
Dynamic Maintenance of Kernel Density Estimation Data Structure: From
Practice to Theory

Jiehao Liang1 Zhao Song1,* Zhaozhuo Xu2 Junze Yin3,† Danyang Zhuo4

1University of California, Berkeley, 2Stevens Institute of Technology
3Boston University, 4Duke University

*magic.linuxkde@gmail.com,†junze@bu.edu

Abstract

Kernel density estimation (KDE) stands out as
a challenging task in machine learning. The
problem is defined in the following way: given
a kernel function f(x, y) and a set of points
{x1, x2, · · · , xn} ⊂ Rd, we would like to com-
pute 1

n

∑n
i=1 f(xi, y) for any query point y ∈ Rd.

Recently, there has been a growing trend of using
data structures for efficient KDE. However, the pro-
posed KDE data structures focus on static settings.
The robustness of KDE data structures over dy-
namic changing data distributions is not addressed.
In this work, we focus on the dynamic mainte-
nance of KDE data structures with robustness to
adversarial queries. Especially, we provide a theo-
retical framework of KDE data structures. In our
framework, the KDE data structures only require
subquadratic spaces. Moreover, our data structure
supports the dynamic update of the dataset in sub-
linear time. Furthermore, we can perform adaptive
queries with the potential adversary in sublinear
time.

1 INTRODUCTION

Kernel density estimation (KDE) is a well-known ma-
chine learning approach with wide applications in biol-
ogy Fleming and Calabrese [2017], Cantrell et al. [2018],
physics Hallin et al. [2022], Cranmer [2001] and law Cho
et al. [2020]. The KDE is defined as follows: given a kernel
function f(x, y) and a dataset {x1, x2, · · · , xn}, we would
like to estimate 1

n

∑n
i=1 f(xi, y) for a query y. It is stan-

dard to assume the kernel f to be positive semi-definite.
From a statistics perspective, we regard KDE as estimat-
ing the density of a probability distribution provided by a
mapping. Recently, there has been a growing trend in ap-
plying probabilistic data structures for KDE Charikar and

Siminelakis [2017], Backurs et al. [2019], Siminelakis et al.
[2019], Alman et al. [2020], Charikar et al. [2020], Coleman
and Shrivastava [2020], Karppa et al. [2022]. The general
idea is to transform the kernel function into a distance mea-
sure and then apply similarity search data structures such as
locality sensitive hashing and sketching. This co-design of
data structure and KDE is of practical importance: (1) the
computational efficiency is taken into consideration when
we design KDE algorithms; (2) the capacity of traditional
probabilistic data structures is extended from search to sam-
pling. As a result, we obtain a series of KDE algorithms with
both sample efficiency and running time efficiency. How-
ever, current KDE data structures focus on static settings
where the dataset is fixed and the queries and independent
of each other. More practical settings should be taken into
consideration. In some applications of KDE, the dataset is
dynamically changing. For instance, in time series model-
ing Moon et al. [1995], He and Li [2018], the KDE esti-
mators should be adaptive to the insertion and deletion in
the dataset. In semi-supervised learning Wang et al. [2009,
2019], KDE data structures should handle the update of the
kernel function. Moreover, in the works that apply KDE
in optimization, the data structures should be robust over
adversarial queries. As a result, the dynamic maintenance of
KDE data structures should be emphasized in the research
of machine learning.

In this paper, we argue that there exists a practice-to-theory
gap for the dynamic maintenance of KDE data structures.
Although there are existing work Chan et al. [2021] that sup-
ports insertion and deletion in KDE data structures, these op-
erations’ impact on the quality of KDE is not well-addressed.
Moreover, the robustness of KDE data structures over adver-
saries has recently been raised as a concern. Thus, a formal
theoretical analysis is required to discuss the robustness of
KDE data structures in a dynamic setting. We present a
theoretical analysis of the efficient maintenance of KDE for
dynamic datasets and adversarial queries. Specifically, we
present the first data structure design that can quickly adapt
to updated input data and is robust to adversarial queries.

We call our data structure and the corresponding algorithms
adaptive kernel density estimation. Our data structure only
requires subquadratic spaces, and each update to the input
data only requires sublinear time, and each query can finish
in sublinear time.

Notation We use R, R+, N+ to denote the set of real
numbers, positive real numbers, and positive integers. For
a set X , we use |X| to denote its cardinality. Let n ∈ N+

and r ∈ R. We define [n] := {1, 2, 3, . . . , n} and ⌈r⌉ to
be the ceiling of r. Let Rn be the set of all n-dimensional
vectors whose entries are all real numbers. ∥x∥2 represents
the ℓ2 norm of x. Pr[·] represents the probability, and E[·]
represents the expectation. We define exp2(r) := 2r.

1.1 RELATED WORK

Efficient Kernel Density Estimation The naive KDE
procedure takes a linear scan of the data points. This is pro-
hibitively expensive for large-scale datasets. Thus, it is of
practical significance to develop efficient KDE algorithms.
A series of traditional KDE algorithms, namely kernel merg-
ing Heinz and Seeger [2008], Cao et al. [2012], is to perform
clustering on the dataset so that the KDE is approximated
by a weighted combination of centroids. However, these
algorithms do not scale to high-dimensional datasets. Also,
there is a trend of sampling-based KDE algorithms. The
goal is to develop efficient procedures that approximate
KDE with fewer data samples. Starting from random sam-
pling Muandet et al. [2017], sampling procedures such as
Herding Chen et al. [2010] and k-centers Cortes and Scott
[2016] are introduced in KDE. Some work also incorporates
sampling with the coreset concept Phillips and Tai [2020]
and provides a KDE algorithm by sampling on an optimized
subset of data points. Recently, there has been a growing
interest in applying hash-based estimators (HBE) Charikar
and Siminelakis [2017], Backurs et al. [2019], Siminelakis
et al. [2019], Coleman and Shrivastava [2020], Coleman
et al. [2022], Spring and Shrivastava [2021] for KDE. The
HBE uses Locality Sensitive Hashing (LSH) functions. The
collision probability of two vectors in terms of an LSH
function is monotonic to their distance measure. Using this
feature, HBE performs efficient importance sampling by
LSH functions and hash table type data structures. However,
current HBEs are built for static settings and thus, are not
robust to incremental changes in the input data. As a result,
their application in large-scale online learning is limited.
Except for LSH based KDE literature, there are also other
KDE work based polynomial methods Alman et al. [2020],
Alman and Song [2023, 2025a,b]. The dynamic type of
KDE has also been considered in Deng et al. [2022], Brand
et al. [2024]. Deng et al. [2023b] presents both randomized
and deterministic algorithms for approximating a symmetric
KDE computation.

Adaptive Data Structure Recently, there has been a
growing trend of applying data structures Song [2019], Chen
et al. [2020], Shrivastava et al. [2021], Xu et al. [2021b,a],
Song et al. [2022b], Zhang [2022], Song et al. [2022a] to
improve running time efficiency in machine learning. These
adaptive data structures have also extended their success to
many fields, such as optimization Lee et al. [2019], Cohen
et al. [2019], Brand et al. [2020], Jiang et al. [2021], Qin
et al. [2023] and differential privacy Hassidim et al. [2022],
Cherapanamjeri et al. [2023], Song et al. [2023], Feng et al.
[2025]. However, there exists a practice-to-theory gap be-
tween data structures and learning algorithms. Most data
structures assume queries to be independent and provide
theoretical guarantees based on this assumption. On the con-
trary, the query to data structures in each iteration of learning
algorithms is mutually dependent. As a result, the existing
analysis framework for data structures could not provide
guarantees in optimization. To bridge this gap, quantization
strategies Shrivastava et al. [2021], Xu et al. [2021b], Song
et al. [2022b,a] are developed for adaptive queries in ma-
chine learning to quantize each query into its nearest vertex
on the ϵ-net. Therefore, the failure probability of the data
structures could be upper bounded by a standard ϵ-net ar-
gument. Although quantization methods demonstrate their
success in machine learning, this direct combination does
not fully enable the power of both data structure and learn-
ing algorithms. In our work, we aim at a co-design of data
structure and machine learning for efficiency improvements
in adaptive KDE.

1.2 PROBLEM FORMULATION

In this work, we would like to study the following problem.

Definition 1.1 (Dynamic KDE). Let f : Rd × Rd → [0, 1]
denote a kernel function. Let X = {xi}ni=1 ⊂ Rd denote a
dataset. Let f∗

KDE := f(X, q) := 1
|X|

∑
x∈X f(x, q) define

the kernel density estimate of a query q ∈ Rd with respect
to X . Our goal is to design a data structure that efficiently
supports any sequence of the following operations:

• INITIALIZE(f : Rd × Rd → [0, 1], X ⊂ Rd, ϵ ∈
(0, 1), fKDE ∈ [0, 1]). The data structure takes ker-
nel function f , data set X = {x1, x2, . . . , xn}, accu-
racy parameter ϵ and a known quantity fKDE satisfying
fKDE ≥ f∗

KDE as input for initialization.

• UPDATE(z ∈ Rd, i ∈ [n]). Replace the i’th data point
of data set X with z.

• QUERY(q ∈ Rd). Output d̃ ∈ R such that (1 −
ϵ)f∗

KDE(X, q) ≤ d̃ ≤ (1 + ϵ)f∗
KDE(X, q).

We note that in the QUERY procedure do not assume i.i.d
queries. Instead, we take adaptive queries and provide theo-
retical guarantees.

1.3 OUR RESULT

In this work, we provide theoretical guarantees for the dy-
namic KDE data structures defined in Definition 1.1. We
summarize our main result as below:

Theorem 1.2 (Main result). Given a function K and a set of
points set X ⊂ Rd. Let cost(f) be defined as Definition 2.7.
For any accuracy parameter ϵ ∈ (0, 0.1), there is a data
structure using space O(ϵ−2n · cost(f)) (Algorithm 5, 6
and 7) for the Dynamic KDE Problem (Definition 1.1) with
the following procedures:

• INITIALIZE(f : Rd × Rd → [0, 1], X ⊂ Rd, ϵ ∈
(0, 1), fKDE ∈ [0, 0.1]). Given a kernel function f , a
dataset P , an accuracy parameter ϵ and a quantity
fKDE as input, the data structure DYNAMICKDE pre-
process in time

O(ϵ−2n1+o(1) cost(f)

· (1

fKDE
)o(1) log(1/fKDE) · log3 n) (1)

• UPDATE(z ∈ Rd, i ∈ [n]). Given a new data point
z ∈ Rd and index i ∈ [n], the UPDATE operation take
z and i as input and update the data structure in time

O(ϵ−2no(1) cost(f)

· (1

fKDE
)o(1) log(1/fKDE) · log3 n) (2)

• QUERY(q ∈ Rd). Given a query point q ∈ Rd, the
QUERY operation takes q as input and approximately
estimate kernel density at q in Eq. (2) time and output
d̃ such that: (1− ϵ)f(X, q) ≤ d̃ ≤ (1 + ϵ)f(X, q).

We prove the main result in Lemma 3.4, Lemma 3.6 and
Lemma 3.9.

1.4 TECHNICAL OVERVIEW

In this section, we introduce an overview of our technique
that leads to our main result.

Density Constraint. We impose an upper bound on the true
kernel density for query q. We also introduce geometric
level sets, so the number of data points that fall into each
level is upper bounded.

Importance Sampling. To approximate kernel density ef-
ficiently, we adopt the importance sampling technique. We
sample each data point with different probability according
to their contribution to the estimation, the higher the con-
tribution, the higher the probability to be sampled. Then,
we can construct an unbiased estimator based on sampled
points and sampling probability. The main problem is how to
evaluate the contribution to KDE for each point. We explore

the geometry property of the kernel function and estimate
the contribution of each point based on their distance from
the query point.

Locality Sensitive Hashing. One problem with importance
sampling is that when preprocessing, we have no access
to the query point. It is impossible to estimate the contri-
bution of each point for a future query. We make use of
LSH to address this issue. To be specific, LSH preprocesses
data points and finds the near neighbors for a query with
high probability. With this property, we can first sample all
data points in several rounds with geometrically decaying
sampling probability. We design LSH for each round that
satisfies the following property: given a query, LSH recovers
points that have contributions proportional to the sampling
probability in that round. Then we can find sampled points
and proper sampling probability when a query comes.

Dynamic Update. Since the previous techniques, i.e. impor-
tance sampling and LSH, are independent of the coordinate
value of the data point itself. This motivates us to support up-
dating data points dynamically. Since LSH is a hash-based
structure, given a new data point z ∈ Rd and index i indi-
cating the data point to be replaced, we search for a bucket
where xi was hashed, replace it with new data point z and
update the hash table. Such an update will not affect the data
structure for estimating kernel density.

Robustness. To make our data structure robust to adaptive
queries, we take the following steps to obtain a robust data
structure. Starting from the constant success probability, we
first repeat the estimation several times and take the median.
This will provide a high probability of obtaining a correct
answer for a fixed point. Then we push this success proba-
bility to the net points of a unit ball. Finally, we generalize
to all query points in Rd. Thus we have a data structure that
is robust to adversary query.

Roadmap In Section 2, we describe some basic defini-
tions and lemmas that are frequently used. In Section 3, we
demonstrate our data structure in detail, including the algo-
rithm and the running time analysis. We perform an analysis
of our data structures over the adversary in Section 4. Fi-
nally, we draw our conclusion in Section 5.

2 PRELIMINARIES

The goal of this section is to introduce the basic defini-
tions and lemmas that will be used to prove our main result.
We first introduce a collection of subsets called geometric
weight levels.

Definition 2.1 (Geometric Weight Levels). Fix R ∈ N+

and q ∈ Rd. We define wi := f(xi, q). For any fix r ∈
[R] := {1, 2, · · · , R}, we define Lr := {xi ∈ X | wi ∈
(2−r+1, 2−r]}. We define the corresponding distance levels
as zr := maxs.t.f(z)∈(2−r,2−r+1] z, where f(z) := f(x, q)

for z = ∥x − q∥2. In addition, we define LR+1 := X \⋃
r∈[R] Lr.

Geometric weight levels can be visualized as a sequence of
circular rings centered at query q. The contribution of each
level to kernel density at q is mainly determined by the cor-
responding distance level. Next, we introduce the important
sampling technique to accelerate the query procedure.

Definition 2.2 (Importance Sampling). Let x1, . . . , xn ⊂
Rd be a given set of data points. Suppose each point xi is
sampled independently with probability pi > 0. The impor-
tance sampling estimator for a quantity of interest is given
by:

T :=

n∑
i=1

χi

pi
xi,

where χi = 1 is defined to be the event that point pi gets
sampled and recovered in the phase corresponding to its
weight level, and χi = 0 is defined to the contrary.

To apply importance sampling, we need to evaluate the
contribution of each point. We sample each point that has a
high contribution with a high probability. A natural question
arose: when preprocessing, we have no access to the query,
so we cannot calculate distance directly. Locality Sensitive
Hashing is a practical tool to address this problem.

Definition 2.3 (Locally Sensitive Hash Indyk and Motwani
[1998]). A family H is called (pnear, pfar, z, c)-sensitive
where pnear, pfar ∈ [0, 1], z ∈ R, c ≥ 1, if for any x, q ∈
Rd, Prh∼H[h(x) = h(q) | ∥x − q∥2 ≤ z] ≥ pnear, and
Prh∼H[h(x) = h(q) | ∥x− q∥2 ≥ cz] ≤ pfar.

The next lemma shows the existence of the LSH family and
its evaluation time.

Lemma 2.4 (Lemma 3.2 in page 6 of Andoni and Indyk
[2006]). Let (x, q) ∈ Rd × Rd. Define

pnear := p1(z) := Pr
h∼H

[h(x) = h(q) | ∥x− q∥2 ≤ z]

and

pfar := p2(z, c) := Pr
h∼H

[h(x) = h(q) | ∥x− q∥2 ≥ cz].

Then, if we fix z to be positive, we can have a hash family
H satisfying

ρ :=
log 1/pnear
log 1/pfar

≤ 1

c2
+O(

log t

t
1
2

),

for any c ≥ 1, t > 0, where pnear ≥ e−O(
√
t) and it requires

dtO(t) time for every evaluation.

Remark 2.5. We set t = log
2
3 n, which results in no(1) eval-

uation time and ρ = 1
c2 + o(1). Note that if c = O(log

1
7 n),

then 1
1
c2

+O(log t/t
1
2)

= c2(1− o(1)) 1.

Next, we assign the LSH family to each geometric weight
level (Definition 2.1) and show how well these families can
distinguish points from different levels.

Lemma 2.6 (Probability bound for separating points in
different level sets, informal version of Lemma A.5). Given
kernel function f and r ∈ [R], let Lr be the weight level set
and zr be the corresponding distance level (Definition 2.1).
For any query q ∈ Rd, any integer pair (i, r) ∈ [R+1]×[R],
satisfying i > r, let x ∈ Lr and x′ ∈ Li. Let ci,r :=

min{ zi−1

zr
, log1/7 n}. We set up Andoni-Indyk LSH family

(Definition 2.3)H with near distance zr and define

pnear,r := Pr
h∼H

[h(x) = h(q) | ∥x− q∥2 ≤ z]

and

pfar,r := Pr
h∼H

[h(x) = h(q) | ∥x− q∥2 ≥ cz].

Then, for any k ≥ 1, it is sufficient to show
Prh∗∼Hk [h∗(x) = h∗(q)] ≥ pknear,r and

Prh∗∼Hk [h∗(x′) = h∗(q)] ≤ p
kc2i,r(1−o(1))
near,r

This lemma suggests that we can apply LSH several times
to separate points in different level sets. It is useful for
recovering points in a specific level set when estimating the
“importance" of a point based on its distance from the query
point. We will discuss more in Section 3. We use a similar
definition for the cost of the kernel in Charikar et al. [2020].

Definition 2.7 (Kernel cost). Given a kernel f , which has
geometric weight levels Lr’s and distance levels zr’s defined
in Definition 2.1. For any r ∈ [R], we define the kernel cost
f for Lr as

cost(f, r) := exp2(max
i∈{r+1,··· ,R+1}

⌈ i− r

ci,r(1− o(1))
⌉),

where

ci,r := min{zi−1

zr
, log

1
7 n}.

Then we define the general cost of a kernel f as

cost(f) := max
r∈[R]

cost(f, r).

Note that when f is Gaussian kernel, the cost(f) is
(1
fKDE

)(1+o(1)) 1
4 Charikar et al. [2020].

1The above three o(1) can be log log
2
3 n

log
1
3 n

, log log
2
3 n

log
1
3 n

, log log
2
3 n

log
1
21 n

respectively.

3 OUR DATA STRUCTURES

Our algorithm’s high-level idea is the following. We apply
importance sampling (Definition 2.2) to approximate kernel
density at a query point q efficiently. We want to sample
data points with probability according to their contribution
to the estimation. Ideally, given query point q ∈ Rd and
data set X ⊂ Rd, we can sample each data point in X with
probability proportional to the inverse of the distance from
query q. Unfortunately, we have no access to query points
when preprocessing. Hence we make use of LSH (Defi-
nition 2.3) to overcome this problem. In general, given a
query q, LSH can recover its near points with high probabil-
ity while the probability of recovering far points is bounded
by a small quantity. To apply LSH, we first run R = ⌈ 1

fKDE
⌉

rounds sampling, in which we sample each data point with
probability 1

2rnfKDE
in r-th round. Then we obtain R sub-

sampled data sets. Given query q, we use LSH to recover
those points both in level set Lr and the r-th subsampled
data sets. Hence we get the sampled data points and the cor-
responding sampling rates (in other words “importance”).
Then we construct the estimator as in Definition 2.2. Finally,
we repeat the estimation process independently and take the
median to get (1± ϵ) approximation with high probability.

3.1 LSH DATA STRUCTURE

In this section, we present our LSH data structure with the
following procedures:

Initialize. Given a data set {x1, · · · , xn} ∈ Rd and in-
tegral parameters k, L, it first invokes private procedure
CHOOSEHASHFUNC. The idea behind this is to amplify the
“sensitivity” of hashing by concatenating k basic hashing
functions from the familyH (Algorithm 8 line 9) into new
functions. Thus we obtain a family of “augmented” hash
function Hl, l ∈ [L] (Algorithm 1 line 7). We follow by
CONSTRUCTHASHTABLE in which we hash each point xi

using the hashing functionHl. Then we obtain L hash tables
corresponding to L hash functions which can be updated
quickly.

Recover. Given a query q ∈ Rd, it finds the bucket where
q is hashed byHl and retrieves all the points in the bucket
according to hashtable Tl. This operation applies to all L
hashtables.

UpdateHashTable. Given a new data point z ∈ Rd and
index i ∈ [n], it repeats following operations for all l ∈ [L]:
find bucketHl(z) and insert point z; find bucketHl(xi) and
delete point xi.

Note that traditional LSH data structure only has INITIAL-
IZE and RECOVER procedures. To make it a dynamic
structure, we exploit its hash storage. We design UPDATE-
HASHTABLE procedure so that we can update the hash table
on the fly. This procedure provides guarantee for dynamic

kernel density estimation.

3.2 INITIALIZE PART OF DATA STRUCTURE

Algorithm 1 LSH, private procedures

1: data structure LSH
2:
3: private
4: procedure CHOOSEHASHFUNC(k, L ∈ N+)
5: for l ∈ [L] do
6: ▷ Amplify hash functions by concatenating
7: Hl ← sample k hash functions

(f1,l, f2,l, · · · , fk,l) fromH
8: end for
9: end procedure

10:
11: procedure CONSTRUCTHASHTABLE({xi}i∈[n] ⊂

Rd)
12: for l ∈ [L] do
13: for i ∈ [n] do
14: Hl(xi).INSERT(xi)
15: Tl ← Tl ∪Hl(xi) ▷ Creat hashtable by

aggregating buckets
16: end for
17: end for
18: end procedure
19: end data structure

In this section, we present the initialize part of our data struc-
ture. We start by analyzing the space storage for LSH and
DYNAMICKDE. Then we state the result of running time
for LSH in Lemma 3.3 and DYNAMICKDE in Lemma 3.4.
We first show the space storage of LSH part in our data
structure.

Lemma 3.1 (Space storage of LSH). Let X =
{x1, x2, . . . , xn} ⊂ Rd be a dataset of n points in d-
dimensional space. Consider an LSH-based data structure
that constructs L independent hash tables using k-wise con-
catenated hash functions from an LSH familyH.

The space required to initialize and store the LSH data
structure, including hash functions and the constructed
hashtables, is:

O(Lkdno(1) + Ln).

Proof. The space storage comes from two parts: CHOOSE-
HASHFUNC and CONSTRUCTHASHTABLE in Algorithm 1.

Part 1. CHOOSEHASHFUNC (line 4) takes L, k as input. It
has a for loop with L iterations. In each iteration, it sam-
ples k functions (line 7) from hash family H to create Hl,
which uses O(kdno(1)) space. Thus the total space usage of
CHOOSEHASHFUNC is L ·O(kdno(1)) = O(Lkdno(1)).

Part 2. CONSTRUCTHASHTABLE (line 11) takes data set
{xi}i∈[n] and parameter L as input. It has two recursive for
loops.

• The first for loop repeats L iterations.

• The second for loop repeats n iterations.

The space storage of the inner loop comes from line 28
and line 15, which is O(1). Thus the total space storage of
CONSTRUCTHASHTABLE is L · n ·O(1) = O(Ln).

The final space storage of INITIALIZE is

Part1+Part2 = O(Lkdno(1) + Ln).

Thus, the LSH data structure maintains subquadratic storage
complexity while enabling efficient approximate nearest-
neighbor search.

Algorithm 2 Dynamic KDE, members and initialize part,
informal version of Algorithm 5

1: data structure DYNAMICKDE ▷ Theorem 1.2
2: members
3: For i ∈ [n],xi ∈ Rd ▷ dataset X
4: K1, R,K2 ∈ N+ ▷ Number of repetitions
5: For a ∈ [K1], r ∈ [R],Ha,r ∈ LSH ▷ Instances

from LSH class
6: end members
7: procedure INITIALIZE(X ⊂ Rd, ϵ ∈ (0, 1), fKDE ∈

[0, 1]) ▷ Lemma 3.2
8: Initialize K1, R as in Section C
9: for a = 1, 2, · · · ,K1 do

10: for r = 1, 2, · · · , R do
11: Compute K2,r, kr as in Section C
12: Pj ← sample each element in X with prob-

ability min{ 1
2rnfKDE

, 1}.
13: Ha,r.INITIALIZE(Pr, kr,K2,r)
14: end for
15: P̃a ← sample elements from X , each one has

sample probability 1
n ▷ Store P̃a

16: end for
17: end procedure
18: end data structure

Then, we can prove the total space storage of DYNAM-
ICKDE structure in the following lemma.

Lemma 3.2 (Space storage part of Theorem 1.2, informal
version of Lemma C.2). The INITIALIZE of the data struc-
ture DYNAMICKDE (Algorithm 2) uses space

O(ϵ−2(
1

fKDE
)o(1) · log(1/fKDE)

· cost(K) · log2 n · (1

fKDE
+ no(1) · log2 n))

Proof sketch. The space usage of the INITIALIZE procedure
of DYNAMICKDE mainly comes from K1 ·R copies of the
LSH data structureH. By Lemma 3.1, the space usage of
eachH is:

O(Lkdno(1) + Ln)

= O(cost(f)no(1) · log3 n+ cost(f)(1/fKDE) · log n).

Since there are K1 ·R copies ofH, the total space usage of
INITIALIZE is:

K1 ·R ·O(cost(K) log n · (1/fKDE + log n))

= O(ϵ−2(1/fKDE)
o(1) · log(1/fKDE) · cost(K)

· log2 n · (1/fKDE + no(1) · log2 n))

which is by K1 = O(ϵ−2(1/fKDE)
o(1) · log n) and R =

O(log(1/fKDE)).

For the running time, we again start with the LSH part.

Lemma 3.3 (Upper bound on running time of INITIALIZE
of the data-structure LSH, informal version of Lemma C.3).
Given input data points {xi}i∈[n] ⊂ Rd, parameters k, L ∈
N+, LSH parameters pnear, pfar ∈ [0, 1], c ∈ [1,∞), r ∈
R+ and kernel K, the INITIALIZE of the data-structure
LSH (Algorithm 8) runs in time O(L·(kdno(1)+dn1+o(1)+
n log n)).

Having shown the running time of LSH, we now move on
to prove the total running time of INIT in our data structure
by combining the above result in the LSH part.

Lemma 3.4 (The initialize part of Theorem 1.2, informal
version of Lemma C.4). Given (K : Rd×Rd → [0, 1], X ⊂
Rd, ϵ ∈ (0, 1), fKDE ∈ [0, 1]), the INITIALIZE of the data-
structure DYNAMICKDE (Algorithm 2) runs in Eq. (1) time.

Proof sketch. The INITIALIZE procedure of DYNAM-
ICKDE has two nested for loops. The outer loop repeats
K1 = O(ϵ−2 log(n) · f−o(1)

KDE) times and the inner loop
repeats R = O(log 1/fKDE) times. The running time of
each iteration of the inner loop consists of O(log(1/fKDE))
time for lines 20-line 25, O(n) time for line 26, and
O(n1+o(1) cost(K)·log2 n) time for line 27, by Lemma 3.3.
Thus, the total time for each iteration of the inner loop is
O(n1+o(1) cost(K) · log2 n). Since the inner loop repeats
R times and the outer loop repeats K1 times, the total
running time is: K1 · R · O(n1+o(1) cost(K) · log2 n) =
O(ϵ−2n1+o(1) cost(f)·(1/fKDE)

o(1) ·log(1/fKDE)·log3 n)
(Eq. (1)) where the last step uses K1 = O(ϵ−2 · f−o(1)

KDE ·
log n) and R = O(log(1/fKDE)).

Algorithm 3 Dynamic KDE, update part, informal version
of Algorithm 6

1: data structure DYNAMICKDE ▷ Theorem 1.2
2:
3: procedure UPDATE(v ∈ Rd, fKDE ∈ [0, 1], i ∈ [n]) ▷

Lemma 3.6
4: for a = 1, 2, · · · ,K1 do
5: for r = 1, 2, · · · , R do
6: Update the hashtables inHa,r with v
7: end for
8: end for
9: Replace xi with v

10: end procedure
11:
12: end data structure

3.3 UPDATE PART OF DATA STRUCTURE

We move to the update part of our data structure. We show
how to update the LSH data structure. Then we can extend
the update procedure to DYNAMICKDE structure to prove
Lemma 3.6.

Lemma 3.5 (Update time of LSH, informal version of
Lemma C.5). Given a data point v ∈ Rd and index i ∈ [n],
the UPDATEHASHTABLE of the data-structure LSH (Algo-
rithm 8) runs in (expected) time O(no(1) log(n) · cost(f)).

UPDATE in LSH structure is a key part in UPDATE for DY-
NAMICKDE. Next, we show the running time of UPDATE
for DYNAMICKDE by combining the above results.

Lemma 3.6 (The update part of Theorem 1.2, informal ver-
sion of Lemma C.6). Given an update v ∈ Rd, i ∈ [n], the
UPDATE of the data-structure DYNAMICKDE (Algorithm 3)
runs Eq. (2) time.

Proof sketch. The UPDATE procedure of DYNAMICKDE
has two nested for loops. The outer loop repeats K1 =

O(ϵ−2 log(n) · f−o(1)
KDE) times and the inner loop repeats

R = O(log 1/fKDE) times. The running time of each itera-
tion of the inner loop is dominated by line 6, which takes
O(no(1) log(n) · cost(f)) time by Lemma 3.5. Since the
inner loop repeats R times and the outer loop repeats K1

times, the total running time is: K1 ·R ·O(no(1) cost(f) ·
log2 n) = O(ϵ−2no(1) cost(f)·(1/fKDE)

o(1) log(1/fKDE)·
log3 n).

3.4 QUERY PART OF DATA STRUCTURE

Finally, we come to the query part. The goal of this section
is to prove Lemma 3.9, which shows the running time of
QUERY procedure for DYNAMICKDE.

Algorithm 4 Dynamic KDE, query part, informal version
of Algorithm 7

1: data structure DYNAMICKDE ▷ Theorem 1.2
2:
3: procedure QUERY(q ∈ Rd, ϵ ∈ (0, 1), fKDE ∈ [0, 1])
4: for a = 1, 2, · · · ,K1 do
5: for r = 1, 2, · · · , R do
6: Recover near neighbours of q usingHa,r

7: Store them into S
8: end for
9: for xi ∈ S do

10: wi ← f(xi, q)
11: if xi ∈ Lr for some r ∈ [R] then
12: pi ← min{ 1

2rnfKDE
, 1}

13: end if
14: end for
15: Ta ←

∑
xi∈S

wi

pi

16: end for
17: return Mediana∈K1{Ta}
18: end procedure
19:
20: end data structure

The running time of QUERY procedure depends on two
parts: the number of recovered points in each weight level
and the recovery time of LSH. We first show the expected
number of recovered points.

Lemma 3.7 (Expected number of points in level sets, infor-
mal version of Lemma C.7). Given a query q ∈ Rd and fix
r ∈ [R]. For any i ∈ [R+ 1], weight level Li contributes at
most 1 point to the hash bucket of query q.

Next, we show the running time for LSH to recover points.

Lemma 3.8 (Running time for recovering points given a
query, informal version of Lemma C.8). Given a query
q ∈ Rd and L,R, k ∈ N+, the RECOVER of the data-
structure LSH runs in (expected) time O(Lkno(1) + LR).

Combining two lemmas above, we prove the total running
time of QUERY in DYNAMICKDE structure.

Lemma 3.9 (Query part of Theorem 1.2, informal version
of Lemma C.9). Given a query q ∈ Rd, the QUERY of the
data-structure DYNAMICKDE (Algorithm 7) runs in Eq. (2)
time.

4 ROBUSTNESS TO ADVERSARY

In this section, we will turn the QUERY algorithm into a
robust one. In other words, we want the following thing to
happen with high probability: the algorithm responds to all
query points correctly. We achieve this goal by taking three
steps. We start with constant success probability for the

QUERY procedure, which we have proved in the previous
section. In the first step, we boost this constant probability
to a high probability by applying the median technique. We
note that the current algorithm succeeds with high proba-
bility only for one fixed point but we want it to respond to
arbitrary query points correctly.

It is not an easy task to generalize directly from a fixed point
to infinite points in the whole space. Thus we take a middle
step by introducing unit ball and ϵ-net. We say a unit ball
in Rd is a collection of points whose norm is less than or
equal to 1. An ϵ-net is a finite collection of points, called net
points, that has the “covering” property. To be more specific,
the union of balls that centered at net points with radius ϵ
covers the unit ball. In the second step, we show that given a
net of the unit ball, we have the correctness on all net points.
Finally, we show the correctness of the algorithm from net
points to all points in the whole space. Then we obtain a
robust algorithm.

Starting Point In Section D, we have already obtained a
query algorithm with constant success probability for a fixed
query point.

Lemma 4.1 (Starting with constant probability). Given
ϵ ∈ (0, 0.1), a query point q ∈ Rd and a set of data points
X = {xi}ni=1 ⊂ Rd, let

f∗
KDE(q) :=

1

|X|
∑
x∈X

f(x, q)

be an estimator D can answer the query satisfing (1 −
ϵ) · f∗

KDE(q) ≤ D.QUERY(q, ϵ) ≤ (1 + ϵ) · f∗
KDE(q) with

probability 0.9.

Boost the constant probability to high probability.
Next, we begin to boost the success probability by repeating
the query procedure and taking the median output.

Lemma 4.2 (Boost the constant probability to high prob-
ability). Let δ1 ∈ (0, 0.1) denote the failure probability.
Let ϵ ∈ (0, 0.1) denote the accuracy parameter. Given
L = O(log(1/δ1)) estimators {Dj}Lj=1. For each fixed
query point q ∈ Rd, the median of queries from L esti-
mators satisfies that:

(1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q)

with probability 1− δ1.

From each fixed point to all the net points. So far, the
success probability of our algorithm is still for a fixed point.
We will introduce ϵ-net on a unit ball and show the high
success probability for all the net points.

Fact 4.3. Let N denote the ϵ0-net of

{x ∈ Rd | ∥x∥2 ≤ 1}.

We use |N | to denote the number of points in N . Then
|N | ≤ (10/ϵ0)

d.

This fact shows that we can bound the size of an ϵ-net with
an inverse of ϵ. We use this fact to conclude the number of
repetitions we need to obtain the correctness of QUERY on
all net points.

Lemma 4.4 (From each fixed points to all the net points).
Let N denote the ϵ0-net of {x ∈ Rd | ∥x∥2 ≤ 1}. We
use |N | to denote the number of points in N . Given L =
log(|N |/δ) estimators {Dj}Lj=1. With probability 1− δ, we
have: for all q ∈ N , the median of queries from L estimators
satisfies that:

(1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q).

From net points to all points. With Lemma 4.4, we are
ready to extend the correctness for net points to the whole
unit ball. We demonstrate that all query points ∥q∥2 ≤ 1
can be answered approximately with high probability in the
following lemma.

Lemma 4.5 (From net points to all points). Let ϵ ∈ (0, 0.1).
Let L ≥ 1. Let δ ∈ (0, 0.1). Let τ ∈ [0, 1]. Given L =
O(log((L/ϵτ)d/δ)) estimators {Dj}Lj=1, with probability
1− δ, for all query points ∥p∥2 ≤ 1, we have the median of
queries from L estimators satisfies that: ∀∥p∥2 ≤ 1

(1− ϵ) · f∗
KDE(p) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(p).

where q is the closest net point of p.

Thus, we obtain an algorithm that could respond to adversary
queries robustly.

5 CONCLUSION

Kernel density estimation is an important problem in ma-
chine learning. It has wide applications in similarity search
and nearest neighbor clustering. Meanwhile, in many mod-
ern scenarios, input data can change over time, and queries
can be provided by adversaries. In these scenarios, we
need to build adaptive data structures such that incremental
changes in the input data do not require our data structure to
go through costly re-initialization. Also, queries provided
by adversaries do not reduce the accuracy of the estimation.
We call this problem the adaptive kernel density estimation.
We present the first such adaptive data structure design for
kernel density estimation. Our data structure is efficient.
It only requires subquadratic spaces. Each update to the
input data only requires sublinear time, and each query
can finish in sublinear time. It should be observed that the
trade-off between efficiency and effectiveness persists in our
proposed algorithms. Ordinarily, to augment the execution
speed, a slight compromise on the algorithm’s performance
becomes inevitable. Yet, we assert that the introduction of
our groundbreaking data structures pushes the boundaries
of this trade-off.

Acknowledgements

The authors would like to thank the anonymous reviewer of
UAI 2025 for their highly insightful suggestions.

References

Josh Alman and Zhao Song. Fast attention requires bounded
entries. In NeurIPS, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of
gradient computation for training large language models.
In NeurIPS, 2024a.

Josh Alman and Zhao Song. How to capture higher-order
correlations? generalizing matrix softmax attention to
kronecker computation. In ICLR, 2024b.

Josh Alman and Zhao Song. Fast rope attention: Combining
the polynomial method and fast fourier transform. arXiv
preprint arXiv:2505.11892, 2025a.

Josh Alman and Zhao Song. Only large weights (and not
skip connections) can prevent the perils of rank collapse.
arXiv preprint arXiv:2505.16284, 2025b.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song.
Algorithms and hardness for linear algebra on geometric
graphs. In FOCS, 2020.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high di-
mensions. In FOCS, 2006.

Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and
time efficient kernel density estimation in high dimen-
sions. In NeurIPS, 2019.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao
Song. Solving tall dense linear programs in nearly linear
time. In STOC, 2020.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm
and hardness for dynamic attention maintenance in large
language models. In ICML, 2024.

Danielle L Cantrell, Erin E Rees, Raphael Vanderstichel, Jon
Grant, Ramón Filgueira, and Crawford W Revie. The use
of kernel density estimation with a bio-physical model
provides a method to quantify connectivity among salmon
farms: spatial planning and management with epidemio-
logical relevance. Frontiers in Veterinary Science, 2018.

Yang Cao, Bo Chen, Xiaoyu Li, Yingyu Liang, Zhizhou Sha,
Zhenmei Shi, Zhao Song, and Mingda Wan. Force match-
ing with relativistic constraints: A physics-inspired ap-
proach to stable and efficient generative modeling. arXiv
preprint arXiv:2502.08150, 2025a.

Yang Cao, Zhao Song, and Chiwun Yang. Video la-
tent flow matching: Optimal polynomial projections for
video interpolation and extrapolation. arXiv preprint
arXiv:2502.00500, 2025b.

Yuan Cao, Haibo He, and Hong Man. Somke: Kernel den-
sity estimation over data streams by sequences of self-
organizing maps. IEEE transactions on neural networks
and learning systems, 2012.

Yuefan Cao, Xuyang Guo, Jiayan Huo, Yingyu Liang, Zhen-
mei Shi, Zhao Song, Jiahao Zhang, and Zhen Zhuang.
Text-to-image diffusion models cannot count, and prompt
refinement cannot help. arXiv preprint arXiv:2503.06884,
2025c.

Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and
Jianliang Xu. Sws: a complexity-optimized solution for
spatial-temporal kernel density visualization. In VLDB,
2021.

Moses Charikar and Paris Siminelakis. Hashing-based-
estimators for kernel density in high dimensions. In
FOCS, 2017.

Moses Charikar, Michael Kapralov, Navid Nouri, and Paris
Siminelakis. Kernel density estimation through density
constrained near neighbor search. In FOCS, 2020.

Beidi Chen, Tharun Medini, James Farwell, Charlie Tai, An-
shumali Shrivastava, et al. Slide: In defense of smart al-
gorithms over hardware acceleration for large-scale deep
learning systems. In MLSys, 2020.

Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang,
Zhizhou Sha, Zhenmei Shi, Zhao Song, Mingda Wan,
and Xugang Ye. Nrflow: Towards noise-robust generative
modeling via high-order flow matching. In UAI, 2025a.

Bo Chen, Zhenmei Shi, Zhao Song, and Jiahao Zhang.
Provable failure of language models in learning major-
ity boolean logic via gradient descent. arXiv preprint
arXiv:2504.04702, 2025b.

Yutian Chen, Max Welling, and Alex Smola. Super-samples
from kernel herding. In UAI, 2010.

Yeshwanth Cherapanamjeri, Sandeep Silwal, David P
Woodruff, Fred Zhang, Qiuyi Zhang, and Samson Zhou.
Robust algorithms on adaptive inputs from bounded ad-
versaries. In ICLR, 2023.

Jaewoong Cho, Gyeongjo Hwang, and Changho Suh. A fair
classifier using kernel density estimation. In NeurIPS,
2020.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving
linear programs in the current matrix multiplication time.
In STOC, 2019.

Benjamin Coleman and Anshumali Shrivastava. Sub-linear
race sketches for approximate kernel density estimation
on streaming data. In WWW, 2020.

Benjamin Coleman, Benito Geordie, Li Chou, RA Leo El-
worth, Todd Treangen, and Anshumali Shrivastava. One-
pass diversified sampling with application to terabyte-
scale genomic sequence streams. In ICML, 2022.

Efren Cruz Cortes and Clayton Scott. Sparse approximation
of a kernel mean. IEEE Transactions on Signal Process-
ing, 2016.

Kyle Cranmer. Kernel estimation in high-energy physics.
Computer Physics Communications, 2001.

Yichuan Deng, Wenyu Jin, Zhao Song, Xiaorui Sun, and
Omri Weinstein. Dynamic kernel sparsifiers. arXiv
preprint arXiv:2211.14825, 2022.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention
scheme inspired softmax regression. arXiv preprint
arXiv:2304.10411, 2023a.

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Ran-
domized and deterministic attention sparsification algo-
rithms for over-parameterized feature dimension. arXiv
preprint arXiv:2304.04397, 2023b.

Yichuan Deng, Zhihang Li, Sridhar Mahadevan, and Zhao
Song. Zero-th order algorithm for softmax attention opti-
mization. In IEEE BigData, 2024.

Shiyuan Feng, Ying Feng, George Z. Li, Zhao Song, David P.
Woodruff, and Lichen Zhang. On differential privacy for
adaptively solving search problems via sketching. In
ICML, 2025.

Christen H Fleming and Justin M Calabrese. A new kernel
density estimator for accurate home-range and species-
range area estimation. Methods in Ecology and Evolution,
2017.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot. In
ICML, 2023.

Ziwang Fu, Feng Liu, Jiahao Zhang, Hanyang Wang,
Chengyi Yang, Qing Xu, Jiayin Qi, Xiangling Fu, and
Aimin Zhou. Sagn: semantic adaptive graph network
for skeleton-based human action recognition. In ICMR,
2021.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learn-
ing for attention scheme: from single softmax regression
to multiple softmax regression via a tensor trick. arXiv
preprint arXiv:2307.02419, 2023.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast
optimization view: Reformulating single layer attention
in llm based on tensor and svm trick, and solving it in
matrix multiplication time. In UAI, 2025.

Chengyue Gong, Yekun Ke, Xiaoyu Li, Yingyu Liang,
Zhizhou Sha, Zhenmei Shi, and Zhao Song. On computa-
tional limits of flowar models: Expressivity and efficiency.
arXiv preprint arXiv:2502.16490, 2025.

Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao
Zhang, and Jiale Zhao. T2vphysbench: A first-principles
benchmark for physical consistency in text-to-video gen-
eration. arXiv preprint arXiv:2505.00337, 2025.

Anna Hallin, Joshua Isaacson, Gregor Kasieczka, Claudius
Krause, Benjamin Nachman, Tobias Quadfasel, Matthias
Schlaffer, David Shih, and Manuel Sommerhalder. Clas-
sifying anomalies through outer density estimation. Phys-
ical Review D, 2022.

Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi
Matias, and Uri Stemmer. Adversarially robust streaming
algorithms via differential privacy. Journal of the ACM,
2022.

Yaoyao He and Haiyan Li. Probability density forecasting
of wind power using quantile regression neural network
and kernel density estimation. Energy conversion and
management, 2018.

Christoph Heinz and Bernhard Seeger. Cluster kernels:
Resource-aware kernel density estimators over stream-
ing data. IEEE Transactions on Knowledge and Data
Engineering, 2008.

Jerry Yao-Chieh Hu, Weimin Wu, Zhuoru Li, Sophia Pi,
Zhao Song, and Han Liu. On statistical rates and provably
efficient criteria of latent diffusion transformers (dits).
NeurIPS, 2024.

Piotr Indyk and Rajeev Motwani. Approximate nearest
neighbors: towards removing the curse of dimensionality.
In STOC, 1998.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie
Zhang. A faster algorithm for solving general lps. In
STOC, 2021.

Matti Karppa, Martin Aumüller, and Rasmus Pagh. (deann):
Speeding up kernel-density estimation using approximate
nearest neighbor search. In AISTATS, 2022.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empiri-
cal risk minimization in the current matrix multiplication
time. In COLT, 2019.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei
Wang, and Jiahao Zhang. On the computational capability
of graph neural networks: A circuit complexity bound
perspective. arXiv preprint arXiv:2501.06444, 2025.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song,
and Yufa Zhou. Beyond linear approximations: A novel
pruning approach for attention matrix. In ICLR, 2025.

Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Es-
timation of mutual information using kernel density esti-
mators. Physical Review E, 1995.

Krikamol Muandet, Kenji Fukumizu, Bharath Sriperum-
budur, Bernhard Schölkopf, et al. Kernel mean embed-
ding of distributions: A review and beyond. Foundations
and Trends® in Machine Learning, 2017.

Jeff M Phillips and Wai Ming Tai. Near-optimal coresets
of kernel density estimates. Discrete & Computational
Geometry, 2020.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo.
An online and unified algorithm for projection matrix
vector multiplication with application to empirical risk
minimization. In AISTATS, 2023.

Xuan Shen, Zhao Song, Yufa Zhou, Bo Chen, Yanyu Li,
Yifan Gong, Kai Zhang, Hao Tan, Jason Kuen, Henghui
Ding, et al. Lazydit: Lazy learning for the acceleration of
diffusion transformers. In AAAI, 2025.

Anshumali Shrivastava, Zhao Song, and Zhaozhuo Xu. Sub-
linear least-squares value iteration via locality sensitive
hashing. arXiv preprint arXiv:2105.08285, 2021.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses
Charikar, and Philip Levis. Rehashing kernel evaluation
in high dimensions. In ICML, 2019.

Zhao Song. Matrix theory: optimization, concentration,
and algorithms. PhD thesis, The University of Texas at
Austin, 2019.

Zhao Song, Zhaozhuo Xu, Yuanyuan Yang, and Lichen
Zhang. Accelerating frank-wolfe algorithm using low-
dimensional and adaptive data structures. arXiv preprint
arXiv:2207.09002, 2022a.

Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up
sparsification using inner product search data structures.
arXiv preprint arXiv:2204.03209, 2022b.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang.
Sketching meets differential privacy: fast algorithm for
dynamic kronecker projection maintenance. In ICML,
2023.

Zhao Song, Junze Yin, and Lichen Zhang. Solving atten-
tion kernel regression problem via pre-conditioner. In
AISTATS, 2024.

Ryan Spring and Anshumali Shrivastava. Mutual informa-
tion estimation using LSH sampling. In IJCAI, 2021.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-
Philippe Morency, and Ruslan Salakhutdinov. Trans-
former dissection: An unified understanding for trans-
former’s attention via the lens of kernel. In EMNLP,
2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. In ICLR, 2018.

Meng Wang, Xian-Sheng Hua, Tao Mei, Richang Hong,
Guojun Qi, Yan Song, and Li-Rong Dai. Semi-supervised
kernel density estimation for video annotation. Computer
Vision and Image Understanding, 2009.

Qin Wang, Wen Li, and Luc Van Gool. Semi-supervised
learning by augmented distribution alignment. In ICCV,
2019.

Binghui Xie, Yongqiang Chen, Jiaqi Wang, Kaiwen Zhou,
Bo Han, Wei Meng, and James Cheng. Enhancing evolv-
ing domain generalization through dynamic latent repre-
sentations. In AAAI, 2024.

Zhaozhuo Xu, Beidi Chen, Chaojian Li, Weiyang Liu,
Le Song, Yingyan Lin, and Anshumali Shrivastava. Lo-
cality sensitive teaching. In NeurIPS, 2021a.

Zhaozhuo Xu, Zhao Song, and Anshumali Shrivastava.
Breaking the linear iteration cost barrier for some well-
known conditional gradient methods using maxip data-
structures. In NeurIPS, 2021b.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi.
Kdeformer: Accelerating transformers via kernel density
estimation. In ICML, 2023.

Jiahao Zhang. Graph unlearning with efficient partial re-
training. In WWW, 2024.

Lichen Zhang. Speeding up optimizations via data struc-
tures: Faster search, sample and maintenance. Master’s
thesis, Carnegie Mellon University, 2022.

Dynamic Maintenance of Kernel Density Estimation Data Structure: From
Practice to Theory

(Supplementary Material)

Jiehao Liang1 Zhao Song1,* Zhaozhuo Xu2 Junze Yin3,† Danyang Zhuo4

1University of California, Berkeley, 2Stevens Institute of Technology
3Boston University, 4Duke University

*magic.linuxkde@gmail.com,†junze@bu.edu

Roadmap. Section A presents the basic definitions and lemmas. Section B presents the technical claims for the proof
of our main result. Section C consists of four subsections: Initialize part, Update part, Query part, and LSH part of our
data structure. Each section presents the corresponding algorithm and proof of running time. We provide a proof sketch for
correctness in Section D. Section E presents the detailed proof of the correctness of our data structure. Section F presents
how to change our algorithm into an adaptive algorithm. Section G presents the technical claims of this paper. Section H
presents elaborate discussion for our work.

A PRELIMINARIES

The goal of this subsection is to introduce some basic Definitions (Section A.1) and Lemmas (Section A.2) that will be used
to prove the main result.

A.1 DEFINITIONS

We start by recalling the definition of geometric weight level.

Definition A.1 (Restatement of Definition 2.1 Geometric Weight Levels). Fix R ∈ N+ and q ∈ Rd. We define

wi := f(xi, q)

For any fix r ∈ [R] := {1, 2, · · · , R}, we define

Lr := {xi ∈ X | wi ∈ (2−r+1, 2−r]}

We define the corresponding distance levels as

zr := max
s.t.f(z)∈(2−r,2−r+1]

z.

where f(z) := f(x, q) for z = ∥x− q∥2.

In addition, we define LR+1 := P \
⋃

r∈[R] Lr

We restate the definition and some properties of Locality Sensitive Hashing.

Definition A.2 (Restatement of Definition 2.3, Locally Sensitive Hash). A family H is called (pnear, pfar, z, c)-sensitive
where pnear, pfar ∈ [0, 1], z ∈ R, c ≥ 1, if for any x, q ∈ Rd:

• Prh∼H[h(x) = h(q) | ∥x− q∥2 ≤ r] ≥ pnear

• Prh∼H[h(x) = h(q) | ∥x− q∥2 ≥ cr] ≤ pfar

A.2 LEMMAS

Lemma A.3 (Lemma 3.2 in page 6 of Andoni and Indyk [2006]). Let (a, b) ∈ Rd × Rd. Fixed z > 0, there is a hash
family H such that, if pnear := p1(z) := Prh∼H[h(a) = h(b) | ∥a − b∥2 ≤ z] and pfar := p2(z, c) := Prh∼H[h(a) =
h(b) | ∥a− b∥2 ≥ cz], then

ρ :=
log 1/pnear
log 1/pfar

≤ 1

c2
+O(

log t

t
1
2

)

for any c ≥ 1, t > 0, where pnear ≥ e−O(
√
t) and it requires dtO(t) time to evaluate.

Remark A.4. We find an upper bound for our definition of ρ and evaluation time for hashing. For the rest part, we denote
t = log

2
3 n. Thus we obtain no(1) evaluation time and ρ = 1

c2 + o(1). Since c = O(log
1
7 n), we have

1
1
c2 +O(log t

t
1
2
)
= c2(1− o(1)).1

In the next lemma, we show the existence of an LSH family that can separate the near points and the far points from the
query with high probability.

Lemma A.5 (probability bound for separating points in different level sets, formal version of Lemma 2.6). Given kernel
function f , we have corresponding weight level sets Lr’s and distance levels zr’s (Definition 2.1). Given query q ∈ Rd and
integer i ∈ [R+ 1], r ∈ [R] satisfying i > r, let x ∈ Lr, x′ ∈ Li, ci,r := min{ zi−1

zr
, log1/7 n}. We set up an Andoni-Indyk

LSH familyH (Definition 2.3) with near distance zr.

We define

pnear,r := Pr
h∼H

[h(x) = h(q) | ∥x− q∥2 ≤ z]

pfar,r := Pr
h∼H

[h(x) = h(q) | ∥x− q∥2 ≥ cz]

Then the following inequalities holds for any integer k ∈ N+

1. Prh∗∼Hk [h∗(x) = h∗(q)] ≥ pknear,r

2. Prh∗∼Hk [h∗(x′) = h∗(q)] ≤ p
kc2i,r(1−o(1))
near,r

Proof. Since x ∈ Lr, by Lemma 2.1, we have

∥x− q∥2 ≤ zr (3)

For x′ ∈ Li, since we assume the f is decaying radial kernel, we have

∥x′ − q∥2 ≥ zi−1 ≥ ci,rzr (4)

where the first step follows from Definition 2.1, the last step follows from ci,r ≥ c̃r.

By Lemma 2.4 and Eq. (3), Eq. (4), we have

1. Prh∼H[h(x) = h(q)] ≥ pnear,r

2. Prh∼H[h(x′) = h(q)] ≤ pfar,r

By remark 2.5, we have

pfar,r ≤ pci,r(1−o(1))
near,r (5)

Then for any integer k > 1, we have

Pr
h∗∼Hk

[h∗(x) = h∗(q)] ≥ pknear,r

Pr
h∗∼Hk

[h∗(x′) = h∗(q)] ≤ pkfar,r

By Eq. (5), we obtain the final result

1. Prh∗∼Hk [h∗(x) = h∗(q)] ≥ pknear,r

2. Prh∗∼Hk [h∗(x′) = h∗(q)] ≤ p
kc2i,r(1−o(1))
near,r

Thus, we complete the proof.

B TECHNICAL CLAIMS

In Section B.1, we show how to bound the size of geometric weight levels. In Section B.2, we explain how show the
probability for sampled point recovery. In Section B.3, we give an expectation bound the number of recovered points.

B.1 SIZE OF GEOMETRIC WEIGHT LEVELS

The goal of this section is to prove Lemma B.1.

Lemma B.1 (Sizes of geometric weight levels). Given r ∈ [R], we have

|Lr| ≤ 2rnf∗
KDE ≤ 2rnfKDE.

Proof. For any fix r ∈ [R], x, q ∈ Rd, we have

n · fKDE ≥ n · f∗
KDE

=
∑
x∈X

f(x, q)

≥
∑
p∈Lr

f(x, q)

≥ |Lr|2−r

where the first step follows from fKDE ≥ f∗
KDE, the second step follows from Definition 1.1, the third step follows from

shrinking the number of summands, the last step follows from Definition 2.1.

Thus, we complete the proof.

B.2 PROBABILITY FOR SAMPLED POINT RECOVERY

The goal of this section is to prove Lemma B.2.

Lemma B.2 (Probability for sampled point recovery). Suppose that we invoke DYNAMICKDE.INITIALIZE. Suppose when
a = a∗ and r = r∗, we sample a point x ∈ Lr∗ . Given a query q, we invoke DYNAMICKDE.QUERY. With probability at
least 1− 1

n10 , Ha∗,r∗ recovered x.

Proof. By Lemma A.5 we have

Pr
h∗∼Hk

[h∗(x) = h∗(q)] ≥ pknear,r∗

Now note that in LSH.RECOVER (line 6) procedure, we repeat this process for

K2,r∗ = 100 log(n)p−k
near,r∗

times. Thus, for any sampled point p ∈ Lr∗ , it is recovered in one of the repetitions of phase r = r∗, with probability at
least 1− 1

n10 .

B.3 NUMBER OF RECOVERED POINTS IN EXPECTATION

The goal of this section is to prove Lemma B.3

Lemma B.3 (Upper bound on number of recovered points in expectation). Fix a query q ∈ Rd. We define R := ⌈log 1
fKDE
⌉.

Fix r ∈ [R], we define p := pnear,r. For each (i, r) ∈ [R]× [R], we define ci,r := min{ zi−1

zr
, log

1
7 n}. There exists k ∈ N+

k := kr :=
1

log(1/p)
max

l∈{r+1,··· ,R+1}
⌈ l − r

c2l,r(1− o(1))
⌉.

such that for any i > j

E
h∗∼Hk

[|{x′ ∈ Li : h
∗(x′) = h∗(q)}|] = O(1)

Proof. By Lemma A.5 we have

Pr
h∗∼Hk

[h∗(x) = h∗(q)] ≤ pkc
2
i,r(1−o(1))

where ci,j := min{ ri−1

rj
, log

1
7 n}, p := pnear,j ∈ (0, 1)(remark 2.5).

E
h∗∼Hk

[|x′ ∈ Li : h
∗(x′) = h∗(q)|]

≤ 2infKDE ·
1

2rnfKDE
Pr

h∗∼Hk
[h∗(x) = h∗(q)]

≤ 2i−r · pkc
2
i,r(1−o(1))

where the first step follows from lemma B.1 and sampling probability (Algorithm 5 line 25), the second step follows from
Lemma 2.6.

Note that for i > j, we have

k ≥ 1

log 1
p

⌈ i− r

c2i,r(1− o(1))
⌉ (6)

Then

2i−r · pkc
2
i,r(1−o(1))

= 2i−r · 2log(p)·kc
2
i,r(1−o(1))

≤ 2i−r2
log(p)· 1

log(1
p
)
⌈ i−r

c2
i,r

(1−o(1))
⌉c2i,r(1−o(1))

≤ 2i−r+r−i

= 1

where the first step follows from rewriting in exponential form, the second step follows from Eq. (6) , the third step follows
from canceling the same term in both numerator and denominator, and the last step follows from canceling i and r.

Thus, we complete the proof.

C OUR DATA STRUCTURES

In this section, we describe our data structures in detail. Starting with the initialize part in Section C.1, we state the result
of space storage and running time for Initialize in DYNAMICKDE. In Section C.2, we demonstrate the running time for
the update part in our data structure. Section C.3 presents the running time for the query procedure. Finally, we study
the LSH data structure in Section C.4. It is an important member in the DYNAMICKDE structure and fundamental to the
implementation of all three procedures above.

C.1 INITIALIZE PART OF DATA STRUCTURE

In this section, we describe the space storage and running time of INITIALIZE part of our data structure DYNAMICKDE.

We start by showing the space storage of LSH structure.

Lemma C.1 (Space storage of LSH, formal version of Lemma 3.1). Given data set {xi}i∈[n] ⊂ Rd, parameter L, k ∈ N+,
the INITIALIZE (Algorithm 8) of the data-structure LSH uses space

O(Lkdno(1) + Ln)

Proof. The space storage comes from two parts: CHOOSEHASHFUNC and CONSTRUCTHASHTABLE.

Part 1. CHOOSEHASHFUNC(line 4) takes L, k as input.

It has a for loop with L iterations.

In each iteration, it samples k functions(line 7) from hash familyH to createHl, which uses O(kdno(1)) space.

Thus the total space usage of CHOOSEHASHFUNC is L ·O(kdno(1)) = O(Lkdno(1)).

Part 2. CONSTRUCTHASHTABLE(line 11) takes data set {xi}i∈[n] and parameter L as input.

It has two recursive for loops.

• The first for loop repeats L iterations.

• The second for loop repeats n iterations.

The space storage of the inner loop comes from line 28 and line 15, which is O(1).

Thus the total space storage of CONSTRUCTHASHTABLE is L · n ·O(1) = O(Ln).

The final space storage of INITIALIZE is

Part1+Part2

= O(Lkdno(1) + Ln)

Thus, we complete the proof.

Using the above lemma, we state the space storage of our DYNAMICKDE structure.

Lemma C.2 (Space storage part of Theorem 1.2, formal version of Lemma 3.2). The INITIALIZE of the data structure
DYNAMICKDE (Algorithm 5) uses space

O(ϵ−2(
1

fKDE
)o(1) · log(1/fKDE) · cost(K) · log2 n · (1

fKDE
+ no(1) · log2 n))

Proof. The space storage mainly comes from K1 ·R copies ofH.

Now let’s consider the space storage ofH. By Lemma 3.1, we replace {xi}i∈[n], L, k with Pr (line 26), K2,r (line 24), kr
(line 22) respectively. We have |Pr| = O(1

fKDE
),K2,r = O(cost(K) · log n) and kr = O(log n). Thus the total space usage

ofH is

O(Lkdno(1) + Ln) (7)

= O(cost(f)no(1) · log3 n+ cost(f)(
1

fKDE
) · log n) (8)

The total space storage of INITIALIZE of the data structure DYNAMICKDE is

K1 ·R ·O(Lk + Ln)

= O(K1 ·R · cost(K) log n · (1

fKDE
+ log n))

= O(ϵ−2(
1

fKDE
)o(1) · log(1/fKDE) · cost(K) · log2 n · (1

fKDE
+ no(1) · log2 n))

where the first step follows from Eq. (7), the last step follows from K1 = O(ϵ−2(1
fKDE

)o(1) ·log n) and R = O(log(1/fKDE)).

Thus, we complete the proof.

Next, we show an upper bound on running time for INITILIZE in LSH data structure.

Lemma C.3 (Upper bound on running time of INITIALIZE of the data-structure LSH, formal version of Lemma 3.3).
Given input data points {xi}i∈[n] ⊂ Rd, parameters k, L ∈ N+, LSH parameters pnear, pfar ∈ [0, 1], c ∈ [1,∞), r ∈ R+

and kernel f , the INITIALIZE of the data-structure LSH(Algorithm 8) runs in time

O(L · (kdno(1) + dn1+o(1) + n log n))

Proof. This procedure consists of three parts

Part 1. We invoke CHOOSEHASHTABLE procedure with parameters k, L (line 15). The CHOOSEHASHTABLE procedure
has one for loop with L iterations.

Now let’s consider the running time in line 7, which is the running time in each iteration. In line 7, we sample k hash
functons from hash familyH, which takes O(k · dno(1)) time.

Thus the total running time for Part 1 is

O(Lkdno(1))

Part 2. We invoke CONSTRUCTHASHTABLE procedure with data set {xi}i∈[n]. This procedure has two recursive for loops.

• The first loops repeat L iterations

• The second loop repeats n iterations

Now let’s consider the running time from line 14 to line 15, which is the time for each inner loop.

• line 14: We first evaluateHl(xi), which takes O(dno(1)). Then we insert xi in the bucketHl(xi), which takes O(log n)
time.

• line 15 takes O(1) time.

The running time from line 14 to line 15 is O(dno(1) + log n)

The total running time for Part 2 is

O(Ln · (dno(1) + log n))

Putting it all together. We prove that the INITIALIZE of the data-structure LSH(Algorithm 8) runs in time

Part1+Part2

= O(Lkdno(1)) +O(Ln · (dno(1) + log n))

= O(L · (kdno(1) + dn1+o(1) + n log n))

Thus, we complete the proof.

Combining the results above, we can demonstrate the running time of INITIALIZE in DYNAMICKDE in the following
lemma.

Lemma C.4 (The initialize part of Theorem 1.2, formal version of Lemma 3.4). Given (f : Rd ×Rd → [0, 1], P ⊂ Rd, ϵ ∈
(0, 1), fKDE ∈ [0, 1]), the INITIALIZE of the data-structure DYNAMICKDE (Algorithm 5) runs in time

O(ϵ−2n1+o(1) cost(f) · (1

fKDE
)o(1) log(1/fKDE) · log2 n)

Proof. The INITIALIZE procedure has two recursive for loops.

• The first loops repeat K1 = O(ϵ−2 log(n) · f−o(1)
KDE) iterations

• The second loops repeats R = O(log 1
fKDE

) iterations

Now let’s consider the running time from line 20 to line 27, which is the running time of the inner loop.

• line 20 to line 25 takes O(log(1/fKDE)) time.

• line 26 takes O(n) time.

• line 27: By Lemma 3.3, we replace L with K2,r = O(cost(K) · log n) and k with kr = O(log n) .
Thus the running time of this line is

O(L · (kdno(1) + dn1+o(1) + n log n)

= O(cost(K) · log n · (no(1) · log2 n+ n1+o(1) · log n+ n · log n))
= O(n1+o(1)cost(K) · log2 n)

where the first step follows from K2,r = O(cost(K) · log n), d = O(log n) and kr = O(log n), the second step follows
from O(n log n) = O(n1+o(1)).

The running time from from line 20 to line 27 is

O(log(1/fKDE)) +O(n) +O(n1+o(1)cost(K) log n)

= O(n1+o(1)cost(K) log2 n)

The final running time for INITIALIZE procedure is

K1 ·R ·O(n1+o(1)cost(K) · log2 n)

= O(ϵ−2n1+o(1) cost(f) · (1

fKDE
)o(1) · log(1/fKDE) · log3 n)

where we use K1 = O(ϵ−2 · f−o(1)
KDE · log n) and R = O(log(1/fKDE)).

Thus, we complete the proof.

C.2 UPDATE PART OF DATA STRUCTURE

The goal of this section is to prove Lemma 3.6. Our Lemma C.6 in this section is the formal version of Lemma 3.6. We
present an auxiliary Lemma C.5 and then show how to this this auxiliary lemma to prove Lemma C.6.

Lemma C.5 (Update time of LSH, formal version of Lemma 3.5). Given a data point z ∈ Rd and index i ∈ [n], the
UPDATEHASHTABLE of the data-structure LSH runs in (expected) time

O(no(1) log(n) · cost(f)).

Proof. This procedure has one for loop which repeats L = O(log n) iterations. Now let us consider the running time from
line 28 to line 29, which is the time for each iteration.

• line 28 takes O(dno(1) cost(f))

Algorithm 5 Dynamic KDE, members and initialize part

1: data structure DYNAMICKDE ▷ Theorem 1.2
2: members
3: d ∈ N+ ▷ Dimension of data point
4: For i ∈ [n],xi ∈ Rd ▷ dataset X
5: K1 ∈ N+ ▷ Number of repetitions
6: R ∈ N+

7: For a ∈ [K1], P̃a ⊂ Rd ▷ Sampled data points
8: K2 ∈ N+

9: For a ∈ [K1], r ∈ [R], Ha,r ∈ LSH ▷ Instances from LSH class
10: end members
11:
12: procedure INITIALIZE(X ⊂ Rd, ϵ ∈ (0, 1), fKDE ∈ [0, 1]) ▷ Lemma 3.2
13: ▷ fKDE is a known quantity satisfy fKDE ≥ f∗

KDE

14: ▷ ϵ represents the precision of estimation
15: K1 ← C · ϵ−2 log n · f−o(1)

KDE

16: R← ⌈log 1/fKDE⌉
17: for a = 1, 2, · · · ,K1 do
18: for r = 1, 2, · · · , R do
19: for i = r + 1, · · · , R+ 1 do
20: ci,r ← min{ zi−1

zr
, log

1
7 n} ▷ zr is defined in Definition 2.1

21: end for
22: kr ← maxi∈{r+1,··· ,R+1}

1
log 1

p

⌈ i−r
c̃i,r(1−o(1))⌉

23: pnear,r ← p(zr)
24: K2,r ← 100 log n · p−kr

near,r ▷ pnear,r, pfar,r are defined in Lemma 2.4
25: psampling ← min{ 1

2rnfKDE
, 1}

26: Pr ← sample each element in X with probability psampling.
27: Ha,r.INITIALIZE(Pr, kr,K2,r)
28: end for
29: P̃a ← sample each element in X with probability 1

n ▷ Store P̃a

30: end for
31: end procedure
32: end data structure

Algorithm 6 Dynamic KDE, update part

1: data structure DYNAMICKDE ▷ Theorem 1.2
2:
3: procedure UPDATE(v ∈ Rd, fKDE ∈ [0, 1], i ∈ [n]) ▷ Lemma 3.6
4: for a = 1, 2, · · · ,K1 do
5: for r = 1, 2, · · · , R do
6: Ha,r.UPDATEHASHTABLE(v, i)
7: end for
8: end for
9: xi ← v

10: end procedure
11: end data structure

• line 29 takes the same time as line 28

The final running time

L ·O(dno(1) cost(f))

= O(no(1) cost(f) · log2 n).

where we use L = O(log n) and d = O(log n).

Thus, we complete the proof.

Lemma C.6 (The update part of Theorem 1.2, formal version of Lemma 3.6). Given an update z ∈ Rd and index i ∈ [n],
the UPDATE of the data-structure DYNAMICKDE (Algorithm 6) runs in (expected) time

O(ϵ−2no(1) cost(f) · (1

fKDE
)o(1) log(1/fKDE) · log3 n).

Proof. This algorithm has two recursive for loops

• The first loops repeat K1 = O(ϵ−2 log(n) · f−o(1)
KDE) iterations

• The second loops repeats R = O(log 1
fKDE

) iterations

Now let’s consider the running time in line 6, which is the time for each inner loop.

By Lemma 3.5, line 6 takes O(no(1) log(n) · cost(f)) time.

The final running time

K1 ·R ·O(no(1) cost(f) · log2 n)

= O(ϵ−2no(1) cost(f) · (1

fKDE
)o(1) log(1/fKDE) · log3 n)

where we use K1 = O(ϵ−2 log(n) · f−o(1)
KDE) and R = O(log 1

fKDE
).

Thus, we complete the proof.

C.3 QUERY PART OF DATA STRUCTURE

The goal of this section is to prove Lemma C.9. Our Algorithm 7 is for querying the approximated kernel density at point q,
and Lemma C.9 specifies the running time for the query operation. In order to prove this lemma, we list and prove a few
auxiliary lemmas.

We start by showing a lemma that states the expected number of points in each level set.

Lemma C.7 (expected number of points in level sets, formal version of Lemma 3.7). Given a query q ∈ Rd and fix r ∈ [R].
For any i ∈ [R+ 1], weight level Li contributes at most 1 point to the hash bucket of query q.

Proof. We consider 2 cases:

Case 1. i ≤ r: By lemma B.1, we have |Li| ≤ 2infKDE. In the r’th phase, we sample each point in the whole data set with
probability min{ 1

2rnfKDE
, 1} to obtain a subset Xr (Algorithm 5 line 26). Then

E[|{x : x ∈ Li ∩Xr}|]

≤ |Li| ·
1

2rnfKDE

≤ 2infKDE ·
1

2rnfKDE

= 2i−r

≤ 1

where the first step follows from sampling probability min{ 1
2rnfKDE

, 1}, the second step follows from |Li| ≤ 2infKDE, the
third step follows from canceling nfKDE, the last step follows from i ≤ r.

Thus, there is at most 1 sampled point from Li in expectation.

Algorithm 7 Dynamic KDE, query part

1: data structure DYNAMICKDE ▷ Theorem 1.2
2:
3: procedure QUERY(q ∈ Rd, ϵ ∈ (0, 1), fKDE ∈ [0, 1])
4: for a = 1, 2, · · · ,K1 do
5: for r = 1, 2, · · · , R do
6: Ha,r.RECOVER(q)
7: S ← S ∪ (Ha,r.R∩ Lr)
8: end for
9: RR+1 ← recover points in LR+1 ∩ P̃a ▷ Recover by calculating w directly.

10: S ← S ∪RR+1

11: for xi ∈ S do
12: wi ← f(xi, q)
13: if xi ∈ Lr for some r ∈ [R] then
14: pi ← min{ 1

2rnfKDE
, 1}

15: else if xi ∈ X \
⋃

r∈[R] Lr then
16: pi ← 1

n
17: end if
18: end for
19: Ta ←

∑
xi∈S

wi

pi

20: end for
21: return Median{Ta}
22: end procedure
23: end data structure

Then Li contributes at most 1 point in the bucket of query q in expectation.

Case 2. i = r + 1, · · · , R + 1: By Lemma 2.6, we have |Li| ≤ 2infKDE. The sampling rate in r’th phase is
min{ 1

2rnfKDE
, 1}(Algorithm 5 line 26). Then there are at most 2i−r sampled points from Li in expectation. We set up LSH

function such that the near distance is zr (Definition 2.1). Also, we use (Algorithm 5 line 22)

k := kr :=
1

log 1
p

max
i=r+1,··· ,R+1

⌈ i− r

ci,r(1− o(1))
⌉.

as the number of concatenations. By Lemma B.3, Li contributes at most 1 point in the bucket of query q in expectation.

The total number of points that Li contributes to hash bucket of q is max{Case 1,Case 2} = 1 in expectation.

Thus, we complete the proof.

Next, we present the running time of RECOVER procedure in the LSH data structure, which is an important part of QUERY
procedure in DYNAMICKDE.

Lemma C.8 (running time for recover points given a query, formal version of Lemma 3.8). Given a query q ∈ Rd and
L,R, k ∈ N+, the RECOVER of the data-structure LSH runs in (expected) time

O(Lkno(1) + LR)

Proof. The procedure has one for loop with L iterations. In each iteration, the running time consists of two parts

• The evaluation ofHl(q) takes O(kno(1)) time

• The RETRIEVE operation takes O(|Hl(q)|) time. By Lemma C.7, |Hl(q)| = O(R)

The running time of one iteration is O(kno(1) +R)

The final running of this procedure is L ·O(kno(1) +R) = O(Lkno(1) + LR).

Thus, we complete the proof.

Based on the running time of RECOVER in LSH above, we prove the running time of QUERY procedure in DYNAMICKDE.

Lemma C.9 (Query part of Theorem 1.2, formal version of Lemma 3.9). Given a query q ∈ Rd, the QUERY of the
data-structure DYNAMICKDE (Algorithm 7) runs in (expected) time

O(ϵ−2no(1) log(1/fKDE) · f−o(1)
KDE · cost(K) log3 n).

Proof. First, the algorithm do a for loop with K1 = O(ϵ−2 log n · f−o(1)
KDE) iterations.

In each iteration, the running time consists of three parts.

Part 1. The running time from line 5 to line 8, which is a for loop with R iterations. In each iteration, the running time
comes from

• By Lemma 3.8, we replace L with K2, j = O(cost(K) log n), J = O(log(1/fKDE)) and k with kj = O(log n). Thus
line 6 takes O(no(1)cost(K) log2 n) time.

• line 7 takes O(|Ha,r.R|) time. By Lemma B.3, |Ha,r.R| = O(1). Thus the running time of line 7 is O(1).

Thus the running time of this for loop is R ·O(no(1)cost(K) log2 n) = O(no(1) log(1/fKDE) · cost(K) log2 n), where we
use R = O(log(1/fKDE)).

Part 2. The running time from line 11 to line 18, which is a forloop with |S| iterations. In each iteration, the running
time is O(1). By Lemma B.3, |S| = O(R). Thus the running time of this forloop is O(log(1/fKDE)), where we use
R = O(log(1/fKDE)).

Part 3. The running time of line 9, 10 and 19 is O(1)

The final running time of QUERY is

K1 · (Part1+Part2+Part3)

= K1 ·O(no(1) log(1/fKDE) · cost(K) log2 n

+O(log(1/fKDE)) +O(1))

= O(ϵ−2no(1) log(1/fKDE) · f−o(1)
KDE · cost(K) log3 n)

where the first step follows directly from the running time of three parts, and the last step follows from K1 = O(ϵ−2 log n ·
f
−o(1)
KDE)

Thus, we complete the proof.

C.4 LSH DATA STRUCTURE

In this section, we present the LSH data structures with the following procedures:

Initialize Given a data set {x1, · · · , xn} ∈ Rd and integral parameters k, L, it first invokes private procedure CHOOSE-
HASHFUNC. The idea behind this is to amplify the "sensitivity" of hashing by concatenating k basic hashing functions from
the familyH(Algorithm 8 line 9) into a new function. Thus we obtain a family of "augmented" hash functionHl, l ∈ [L]
(Algorithm 1 line 7). We follow by CONSTRUCTHASHTABLE in which we hash each point xi using the hashing function
Hl. Then we obtain L hash tables corresponding to L hash functions which can be updated quickly.

Recover Given a query q ∈ Rd, it finds the bucket where q is hashed byH↕ and retrieve all the points in the bucket according
to hashtable Tl. This operation applies to all L hashtables.

UpdateHashTable Given a new data point z ∈ Rd and index i ∈ [n], it repeats the following operations for all l ∈ [L]: find
bucketHl(z) and insert point z; find bucketHl(xi) and delete point xi.

Next, we provide a private procedure of LSH in Algorithm 1.

Algorithm 8 LSH, members and public procedures

1: data structure LSH
2: members
3: d, n ∈ N+ ▷ d is dimension, n is number of data points
4: K,L ∈ N+ ▷ K is amplification factor, L is number of repetition for hashing
5: pnear, pfar ∈ (0, 1) ▷ Collision probability
6: For l ∈ L, Tl := [n] ▷ Hashtable recording data points hashed byHl

7: R := [n] ▷ retrieved points
8: H := {f ∈ H : Rd → [M]} ▷ M is number of buckets for hashing familyH
9: For l ∈ [L],Hl ∈ HK ▷ Family of amplified hash functions with at most MK non-empty buckets

10: For b ∈ [MK], Sb :=AVL tree ▷ Use AVL tree to store points in bucket
11: end members
12:
13: public
14: procedure INITIALIZE({xi}i∈[n] ⊂ Rd, k, L ∈ N+)
15: CHOOSEHASHFUNC(k, L)
16: CONSTRUCTHASHTABLE({xi}i∈[n])
17: end procedure
18:
19: procedure RECOVER(q ∈ Rd)
20: R ← 0
21: for l ∈ [L] do
22: R ← R∪ Tl.RETRIEVE(Hl(q)) ▷ Find the bucketHl(q) in Tl and retrieve all points
23: end for
24: end procedure
25:
26: procedure UPDATEHASHTABLE(z ∈ Rd, i ∈ [n])
27: for l ∈ [L] do
28: Hl(z).INSERT(z) ▷Hl(z) denotes the bucket that z is mapped to
29: Hl(xi).DELETE(xi)
30: end for
31: end procedure
32: end data structure

D CORRECTNESS: A BRIEF SUMMARY

In this section, we briefly discuss the correctness of the algorithm from data independence (Section D.1), unbiasedness
(Section D.2) and variance (Section D.3) aspects.

D.1 DATA INDEPENDENCE OF INITIALIZE AND UPDATE.

We will show that procedure INITIALIZE is independent of the input data. Hence, it is convenient for procedure UPDATE to
change only a small part of the stored data, without re-initializing the whole data structure. For INITIALIZE, it first samples
data points by doing n rounds of Bernoulli trials on each data point (Algorithm 5, line 26). Then it invokes LSH.INITIALIZE
to hash the sampled data points into some buckets, which will be stored into an LSH instanceHa,r (Algorithm 5, Line 5).
For UPDATE, it finds the bucket where the old data point is hashed (Algorithm 8, Line 26 and Line 28) and replaces it with
the new one. Thus procedure UPDATE maintains the initialized structure.

D.2 UNBIASEDNESS OF QUERY

We now present the unbiasedness of the estimator (up to some inverse polynomial error).

Lemma D.1 (unbiasedness of the QUERY, informal version of Lemma E.1). Given f∗
KDE ∈ (0, 1), fKDE ≥ f∗

KDE, ϵ ∈
(f10

KDE, 1) and q ∈ Rd, we claim that estimator Ta for any a ∈ [K1] constructed in line 19 Algorithm 7 satisfies (1 −

n−9)nf∗
KDE ≤ E[Ta] ≤ nf∗

KDE.

D.3 VARIANCE BOUND FOR QUERY

We present the variance bound of our estimator.

Lemma D.2 (Variance bound for QUERY, informal version of Lemma E.2). Given f∗
KDE ∈ (0, 1), fKDE/4 ≤ f∗

KDE ≤ fKDE,
ϵ ∈ (f10

KDE, 1) and q ∈ Rd,

QUERY can output a (1± ϵ)-factor approximation to f∗
KDE.

E CORRECTNESS: DETAILS

The goal of this section is to prove the correctness of our algorithms. In Section E.1, we provide the proof of unbiasedness
for the query. In Section E.2, we provide the proof of variance bound for the query.

E.1 UNBIASEDNESS OF QUERY

In this section, we prove that the estimator returned by QUERY is unbiased.

Lemma E.1 (unbiasedness of the QUERY, formal version of Lemma D.1). For every f∗
KDE ∈ (0, 1), every fKDE ≥ f∗

KDE,
every ϵ ∈ (f10

KDE, 1), every q ∈ Rd, estimator Ta =
∑

xi∈S
wi

pi
for any a ∈ [K1] constructed in line 19 Algorithm 7 satisfies

the following:

(1− n−9)nf∗
KDE ≤ E[Ta] ≤ nf∗

KDE

Proof. Let E be the event that all the points are sampled. Let T := Ta (see line 19 Algorithm 7). By Lemma B.2 and union
bound, we have

Pr[E] ≥ 1− n−9

Thus we obtain E[T] =
∑n

i=1
E[χi]
pi

wi and (1− n−9)pi ≤ E[χi] ≤ pi, where χi = 1 is defined to be the event that point pi
gets sampled and recovered in the phase corresponding to its weight level, and χi = 0 is defined to the contrary. Thus

(1− n−9)nf∗
KDE ≤ E[T] ≤ nf∗

KDE

E.2 VARIANCE BOUND FOR QUERY

The goal of this section is to prove the variance bound of the estimator.

Lemma E.2 (Variance bound for QUERY, formal version of Lemma D.2). For every f∗
KDE ∈ (0, 1), every ϵ ∈ (f10

KDE, 1),
every q ∈ Rd, using estimators Ta =

∑
xi∈S

wi

pi
, for a ∈ [K1] constructed in line 19 Algorithm 7, where fKDE/4 ≤ f∗

KDE ≤
fKDE, one can output a (1± ϵ)-factor approximation to f∗

KDE.

Proof. First, we have T ≤ n2f∗
KDE, where equality holds when all the points are sampled and recovered in the phase of

their weight levels. By Lemma D.1, we have

E[T | E] · Pr[E] + n2f∗
KDE(1− Pr[E]) ≥ E[T]

Also, we have

E[T | E] ≤ E[T]
Pr[E]

≤ nf∗
KDE

Pr[E]
= nf∗

KDE(1 + o(1/n9))

Then, we have

E[T 2] = E[(
∑
pi∈P

χi
wi

pi
)2]

=
∑
i ̸=j

E[χiχj
wiwj

pipj
] +

∑
i∈[n]

E[χi
w2

i

p2i
]

≤
∑
i ̸=j

wiwj +
∑
i∈[n]

w2
i

pi
I[pi = 1] +

∑
i∈[n]

w2
i

pi
I[pi ̸= 1]

≤ (
∑
i

wi)
2 +max

i
{wi

pi
I[pi ̸= 1]}

∑
i∈[n]

wi

≤ 2n2(f∗
KDE)

2 + max
j∈[J],pi∈Lj

{wi2
j+1}nfKDE · nf∗

KDE

≤ 4n2f2
KDE

where the first step follows definition of T , the second step follows from expanding the square of summation, the third step
follows from χiχj ≤ 1, the fourth step follows from w2

i

pi
I[pi = 1] ≤ w2

i and (
∑

i wi)
2 =

∑
i ̸=j wiwj +

∑
i∈[n] w

2
i , the

fifth step follows from nf∗
KDE = (

∑
i wi)

2 and pj ≥ 1/(n · 2j+1fKDE) and fKDE ≥ f∗
KDE.

E[Z2 | E] ≤ E[Z2]

Pr[E]
≤ n2f

2−o(1)
KDE (1 + o(1/n9))

Now, we repeat this process for K1 = C logn
ϵ2 · f−o(1)

KDE times with constant C. Then, we have (1± ϵ)-factor approximation
with higher success probability. We show that if we repeat the procedure m times and take average, denoted as T̄ , we have:

Pr[|T̄ − nf∗
KDE| ≥ ϵnf∗

KDE]

≤ Pr[|T̄ − E[T]| ≥ ϵnf∗
KDE − |E[T]− nf∗

KDE|]
≤ Pr[|T̄ − E[T]| ≥ (ϵ− n−9)nf∗

KDE]

≤ E[T̄ 2]

(ϵ− n−9)2(n2f∗
KDE)

2

≤ 1

m

64n2(f∗
KDE)

2

(ϵ− n−9)2(n2f∗
KDE)

2

where the first step follows from |T̄ − nf∗
KDE| ≤ |T̄ − E[T]| + |E[T] − nf∗

KDE|, the second step follows from E[T] ≥
(1−n−9nf∗

KDE), the third step follows from Markov inequality and the last step follows from E[T̄ 2] ≤ E[T 2]/m ≤ 4n2f2
KDE

and fKDE ≤ 4f∗
KDE.

We can repeat m = O(1
ϵ2) times to upper bound failure probability to δ and then take the median out of O(log(1/δ)) means,

where we assume δ = 1
poly(n) .

F ADVERSARY

In this section, we provide the detailed proofs for the lemmas in Section 4.

Starting Point In Section D, we have already obtained a query algorithm with constant success probability for a fixed query
point.

Lemma F.1 (Starting with constant probability, restatement of Lemma 4.1). Given ϵ ∈ (0, 0.1), a query point q ∈ Rd and a
set of data points X = {xi}ni=1 ⊂ Rd, let f∗

KDE(q) :=
1

|X|
∑

x∈X f(x, q) be an estimator D can answer the query which
satisfies:

(1− ϵ) · f∗
KDE(q) ≤ D.QUERY(q, ϵ) ≤ (1 + ϵ) · f∗

KDE(q)

with probability 0.9.

Proof. By Lemma E.1 and Lemma E.2, our QUERY procedure can provide an estimator that answers kernel density
estimation correctly with constant probability.

Boost the constant probability to high probability. Next, we begin to boost the success probability by repeating the
query procedure and taking the median output.

Lemma F.2 (Boost the constant probability to high probability, restatement of Lemma 4.2). Let δ1 ∈ (0, 0.1) denote the
failure probability. Let ϵ ∈ (0, 0.1) denote the accuracy parameter. Given L = O(log(1/δ1)) estimators {Dj}Lj=1. For each
fixed query point q ∈ Rd, the median of queries from L estimators satisfies that:

(1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q)

with probability 1− δ1.

Proof. From Lemma 4.1 we know each estimator Dj can answer the query that satisfies:

(1− ϵ) · f∗
KDE(q) ≤ D.QUERY(q, ϵ) ≤ (1 + ϵ) · f∗

KDE(q)

with probability 0.9.

From the chernoff bound we know the median of L = O(log(1/δ1)) queries from {Dj}Lj=1 satisfies:

(1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q)

with probability 1− δ1.

Therefore, we complete the proof.

From each fixed point to all the net points. So far, the success probability of our algorithm is still for a fix point. We will
introduce ϵ-net on a unit ball and show the high success probability for all the net points.

Fact F.3. Let N denote the ϵ0-net of {x ∈ Rd | ∥x∥2 ≤ 1}. We use |N | to denote the number of points in N . Then
|N | ≤ (10/ϵ0)

d.

This fact shows that we can bound the size of an ϵ-net with an inverse of ϵ. We use this fact to conclude the number of
repetitions we need to obtain the correctness of QUERY on all net points.

Lemma F.4 (From each fixed points to all the net points, restatement of Lemma 4.4). Let N denote the ϵ0-net of {x ∈
Rd | ∥x∥2 ≤ 1}. We use |N | to denote the number of points in N . Given L = log(|N |/δ) estimators {Dj}Lj=1.

With probability 1− δ, we have: for all q ∈ N , the median of queries from L estimators satisfies that:

(1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q).

Proof. There are |N | points on the d dimension ϵ-net when ∥q∥2 ≤ 1. From Lemma F.2 we know that for each query point
q on N , we have :

(1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q)

with probability 1− δ/|N |.

By union bound all |N | points on N , we have:

∀∥q∥2 ≤ 1, (1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q)

with probability 1− δ.

From net points to all points. With Lemma F.4, we are ready to extend the correctness for net points to the whole unit
ball. We demonstrate that all query points ∥q∥2 ≤ 1 can be answered approximately with high probability in the following
lemma.

Lemma F.5 (From net points to all points, restatement of Lemma 4.5). Let ϵ ∈ (0, 0.1). Let L ≥ 1. Let δ ∈ (0, 0.1). Let
τ ∈ [0, 1]. Given L = O(log((L/ϵτ)d/δ)) estimators {Dj}Lj=1, with probability 1− δ, for all query points ∥p∥2 ≤ 1, we
have the median of queries from L estimators satisfies that:

∀∥p∥2 ≤ 1, (1− ϵ) · f∗
KDE(p) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(p).

where q is the closest net point of p.

Proof. We define an event ξ to be the following,

∀q ∈ N, (1− ϵ) · f∗
KDE(q) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + ϵ) · f∗
KDE(q)

Using Lemma F.4 with L = log(|N |/δ), we know that

Pr[event ξ holds] ≥ 1− δ

Using Fact F.3, we know that

L = log(|N |/δ)
= log((10/ϵ0)

d/δ)

= log((10L/ϵτ)d/δ)

where the last step follows from ϵ0 = ϵτ/L.

We condition the above event E to be held. (Then the remaining proof does not depend on any randomness, for each and for
all becomes the same.)

For each point p /∈ N , there exists a q ∈ N such that

∥p− q∥2 ≤ ϵ0 (9)

For each p, we know

|MedianjDj .QUERY(q, ϵ)− f∗
KDE(p)|

≤ |MedianjDj .QUERY(q, ϵ)− f∗
KDE(q)|+ |f∗

KDE(q)− f∗
KDE(p)|

≤ ϵf∗
KDE(q) + L · ∥p− q∥2

≤ ϵ(f∗
KDE(p) + Lϵ0) + L · ϵ0

≤ ϵ(f∗
KDE(p) + 2τ)

where the first step follows from Lipschitz, the second step follows from Eq. (9), the third step follows from ϵ0 ≤ ϵτ/L.

Using ∀j ∈ [L] : Dj .QUERY(p, ϵ) ≥ τ , we have

(1− 3ϵ) · f∗
KDE(p) ≤Median({Dj .QUERY(q, ϵ)}Lj=1)

≤ (1 + 3ϵ) · f∗
KDE(p).

Rescaling the ϵ completes the proof.

Thus, we obtain an algorithm that could respond to adversary queries robustly.

G TECHNICAL CLAIMS

In this section, we list some technical claims that are useful for our main results. We start by giving an upper bound on sizes
of geometric weight levels (Definition 2.1).

Lemma G.1 (Sizes of geometric weight levels, informal version of Lemma B.1). Given r ∈ [R], we have |Lr| ≤ 2rnf∗
KDE ≤

2rnfKDE.

Next, we show a lemma for the probability of recovering a point in the query procedure, given that this point is sampled in
the preprocessing stage.

Lemma G.2 (Probability for sampled point recovery, informal version of Lemma B.2). Suppose that we invoke DY-
NAMICKDE.INITIALIZE. Suppose when a = a∗ and r = r∗, we sample a point x ∈ Lr∗ . Given a query q, we invoke
DYNAMICKDE.QUERY. With probability at least 1− 1

n10 , Ha∗,r∗ recovered x.

With the above lemma, we can bound the number of recovered points in expectation. We show that there are only O(1)
points recovered by LSH in each geometric weight level (Definition 2.1).

Lemma G.3 (Upper bound on number of recovered points in expectation, informal version of Lemma B.3). Fix a query
q ∈ Rd. We define R := ⌈log 1

fKDE
⌉. Fix r ∈ [R], we define p := pnear,r. For each (i, r) ∈ [R] × [R], we define

ci,r := min{ zi−1

zr
, log

1
7 n}. There exists k ∈ N+

k := kr :=
1

log(1/p)
max

l∈{r+1,··· ,R+1}
⌈ l − r

c2l,r(1− o(1))
⌉,

such that for any i > j Eh∗∼Hk [|{x′ ∈ Li : h
∗(x′) = h∗(q)}|] = O(1)

Finally, we claim that the kernel function is Lipschitz. This is an important property for designing robust algorithms.

Lemma G.4. Suppose kernel function f∗
KDE : Rd × Rd → [0, 1] satisfies the following properties:

• Radial: there exists a funtion f : R→ [0, 1] such that f(p, q) = f(∥p− q∥2), for all p, q ∈ R.

• Decreasing: f is decreasing

• Lipschitz: f is L-Lipschitz

Then KDE function f∗
KDE : Rd → [0, 1], f∗

KDE(q) :=
1
|P |

∑
p∈P f(p, q) is L-Lipschitz, i.e.

|f∗
KDE(q)− f∗

KDE(q
′)| ≤ L · ∥q − q′∥2

Proof. For any q, q′ ∈ Rd, we have:

|f∗
KDE(q)− f∗

KDE(q
′)|

= | 1
|P |

∑
p∈P

f(p, q)− 1

|P |
∑
p∈P

f(p, q′)|

≤ 1

|P |
∑
p∈P

|f(p, q)− f(p, q′)|

=
1

|P |
∑
p∈P

|f(∥p− q∥2)− f(∥p− q′∥2)|

≤ 1

|P |
∑
p∈P

L · | ∥p− q∥2 − ∥p− q′∥2 |

≤ 1

|P |
∑
p∈P

L · ∥q − q′∥2

= L · ∥q − q′∥2

where the first step follows from the definition of f∗
KDE, the second step follows from triangular inequality of absolute value,

the third step follows from the property of radial kernel, the fourth step follows from the Lipschitz property of f , the fifth
step follows from the triangular property of L2 norm, and the last step follows from canceling |P |.

Thus, we complete the proof.

H DISCUSSION

Implementation in Deep Neural Networks. Our data structure DYNAMICKDE can be integrated with deep neural
networks in tasks that require efficient and adaptive kernel-based similarity or density estimation. One application is in
the embedding or attention layers of neural architectures, where kernel similarity computations are needed. For example,
in Zandieh et al. [2023], they reduce the softmax matrix in attention computation to a variant of KDE, and implement the
efficient KDE solver to approximate the attention computation in sub-quadratic time. Our dynamic maintenance of KDE
data structures with robustness to adversarial queries can also be used to study the attention computation problem in future
work. To implement this in DNNs, we can follow these steps:

1. Preprocessing: Use the INITIALIZE of the data-structure DYNAMICKDE (Algorithm 2) to preprocess the data using
the chosen kernel and LSH hash tables. This can be done on feature embeddings generated by earlier layers of the
network.

2. Query Phase: During inference or training (especially in attention-like mechanisms), use QUERY of DYNAMICKDE
(Algorithm 4) to efficiently compute kernel densities for input query embeddings. The approximation guarantees are
preserved due to importance sampling and LSH recovery.

3. Online/Incremental Learning: When new data points are introduced (e.g., in continual learning or streaming settings),
UPDATE of DYNAMICKDE (Algorithm 3) allows for sublinear-time integration of new points, without reinitialization
of the entire data structure.

Dynamically Evolving Data Distributions. We believe that our method can handle dynamically evolving data distri-
butions, such as the distribution in Xie et al. [2024]. This is because we focus on dynamically updating kernel density
estimates in response to insertions/deletions in the dataset and handling adaptive/adversarial queries. Xie et al. [2024]
analyzes evolving domain generalization (EDG), where the data distribution changes over time due to factors like temporal
shifts (concept drift, covariate shift). It proposes Mutual Information-Based Sequential Autoencoders (MISTS) that explicitly
separate dynamic and invariant features to adapt across evolving domains. Our method does provide robustness to dynamic
changes in the dataset, making it applicable in scenarios where the data evolves over time. However, this may require a more
careful analysis of the details of both works, so we leave this as a future direction.

Justification of Assumptions. In our proof, we consider the worst-case scenario. Specifically, we apply the ϵ-net technique,
where we union bound over all balls in the covering net to ensure robustness against adaptive, potentially adversarial queries.
We do not assume queries are i.i.d., unlike many traditional data structures. Instead, our framework is explicitly designed
for adaptive queries, which are the essence of adversarial behavior in real-world applications such as interactive machine
learning, data poisoning scenarios, and online optimization. The robustness guarantees are built up incrementally: from

single-query success probability, to net points on the unit ball via ϵ-nets, and finally to all query points in the input space.
This ensures our results extend beyond static, non-adversarial settings and are well-founded in scenarios where queries are
interdependent or chosen in response to previous answers.

Practical Implications. Kernel density estimation (KDE) has a direct connection to efficient attention computation in
Transformers, as widely discussed in prior works Tsai et al. [2019], Zandieh et al. [2023], Alman and Song [2023, 2024a,b,
2025a,b]. Recall that for the token sequence Xℓ ∈ Rn×d at Transformer layer ℓ and weight matrices Q,K ∈ Rd×d, the
attention weight matrix is given by

Attn(Q,K) := D−1 exp(XℓQK⊤X⊤
ℓ),

where D := diag(exp(XℓQK⊤X⊤
ℓ)1n) and exp(A)i,j = exp(Ai,j) for all matrices A.

We can set ki := (XℓK)i,∗, qi := (XℓQ)i,∗, Ai,j = exp(q⊤i kj) for all i ∈ [n]. Then, it is evident that A is a kernel
matrix whose entries are exponentiated inner products, and the only difference between Attn(Q,K) = D−1A and kernel
computation of A is the normalization matrix D−1.

To make the connection explicit, we can consider the Gaussian kernel

fGaussian(k, q) := exp(−0.5σ−2∥k − q∥22).

When ∥k∥2 = 1 and ∥q∥2 = 1, the Gaussian kernel can be simplified as

fGaussian(k, q) = exp(σ−2(q⊤k − 2)),

which corresponds to exp(q⊤k) and exactly recovers the attention computation Ai,j = exp(q⊤i kj).

Thus, the efficient KDE algorithm proposed in this paper may inspire further applications in efficient attention computation,
including Transformer architectures Frantar and Alistarh [2023], Liang et al. [2025], Chen et al. [2025b], Gao et al.
[2025], graph attention Veličković et al. [2018], Fu et al. [2021], Zhang [2024], Li et al. [2025], and attention-inspired
regression Deng et al. [2023a], Gao et al. [2023], Song et al. [2024], Deng et al. [2024]. These architectural advancements
can further enhance computational efficiency across various fields, such as diffusion models Hu et al. [2024], Shen et al.
[2025], Cao et al. [2025c], Guo et al. [2025] and flow-based generative models Chen et al. [2025a], Cao et al. [2025a,b],
Gong et al. [2025].

	Introduction
	Related Work
	Problem Formulation
	Our Result
	Technical Overview

	Preliminaries
	Our Data Structures
	LSH Data Structure
	Initialize Part of Data Structure
	Update Part of Data Structure
	Query Part of Data Structure

	Robustness to Adversary
	Conclusion
	Preliminaries
	Definitions
	Lemmas

	Technical Claims
	Size of geometric weight levels
	Probability for sampled point recovery
	Number of recovered points in expectation

	Our Data Structures
	Initialize part of data structure
	Update part of data structure
	Query part of data structure
	LSH data structure

	Correctness: A Brief Summary
	Data Independence of Initialize and Update.
	Unbiasedness of Query
	Variance Bound for Query

	Correctness: Details
	Unbiasedness of Query
	Variance Bound for Query

	Adversary
	Technical Claims
	Discussion

