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Abstract

Optical coherence tomography (OCT) is a non-invasive imaging technology that can pro-
vide micrometer-resolution cross-sectional images of the inner structures of the eye. It is
widely used for the diagnosis of ophthalmic diseases with retinal alteration such as layer
deformation and fluid accumulation. In this paper, a novel framework was proposed to
segment retinal layers with fluid presence. The main contribution of this study is two
folds: 1) we developed a cascaded network framework to incorporate the prior structural
knowledge; 2) we proposed a novel two-path deep neural network which includes both the
U-Net architecture as well as the original implementation of the fully convolutional net-
work, concatenated into a final multi-level dilated layer to achieve accurate simultaneous
layer and fluid segmentation. Cross validation experiments proved that the proposed net-
work has superior performance comparing with the state-of-the-art methods by up to 3%,
and incorporating the relative positional map structural prior information could further
improve the performance (up to 1%) regardless of the network.

Keywords: Retinal layer segmentation, Optical Coherence Tomography, Fully convolu-
tional network, Relative positional map

1. Introduction

Optical coherence tomography (OCT) has been widely used to detect and monitor patholo-
gies from retinal diseases. Anatomical and structural alteration measured from OCT im-
ages, such as layer thinning and fluid accumulation, are important signs for various types of
retinal diseases (Hee et al., 1995; Joussen et al., 2010). However, manual segmentation of
retinal layers and fluid is extremely time consuming, and suffers from inter-rater variability.
Development of automatic segmentation tools can potentially help the physicians to achieve
fast and accurate diagnosis.
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The retinal layer segmentation methods can be categorized into two groups: 1) mathe-
matical model based methods construct the models using prior assumptions of image struc-
ture, such as global shape regularization (Rathke et al., 2014) and graph (Lee et al., 2013)
based methods. 2) pixel-wise classification based methods extracted pixel- or patch-wise fea-
tures and feed to machine learning classifiers such as support vector machine (SVM) (Srini-
vasan et al., 2014) and deep learning based neural network (Roy et al., 2017). However, the
performance of current available approaches are still behind the accuracy of human-rater’s
and new methods are needed for better segmentation accuracy.

In this study, a novel deep learning based framework is proposed to segment retinal layers
with the presence of fluid. The major contributions of the study are: 1) Proposed a novel
deep neural network for simultaneous retinal layer and fluid segmentation (LF-UNet), which
combines the the U-Net (Ronneberger et al., 2015) and a original implementation of the
FCN (Long et al., 2015) (referred to as FCN hereafter), and outperformed state-of-the-art
methods in the cross validation experiments. 2) Proposed a novel framework with cascading
networks to incorporate prior structural knowledge in a specific designed form, i.e, relative
positional map. By calculating the relative positional map based on the segmentation of
the first network and use it as additional channel of input for the second network, the
performance of proposed approach was further improved regardless the network used in the
framework.

2. Methods

Our framework for the segmentation of retinal layers and fluid consisted of two cascaded LF-
UNet as displayed in Figure 1. First, the inner limiting membrane (ILM) and the Bruch’s
membrane (BM) were segmented by the first LF-UNet. Second, the relative positional
map was calculated and used as an addition channel of input for the second LF-UNet
to segment 6 retinal surfaces and fluid. A Random Forest classifier was trained in the
last step to rule out false positive fluid regions as detailed in (Lu et al., 2019). The final
outcome is the segmentation of both retinal fluid and 6 layer surfaces, including the ILM,
the posterior boundary of nerve fiber layer (NFL), the posterior boundary of inner plexiform
layer (IPL), the posterior boundary of outer plexiform layer (OPL), the IS/OS junction,
and the Brunch’s membrane.

2.1. Materials

The OCT images were acquired using a Zeiss Cirrus 5000 HD-OCT (Zeiss Meditec. Inc,
Germany) which uses the OCT- micro-angiography complex algorithm (OMAG) with an
A-scan rate of 68Khz. The 3x3mm pattern was used with a sampling rate of 245x245,
which corresponds to a distance of 12.2µm between scanning locations. A total of 4 B-
scans were acquired at each location. The A-scan depth of the system is 2mm with an axial
resolution of 5µm and a transverse resolution of 15µm. A total of 58 3D volumes were
used in this study, 25 of which are acquired from diabetic patients who mainly exhibited
intra-retinal fluid, and the remaining are acquired from healthy subjects. Each volume
contains 245 B-scans, resulting a total of 14210 Bscans. We select and segmented retinal
layers by referencing to their clinical relevance (Chiu et al., 2010). Five boundaries were first
manually delineated: the inner limiting membrane (ILM); surface between the nerve fiber
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Figure 1: Flowchart of the proposed novel framework, comprising a cascade of two LF-
UNet incorporating prior anatomical information, relative positional map within
the retina, to achieve simultaneous layer and fluid segmentation.

layer(NFL) and the ganglion cell layer (GCL); surface between the inner plexiform layer
(IPL) and the inner nuclear layer (INL); surface between the outer plexiform layer (OPL)
and the outer nuclear layer (ONL); the inner/outer segment junction - surface between
the Inner segment (IS) and outer segment (OS) of the photo receptor layer; the surface
between the retinal pigment epithelial layer (RPE) and the bruch’s membrain (BM). We
then labelled the pixels between two retinal layer boundaries as the same class for training,
instead of determining the layer boundaries, effectively converting the problem of boundary
detection into tissue segmentation. 5 retinal layer structures were segmented, here referred
to as ILM-NFL, GCL-IPL, INL-OPL, ONL-IS, OS-BM in the rest of this article. Retinal
fluid can be categorized into different subtypes depending on their location in the retina
[8]. In this study, given the limited number and size of the fluid regions, we regarded all
the fluid as a single class.

2.2. Network Architecture

The network architecture of the proposed LF-UNet was a combination of the U-Net (Ron-
neberger et al., 2015) and the original implementation of FCN (Long et al., 2015). As
illustrated in Figure 2, the U-Net and the FCN shared the same contracting path (the
downward path on the left side). It consisted of 4 blocks which contained two convolution
layers with kernel size 3 × 3 followed by an nonlinear activation function and a 2 × 2 max
pooling layer with stride 2. The number of feature maps in each block were 64, 128, 256
and 512, respectively.

The expansive path was split into two parts: the U-Net part and the FCN part. In
the U-Net part, the features extracted at each contracting block were concatenated with
the features generated at the expansive block through skip-connections to provide high-
resolution information. In the FCN part, the features of the contracting block and the
expansive block with same resolution were added up as the input for the next block. The
combination of these two networks harnesses their individual strengths, which leads to
better segmentation. 2× 2 up-convolution layer were used in both parts after convolutional
layers.
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Figure 2: Network architecture of the LF-UNet, which is a combination of U-Net and Fully
convolutional neural network. Each number above the cyan box represents the
number of B-scans of the feature map.

The feature maps of the last convolutional layers in both parts were concatenated and
fed to the three parallel dilated convolution layers (Yu and Koltun, 2015) followed by a
single layer 1x1 convolutional network to predict the segmentation of different layers and
the fluid. As some retinal layers occupied a large area, we used dilated convolutional layers
instead of normal convolutional layers to increase the receptive field, enabling us to harness
enough information from nearby layers. Using a large receptive field with normal convolu-
tional layers would result in many more parameters thereby requiring more computational
resources and potentially leading to overfitting. Conversely, dilated convolutional layers
can enlarge the receptive field without increasing the number of parameters by skipping
some units during convolution. All the activation functions used in the hidden layers were
Rectified linear units (Relu), while the Softmax function was used for the output layer to
map the output probability to (0, 1).

2.3. Relative positional Map

The segmentation of the ILM and the BM was relatively easy due to their strong contrast
compared with other layers and the background, while the segmentation of the remaining
layers was more challenging due to their relative similar intensity patterns, especially for
the posterior boundary of NFL, the posterior boundary of IPL and the posterior boundary
of OPL, as shown in the right image of Figure 1. An important feature to determine the
layer label of each pixel is its location in the retina. However, such features can hardly be
captured by the network itself since the convolution kernel can only capture the information
of nearby pixels. It has been shown that incorporating structural priors obtained from initial
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segmentation of the entire retina can improve the network performance (Venhuizen et al.,
2018). More recently, relative positional maps (Lu et al., 2019), a metrics more specific to
the retinal anatomy, have proven to be a useful feature for the segmentation of multi-class
fluid in the retina, and its potential usage in layer segmentation is worth exploring. For
pixel (x, y) in a B-scan, its intensity in the relative positional map is defined as:

I(x, y) =
y − Y1(x)

Y1(x)− Y2(x)
(1)

where Y1(x) and Y2(x) represent the y-coordinate of ILM and BM segmented by the first
LF-UNet, respectively.

The relative positional map was concatenated to the B-scans as an additional channel
of input for the second LF-UNet. Because the relative distance of background pixels above
ILM was less than 0, while the relative distance of background pixels below ILM was larger
than 1, they were labeled differently to avoid the confusion of network, resulting 8 mutually
exclusive classes, background above ILM, ILM-NFL, NFL-IPL, IPL-OPL, OPL-IOS, IOS-
BM, background below BM, and the fluid.

2.4. Loss function

The network was trained end-to-end with a loss function which consisted of two parts: the
weighted Dice loss and the weighted logistic loss (Roy et al., 2017). The weighted Dice loss
was defined as:

LossDice = 1−
2
∑

x∈Ω ωlpl(x)gl(x)∑
x∈Ω p

2
l (x) +

∑
x∈Ω g

2
l (x)

(2)

where Ω represents the retinal region, gl(x) is the ground truth, pl(x) is the estimated
probability of pixel x belongs class l. ωl is the weight associated with the number of pixels
in different classes to resolve the imbalance among different layer regions and the fluid.

The weighted logistic loss is defined as below:

Losslog = −
∑
x∈Ω

ω(x)gl(x)log(pl(x)) (3)

where ω is the weight associate with each pixel x.
In order to make the network more sensitive to boundary and retinal regions, the weight

is designed as:
ω(x) = 1 + ω1I(|5l(x)| > 0) + ω2I(l(x) = L) (4)

where I represents an indicator function and 5 is the gradient operator. It is worth men-
tioning that l is the label of pixel x instead of its intensity, therefore a pixel with |5l(x)| > 0
must be a boundary pixel based on its ground truth segmentation. L represents the entire
retina, including fluid and 5 layer regions. Following the suggestion from the original U-Net
paper (Ronneberger et al., 2015), ω1 and ω2 were set as 10 and 5, respectively, and kept
the same for all experiments.

The overall loss function was defined as:

Losslog = λ1LossDice + λ2Losslog (5)

where λ1 and λ1 were set as 0.5 and 1, respectively.
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2.5. Optimization

Due to the limitation of GPU memory, the segmentation was performed on each 2D B-scan
instead of the whole 3D volume. The adjacent B-scans (one before and one after the B-scan
to be segmented) were also used for segmentation considering the consistency of the retinal
layers and fluid, resulting a 500x245x3 matrix in the input of the first LF-UNet.

Two strategies were used during the training stage to make the proposed network less
prone to overfitting. First, a dropout layer was inserted between the dilated convolutional
layers and the 1×1 convolutional layer. The dropout ratio was set as 0.5 which means only
half of the units were randomly retained to feed features to the last convolutional layer in the
training stage. By avoiding training all units on every sample, this regularization technique
not only reduced the chances of overfitting by preventing complex co-adaptations on the
training data, but also reduced the amount of computation and improved training speed.
Secondly, data augmentation was applied to create more training samples to improve the
robustness and invariance properties of the network. Three types of image transformations
were applied to augment the data - flip, rotation and scaling - with the maximum scaling
ratio set as 0.5 and rotation degree set as −25◦ to 25◦ in order to cope with cases where
OCT images were acquired at peripheral side of the retina with large tilted angle.

Batch size was set as 3 due to the GPU memory limitation. The weight parameters for
each layer were initialized with a uniform distribution while all bias started with 0 (Glorot
and Bengio, 2010). Adaptive Moment Estimation (adam) optimizer was used for training
with a fixed learning rate of 10−5 and the optimization was stopped if the training accuracy
ceased to increase after 5 epochs.

3. Experiments and Results

The deep neural network was built with Tensorflow (Abadi et al., 2015), an open source
deep learning toolbox provided by Google. All the experiments were run on NVIDIA P100-
PCIE GPUs. To validate the ability of proposed framework, a 10-fold cross validation was
performed on the 58 3 × 3mm volumes. To avoid the bias caused by using B-scans of the
same volume in both training and testing, the volumes were partitioned on the patient
level divided into the training set which contained the B-scans of 52-53 volumes, and the
testing set which contained the B-scans from the rest of the volumes in each cross validation
experiment. The segmentation performance was evaluated using both the Dice index and
the surface distance for each B-scan. Performance for each layer and the fluid were measured
separately, and the B-scans which did not contain fluid were discarded when measuring the
performance of the fluid segmentation. Paired t-tests with multiple comparison controlled
with False Discovery Rate (FDR) set to 0.05. The statistical comparison includes testing:
1) the effect of using 3-slice-channel compared to 1-slice-channel as input; 2) The effect of
using cascaded network to incorporate spatial priors 3) The effect of network architecture
change (U-net vs RelayNet vs LF-UNet). 4) Finally, the performance with and without
fluid in the segmentation.

Table 1 and Figure 3 shows the comparison of the performance between the proposed
framework and two state-of-the-art methods: the U-Net (Ronneberger et al., 2015) and the
RelayNet (Roy et al., 2017). Two kinds of input, single B-scans and 3 consecutive B-scans,
were tested with or without a relative positional map. To evaluate the effect of incorporating
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Table 1: Dice index of different networks and inputs. 1U-Net-1Bscan represents only a
single U-Net which used a single B-scan as input, while 2LF-UNet-3Bscan means
2 concatenated LF-UNets were used for segmentation with 3 adjacent B-scans
as input, and the relative distance map calculated from the first LF-UNet was
used as the additional channel of input for the second LF-UNet. Column 2 to 6
represents the segmentation accuracy for layers from top to bottom. Column 7
and 8 represents the Dice index for fluid before and after random forest classifi-
cation. Noticing the 2LF-UNet-3Bscan has the best performance regarding the
segmentation of fluid and most layers.

ILM-NFL NFL-IPL IPL-OPL OPL-IOS IOS-BM Fluid RF-Fluid
1U-Net-1Bscan 0.8679 0.9315 0.9033 0.9153 0.9308 0.5011 0.3736
2U-Net-1Bscan 0.8807 0.9454 0.9243 0.9411 0.9384 0.4871 0.4293
1U-Net-3Bscan 0.8910 0.9451 0.9180 0.9271 0.9329 0.4761 0.3839
2U-Net-3Bscan 0.9019 0.9526 0.9316 0.9458 0.9401 0.5066 0.4770

1RelayNet-1Bscan 0.9032 0.9472 0.9208 0.9424 0.9432 0.4177 0.4079
2RelayNet-1Bscan 0.9075 0.9500 0.9261 0.9472 0.9452 0.4676 0.4955
1RelayNet-3Bscan 0.9236 0.9580 0.9355 0.9472 0.9451 0.4313 0.4299
2RelayNet-3Bscan 0.9255 0.9593 0.9379 0.9517 0.9471 0.4471 0.3977
1LF-UNet-1Bscan 0.9100 0.9531 0.9278 0.9466 0.9439 0.5014 0.4922
2LF-UNet-1Bscan 0.9063 0.9507 0.9281 0.9484 0.9446 0.5132 0.5661
1LF-UNet-3Bscan 0.9283 0.9610 0.9388 0.9509 0.9459 0.4674 0.4624
2LF-UNet-3Bscan 0.9278 0.9612 0.9409 0.9526 0.9466 0.4985 0.5837

the fluid label towards the retinal layer segmentation accuracy, we also performed a set of
additional experiments trained using the proposed network with only layer segmentation as
ground truth labels. The evaluation results showed that, 1) Under the same condition, the
proposed LF-UNet had better performance comparing with U-Net and RelayNet regarding
the segmentation of both the retinal layers and fluid; 2) Using the two adjacent B-scans
as addition channels of the input could significantly improve the segmentation accuracy
regardless of the network architecture; 3) Under most circumstances, cascading networks
to incorporate prior structural knowledge of retina could further improve the performance,
suggesting the relative distance is a useful feature not only for fluid segmentation, but also
for retinal layer segmentation.

Comparing with the layer segmentations, the fluid segmentation showed inferior perfor-
mance with all three network architectures when using Dice, which is mainly due to the fact
that patient with fluid of small size and dice index is sensitive to volume size by nature.

4. Conclusion and Discussion

In this paper, we have proposed a novel framework to automatically segment retinal layers
as well as fluid in OCT images. A novel deep neural network, LF-UNet, was proposed and
cross validation experiments proved that the proposed network outperformed state-of-the-
art methods. Further experiments showed that by cascading two networks, incorporating
structural prior knowledge using the relative positional map derived from the first network
could improve the segmentation performance regardless of the network.

In our proposed network architecture, the two part of the expansion path utilize slightly
different operations to propagate the features from the corresponding block in the contract-
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Figure 3: Performance Comparison among different experiments: - Top panel: Dice index;
- bottom panel: surface distance Statistical label: - o: significant improvement
of cascaded network training (with relative position map) over 1st round - x:
significant improvement of 3-slice input channel over 1-slice input channel - +:
significant improvement of network architecture

ing path: the U-Net path concatenate the feature maps through the ”skip” connection,
while the FCN path adding them together. This distinction is similar to the corresponding
operations in RestNet(He et al., 2016) and DenseNet (Jegou et al., 2017; Huang et al.,
2017), in which the concatenation and adding are introduced within a block of connecting
layers. The key distinction is that, in this work, such ”skipping connection” and ”con-
catenation connection” are applied across the entire network covering features at all range,
which can then been extracted by the last dilated convolution layers with different level
of receptive fields. The significantly improved segmentation accuracy over the single-path
approach in the U-Net demonstrated that the feature concatenation and summation retains
complementary information embedded in the latent space.

As shown from our experimental comparison, the cascaded networks not only achieved
significantly improved segmentation accuracy, especially on the boundary pixels, but also
significantly reduced performance variations among test set, as demonstrated in the surface
distance measure in Figure 3. This indicated the importance of incorporating anatomical
prior information, even when automatically generated from the initial estimation, when
performing segmentation tasks on medical image data. Similar conclusion has been demon-
strated in different studies in which automatically generated spatial priors were incorporated
in different form in a similar cascaded approach (Venhuizen et al., 2018).

Our experiment demonstrated that when training a neural network using 2D-convolution
on 2D slices extracted from 3D volumes, incorporating adjacent slices as additional channels
significantly improved the network performance. These additional channels potentially pro-
vide gradient information embedded in the local neighbourhood regions which are crucial
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for segmentation tasks and can otherwise only be achieve through computational-expensive
and training-data-hungry 3D-convolution-based volumetric segmentation.

In recognition of the above, we believe although this works is mainly focused on the
retinal OCT layer and fluid segmentation, the results and conclusions drawn from the ex-
periments could provides more generalizable insights contribute to the more broader domain
of knowledge.
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Figure 4: Representative images of the segmentation results: A: Sample images demonstrat-
ing the simultaneous segmentation of retinal layer and fluid B: Sample images
demonstrating the improved segmentation results when adding the relative posi-
tional map as additional input channel in the second cascaded LF-UNet (right-
most) compared to the results from the first LF-UNet (Middle)
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