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Abstract

Learning about the three-dimensional world from two-dimensional images is a
fundamental problem in computer vision. An ideal neural network architecture
for such tasks would leverage the fact that objects can be rotated and translated
in three-dimensions to make predictions about novel images. However, imposing
SO(3)-equivariance on two-dimensional inputs is difficult because the group of
three-dimensional rotations does not have a natural action on the two-dimensional
plane. Specifically, it is possible that an element of SO(3) will rotate an image
out of the plane. We show that an algorithm that learns a three-dimensional
representation of the world from two-dimensional images must satisfy certain
consistency properties which we formulate as SO(2)-equivariance constraints. We
use the induced and restricted representations of SO(2) on SO(3) to construct
and classify architectures that satisfy these consistency constraints. We prove our
construction realizes all possible architectures that respect these constraints. We
show that three previously proposed neural architectures for 3D pose prediction
are special cases of our construction. We propose a new model that generalizes
previously considered methods and contains additional trainable parameters. We
test our architecture on three pose prediction tasks and achieve SOTA results on
both the PASCAL3D+ and SYMSOL pose estimation tasks.

1 Introduction

One of the fundamental problems in computer vision is learning representations of 3D objects from
2D images [1–3]. By understanding how image features correspond to a physical object, a model
can generalize better to novel views of the object, for instance, when estimating the pose of an
object. In general, neural networks that respect the symmetries of a problem are more noise robust
and data efficient, while also less prone to over-fitting [4]. Three-dimensional space has a natural
symmetry group of three-dimensional rotations and three-dimensional translations, SE(3). While
we would like to leverage this symmetry to design improved neural architectures, serious challenges
exist in incorporating 3D symmetry when applied to image data. Specifically, a projection of a three-
dimensional scene into a two-dimensional plane does not transform equivariantly under all elements
of SE(3). This is because there is no a priori model for how two-dimensional images transform under
out-of-plane object rotations. Cohen and Welling [5] showed how to design neural networks that
are explicitly SO(2)-equivariant and accept images as inputs. However, SO(2)-equivariant methods
ignore the fact that the group SO(3) acts on the space of pose configurations.

Equivariant neural networks are much more constrained than general multi-layer perceptrons. The
requirement of equivariance to a group G places strict restrictions on the allowed linear maps and the
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allowed non-linear functions in each network layer [5, 6]. Because of this, the possible structures of
G-equivariant neural networks can be completely classified based on the representation theory of
the group G [4, 7, 8]. For compact groups, it is possible to characterize the structure of all possible
kernels of G-equivariant networks [8].

Figure 1: A map � : F ! F" from signals
on R2 to signals on S

2. Let SO(2) be the
subgroup that consists of all in-plane rota-
tions ( i.e. about the axis defined by the red
arrow). The map � must be equivariant with
respect to this SO(2) ✓ SO(3) subgroup.

We argue that any equivariant machine learning algorithm
that builds a three-dimensional model of the world from
two-dimensional images must satisfy a natural geomet-
ric consistency property. This consistency property can
be stated as SO(2)-equivariance with respect to only the
SO(2) subgroup acting along the camera viewing orienta-
tion (see Figure 1). We give a complete characterization of
maps that satisfy this property. This derivation uses the so-
called restricted representation of SO(2) since the group
action is restricted from the full SO(3). Using the Frobe-
nius Reciprocity theorem, we show that this geometric
constraint can also be derived using induced representa-
tions, a type of representation of SO(3) constructed from
representations of SO(2). The classification theorems
derived in [5, 8, 4] assume that both the input and out-
put layers are G-equivariant. The construction presented
in 4 is different; we map H-equivariant functions to G-
equivariant functions. Our arguments using induced and

restricted representations give a natural generalization of equivariant maps between different groups.
We derive analogies of the theorems presented in [9, 8] for the induced and restricted representations.

1.1 Importance and Contribution

In this work, we will show how induced and restricted representations can be used to construct
neural architectures that accept image data and leverage SO(3)-equivariant methods to avoid learning
nuisance transformations in three-dimensional space.

We show that our construction satisfies two desirable theoretical properties, completeness and
universality. Let H ✓ G. We focus on the case G = SO(3) and let H = SO(2) but we give
a theoretical analysis for general groups. Specifically, the induced representation construction is
complete in that all group-valued functions on G can be induced from a set of group-valued functions
on H . The construction is universal in that all multi-linear maps that map H-equivariant functions
to G-equivariant functions are specific cases of the induced representation, modulo isomorphism.
Furthermore, we show that the architectures proposed in [10, 11] are special cases of our construction
for the icosahedral group G = A5 and the construction proposed in [12] is a special case of our
construction for the three-dimensional rotation group G = SO(3). Our method achieves state of the
art performance for orientation prediction on PASCAL3D+ [13] and SYMSOL [14] datasets.

Contributions:

• We propose a unified theory for learning three-dimensional representations from two-
dimensional images. We show that algorithms that learn three-dimensional representations
from two-dimensional images must satisfy certain consistency properties, which are equiva-
lent to SO(2)-steerability constraints.

• We introduce a fully differentiable layer called an induction/restriction layer that maps
signals on the plane into signals on the sphere. We show that the induction/restriction
layer satisfies a natural consistency constraint and prove both a completeness and universal
property for our construction.

• Our method achieves SOTA performance for orientation prediction on PASCAL3D+ and
SYMSOL datasets.
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2 Related Work

Equivariant Learning Incorporating task symmetry into the design of neural networks has been
effective in domains such as computer vision [15, 16], point cloud processing [17, 18], and robotics
[19]. Cohen and Welling [9] introduced steerable kernels which are a trainable layer that can be used
to build networks that are equivariant to 2D [5, 20] and 3D transformations [21, 22]. The majority of
past works have studied end-to-end equivariant models, where the input can be transformed by the
action of the group and all layers are equivariant, in this work, we explore how to ’fuse’ SO(2) and
SO(3) equivariant layers.

There has been growing interest in leveraging 3D symmetry from 2D inputs. [23, 24] learned a 3D
transformable latent space from images of a single object. [25] trained a convolutional network to
predict pre-trained SO(3) equivariant embeddings, while [11, 10, 12] mapped image features onto
elements of the discrete group of SO(3), using structured viewpoints or a hand-coded projections,
respectively. In contrast to prior work, we provide a theoretical foundation for learned equivariant
mappings from 2D to 3D, which additionally guides us to introduce a more general and effective
trainable operation.

Object Pose Estimation Predicting the 3D orientation of objects is an important problem in fields
like autonomous driving [26], robotics [27] and cryogenic electron microscopy [28]. Many works
[29, 30] have used a regression approach, and others [31–33] have identified ways to mitigate the
discontinuities along the SO(3) manifold. More recent works have explored ways to model orientation
as a distribution over 3D rotations, which handles object symmetries and captures uncertainty. [34],
[35] and [36] predict parameters for Bingham, von Mises and Laplace distributions, respectively.
These families of distributions can have limited expressivity, so other work explored using implicit
networks [14] or the Fourier basis [12] to model more complex pose distributions. Inspired by [12, 23],
we parameterize the latent object pose as a distribution on SO(3) and then ask what constraints
need to be imposed to enforce SO(2) ✓ SO(3)-equivariance A.0.4, which is a generalization of
SO(2)-equivariance.

3 Background

We introduce the induced and restricted representations. For a more extensive review of representation
theory, see A.

Let G be a group and V be a vector space over C. A representation (⇢, V ) of G is a map ⇢ : G !
Hom[V, V ] such that

8g, g0 2 G, 8v 2 V, ⇢(g · g0)v = ⇢(g) · ⇢(g0)v
Concisely, a group representation is an embedding of a group into a set of matrices. The matrix embed-
ding must obey the multiplication rule of the group. We now introduce the restricted representation
and induced representation.

Restricted Representation Let H ✓ G be a subgroup. Let (⇢, V ) be a representation of G. The
restricted representation of (⇢, V ) from G to H is denoted as ResG

H
[(⇢, V )]. Intuitively, ResG

H
[(⇢, V )]

can be viewed as (⇢, V ) evaluated on the subgroup H of G. Specifically,

8h 2 H, 8v 2 V, ResG
H
[⇢](h)v = ⇢(h)v

For a more in depth discussion of the restricted representation, please see A.

Induced Representation The induced representation is a way to construct representations of a
larger group G out of representations of a subgroup H ✓ G. Let (⇢, V ) be a representation of H .
The induced representation of (⇢, V ) from H to G is denoted as IndG

H
[(⇢, V )]. Define the space of

functions
F = { f | f : G ! V, 8h 2 H, f(gh) = ⇢(h�1)f(g) }

Then the induced representation is defined as (⇡,F) = IndG
H
[(⇢, V )] where the induced action ⇡

acts on the function space F via
8g, g0 2 G, 8f 2 F , (⇡(g) · f)(g0) = f(g�1g0)
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Please see A for an in depth discussion of the induced representation. The induced and restricted
representations are adjoint functors [37].

4 Method

Convolutional networks or vision transformers are typically used to extract spatial feature maps from
2D images. For convenience we ignore discretization and treat the feature maps as having continuous
inputs f : R2 ! Rd. To leverage spatial symmetries in 3D, we would like to map our features f
from a plane onto a sphere: g : S2 ! RD. Klee et al. [12] proposed one such mapping, where the
planar feature map is stretched over a hemisphere, but other possible mappings exist.

We formalize the equivariance property that every projection should have through the theory of
induced and restricted representations. The constraints that we impose have an intuitive geometric
interpretation. We give a complete characterization of all possible linear and equivariant projections
� from planar features to a spherical representation. Our general formulation includes [12] as a
special case, and we show that a learnable equivariant projection leads to better predictive models.

4.1 Equivariant 2D to 3D Projection by Induced and Restricted Representations

We first derive the SO(2)-equivariance constraint for the most general linear mapping from images to
spherical signals.

Image inputs We first describe F the space of image input signals. Let V and V " be vector spaces.
Let F be the vector space of all V -valued signals defined on the plane

F = { f | f : R2 ! V }.

Elements of F are sometimes called SE(2)-steerable feature fields [20]. The group SE(2) =
R2 o SO(2) of 2D translations and rotations acts on F via representation ⇡. Each h 2 SE(2) has a
unique factorization h = h̄hc where h̄ 2 R2 is a translation and hc 2 SO(2) is a rotation. Let (⇢, V )
be an SO(2)-representation describing the transformation of the fibers of the features f . Then the
action ⇡ is defined

8f 2 F , r 2 R2, h 2 SE(2), ⇡(h) · f(r) = ⇢(hc)f(h
�1r)

so that (⇡,F) = IndSE(2)

SO(2)
[(⇢, V )] and (⇡,F) gives a representation of the group SE(2) [9].

Spherical outputs We would like to map signals in F to functions from S2 into the vector space
V ". Let F" be the vector space of all such outputs defined as

F" = { f | f : S2 ! V " }

The group SO(3) acts on the vector space F" via

8f" 2 F", n̂ 2 S2, g 2 SO(3), ⇡"(g) · f"(n̂) = ⇢"(g)f"(g�1n̂)

where ⇢"(g) describes the SO(3) fiber representation.

SO(2)-equivariant image to sphere Let H = SO(2) be the SO(2) subgroup of SO(3) that
corresponds to in-plane rotations of the image. Our goal is to classify H-equivariant linear maps
� : F ! F". This is equivalent to the constraint that

8h 2 H = SO(2), f 2 F , �(⇡(h) · f) = ⇡"(h) · �(f) (1)

The constraint enforces equivariance with respect to SO(2) transformations. By definition, the
evaluation of ⇡"(h) at h 2 SO(2) is the restricted representation ⇡"(h) = ResSO(3)

SO(2)
[⇡"](h).
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Figure 2: Left: Decomposition of the restricted representation ResSO(3)

SO(2)
of SO(3)-irreducibles (D`

,W`) 2
\SO(3) into SO(2)-irreducibles (⇢k, Vk) 2 \SO(2). Not every SO(2)-representation can be realized as the
restriction of a SO(3)-representation. Right: Decomposition of the induced representation IndSO(3)

SO(2)
for SO(2)-

irreducibles (⇢k, Vk) 2 \SO(2) into SO(3)-irreducibles (D`
,W`) 2 \SO(3). Not every SO(3)-representation

can be realized as the induction of an SO(2)-representation.

4.2 Solving the Kernel Constraint

We use tools from [38, 8] to solve for the space of all possible maps satisfying the constraint 1, giving
the trainable space for the image to sphere layer.

Our conclusion is that instead of mapping arbitrary SO(2)-input representations to arbitrary SO(2)-
output representations, the allowed input and output representations (⇢, V ) and (⇢", V ") must satisfy
additional constraints. Specifically, not every representation can be realized as the restriction of
an SO(3) to SO(2) representation 2. Although in this paper we focus on orientation estimation,
the equivariant framework in Section C.0.1 is more general. In the Appendix D, we formulate and
solve analogous equivariance constraints for both 6DoF-pose estimation and monocular volume
reconstruction.
Theorem 1. The constraint in Equation 1 can be solved exactly using the results of [38, 8]. The most
linear general map � : F ! F" can be expanded as

[�(f)](n̂) =

Z

r2R2

dr (n̂, r)f(r)

where  : R2 ⇥ S2 ! Hom[V, V "]. Then, the exact form of  can be written as

(n̂, r) =
1X

`=0

F`(r)
TY`(n̂) (2)

where Y`(n̂) is the vectorization of the `-type spherical harmonics and each F`(r) is a standard
SO(2)-steerable kernel [9, 38] that has input SO(2)-representation (⇢, V ) and output SO(2)-
representation (⇢`, V `) = (⇢, V )⌦ ResSO(3)

SO(2)
[(D`, V `)].

The proof of this statement is given in Appendix F. Note that similar to [18, 6] the tensor product
structure of the SO(2) and SO(3) irreducible representations determine the allowed input and output
representations of the matrix valued harmonic coefficients F`(r).

4.3 Including Non-Linearities

In Section 4.2, we considered the most general linear maps that satisfied the generalized equivariance
constraint. Adding non-linearities should allow for more expressiveness. Understanding non-
linearities between equivariant layers is still an active area of research [39–42].

One way to include non-linearity is to apply standard SO(3) non-linearities after the linear induction
layer. After applying the linear mapping described in C, we apply an additional spherical non-linearity
[43] to the signal on S2. This is the method we employ for the results presented in 6.2. As shown in
G it is also possible to include tensor-product based non-linearity analogous to the results of [18, 6].
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5 Theory

5.1 Universal Property

In section 4 we showed how the restriction representation arises naturally when constructing SO(3)-
equivariant architectures for image data. However, there is no a priori choice of the hidden SO(3)
representation. We show that with this choice, our construction satisfies a universal property and is
unique up to isomorphism [44].

A standard result in group theory establishes the following universal property of induced representa-
tions, as stated in [37]:
Theorem 2. Let H ✓ G. Let (⇢, V ) be any H-representation. Let IndG

H
(⇢, V ) be the induced

representation of (⇢, V ) from H to G. Then, there exists a unique H-equivariant linear map
�⇢ : V ! IndG

H
V such that for any G-representation (�,W ) and any H-equivariant linear map

 : V ! W , there is a unique G-equivariant map  " : IndG

H
V ! W such that the diagram 3 is

commutative.

This theorem can be applied to the construction proposed in 1 to prove a universality property, similar
to the results of [5] for G-equivariant neural networks.

(⇢, V ) IndG
H
(⇢, V )

(�,W )

�⇢

 
 

"

Figure 3: Commutative Dia-
gram for Uniqueness Property
of Induced Representations.

Let (⇢, V ) be a H-representation and let (�,W ) be a G-
representation. Let  : V ! W where  is an intertwiner of
a the H-representation and the restriction of the G-representation to
an H-representation so that

8h 2 H,  ⇢(h) = ResG
H
[�](h) 

so that  2 HomH [(⇢, V ),ResG
H
(�,W )]. The universal prop-

erty of the induced representation allows us to write any such
 in a canonical form. Specifically, as illustrated in Figure 5.1,
we can always uniquely decompose  =  " � �⇢ where  " 2

HomG[IndG
H
(⇢, V ), (�,W )] and  ⇢ : V ! IndG

H
V is (�,W ) independent.

(⇢, V ) (�,W )

(⇢, V ) (�,W )

 

⇢(h) �(g)�(h)

 

⇠=

(⇢, V ) (�,W )

IndG
H
(⇢, V )

IndG
H
(⇢, V )

(⇢, V ) (�,W )

�⇢

 

⇢(h) �(g)�(h)

 
"

[Ind
G

H
⇢](h) [Ind

G

H
�](g)

 
"�⇢

 

Figure 4: Factorization Identity for Universal Property of Induced Representations

Factorization Property of H ✓ G Neural Networks We use the universal property of induced
representations to show that all possible latent G-equivariant architectures can be written in terms of
the induced representation. At each layer of a equivariant neural network, we have a set of functions
from a homogeneous space of a group into some vector space [6]. Let XH

i
be a set of homogeneous

spaces of the group H and let XG

j
be a set of homogeneous spaces of the group G. Let V H

i
and WG

j

be a set of vector spaces. Then, consider the function spaces

FH

i
= { f | f : XH

i
! V H

i
}, FG

j
= { f 0 | f 0 : XG

j
! WG

j
}

The group H acts on the homogeneous spaces XH

i
and the group G acts on the homogeneous spaces

XG

j
so that the function spaces FH

i
and FG

j
form representations of H and G, respectively

Suppose we wish to design a downstream G-equivariant neural network that accepts as signals
functions that live in the vector space FH

0
and transform in the ⇢0 representation of H . Thus,
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(⇢0,FH

0
) is a H-representation, but not necessarily a G-representation. At some point, in the

architecture, a layer FH

i
must be H equivariant on the left and both H and G-equivariant on the right.

Let us call the layer that is both H and G-equivariant FG

1
.

... (⇢i,FH

i
) (�1,FG

1 ) ...

... (⇢i,FH

i
) (�1,FG

1 ) ...

�i�1

⇢i(h)

 

�1(g)

 1

�i�1   1

⇠=

... (⇢i,FH

i
) IndG

H
[(⇢i,FH

i
)] (�1,FG

1 ) ...

... (⇢i,FH

i
) IndG

H
[(⇢i,FH

i
)] (�1,FG

1 ) ...

�i�1

⇢i(h)

�⇢i

IndG
H

[⇢i]

 "

�1(g)

 1

�i�1 �⇢i  "  1

Figure 5: Factorization of Generic Architecture Using Universal Property of Induced Representation. Any
network that has input layer (⇢i,FH

i ) that is H-equivariant and output layer (�G

1 ,FG

1 ) that is G-equivariant
can be factorized in terms of the induced representation. The map  =  " � ��i

where  " is G-equivariant
and ��i

is H-equivariant.

Suppose that  is an intertwiner between (⇢i,FH

i
) and (�1,FG

1
). Using the factor-

ization property of induced representations 5.1, there is a canonical basis of the space
HomH [(⇢i,FH

i
),ResG

H
[(�1,FG

1
)]] ⇠= HomG[Ind

G

H
[(⇢i,FH

i
)], (�1,FG

1
)] and we may write  

uniquely as  =  " � �⇢ where �⇢ is an H-equivariant map and  " is a G-equivariant map. Thus,
any boundary between H and G layers can be written as an H-equivariant layer between (⇢i,FH

i
)

and IndG
H
[(⇢i,FH

i
)] followed by a G-equivariant layer between IndG

H
[(⇢i,FH

i
)] and (�1,FH

1
). In

this way, induction is all you need and all possible latent G-equivariant architectures can be written
in terms of the induction representation.

6 Experiments

6.1 Datasets & Evaluation Metrics

We evaluate the performance of our method on three single-object pose estimation datasets. These
datasets require making predictions in SO(3) from single 2D images. SYMSOL [14] consists of a set
of images of marked and unmarked geometric solids, taken from different vantage points. Training
data is annotated with viewing direction. Some objects have symmetries so that there are multiple
equivalent viewing directions, which requires learning distributions over poses. PASCAL3D+ [13]
is a popular benchmark for object pose estimation composed of real images of objects from twelve
categories. This dataset is challenging due to the large variation in object appearances and the
presence of novel object instances in the test set. To be consistent with the baselines, we augment the
training data with synthetic renderings[45] and evaluate performance on the PASCALVOC_val set.
For more details on the benchmark datasets and additional numerical experiments, see B.

Figure 6: Diagram of an Equivariant Image to Sphere
Convolution. At each unit vector n̂ 2 S

2 the kernel
(n̂ : p) is dependent on the image point p = (x, y) 2
R2. Equivariance constraints put restrictions on the al-
lowed form of (n̂ : p). Similar to a standard convolu-
tion, the kernel  has a user defined receptive field.

When a single ground truth rotation label is
provided, we evaluate the method using the
geodesic distance between the predicted and
ground truth rotation matrices, reported as ei-
ther median rotation error or accuracy at a given
rotation error threshold. For SYMSOL, which
provides the full set of equivalent rotations asso-
ciated with an image, we measure the accuracy
of the learned pose distribution using average
log-likelihood. This is also the accuracy metric
used in [12].

6.2 Implementation & Training Details

For the results presented in 6, we use a ResNet
encoder with weights pre-trained on ImageNet.
With 224x224 images as input, this generates a
7x7 feature map with 2048 channels.

The filters in the induction layer are instantiated
using the e2nn [38] package. The maximum
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frequency is set at ` = 6. The output of the induction layer is a 64-channeled S2 signal with fibers
transforming in the trivial representation of SO(3). After the induction layer, a spherical convolution
operation is performed using a filter that is parameterized in the Fourier domain, which generates an
8-channel signal over SO(3). A spherical non-linearity is applied by mapping the signal to the spatial
domain, applying a ReLU, then mapping back to the Fourier domain. One final spherical convolution
with a locally supported filter is performed to generate a one-dimensional signal on SO(3). The
output signal is queried using an SO(3) HEALPix grid (recursion level 3 during training, 5 during
evaluation) and then normalized using a softmax following [14]. S2 and SO(3) convolutions were
performed using the e3nn [43] package. The network was initialized and trained using PyTorch [46].

In order to create a fair comparison to existing baselines, batch size (64), number of epochs (40),
optimizer (SGD) and learning rate schedule (StepLR) were chosen to be the same as that of [12].
Numerical experiments were implemented on NVIDIA P-100 GPUs.

6.3 Comparison to Baselines

We compare our method’s performance to competitive pose estimation baselines. We include
regression methods, [29, 30, 33], that perform well on datasets where objects have a single valid pose
(e.g. are non-symmetric or symmetry is disambiguated in labels). We also baseline against methods
that model pose with parametric families of distributions, [35, 47, 34, 36], an implicit model [14],
and the Fourier basis of
SO(3) [12]. To make the comparison fair, all methods use the same-sized ResNet backbone for each
experiment, and we report results as stated in the original papers where possible.

SYMSOL Results Performance on the SYMSOL dataset is reported in Table 1. Our method achieves
the highest average log-likelihood on SYMSOL I. Importantly, we observe a significant improvement
over Klee et al. [12] on all objects, which indicates that our induction layer is more effective than its
hand-designed orthographic projection. On SYMSOL II, our method slightly underperforms Murphy
et al. [14], which has much higher expressivity on the output since it is an implicit model. However,
we demonstrate that our approach, which preserves the symmetry present in the images, is better with
less data, as shown in Table 2.

Table 1: Average log likelihood (the higher the better ") on SYMSOL I & II. Per [14], a single model
is trained on all classes in SYMSOL I and a separate model is trained on each class in SYMSOL II.

SYMSOL I (") SYMSOL II (")
avg cone cyl tet cube ico avg sphX cylO tetX

Deng et al. [34] -1.48 0.16 -0.95 0.27 -4.44 -2.45 2.57 1.12 2.99 3.61
Prokudin et al. [35] -1.87 -3.34 -1.28 -1.86 -0.50 -2.39 0.48 -4.19 4.16 1.48
Gilitschenski et al. [48] -0.43 3.84 0.88 -2.29 -2.29 -2.29 3.70 3.32 4.88 2.90
Murphy et al. [14] 4.10 4.45 4.26 5.70 4.81 1.28 7.57 7.30 6.91 8.49
Klee et al. [12] 3.41 3.75 3.10 4.78 3.27 2.15 4.84 3.74 5.18 5.61
Ours 5.11 4.91 4.22 6.10 5.73 4.69 6.20 7.10 6.01 5.62

Table 2: Average log likelihood on SYMSOL I & II with 10% of training data.
10% SYMSOL I (") 10% SYMSOL II (")

avg cone cyl tet cube ico avg sphX cylO tetX

Murphy et al. [14] -7.94 -1.51 -2.92 -6.90 -10.04 -18.34 -0.73 -2.51 2.02 -1.70
Klee et al. [12] 2.98 3.51 2.88 3.62 2.94 1.94 3.61 3.12 3.87 3.84
Ours 3.01 3.63 3.01 3.53 3.02 1.91 3.54 2.88 3.71 4.04

PASCAL3D+ Results Our method achieves state-of-the-art performance on PASCAL3D+ with an
average median rotation error of 9.2 degrees, as reported in Table 3. Even though object symmetries
are consistently disambiguated in the labels, modeling pose as a distribution is beneficial for noisy
images where there is insufficient information to resolve the pose exactly. Because our induction
layer produces representations on the Fourier basis of SO(3), it naturally allows for capturing this
uncertainty as a distribution over SO(3). While both our method and [12] leverage SO(3) equivariant
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layers to improve generalization, we find our method achieves higher performance. We believe our
induction layer is more robust to variations in how the images are rendered or captured, which is
important for PASCAL3D+, since the data is aggregated from many sources. Moreover, our method
does not restrict features to the hemisphere, which could be beneficial for objects, like bikes and
chairs, that do not fully self-occlude their backsides.

Table 3: Rotation prediction on PASCAL3D+. First column is the average over all categories.
Median rotation error in degrees (#)

avg plane bike boat bottle bus car chair table mbike sofa train tv

Mohlin et al. [47] 11.5 10.1 15.6 24.3 7.8 3.3 5.3 13.5 12.5 12.9 13.8 7.4 11.7
Prokudin et al. [35] 12.2 9.7 15.5 45.6 5.4 2.9 4.5 13.1 12.6 11.8 9.1 4.3 12.0
Tulsiani and Malik [29] 13.6 13.8 17.7 21.3 12.9 5.8 9.1 14.8 15.2 14.7 13.7 8.7 15.4
Mahendran et al. [30] 10.1 8.5 14.8 20.5 7.0 3.1 5.1 9.5 11.3 14.2 10.2 5.6 11.7
Liao et al. [33] 13.0 13.0 16.4 29.1 10.3 4.8 6.8 11.6 12.0 17.1 12.3 8.6 14.3
Murphy et al. [14] 10.3 10.8 12.9 23.4 8.8 3.4 5.3 10.0 7.3 13.6 9.5 6.4 12.3
Klee et al. [12] 9.8 9.2 12.7 21.7 7.4 3.3 4.9 9.5 9.3 11.5 10.5 7.2 10.6
Yin et al. [36] 9.4 8.6 11.7 21.8 6.9 2.8 4.8 7.9 9.1 12.2 8.1 6.9 11.6
Ours (ResNet-50) 10.2 9.2 13.1 30.6 6.7 3.1 4.8 8.7 5.4 11.6 11.0 5.8 10.6
Ours 9.2 9.3 12.6 17.0 8.0 3.0 4.5 9.4 6.7 11.9 12.1 6.9 9.9

7 Conclusion

In conclusion, we have argued that any network that learns a three-dimensional model of the world
from two-dimensional images must satisfy certain consistency properties. We have shown how
these consistency properties translate into an SO(2)-equivariance constraint. Using the induced
representation we have derived an explicit form for any neural networks that satisfies said consistency
constraint. We have proposed an induction/restriction layer, which is a learnable network layer that
satisfies the derived consistency equation. We have shown that the induction layer satisfies both a
completeness property and universal property and, up to isomorphism, is unique. Furthermore, we
have shown that the methods of [12, 10, 11] can be realized as specific instances of the induction
layer.

The framework that we have developed is general and can be applied to other computer vision
problems with different symmetries. For example, as was noted in [49], the cryogenic electronic
microscopy orientation estimation problem has a latent SO(3) symmetry but a manifest SO(2)⇥Z2

⇠=
O(2) (as opposed to an SO(2)) symmetry. With a slight modification H, the results presented in the
main text allow for the construction of an induction layer that leverages this observation.

Future Work In many structure-from-motion tasks, one has access to multiple images of the same
object, taken at either known or unknown vantage points. Our work considers only single view
pose estimation. A natural generalization of our work is to include stereo measurements into the
induced/restricted representation framework. [50, 51] use transformer architectures to learn models
of three-dimensional objects from two-dimensional images. Furthermore, in this work we have only
considered supervised learning, but our framework naturally generalizes to unsupervised settings like
[23]. Another natural extension of our work would be to include transformers into the framework
presented here, which only applies to convolutional networks.

In deep learning, we often wish to construct a neural network that respects a latent symmetry G that
does not have an explicit action on the input data space. We have show how the induced representation
can be used to construct latent G-equivariant neural networks. Our work provides a systematic way
to construct neural architectures that accept any format of inputs and respect the latent symmetries of
the problem.
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