E
5100 5
2 2
2 50 &
~50——575 050 075 1.00 99025 050 075 T.00
timesteps 1el0 timesteps 1elO
0.8
0.8
206 9
5 0.6
— —~
=} =1
o0 o
2 704
= 5 |
©0. U02
0.0 0.0

0.25 0.50 0.75 1.00
timesteps 1elO

0.25 0.50 0.75 1.00
timesteps 1el0

o

©
=]
o

S o
506 50.6
— —~
g I
0.4
S $0.4
& &
(=] (=}

I
o
o
[N)

o
=)

o

o
o
(=}

0.25 0.50 0.75 1.
timesteps 1el0

0.25 0.50 0.75 1.00
timesteps 1el0

(a) Simple (b) Full

RL RL w. optimized reward ours

Figure 5: Reward (top), collision rate (middle) and off road
ratio (bottom) during training in a realistic highway environ-
ment.

ways. To facilitate the training of Reinforcement Learning
(RL) agents within this environment, we transform this
dataset into multiple scenarios adhering to the Common-
Road framework (Althoff, Koschi, and Manzinger 2017).
Subsequently, we employ the CommonRoad-RL frame-
work for agent training (Wang, Krasowski, and Althoff
2021). All the scenarios derived from the highD dataset
encompass either two or three lanes in both directions.
The feature space is characterized by the velocity along
the x- and y-axes, the relative position of agents leading
and following the ego-agent in the left, same and right
lane, and the proximity to the left and right road edges
{v:m Uy Prelg s Prely s Prely s Prels » Prely s Prels 5 dieft, dright}o The
output of the distance sensor, which gauges the distance
to surrounding vehicles, spans a range from O to 500. Our
experiments entail two distinct settings: one where an agent
is trained on a restricted set of 52 scenarios from the highD
dataset (i.e. highD simple) and another where an agent is
trained on all 3000 scenarios (i.e. highD full). Due to the
absence of ground truth constraints in this environment, it is

not feasible to report the frequency of constraint violations.
Instead, we present two key performance metrics: the
off-road ratio (indicating the percentage of trajectories in
which the agent deviates from the road) and the collision
ratio (reflecting the percentage of trajectories in which the
agent collides with another vehicle). For the purpose of
comparison, our approach is evaluated against two other
agent types: a standard RL agent without any provided
constraints (i.e. RL) and an RL agent equipped with an
engineered reward function, as proposed by Wang, Kra-
sowski, and Althoff (2021), which issues negative rewards
when the agent deviates off-road or collides with another
vehicle (i.e. RL w. optimized reward). The results displayed
in Figure 5 clearly demonstrate that our method excels in
preventing agents from driving off-road and reducing the
incidence of collisions with other vehicles. These outcomes
strongly suggest that our rule-learned agents are not only
safer but also achieve higher rewards compared to both
the conventional RL agents and those equipped with the
hand-engineered optimized reward function.

Related Work

The constraint learning problem is by definition ill-posed
as many set of constraints can describe the same set of ex-
pert trajectories. In order to prevent the acquisition of overly
cautious constraints, many approaches rely on the princi-
ple of maximum entropy to derive the most concise set of
constraints that align with expert demonstrations (Ziebart
et al. 2008). Scobee and Sastry (2020) introduced an ap-
proach focused on learning a set of constraints that maxi-
mize the likelihood of expert demonstrations. This method,
when combined with inductive logic programming, allows
for the acquisition of a logical formula representing the
learned constraints (Baert, Leroux, and Simoens 2023). By
approximating the maximum likelihood objective, this ap-
proach can be effectively applied to environments with con-
tinuous state-action spaces (Malik et al. 2021; Gaurav et al.
2023; Liu et al. 2023). However, it’s important to empha-
size that these methods are primarily well-suited for en-
vironments with deterministic dynamics. For environments
with stochastic dynamics, constraint learning is made pos-
sible through methods based on the principle of maximum
causal entropy (Ziebart, Bagnell, and Dey 2010), as demon-
strated by McPherson, Stocking, and Sastry (2021) for dis-
crete environments and by Baert et al. (2023) for continuous
environments. Unlike our methodology, the aforementioned
methods all necessitate knowledge of the agent’s goal and
the availability of a simulator of the environment for learn-
ing the constraints. Of particular relevance to our research
is the work of Lindner et al. (2023), who also define con-
straints as a convex set in the environment’s feature vector
space. Nevertheless, their definition of the safe set involves
the convex hull of the feature expectations derived from the
demonstrations. In contrast, our approach models the safe
set using a decision tree, offering the distinct advantage of
interpretability for both the safe set and the constraints ex-
tracted. Additionally, we hypothesize that our method is less
prone to overfitting, as it employs only the most informative
feature dimensions for defining the safe set. Furthermore,

it is important to note that they learn a linear cost function
in feature space. To allow their method to work in environ-
ments with non-linear constraints, they adopt a one-hot en-
coding of the state-action space as features. The latter is only
possible when the state-action space is relatively small and
finite. Because of this the method proposed by Lindner et al.
(2023) is unsuitable for learning constraints in the environ-
ments we evaluated. Another benefit of our method is that
the OC-tree naturally provides robustness when dealing with
a limited number of negative examples in the training data,
a common scenario when learning from human demonstra-
tions.

Conclusion

We have introduced a novel approach to acquire constraints
modeled by a logic formula in disjunctive normal form from
expert demonstrations. These acquired rules can be em-
ployed as an easily interpretable cost function in the con-
text of constrained reinforcement learning. We evaluated our
method on multiple synthetic environments and realistic au-
tonomous driving scenarios. In both, our method improves
safety and performance of the learning agents. In addition,
we provided a post-training pruning mechanism to simplify
to learned formula. Nevertheless, there exists substantial po-
tential for enhancing the transferability of constraints across
various domains. This improvement will alleviate the neces-
sity for expert trajectories to be available in every target do-
main. In future work, we plan to investigate the relation be-
tween the tree depth and the transferability of the learned
constraints. We would also like to investigate whether more
effective constraints can be learned when a simulator of the
environment is provided. At last, we want to extend the pro-
posed method for learning constraints expressed in tempo-
ral logic. This extension brings the significant benefit of en-
hanced expressiveness, enabling us to effectively describe
more intricate and complex constraints.

Examples of Learned Rules

We present some learned formulas describing the constraints
in an environment. The presented formulas are already
pruned using a violation-evaluation threshold of 0.001.
PointGoal: The first rules define a maximum acceleration
and velocity. The following rules define a safe boundary be-
tween the agent and hazards in different directions around
the agent.

highD: The first rules define a minimum and maximum
speed limit along the x- and y-axis and a limit on the dis-
tance between the car in the same lane in front of the agent
(pre1,) and behind the agent (py1,). The next rules define a
minimum distance to the road edges. The following rules
distinguish the agent being on the left or right lane based on
the distance to the right road edge. The last rule states the
distance to the vehicle on the left lane in front of the agent
should be smaller than 344.91 if the distance to the vehicle
on the left lane behind the agent is bigger than 325.83. This
will force the agent to move one lane to the left. It is debat-
able whether this last rule corresponds to desired behavior as
the agent will have a preference to drive on the left or middle

lane.

Acknowledgement

This research was partially funded by the Flemish Govern-
ment (Flanders Al Research Program).

References

Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained policy optimization. In International conference on
machine learning, 22-31. PMLR.

Althoff, M.; Koschi, M.; and Manzinger, S. 2017. Com-
monRoad: Composable benchmarks for motion planning on
roads. In 2017 IEEE Intelligent Vehicles Symposium (IV),
719-726. IEEE.

Altman, E. 1999. Constrained Markov decision processes:
stochastic modeling. Routledge.

Baert, M.; Leroux, S.; and Simoens, P. 2023. Inverse rein-
forcement learning through logic constraint inference. Ma-
chine Learning, 1-26.

Baert, M.; Mazzaglia, P.; Leroux, S.; and Simoens, P. 2023.
Maximum Causal Entropy Inverse Constrained Reinforce-
ment Learning. arXiv preprint arXiv:2305.02857.

Gaurav, A.; Rezaee, K.; Liu, G.; and Poupart, P. 2023.
Learning Soft Constraints From Constrained Expert Demon-
strations. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Itani, S.; Lecron, F.; and Fortemps, P. 2020. A one-class
classification decision tree based on kernel density estima-
tion. Applied soft computing, 91: 106250.

Ji, J.; Zhou, J.; Zhang, B.; Dai, J.; Pan, X.; Sun, R.; Huang,
W.; Geng, Y.; Liu, M.; and Yang, Y. 2023. OmniSafe: An
Infrastructure for Accelerating Safe Reinforcement Learn-
ing Research. arXiv preprint arXiv:2305.09304.

Krajewski, R.; Bock, J.; Kloeker, L.; and Eckstein, L. 2018.
The highD Dataset: A Drone Dataset of Naturalistic Vehicle
Trajectories on German Highways for Validation of Highly
Automated Driving Systems. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC),
2118-2125.

Krakovna, V.; Uesato, J.; Mikulik, V.; Rahtz, M.; Everitt, T.;
Kumar, R.; Kenton, Z.; Leike, J.; and Legg, S. 2020. Speci-
fication gaming: the flip side of Al ingenuity.

Lindner, D.; Chen, X.; Tschiatschek, S.; Hofmann, K.;
and Krause, A. 2023. Learning Safety Constraints from

Demonstrations with Unknown Rewards. arXiv preprint
arXiv:2305.16147.

Liu, G.; Luo, Y.; Gaurav, A.; Rezaee, K.; and Poupart, P.
2023. Benchmarking Constraint Inference in Inverse Re-
inforcement Learning. In The Eleventh International Con-
ference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Malik, S.; Anwar, U.; Aghasi, A.; and Ahmed, A. 2021. In-
verse constrained reinforcement learning. In Infernational
conference on machine learning, 7390-7399. PMLR.

Rules extracted from the expert trajectories in the PointGoal environment after pruning.

p=a; <—=542Vv, < =105V, >146Vdyon>088Vds3>1.0Vds>099

Vdig>=0.0Ady <=0.22Ad;; > 0.81
Vdg >=0.22 Ndjg <= 0.88 Ad;7 > 0.87

Vdig>=00Ady <=022Ad; >=0.0Ad;; <=0.27 Adj5 > 0.66
Vdig>=00Ady<=022Ad; >=0.27ANd;; <=0.81Adp5 > 0.81
Vdp>=0.22ANdjg <=088Ad;; >=0.0Ad;7 <=0.27 ANdig > 0.85
Vd >=022Adjp <=088Adj7 >=027Adj7 <=0.87Adj4 > 0.94

Vdo>=0.0Ado<=022Ad;1 >=0.0Adj1 <=0.27TAdj15 >= 0.0 A dji5 <= 0.66 A dja > 0.83
Vdp>=00Adgo<=022Ad;; >=027ANd;; <=0.81 Adj15 >= 0.0 Adj15 <= 0.81 Adj4 > 0.94
Vdp>=0.22Ndipg <=088Ad;7 >=0.0ANdj7 <=0.27ANdig >= 0.0 Adjg <= 0.31 Adig > 0.78
Vdig>=022Ndp <=088Adi7 >=0.0ANd;7 <=0.27ANdig >= 0.31 Adjg <= 0.85 A dig > 0.89
Vdig>=022Ndjg <=0838Adi7 >=027TNdj7 <= 0.87Adj1ga >= 0.0 A djg <= 0.28 Adjr3 > 0.94
Vdio>=022ANdig <=083Adi7 >=027TNdj7 <=0.87Adjg >= 028 Adj1a <= 0.94 Adyy > 0.94

Rules extracted from the human trajectories in the highD dataset after pruning.

=0y < —0.95V vy >096Vuv, <20.67Vvy>4747V pri, < 18.83V prety, < 18.83 V diefi edge < 4-42 V dright edge < 2.02

V vy >= —0.95 A vy <= 0.96 A dright edge >= 4.65 A drightedge <= 7.38 A Drel; >= 18.83 A pret, <= 328.76 A pret, < 236.11

Vo, >=—0.95 A vy <= 0.96 A drightedge >= 4.65 A drightedge <= 7.38 A Prel; >= 328.76 A pret, <= 500.0 A pret, < 155.9

Vo, >= —0.95 A v, <= 0.96 A dright cdge >= 4.65 A drightedge <= 7.38 A Pret; >= 18.83 A prei, <= 328.76 A pret, >= 236.11
A Prely, <= 500.0 A Pre1; < 235.66

Vo, >= —0.95 A vy <= 0.96 A dright cdge >= 4.65 A dright edge <= 7-38 A Pret, >= 328.76 A pret, <= 500.0 A pret, >= 155.9
A Prel;, <= 500.0 A pre1; < 136.43

V oy >= —0.95 A vy <= 0.96 A drightedge >= 2.02 A dright edge <= 4.65 N Prely >= 0.04 A prej, <= 325.83
A Prety >= 0.03 A D, <= 332.09 A prep, < 26.81

Vo, >= —0.95 A Vy <= 0.96 A drighledge >=2.02 A\ drightedge <=4.65 A Prely >= 325.83 A Prely <= 900.0 A prej, >= 33.84
A Drel;, <= 219.6 A prer, < 29.48

Vo, >=—0.95 A vy <= 0.96 A dright cdge >= 2.02 A dright edge <= 4.65 A Prety >= 325.83 A pret, <= 500.0 A prej, >= 219.6

A Dret, <= 500.0 A pret, > 344.91

McPherson, D. L.; Stocking, K. C.; and Sastry, S. S. 2021.
Maximum likelihood constraint inference from stochastic
demonstrations. In 2021 IEEE Conference on Control Tech-
nology and Applications (CCTA), 1208—-1213. IEEE.

Ray, A.; Achiam, J.; and Amodei, D. 2019. Benchmark-
ing safe exploration in deep reinforcement learning. arXiv
preprint arXiv:1910.01708, 7(1): 2.

Russell, S. 2019. Human compatible: Artificial intelligence
and the problem of control. Penguin.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.

Scobee, D. R. R.; and Sastry, S. S. 2020. Maximum Likeli-
hood Constraint Inference for Inverse Reinforcement Learn-
ing. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Wang, X.; Krasowski, H.; and Althoff, M. 2021.

CommonRoad-RL: A Configurable Reinforcement Learn-
ing Environment for Motion Planning of Autonomous
Vehicles. In IEEE International Conference on Intelligent
Transportation Systems (ITSC).

Yang, T.; Rosca, J.; Narasimhan, K.; and Ramadge, P. J.
2020. Projection-Based Constrained Policy Optimization.
In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net.

Zhang, Y.; Vuong, Q.; and Ross, K. 2020. First order con-
strained optimization in policy space. Advances in Neural
Information Processing Systems, 33: 15338-15349.

Ziebart, B. D.; Bagnell, J. A.; and Dey, A. K. 2010. Mod-
eling Interaction via the Principle of Maximum Causal En-
tropy. In Fiirnkranz, J.; and Joachims, T., eds., Proceedings
of the 27th International Conference on Machine Learn-
ing (ICML-10), June 21-24, 2010, Haifa, Israel, 1255-1262.
Omnipress.

Ziebart, B. D.; Maas, A. L.; Bagnell, J. A.; Dey, A. K.; et al.
2008. Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, 1433-1438. Chicago, IL, USA.

