
How Does Information Bottleneck Help Deep Learning?

Kenji Kawaguchi * 1 Zhun Deng * 2 Xu Ji * 3 Jiaoyang Huang 4

Abstract
Numerous deep learning algorithms have been
inspired by and understood via the notion of in-
formation bottleneck, where unnecessary infor-
mation is (often implicitly) minimized while task-
relevant information is maximized. However, a
rigorous argument for justifying why it is desir-
able to control information bottlenecks has been
elusive. In this paper, we provide the first rig-
orous learning theory for justifying the benefit
of information bottleneck in deep learning by
mathematically relating information bottleneck
to generalization errors. Our theory proves that
controlling information bottleneck is one way to
control generalization errors in deep learning, al-
though it is not the only or necessary way. We
investigate the merit of our new mathematical
findings with experiments across a range of ar-
chitectures and learning settings. In many cases,
generalization errors are shown to correlate with
the degree of information bottleneck: i.e., the
amount of the unnecessary information at hidden
layers. This paper provides a theoretical founda-
tion for current and future methods through the
lens of information bottleneck. Our new gener-
alization bounds scale with the degree of infor-
mation bottleneck, unlike the previous bounds
that scale with the number of parameters, VC
dimension, Rademacher complexity, stability or
robustness. Our code is publicly available at:
https://github.com/xu-ji/information-bottleneck

1. Introduction
The information bottleneck principle (Tishby et al., 1999;
Slonim & Tishby, 2000) has been a great concept in balanc-
ing the trade-off between the complexity of representation
and the power of predicting. It is based on the notion of

*Equal contribution. Author ordering determined by coin flip.
1NUS 2Columbia University 3Mila 4University of Pennsylvania.
Correspondence to: Kenji Kawaguchi <kenji@nus.edu.sg>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. Illustration of X , Y and Z. This paper studies the rela-
tionship between performances of deep neural networks and the
mutual information between X and Z. Our theory proves that
controlling this mutual information is one way to control perfor-
mances in deep learning, although it is not the necessary way.

minimal sufficient statistics for extracting information about
target Y ∈ Y into representation Z = ϕ(X) ∈ Z from
input X ∈ X . An information bottleneck imposes regu-
larization at representation Z by minimizing the mutual
information between X and Z, I(X;Z), while maximizing
the mutual information between Y and Z, I(Y ;Z).

In practice I(X;Z) is often minimized implicitly, e.g. as
a result of stochastic gradient descent (SGD) or an archi-
tecture choice (Shwartz-Ziv & Tishby, 2017). An explicit
minimization of I(X;Z) has been also adopted in the ma-
chine learning literature as a regularization technique (Alemi
et al., 2016; 2018), where the mutual information is either
estimated by averaging log probabilities of latent represen-
tations over empirical samples or replaced by a tractable
upper bound (Kirsch et al., 2020; Kolchinsky & Tracey,
2017; Alemi et al., 2016). More generally, the notion of
bottlenecks on representation expressivity has been used in
work on structural inductive biases (Goyal & Bengio, 2022).

Consequently, understanding the connection between the
information bottleneck regularizer I(X;Z) and the general-
ization ability of machine learning models has become an
active area of research. Given its importance, Shwartz-Ziv
et al. (2019) provided the following conjecture:

Conjecture 1. (Informal version (Shwartz-Ziv et al., 2019))
With probability at least 1 − δ over the training data
s = {(xi, yi)}ni=1 drawn from the same distribution as a
random variable pair (X,Y), for the generalization error

1

https://github.com/xu-ji/information-bottleneck

How Does Information Bottleneck Help Deep Learning?

∆(s) = EX,Y [ℓ(f
s(X), Y)]− 1

n

∑n
i=1 ℓ(f

s(xi), yi), there
is a bound obeys the following form:

∆(s) ≤

√
2I(X;Zs

l) + log 2
δ

2n
, (1)

where fs is the full model obtained by training and Zs
l =

ϕs
l (X) is the output of the an intermediate l-layer encoder

ϕs
l of the model, i.e. representation obtained after passing

through the first l layers.

However, this appealing conjecture cannot be applied to
explain the success of information bottleneck principle in
practice. First, the proof of the bound in this conjecture is in-
complete. More importantly, as pointed out by Hafez-Kolahi
et al. (2020), there is a critical drawback in the formulation
of this conjecture: Shwartz-Ziv et al. (2019) implicitly as-
sumes the independence of Zs

l and s in the arguments of
this conjecture, which means that they treated the encoder
ϕs
l as fixed and independent of training data s. Indeed,

Hafez-Kolahi et al. (2020) constructed a counterexample
to show that the conjecture is invalid when the encoder ϕs

l

is also learned with the training data s. This is because
minimizing I(X;Zs

l) only does not sufficiently constrain
the complexity of ϕs

l , allowing it to arbitrarily overfit to the
training data with a large generalization gap, in contradic-
tion to the inequality (1). In other words, when selecting
the encoder’s parameters is part of the learning problem,
measuring compression via I(X;Zs

l) does not capture the
degree of overfitting of the encoder’s parameters.

Accordingly, as a first step towards proving a sample com-
plexity bound via information bottleneck, Hafez-Kolahi et al.
(2020) focused on the input layer and proved the follow-
ing input compression bound for binary classification: if
Y = {0, 1} and ℓ is the 0–1 loss, then for any δ > 0, with
probability at least 1 − δ over the training dataset s, they
roughly prove

∆(s) = Õ

(√
2H(X)

n

)
, (2)

up to a factor 21/ϵ for some constant ϵ satisfying ϵ =
Ω
(√

(26H(X)/ϵ + log(1/δ) + 2)/n
)
. However, despite the

popularity of the of information bottleneck principle and
active usage in practice, this is still far from being a valid
sample complexity bound, as noted by Hafez-Kolahi et al.
(2020).

To the best of our knowledge, in the current literature, much
of the work on information bottleneck assumes its benefits,
but no rigorous and valid sample complexity bounds have
been proposed to justify why it is desirable to control infor-
mation bottlenecks. In this paper, we make the first step to
fill in this gap and provide an answer to the following open
problem:

“How does information bottleneck help deep learning from
the perspective of statistical learning theory?”

As our first contribution, we resolve this open question by
providing novel and complete proofs for end-to-end learn-
ing of intermediate representations (Theorem 2). To the
best of our knowledge, we provide the first rigorous gen-
eralization bound for information bottleneck in the case of
learning representations, showing that simplicity in both the
representation and representation function are factors that
support generalization.

As our second contribution, an intermediate step and
byproduct of our novel proof for Theorem 2 not only com-
pletes the proof of Conjecture 1, where Z is treated as fixed
random variable and independent of the training data s, it
also significantly improve the previous bound in the conjec-
ture. We show the generalization error roughly (with high
probability) as

Õ

(√
I(X;Zs

l |Y) + 1

n

)
as n→∞.

This not only improves the numerator of the bound from an
exponential dependence to linear dependence on mutual in-
formation, but also improves I(X;Zs

l) to a smaller quantity
I(X;Zs

l |Y). More importantly, it is of independent interest
and applicable to cases in transfer learning and unsupervised
learning.

Finally, in Section 5, we consolidate our theoretical findings
by comprehensive experiments on our bounds and related
generalization prediction metrics, finding that empirical esti-
mates of the main factors in our bounds are strong predictors
of the generalization gap.

2. Preliminaries
In this section, we describe the notations we use and settings
we mainly consider.

Notation. We are given a training dataset s =
((xi, yi))

n
i=1 ∼ P⊗n of n samples where xi ∈ X and

yi ∈ Y are i.i.d. drawn from a joint distribution P over
X × Y . We want to analyze the generalization gap, i.e., the
gap between the expected loss and the training loss, which
is defined as

∆(s) := E(X,Y)∼P [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi),

where ℓ : Rmy × Y → R≥0 is a bounded per-sample loss,
and fs : X 7→ Rmy represents a deep neural network
learned with a given training dataset s. Here, X and Y
are the corresponding random variables for xi and yi with
(X,Y) ∼ P . We use symbol ◦ to represent the composition

2

How Does Information Bottleneck Help Deep Learning?

of functions and the notation of [D+1] = {1, 2, . . . , D+1}.
We define the random variable of the output of the l-th layer
by

Zs
l = ϕs

l (X), (3)

where ϕs
l is the map for the first l layer with with ϕs

l (x) ∈
Zs

l . That is, for any layer index l ∈ [D + 1], we can
decompose the neural network fs by

fs = gsl ◦ ϕs
l , (4)

where gsl is the map for the rest of the layers after l layers.
For convenience, we refer to ϕs

l as the encoder and to gsl
as the decoder, though it is unnecessary to have an explicit
structure of an encoder and a decoder. Here, the case of
l = 1 corresponds to the input layer where ϕs

1(x) = x and
gs1(x) = fs(x). The case of l = D + 1 corresponds to the
output layer where ϕs

D+1(x) = fs(x) and gsD+1(q) = q.
fs can also be decomposed as

fs = hs
D+1 ◦ hs

D ◦ hs
D−1 ◦ · · · ◦ hs

1,

where hs
l represents the computation of the l-th layer; i.e.,

ϕs
l = hs

l ◦ hs
l−1 ◦ · · · ◦ hs

1 and gsl = hs
D+1 ◦ hs

D ◦ · · · ◦ hs
l+1.

We use A to denote the learning algorithm that returns the
output functions of each layer; i.e.,A(s) = {hs

l }
D+1
l=1 . Then,

by taking a subset of the output coordinates, we define
Ãl(s) = {hs

k}lk=1. Finally, by composing the outputs of Ãl,
we define Al(s) = hs

l ◦ hs
l−1 ◦ · · · ◦ hs

1 = ϕs
l ∈Ml (where

{Ml}l’s are families of functions). Define the maximum
loss

R(fs) = sup
(x,y)∈X×Y

ℓ(fs(x), y.)

We then define the random variable of the encoder of the
l-th layer by

ϕs
l = Al(s). (5)

Presumption. Following the previous work (Shwartz-Ziv
et al., 2019), we consider the setting of |X | < ∞ and
|Ml| <∞. This is the natural setting with digital comput-
ers (e.g., using floating point). In this setting, the mutual in-
formation that we consider are all finite and thus all bounds
are nontrivial. Similar restrictions are commonly considered
in theory work involving mutual information to avoid the
issue of infinite mutual information; for example, in Xu &
Raginsky (2017), they consider countable hypothesis space.
We follow the above setting in our main results, but we
also show that those requirements can be relaxed: see more
details in Section 4 and Appendix E.2.

3. Main Results
In this section, we establish sample complexity bounds to
connect information bottlenecks and generalization errors.

We start with completing and improving the previous results
in the setting where the encoder ϕs

l is treated as fixed and
independent of training data s (Shwartz-Ziv et al., 2019;
Hafez-Kolahi et al., 2020) in Section 3.1. It will serve as an
important intermediate step toward our final result, where
we extend the argument to deal with the main case of our
interest – learning the encoder ϕs

l with s in Section 3.2.

3.1. Encoder independent with the training data

The following theorem shows that we can indeed optimize
the control of expected loss by minimizing the conditional
mutual information I(X;Zs

l |Y) and the training loss if the
encoder ϕs

l is fixed and independent of training data s.1

Even though this simpliefied case is just an intermediate
step towards our final results, Theorem 1 is still useful and
of independent interest. For example, it is applicable when
the encoder is learned with data independent of s, such as in
certain cases in transfer learning and unsupervised learning.
Theorem 1. Let l ∈ {1, . . . , D}. Suppose that ϕs

l is fixed
independently of the training dataset s. Then, for any δ > 0,
with probability at least 1 − δ over training data s, the
following holds:

∆(s) ≤ Gl
3

√
I(X;Zs

l |Y) ln(2) + Gl2
n

+
Gl

1(0)√
n

, (6)

where Gl
1(0) = Õ(1), Gl2 = Õ(1), and Gl

3 = Õ(1), as
n → ∞. The formula of Gl

1(0), Gl2 and Gl
3 are given in

Appendix E.1.

Theorem 1 rigorously completes the proof of Conjecture 1,
with the significant improvements, which we will provide
more detailed explanation in the following paragraph.

Explanation of Theorem 1. There are two significant im-
provements in our bound (6) when compared with the pre-
vious bound (1). First, we reduce the exponential depen-
dence to the linear dependence by replacing the exponential
growth rate 2I(X;Zs

l) with the linear growth rate I(X;Zs
l).

Second, we replace I(X;Zs
l) with I(X;Zs

l |Y), which is
the expected mutual information between X and Zs

l con-
ditioned on Y . To see why it is an improvement, notice
that I(X;Zs

l |Y) ≤ I(X;Zs
l) since we can decompose

I(X;Zs
l) into two components by using the chain rule as in

Federici et al. (2020): I(X;Zs
l) = I(X;Zs

l |Y)+I(Y ;Zs
l).

Here, I(X;Zs
l |Y) ≥ 0 is the superfluous information that

we want to minimize so as to maximize the predictive in-
formation I(Y ;Zs

l) ≥ 0. Therefore, the spirit of informa-
tion bottleneck to regularize I(X;Zs

l) while maximizing
I(Y ;Zs

l) is an indirect way to regularize I(X;Zs
l |Y). Ac-

cordingly, instead of regularizing I(X;Zs
l), recent works

1Here, we still use the superscript s for various quantities to
maintain notation consistency. Theorem 1 considers encoders that
are independent of s, while Theorem 2 and the rest of this paper
consider encoders that are dependent of s.

3

How Does Information Bottleneck Help Deep Learning?

have also start to consider regularizing I(X;Zs
l |Y) (Fis-

cher, 2020; Federici et al., 2020; Lee et al., 2021). In terms
of theory, replacing I(X;Zs

l) with I(X;Zs
l |Y) is qualita-

tively significant because I(X;Zs
l) cannot be zero while

maintaining the label-relevant information I(Y ;Zs
l), unlike

I(X;Zs
l |Y).

For practical use of our bound, one can think about the
case of fixed-feature learning, where the representation is
learnt by other dataset independent of s. This is widely
used in transfer learning and pre-training, where a l-layer
representation is learnt from a large public available dataset
(e.g. ImageNet) and we further use task specific and possibly
private dataset s to finetune extra few layers of the neural
networks while fixing the representation.

3.2. Encoder learned with the training data

In the previous section, we have proven an improved ver-
sion of Conjecture 1 for the setting with a fixed encoder ϕs

l .
However, the typical usage of the information bottleneck
principle is trying to minimizing I(X;Zs

l) = I(X;ϕs
l (X))

over the parameters of the encoder ϕs
l along with a discrimi-

native objective. Thus, to support the typical usage of the
information bottleneck principle, we need to extend the re-
sults to the setting of learning encoder ϕs

l with s. In this
setting, the bound in Conjecture 1 is no longer valid as dis-
cussed in Section 1. However, the question about proving a
sample complexity bound with the information bottleneck in
the above typical setting is challenging and remains open.

In this section, we present our main theorem that answers
this open problem. Our result reconciles the information bot-
tleneck regularizer I(X;Zs

l |Y) with the mutual information
of the encoder and the training dataset I(ϕS

l ;S).

Theorem 2 (Main Theorem). Let D ⊆ {1, 2, . . . , D + 1}.
Then, for any δ > 0, with probability at least 1− δ over the
training set s, the following generalization bound holds:

∆(s) ≤ min
l∈D

Ql, (7)

where for l ≤ D,

Ql= Gl
3

√
(I(X;Zs

l
|Y)+I(ϕS

l
;S)) ln(2)+Ĝl

2

n
+

Gl
1(ζ)√
n

;

and for l = D + 1,

Ql = R(fs)

√
I(ϕS

l ;S) ln(2) + Ǧl2
2n

,

Here, S ∼ P⊗n, Gl
1(ζ) = Õ(

√
I(ϕS

l ;S) + 1), Ĝl2 = Õ(1),
Ǧl2 = Õ(1), and Gl

3 = Õ(1) as n → ∞. The formulas of
Gl

1(ζ), Ĝl2, Ǧl2, and Gl
3 are given in Appendix E.1.

In Theorem 2, we denote by S ∼ P⊗n the random vari-
able following the same distribution as that of the training
dataset s ∼ P⊗n. This notation is required here because
the bound in Theorem 2 is equivalent to Ps∼P⊗n [∆(s) ≤
g(I(X;Zs

l |Y), I(ϕS
l ;S))] ≥ 1 − δ for some function g.

Here, the probability Ps∼P⊗n is taken with respect to
s. The instantiations s within this Ps∼P⊗n are used in
∆(s) and I(X;Zs

l |Y), but not in I(ϕS
l ;S) since I(ϕS

l ;S)
only depends the distribution P⊗n instead of the instan-
tiations. That is, the reason why we need S here is sim-
ilar to the same reason why we use j for the expression∑n

i=1 g1(i,
∑n

j=1 g2(j)) (for some functions g1, g2) while
we have

∑n
j=1 g2(j) =

∑n
i=1 g2(i) in terms of its value,

where i and j correspond to s and S, respectively.

In Theorem 2, the randomness of I(X;Zs
l |Y) and I(ϕS

l ;S)
are different. The mutual information I(X;Zs

l |Y) is calcu-
lated over the randomness of the distribution of the input X
conditioning on Y , after fixing a realization of the training
data s (for each fixed draw of s from Ps∼P⊗n). In con-
trast, the mutual information I(ϕS

l ;S) is computed over
the randomness of the distribution of the training dataset
S ∼ P⊗n.

Remark 1. One can consider the parameterization of the
encoder as ϕS

l = ϕl,θS
l

where θSl is the parameter vector
that is learned with S and contains all parameters of the
layers up to l-th layer. In that case, Theorem 2 holds when
replacing ϕS

l with θSl .

Explanation of Theorem 2. Theorem 2 provides the first
rigorous sample complexity bound for the information bot-
tleneck in the setting of training the encoder ϕs

l with the
same training data s. Here, Zs

l is the random variable of
the l-th layer’s representation with dependence on the given
training dataset s, and D is the number of all layers, includ-
ing the input layer and excluding the output layer; i.e., Zs

1

is the input layer, Zs
D is the last hidden layer, and Zs

D+1

is the output layer. Here, I(ϕS
l ;S) is measuring the effect

of overfitting the encoder, which is necessary to avoid the
counter-example (Hafez-Kolahi et al., 2020, Example 3.1).

The main factor in the above theorem is I(X;Zs
l |Y) +

I(ϕS
l ;S). This term captures the novel relationship that

has not been studied in any previous sample complexity
bounds. Specifically, this captures the relationship between
“how much information from the input X the trained encoder
ϕs
l retains, i.e., I(X;Zs

l |Y)” and “how much information
from the training dataset S is used to train the encoder ϕS

l ,
i.e., I(ϕS

l ;S)”.

Theorem 2 is applicable when the encoder is trained with
s and potentially additional data independent of s: e.g.,
supervised learning, semi-supervised learning, unsupervised
learning, and transfer learning. For example, Theorem 2
captures the benefit of transfer learning in both terms of

4

How Does Information Bottleneck Help Deep Learning?

I(X;Zs
l |Y) and I(ϕS

l ;S) since the encoder ϕS
l is expected

to have less dependence on S (target data) (for some l ≤ D)
in transfer learning, which tends to decrease I(ϕS

l ;S).

Finally, we note that in the formula of Ĝl2, we have a lin-
ear dependence on H(Zs

l |X,Y) ln(2) (see Appendix E.1).
However, we have H(Zs

l |X,Y) = 0 if the function ϕs
l is

deterministic, which is the typical case for deep neural net-
works, because ϕs

l is the function used at inference or test
time as opposed to training time (when dropout for example
can be used). When the function ϕs

l is stochastic at test time,
we have H(Zs

l |X,Y) ≈ 0 when the injected noise is small,
and more generally H(Zs

l |X,Y) = O(1) as n→∞.

4. Extensions
Our results thus far focus on the case of |X | < ∞, which
is already general enough to cover the realistic implementa-
tion on a computer and commonly considered in previous
theory work (Shwartz-Ziv et al., 2019). Indeed, our pre-
sumption makes sure that the mutual information is finite
and thus the bounds provided are non-trivial. In the case of
|X | =∞, the mutual information can be infinite, and thus
requires a separate treatment. In this section, we show how
to generalize our arguments to the case of |X | =∞.

4.1. Neural networks with ReLU activation functions

First, we show that finite mutual information can be obtained
in some cases even for the case of |X | = ∞. Specifically,
the following proposition shows that a (deterministic) neural
network can have finite mutual information with ReLU
activations with continuous distributions.

Proposition 1. For a given neural network with ReLU acti-
vation functions, there are infinitely many continuous distri-
butions over X such that the corresponding I(X,Z|Y) is
finite.

4.2. Modification for valid bounds in the case of infinite
mutual information

The mutual information for the information bottleneck is
finite for many practical cases including the cases of discrete
domains X with any models and of continuous domains X
with stochastic models as well as the case in Proposition 1
with ReLU. However, it is infinite for some special case, for
example, of continuous domains X with deterministic neu-
ral networks with certain types of injective activations such
as sigmoid (instead of ReLU) (Amjad & Geiger, 2019). This
subsection demonstrates that our bounds can be modified
to produce finite bounds even for any special cases of the
mutual information being infinite. Our results (Theorems
1–2 with Corollary 1) also resolve the known issue of arbi-
trariness of the mutual information with different binning
methods (Saxe et al., 2019).

Consider an arbitrary (continuous or discrete) domainX and
an arbitrary encoder ϕ̃s

l such that ϕ̃s
l (x) ∈ Z̃s

l and the set Z̃s
l

is potentially (uncountably or countably) infinite. Define
the corresponding model f̃s by f̃s = gsl ◦ ϕ̃s

l and Z̃s
l =

ϕ̃s
l ◦X . We formalize an arbitrary binning method El[ϕ̃s

l] of
computing the mutual information (Chelombiev et al., 2019)
as follows: for any (l, ϕ̃s

l), let El[ϕ̃s
l] : Z̃s

l → Zs
l ⊆ Z̃s

l be
a function such that |Zs

l | < ∞. Set ϕs
l = El[ϕ̃s

l] ◦ ϕ̃s
l ; i.e.,

it follows that Zs
l = El[ϕ̃s

l] ◦ Z̃s
l and fs = gsl ◦ El[ϕ̃s

l] ◦ ϕ̃s
l .

Let Q̂l and minl∈D Ql be the right-hand side of Eq. (6) and
Eq. (7) in Theorems 1–2 with this choice of encoder ϕs

l ;
i.e., Q̂l and Ql contain I(X;Zs

l |Y) instead of I(X; Z̃s
l |Y).

Here, I(X;Zs
l |Y) is the mutual information computed by

the binning method El[ϕ̃s
l] while I(X; Z̃s

l |Y) is the true
mutual information of f̃s. Let Cl be a nonnegative real
number such that P(|ℓ((gsl ◦ ϕ̃s

l)(X), Y)− ℓ((gsl ◦ El[ϕ̃s
l] ◦

ϕ̃s
l)(X), Y)| ≤ Cl) = 1.

Corollary 1 shows that even when the mutual information
I(X; Z̃s

l |Y) of the original model f̃s is infinite, Theorems
1–2 provide the finite bounds on the original model f̃s

using the finite mutual information I(X;Zs
l |Y) returned by

a binning method El[ϕ̃s
l]:

Corollary 1. Suppose that Cl <∞. Then, Theorems 1–2
hold true also when we replace

(Theorem 1) Eq. (6) with ∆(s) ≤ Q̂l + 2Cl <∞, and,

(Theorem 2) Eq. (7) with ∆(s) ≤ minl∈D Ql + 2Cl <∞.

The assumption on the finiteness of Cl is satisfied for com-
mon scenarios. For example, let L be the Lipschitz constant
of the function q 7→ ℓ(gsl (q), Y) w.r.t. some metric dE
almost surely (Fazlyab et al., 2019; Latorre et al., 2019;
Aziznejad et al., 2020; Pauli et al., 2021). Set El[ϕ̃s

l] such
that the radius of each bin w.r.t. the metric dE is at most
ϵ/
√
nL2 for some ϵ > 0. We can then set Cl = ϵ/

√
n.

In Corollary 1, the arbitrariness with binning methods
is resolved: e.g., increasing the bin size ϵ can decrease
the mutual information, but it also increases the value of
Cl = ϵ/

√
n. Thus, there is always a tradeoff and we can’t ar-

bitrarily change values of our bounds by choosing different
binning methods. Similarly, for the case of infinite mutual
information, we prove the validity of general methods of
computing mutual information, including those of injecting
noises and kernel density estimations in Appendix E.2.

5. Experiments
We conduct empirical experiments to investigate the follow-
ing questions: (i) Does the information bottleneck regular-
izer I(X;Zs

l) alone reliably predict generalization when the
encoder ϕs

l is learned with s? (ii) Does the main factor in
our bound in Theorem 2 minl∈[D] I(S; θ

S
l) + I(X;Zs

l |Y)

5

How Does Information Bottleneck Help Deep Learning?

Pearson Correlation

Num. params. -0.0294∏
l∥θsl ∥F -0.0871

Ĭ(X;Zs
l) 0.3712

Ĭ(X;Zs
l |Y) 0.3842

Ĭ(S; θSD+1) 0.0091
Ĭ(S; θSl) 0.0211
Ĩ(S; θSl) + Ĭ(X;Zs

l) 0.3928
Ĩ(S; θSl) + Ĭ(X;Zs

l |Y) 0.4130

Table 1. Pearson correlation coefficient between metrics and the
generalization gap in loss for constrained models trained for 5
class classification on 2D inputs. Positive values denote positive
correlations. θl denotes parameters of layer l and θl denotes pa-
rameters up to layer l.

with Remark 1 predict generalization more accurately than
I(X;Zs

l) alone (or I(X;Zs
l |Y) alone)? (iii) How does

varying layer l within the network affect the values of
I(S; θSl) and I(X;Zs

l) and their predictive ability?

5.1. On the Representation Compression Bound

As discussed in Sections 3, I(X;Zs
l) is generally not a

reliable predictor of generalization because feature compres-
sion does not prevent the overfitting of the representation
function’s parameters. We investigate this further by design-
ing a learning algorithm that trains models under various
hyperparameter settings with the constraint that estimated
I(X;Zs

l) is approximately constant. Following previous
work such as Galloway et al. (2022), we use correlation anal-
ysis to empirically evaluate how strongly metrics predict
generalization.

The inference problem studied was 5 class classification on
clustered 2D inputs (Fig. 3). The model architecture was a
5 layer MLP with deterministic weights and feature layer
l was fixed to the penultimate layer. Given training dataset
s, each model qθs was optimized with the cross-entropy
loss minθs − 1

|s|
∑

(x,y)∈s(log(1/k)
∑k

j=1 qθs(y|zj)) s.t.

Î(X;Zs
l) = ρ, where features zj ∼ qθs(Zs

l |x), and
qθs(Zs

l |x) is a multivariate Normal distribution with mean
and variance computed by the MLP. Here,

Î(X;Zs
l) =

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

log
qθs(zj |x)

1
|s|
∑

(x′,y′)∈s qθs(zj |x′)

is a Monte-Carlo sampling based estimator of I(X;Zs
l),

and constraint ρ was set to 1.5, approximately half the value
of Î(X;Zs

l) attained without constraining Î(X;Zs
l). The

neural network infers a distribution over a stochastic latent
features so that Î(X;Zs

l) can be regularized and evaluated
directly during training; in Section 5.2 we consider the

case of deterministic features without regularization
of Î(X;Zs

l). Whereas Î(X;Zs
l) is a sampling based

estimator, we also use the upper-bound based estimator:
Ĭ(X;Zs

l) = 1
|s|
∑

(x,y)∈s
1
k

∑k
j=1(log qθs(zj |x) −

(1
|s|
∑

(x′,y′)∈s log qθs(zj |x′))). We define

Î(X;Zs
l |Y) and Ĭ(X;Zs

l |Y) accordingly by con-
ditioning these quantities on Y : Î(X;Zs

l |Y) =
1
|s|
∑

c∈C

∑
(x,y)∈sc

1
k

∑k
j=1 log

qθs (z
j |x)

1
|sc|

∑
(x′,y′)∈sc

qθs (zj |x′)
,

and Ĭ(X;Zs
l |Y) = 1

|s|
∑

c∈C

∑
(x,y)∈sc

1
k

∑k
j=1(log qθs(

zj |x)− (1
|sc|
∑

(x′,y′)∈sc
log qθs(zj |x′))).

For the computation of I(S; θSl), the learning algorithm
is defined by the posterior distribution over network pa-
rameters P(θSl |S = s), which was modelled using SWAG
(Maddox et al., 2019; Mandt et al., 2017), chosen for its pop-
ularity and simplicity. We denote the estimator of I(S; θSl)
using SWAG by Ĭ(S; θSl), where datasets S were drawn
from the set of training datasets. To account for different
scales of different estimation procedures, we tested rescal-
ing Ĭ(S; θSl) by the average value of Î(X;Zs

l |Y), denoting
rescaled values by Ĩ(S; θSl) (see Appendix A for more de-
tails). 216 models were trained over varying architectures,
weight decay rates, dataset draws, and random seeds. Model
parameters were optimized end-to-end using the reparam-
eterization trick (Kingma et al., 2015) with dual gradient
descent for MI constraints (Bertsekas, 2014) (Appenix A).
For each model, we measured the generalization gap be-
tween the test set and train set losses. We found that com-
bining model compression and representation compression
yielded the best predictor of generalization overall, and that
this outperformed using representation compression alone
(Table 1, 5). Additional experimental results on MNIST and
Fashion MNIST datasets are given in Appendix B, show-
ing that this conclusion also holds for stochastic feature
networks in cases when I(X;Zs

l) is unconstrained.

5.2. Image Classification with DNNs

To investigate a common setting, we trained 540 deep neural
networks on CIFAR10 without explicitly constraining MI,
over varying preactivation ResNet architectures (He et al.,
2016), weight decay rates, batch sizes, dataset draws and
random seeds. To study representation compression by esti-
mating MI with deterministically computed features, noise
is customarily injected purely for analysis purposes (Saxe
et al., 2019). We tested adaptive kernel density estimation
(KDE) (Chelombiev et al., 2019), which models the latent
represenation of an input as a unimodal Gaussian centred
at the deterministic feature, with variance σ2

l determined
by scaling a base value according to maximum observed
activation value in the layer. We also tested selecting σ2

l by
maximum likelihood estimation (MLE) of observed features
under the constraint that estimated MI decreases with layer,

6

How Does Information Bottleneck Help Deep Learning?

Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error
1
D

∑D
l=1 Ĭ(X;Zs

l) 0.8481 0.7410 0.2116 0.1831 0.6425 0.5436
minl∈[D] Ĭ(X;Zs

l) 0.7145 0.5602 0.7203 0.5719 0.4461 0.3404
1
D

∑D
l=1 Ĭ(X;Zs

l |Y) 0.8481 0.7406 0.2140 0.1853 0.6427 0.5435
minl∈[D] Ĭ(X;Zs

l |Y) 0.7004 0.5434 0.7062 0.5560 0.4386 0.3305

Ĭ(S; θSD+1) 0.4688 0.3112 0.2512 0.0775 0.2121 0.1208
minl∈[D] Ĭ(S; θ

S
l) + Ĭ(X;Zs

l |Y) 0.8434 0.7313 0.8437 0.7195 0.6270 0.5332
Ī(S; θSD+1) 0.5370 0.3800 0.2924 0.1218 0.2442 0.1526
minl∈[D] Ī(S; θ

S
l) + Ĭ(X;Zs

l |Y) 0.8632 0.7576 0.8511 0.7562 0.6626 0.5664

Table 2. Correlation results across metrics for CIFAR10 models. Each value is in [-1, 1] and > 0 indicates positive correlation. Best
metric highlighted. More results can be found in Appendix D.

Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error
1
D

∑D
l=1 Ī(S; θ

S
l) + Ĭ(X;Zs

l |Y) 0.4429 0.2908 0.2783 0.1059 0.2349 0.1426
maxl∈[D] Ī(S; θ

S
l) + Ĭ(X;Zs

l |Y) 0.5711 0.4204 0.2993 0.1311 0.2886 0.1945
minl∈[D] Ī(S; θ

S
l) + Ĭ(X;Zs

l |Y) 0.8632 0.7576 0.8511 0.7562 0.6626 0.5664
Ī(S; θS1) + Ĭ(X;Zs

1 |Y) 0.6476 0.5292 0.1557 0.1331 0.4307 0.3504
Ī(S; θSD) + Ĭ(X;Zs

D|Y) 0.5711 0.4204 0.2993 0.1311 0.2886 0.1945

Table 3. Correlation results for Ī(S; θSl) + Ĭ(X;Zs
l |Y) for CIFAR10 models across different layer summarization methods.

Figure 2. (Left) Results for minl∈[D] Ī(S; θ
S
l) + Ĭ(X;Zs

l |Y) for
unconstrained models trained on CIFAR10. Dashed line denotes
best polynomial fit with degree 2. (Right) Metrics averaged over
models for each layer index. Star denotes minimum point for each
metric. Values are normalized by subtracting the minimum and
dividing by the range.

which follows from the information processing inequality.
We report the results in this section for MLE and in Ap-
pendix D.4 for adaptive KDE. Representations were taken
from D = 5 layers in the model, ranging from the input to
the output of the penultimate layer. Again, SWAG was used
to model the posterior P(θSl |S = s).

Since SWAG approximates the stationary distribution of

SGD from a fixed initialization as a unimodal Gaussian
(Mandt et al., 2017), we also tested averaging over initial-
izations to obtain a richer posterior model, and denote the
estimator of MI from this model as Ī(S; θSl), defined in
Appendix D.2. To construct multiple training datasets, we
sampled 5 training sets of size 15K from the CIFAR10 train-
ing set, and each test set was the original 10K test set.

The generalization gap was positively correlated with met-
rics measuring representation compression, but more cor-
related with metrics that combined both representation and
model compression (Table 2). By increasing the value of
layer index l of the encoder, MI between the encoder and
training dataset increased, while MI between the represen-
tation and input decreased (Fig. 2), capturing a trade-off
between these two measures of compression. For selection
of hyperparameters σ2

l , MLE (Fig. 2, Table 2, 3, 19, 17) out-
performed adaptive KDE (Table 20, 18), however regardless
of which scheme was used, the best metric that combined
representation compression and model compression out-
performed the best metric for representation compression
or model compression individually. minl∈[D] Ī(S; θ

S
l) +

Ĭ(X;Zs
l |Y) performed best overall (Fig. 2). Taking the

minimum over layers (Theorem 2) outperformed other layer
summarization methods (Table 3).

7

How Does Information Bottleneck Help Deep Learning?

5.3. Feature binning experiments

To test whether the importance of model compression would
hold when I(X;Zs

l) was estimated by binning deterministic
features into discrete categories (Section 4.2), we conducted
toy clustering experiments (Appendix 5.1) on deterministic
feature models. The binning implementation of Saxe et al.
(2019) was reused to discretize the activity of each node into
10 buckets and the information bottleneck was implemented
using the surrogate objective of Kirsch et al. (2020, Eq.
1). 216 models were trained across MLP architectures and
hyperparameters and SWAG was used to estimate the poste-
rior. Model details and results are given in appendix C. We
found that imposing the information bottleneck regularizer
decreased the generalization prediction performance of fea-
ture compression metrics Î(X;Zs

l) and Î(X;Zs
l |Y), and

combining model compression with feature compression
metrics increased performance.

6. Proof Sketch
In this section, we further provide proof sketches of Theo-
rems 1-2 for readers interested in having an overview of the
proofs. The complete proofs are in Appendix F.

6.1. Proof Sketch of Theorem 1

Fix l ∈ [D] and ϕs
l independently of the training dataset

s. Let T be the standard typical set of Zs
l in information

theory. As we will see in the later sketch, we combine
deterministic decompositions and probabilistic bounds with
respect to the randomness of new fresh samples X and
datasets s. The usages of probabilistic bounds for different
sample spaces enable the exponential improvement over the
previous bounds.

Step 1. Decompose the generalization gap into two terms as
∆(s) = A+B, where A corresponds to the case of Zs

l ∈ T ,
while B is for the case of Zs

l /∈ T . We will bound A and B
separately.

Step 2. By standard argument from information theory, we
have P(Zs

l /∈ T | Y = y) ≤ O(1√
n
) where the probability

is with respect to X , with which we can roughly argue 2

that B ≤ O(1√
n
).

Step 3. To bound A, we argue that A is bounded by a
concentration gap of a special multinomial distribution
over the elements of T , which is bounded roughly as
A = O(

√
(ln |T |)/n) (with high probability with respect

to S), by using a recent statistical result on multinomial
distributions (Kawaguchi et al., 2022a, Lemma 3 & Propo-

2Although this requires a refinement of the standard argument.
In Appendix F, we refine the argument using the McDiarmid’s
inequality and a further decomposition of B.

sition 3). Then, the standard argument from information
theory approximately bounds the size of the typical set as
|T | ≤ 2I(X;Zs

l |Y)+CT for some CT > 0, approximately
resulting in: with high probability

A = O

(√
ln |T |
n

)
= Õ

(√
(I(X;Zs

l |Y) + 1)

n

)
.

Step 4. Finally, By combining the above bounds on A and
B, we approximately conclude the result.

6.2. Proof Sketch of Theorem 2

Based on the result of Theorem 1 for fixed l ∈ [D] and ϕs
l ,

we further generalize it for flexible l and learnable ϕs
l . Our

proof is based on the tricky usage of probabilistic bounds
for different sample spaces in Theorem 1’s proof.

Step 1. Let l ∈ [D]. We first find a hypothesis space Φl
δ such

that P(ϕS
l /∈ Φl

δ) ≤ δ and |Φl
δ| ≤ 2I(ϕ

S
l ;S)+Cδ for some

Cδ ≥ 0. We then construct the corresponding hypothesis
space H by H = ∪ϕl∈Φl

δ
Hϕl

where Hϕl
= {gl ◦ ϕl | gl :

Zl → Rmy}.

Step 2. We then obtain the sample complexity bound
for each Hϕl

(for each ϕl ∈ Φl
δ) by using the result of

Theorem 1. For each ϕl ∈ Φl
δ that is fixed indepen-

dently of s; i.e., P(∀f ∈ Hϕl
,B(f) ≤ Jl(δ)) ≥ 1 − δ

where B(f) = EX,Y [ℓ(f(X), Y)] − 1
n

∑n
i=1 ℓ(f(xi), yi)

and Jl(δ) is the right-hand side of Eq. (6). Then, by taking
union bound with the equal weighting over all ϕl ∈ Φl

δ,
we have P(∀f ∈ H,B(f) ≤ Jδ,l) ≥ 1 − δ, where
Jδ,l = Jl(δ/(2

I(ϕS
l ;S)+Cδ)).

Step 3. We now want to show that this bound holds for
B(fs) instead of B(f) for f ∈ H. This is achieved if
fs ∈ H. Since P(fS ∈ H) ≥ 1− δ from the construction
of H and P(A ∩ B) ≤ P(B) for any events A and B, the
following holds:

P(B(fS) ≤ Jδ,l)

≥ P(fS ∈ H)P(B(fS) ≤ Jδ,l | fS ∈ H)
≥ P(fS ∈ H)(1− δ) ≥ 1− 2δ.

Therefore, by replacing δ with δ/2, we have P(B(fS) ≤
Jδ/2,l) ≥ 1− δ.

Step 4. For the case of l = D + 1, the proof is signif-
icantly simplified because an entire model is an encoder
as f = ϕD+1; i.e., we replace the result of Theorem
1 with Hoeffding’s inequality to conclude that P(∀f ∈
HϕD+1

,B(f) ≤ JD+1(δ)) ≥ 1 − δ where JD+1(δ) =

R(f)
√

(ln(1/δ))/(2n). Using the same steps as the case
of l ∈ [D], we prove that P(B(fS) ≤ Jδ/2,D+1) ≥ 1 − δ,
where Jδ,D+1 = JD+1(δ/(2

I(ϕS
l ;S)+Cδ)). By taking

8

How Does Information Bottleneck Help Deep Learning?

union bounds over l ∈ D ⊆ {1, 2, . . . , D + 1}, we con-
clude P(∀l ∈ D,B(fS) ≤ Jδ/(2|D|),l) = P(B(fS) ≤
minl∈D Jδ/(2|D|),l) ≥ 1− δ.

Step 5. Organizing the expression of Jδ/(2|D|),l yields the
right-hand side of eq. (7), which proves Theorem 2.

7. Related Works
The implicit minimization of mutual information I(X;Z)
has been studied with the motivation of understanding why
deep learning works through the lens of information bottle-
necks (Shwartz-Ziv & Tishby, 2017). The previous work
assumes the benefit of minimizing I(X;Z) and questioned
whether the training of deep neural networks implicitly re-
sult in the minimization of I(X;Z). In contrast, we studied
the benefit of (implicitly or explicitly) controlling I(X;Z).

In this paper, we consider the generalization gap in deep
learning (Nagarajan & Kolter, 2019; Zhang et al., 2021a;b;
Kawaguchi et al., 2022a;b; Hu et al., 2022), which is dif-
ferent from generalization gaps studied in the field of in-
formation bottleneck. In the field of information bottle-
neck, previous studies have analyzed a generalization gap
between the true mutual information and its empirical es-
timate (Shamir et al., 2010; Tishby & Zaslavsky, 2015)
and the generalization gap on C(qθ(Z|X), q(Y |Z)) (Vera
et al., 2018) where C(p, q) is the cross entropy of q relative
to p, qθ(Z|X) is a randomized encoder with learnable pa-
rameters θ, and q(Y |Z) is a simple count-based decoder
with no learnable parameter. Unlike ours, their bounds
on C(qθ(Z|X), q(Y |Z)) scale with |X | lnn√

n
+ |Z|√

n
(due to

their dependence on 1
PX(xmin)

≥ |X | and |U| = |Z| in their
notation). This dependence on |X | makes their bounds in-
applicable as it requires the number of samples n≫ |X |2.
Here, the cross entropy C(qθ(Z|X), q(Y |Z)) studied in the
previous work is also different from the cross-entropy loss
of deep learning, C(p(Y |X), qθ(Y |X)), where p(Y |X) is
a target distribution and qθ(Y |X) represents a deep neural
network with learnable parameters θ. Therefore, we could
not rely on any of these previous results from the field of
information bottleneck.

Another related yet different topic of information theory is
to use I(fS ;S) to compute generalization bounds (Xu &
Raginsky, 2017; Bassily et al., 2018; Hellström & Durisi,
2020; Steinke & Zakynthinou, 2020). However, these
previous bounds are not about information bottleneck as
these do not utilize I(X;Zs

l |Y) (or I(X;Zs
l)) and only

uses I(fS ;S), the mutual information between the training
dataset S and the entire model fS = ϕS

D+1. Thus, the
previous bounds cannot provide insights or justifications
on the information bottleneck principle unlike our bounds.
Moreover, in Section 5, we demonstrate the advantage of
I(X;Zs

l |Y) + I(ϕS
l ;S) in our bound over I(fS ;S) in the

previous bounds. Here, notice that I(ϕS
l ;S) ̸= I(fS ;S)

for any l ̸= D + 1, and we always have I(ϕS
1 ;S) ≤ · · · ≤

I(ϕS
D;S) ≤ I(ϕS

D+1;S) = I(fS ;S) (e.g., see Fig. 2).
See Appendix E.3 for more comparison with these previous
bounds, which are not of information bottlenecks although
they use mutual information.

The various interesting properties of information bottle-
neck are discussed in (Achille & Soatto, 2018). However,
they do not provide generalization bounds with informa-
tion bottlenecks. Among others, they discuss a connec-
tion between I(X;Zs

l) and I(θ̃;S), where I represents an
over-simplified version of mutual information in which ev-
erything is ignored except an artificially added noise; i.e.,
I(θ̃;S) ≜ − 1

2

∑d
i=1 logαi (this definition is given in Re-

mark 4.2 of Achille & Soatto, 2018) where αi is the variance
of the Gaussian noise ϵ that is artificially multiplied to the
learned weights θ after training as θ̃ = ϵθ. In other words,
I completely ignores the dependence of θ on S, although
it is the main factor in the question of generalization. For
example, if we set αi = 1, we have I(θ̃;S) = 0 always,
despite the fact that I(θ;S) ̸= 0 when θ is learned from
S. This shows that the previous paper did not consider the
mutual information between θ and S; it used the entropy of
the artificially multiplied Gaussian noise ϵ as mutual infor-
mation. Thus the meaningful factors of mutual information
are ignored in the previous work.

There are generalization bounds via different approaches
including VC-dimension (Vapnik, 1999; Bartlett et al.,
2019), Rademacher complexity (Bartlett & Mendelson,
2002; Truong, 2022; Träuble et al., 2023), stability (Bous-
quet & Elisseeff, 2002; Deng et al., 2021), robustness (Xu &
Mannor, 2012; Liu et al., 2021; Kawaguchi et al., 2022a; Liu
et al., 2022), and PAC-Bayes (Dziugaite et al., 2021; Lotfi
et al., 2022). Unlike these previous studies, we provided the
first generalization bound via the information bottleneck.

8. Conclusion
This study completed the proof of the previous conjec-
ture with near-exponential improvements for the setting
of fixed representations, proved the first rigorous general-
ization bound for the setting of learning representations,
and empirically strengthened the findings with supporting
experiments. This paper makes a contribution on technical
aspects relevant for current and future methods of deep learn-
ing through the lens of information bottlenecks. Whereas
information bottleneck is explicit in various algorithms (e.g.,
Federici et al., 2020; Sun et al., 2022; Li et al., 2022a;b; Su
et al., 2023), it is also interesting to motivate future methods
based on implicit effects of architectures (e.g., transformer
and convolution) and training (e.g., SGD and self-supervised
objectives) on information bottlenecks.

9

How Does Information Bottleneck Help Deep Learning?

References
Achille, A. and Soatto, S. Emergence of invariance and

disentanglement in deep representations. The Journal of
Machine Learning Research, 19(1):1947–1980, 2018.

Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A.,
and Murphy, K. Fixing a broken elbo. In International
Conference on Machine Learning, pp. 159–168. PMLR,
2018.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.
Deep variational information bottleneck. arXiv preprint
arXiv:1612.00410, 2016.

Amjad, R. A. and Geiger, B. C. Learning representations for
neural network-based classification using the information
bottleneck principle. IEEE transactions on pattern analy-
sis and machine intelligence, 42(9):2225–2239, 2019.

Aziznejad, S., Gupta, H., Campos, J., and Unser, M. Deep
neural networks with trainable activations and controlled
lipschitz constant. IEEE Transactions on Signal Process-
ing, 68:4688–4699, 2020.

Bartlett, P. L. and Mendelson, S. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463–482, 2002.

Bartlett, P. L., Harvey, N., Liaw, C., and Mehrabian, A.
Nearly-tight vc-dimension and pseudodimension bounds
for piecewise linear neural networks. The Journal of
Machine Learning Research, 20(1):2285–2301, 2019.

Bassily, R., Moran, S., Nachum, I., Shafer, J., and Yehuday-
off, A. Learners that use little information. In Algorithmic
Learning Theory, pp. 25–55. PMLR, 2018.

Bertsekas, D. P. Constrained optimization and Lagrange
multiplier methods. Academic press, 2014.

Bousquet, O. and Elisseeff, A. Stability and generalization.
Journal of Machine Learning Research, 2(Mar):499–526,
2002.

Burhanpurkar, M., Deng, Z., Dwork, C., and Zhang, L.
Scaffolding sets. arXiv preprint arXiv:2111.03135, 2021.

Chelombiev, I., Houghton, C., and O’Donnell, C. Adaptive
estimators show information compression in deep neu-
ral networks. In International Conference on Learning
Representations, 2019.

Deng, Z., He, H., and Su, W. Toward better generalization
bounds with locally elastic stability. In International Con-
ference on Machine Learning, pp. 2590–2600. PMLR,
2021.

Dziugaite, G. K., Hsu, K., Gharbieh, W., Arpino, G., and
Roy, D. On the role of data in pac-bayes bounds. In
International Conference on Artificial Intelligence and
Statistics, pp. 604–612. PMLR, 2021.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Robust
predictable control. Advances in Neural Information
Processing Systems, 34:27813–27825, 2021.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pap-
pas, G. Efficient and accurate estimation of lipschitz
constants for deep neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

Federici, M., Dutta, A., Forré, P., Kushman, N., and Akata,
Z. Learning robust representations via multi-view in-
formation bottleneck. In International Conference on
Learning Representations, 2020.

Fischer, I. The conditional entropy bottleneck. Entropy, 22
(9):999, 2020.

Galloway, A., Golubeva, A., Salem, M., Nica, M., Ioannou,
Y., and Taylor, G. W. Bounding generalization error
with input compression: An empirical study with infinite-
width networks. arXiv preprint arXiv:2207.09408, 2022.

Goldfeld, Z., Van Den Berg, E., Greenewald, K., Melnyk,
I., Nguyen, N., Kingsbury, B., and Polyanskiy, Y. Es-
timating information flow in deep neural networks. In
International Conference on Machine Learning, pp. 2299–
2308. PMLR, 2019.

Goyal, A. and Bengio, Y. Inductive biases for deep learn-
ing of higher-level cognition. Proc. A, Royal Soc.,
arXiv:2011.15091, 2022.

Hafez-Kolahi, H., Kasaei, S., and Soleymani-Baghshah,
M. Sample complexity of classification with compressed
input. Neurocomputing, 415:286–294, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. In European Conference on
Computer Vision, pp. 630–645. Springer, 2016.

Hellström, F. and Durisi, G. Generalization bounds via
information density and conditional information density.
IEEE Journal on Selected Areas in Information Theory, 1
(3):824–839, 2020.

Hromkovič, J. Randomized algorithms. In Algorithmics for
Hard Problems, pp. 341–429. Springer, 2004.

Hu, Z., Jagtap, A. D., Karniadakis, G. E., and Kawaguchi,
K. When do extended physics-informed neural networks
(xpinns) improve generalization? SIAM Journal on Sci-
entific Computing, 44(5):A3158–A3182, 2022.

10

How Does Information Bottleneck Help Deep Learning?

Ji, W., Deng, Z., Nakada, R., Zou, J., and Zhang, L. The
power of contrast for feature learning: A theoretical anal-
ysis. arXiv, 2110.02473, 2021a.

Ji, W., Lu, Y., Zhang, Y., Deng, Z., and Su, W. J. An
unconstrained layer-peeled perspective on neural collapse.
arXiv, 2110.02796, 2021b.

Kawaguchi, K., Deng, Z., Luh, K., and Huang, J. Robust-
ness implies generalization via data-dependent general-
ization bounds. In International Conference on Machine
Learning (ICML), pp. 10866–10894. PMLR, 2022a.

Kawaguchi, K., Kaelbling, L., and Bengio, Y. General-
ization in Deep Learning. Cambridge University Press,
2022b. URL https://arxiv.org/abs/1710.05468.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. Advances
in neural information processing systems, 28, 2015.

Kirsch, A., Lyle, C., and Gal, Y. Unpacking information
bottlenecks: Surrogate objectives for deep learning. 2020.

Kolchinsky, A. and Tracey, B. D. Estimating mixture en-
tropy with pairwise distances. Entropy, 19(7):361, 2017.

Latorre, F., Rolland, P., and Cevher, V. Lipschitz constant
estimation of neural networks via sparse polynomial op-
timization. In International Conference on Learning
Representations, 2019.

Lee, K.-H., Arnab, A., Guadarrama, S., Canny, J., and
Fischer, I. Compressive visual representations. Advances
in Neural Information Processing Systems, 34:19538–
19552, 2021.

Levine, A. and Feizi, S. Robustness certificates for sparse
adversarial attacks by randomized ablation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 4585–4593, 2020.

Li, B., Shen, Y., Wang, Y., Zhu, W., Li, D., Keutzer, K., and
Zhao, H. Invariant information bottleneck for domain
generalization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 7399–7407, 2022a.

Li, Q., Wu, Z., Kong, L., and Bi, W. Explanation re-
generation via information bottleneck. arXiv preprint
arXiv:2212.09603, 2022b.

Liu, D., Lamb, A., Kawaguchi, K., Goyal, A., Sun, C.,
Mozer, M. C., and Bengio, Y. Discrete-valued neural
communication. In Advances in Neural Information Pro-
cessing Systems, 2021.

Liu, D., Lamb, A., Ji, X., Notsawo, P., Mozer, M., Bengio,
Y., and Kawaguchi, K. Adaptive discrete communication
bottlenecks with dynamic vector quantization. In AAAI
Conference on Artificial Intelligence (AAAI), 2022.

Lotfi, S., Finzi, M., Kapoor, S., Potapczynski, A., Goldblum,
M., and Wilson, A. G. Pac-bayes compression bounds
so tight that they can explain generalization. Advances
in Neural Information Processing Systems, 35:31459–
31473, 2022.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and
Wilson, A. G. A simple baseline for bayesian uncer-
tainty in deep learning. Advances in Neural Information
Processing Systems, 32, 2019.

Mandt, S., Hoffman, M. D., and Blei, D. M. Stochastic gra-
dient descent as approximate bayesian inference. arXiv
preprint arXiv:1704.04289, 2017.

Nagarajan, V. and Kolter, J. Z. Uniform convergence may
be unable to explain generalization in deep learning. Ad-
vances in Neural Information Processing Systems, 32,
2019.

Papyan, V., Han, X., and Donoho, D. L. Prevalence of
neural collapse during the terminal phase of deep learn-
ing training. Proceedings of the National Academy of
Sciences, 117(40):24652–24663, 2020.

Pauli, P., Koch, A., Berberich, J., Kohler, P., and Allgöwer,
F. Training robust neural networks using lipschitz bounds.
IEEE Control Systems Letters, 6:121–126, 2021.

Pinot, R., Meunier, L., Araujo, A., Kashima, H., Yger, F.,
Gouy-Pailler, C., and Atif, J. Theoretical evidence for
adversarial robustness through randomization. Advances
in Neural Information Processing Systems, 32, 2019.

Pinot, R., Ettedgui, R., Rizk, G., Chevaleyre, Y., and Atif, J.
Randomization matters how to defend against strong ad-
versarial attacks. In International Conference on Machine
Learning, pp. 7717–7727. PMLR, 2020.

Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky,
A., Tracey, B. D., and Cox, D. D. On the information
bottleneck theory of deep learning. Journal of Statistical
Mechanics: Theory and Experiment, 2019(12):124020,
2019.

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Shamir, O., Sabato, S., and Tishby, N. Learning and gen-
eralization with the information bottleneck. Theoretical
Computer Science, 411(29-30):2696–2711, 2010.

Shwartz-Ziv, R. and Tishby, N. Opening the black box of
deep neural networks via information. arXiv preprint
arXiv:1703.00810, 2017.

11

How Does Information Bottleneck Help Deep Learning?

Shwartz-Ziv, R., Painsky, A., and Tishby, N.
Representation compression and generaliza-
tion in deep neural networks, 2019. URL
https://openreview.net/forum?id=SkeL6sCqK7.

Slonim, N. and Tishby, N. Document clustering using word
clusters via the information bottleneck method. In Pro-
ceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information
retrieval, pp. 208–215, 2000.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Steinke, T. and Zakynthinou, L. Reasoning about general-
ization via conditional mutual information. In Conference
on Learning Theory, pp. 3437–3452. PMLR, 2020.

Su, T., Song, C., and Cheng, J. Vision transformer with in-
formation bottleneck for fine-grained visual classification.
In Advances in Guidance, Navigation and Control: Pro-
ceedings of 2022 International Conference on Guidance,
Navigation and Control, pp. 4010–4019. Springer, 2023.

Sun, Q., Li, J., Peng, H., Wu, J., Fu, X., Ji, C., and Philip,
S. Y. Graph structure learning with variational informa-
tion bottleneck. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 4165–4174,
2022.

Tishby, N. and Zaslavsky, N. Deep learning and the infor-
mation bottleneck principle. In 2015 ieee information
theory workshop (itw), pp. 1–5. IEEE, 2015.

Tishby, N., Pereira, F. C., and Bialek, W. The information
bottleneck method. In Proc. 37th Annual Allerton Confer-
ence on Communications, Control and Computing, 1999,
pp. 368–377, 1999.

Träuble, F., Goyal, A., Rahaman, N., Mozer, M., Kawaguchi,
K., Bengio, Y., and Schölkopf, B. Discrete key-value bot-
tleneck. In International Conference on Machine Learn-
ing (ICML), 2023.

Truong, L. V. On rademacher complexity-based gen-
eralization bounds for deep learning. arXiv preprint
arXiv:2208.04284, 2022.

Vapnik, V. The nature of statistical learning theory. Springer
science & business media, 1999.

Vera, M., Piantanida, P., and Vega, L. R. The role of the
information bottleneck in representation learning. In 2018
IEEE International Symposium on Information Theory
(ISIT), pp. 1580–1584. IEEE, 2018.

Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. Mit-
igating adversarial effects through randomization. In
International Conference on Learning Representations,
2018.

Xu, A. and Raginsky, M. Information-theoretic analysis
of generalization capability of learning algorithms. Ad-
vances in Neural Information Processing Systems, 30,
2017.

Xu, H. and Mannor, S. Robustness and generalization.
Machine learning, 86(3):391–423, 2012.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning (still) requires rethinking
generalization. Communications of the ACM, 64(3):107–
115, 2021a.

Zhang, L., Deng, Z., Kawaguchi, K., Ghorbani, A., and
Zou, J. How does mixup help with robustness and gen-
eralization? In International Conference on Learning
Representations (ICLR), 2021b.

12

How Does Information Bottleneck Help Deep Learning?

REPRODUCIBILITY STATEMENT

For the theoretical results, complete proofs are provided. For the empirical experiments, source code is available at:
https://github.com/xu-ji/information-bottleneck

A. Experimental details for section 5.1
A.1. Training

Data. The dataset was 5-way classification on 2D clustered inputs (fig. 3). Each dataset draw contained 50 training points
and 250 test points.

0 5 10
x0

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 1

Training data

0 5 10
x0

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 1

Test data
Class

0
1
2
3
4

Figure 3. Example draw for 2D classification dataset.

Training. 216 models were trained for all combinations of options: 4 ReLU-activated MLP architectures (per-layer widths
of [256, 256, 128, 128], [128, 128, 64, 64], [64, 64, 32, 32], [32, 32, 16, 16]), 3 weight decay rates (0, 0.01, 0.1), 3 dataset
draws, 3 random seeds, and 2 sample set sizes for evaluating I(X;Zs

l) and I(X;Zs
l |Y). Final features were sampled from

deterministically computed mean and standard deviation vectors and mapped to class probabilities with a softmax-activated
linear layer. The expectation in MI over P(Zs

l |x) depends on neural network parameters, so the reparameterization trick
was used to optimize the expectation with respect to neural network parameters by rewriting the expectation over Zs

l as
an expectation over random noise (Kingma et al., 2015). Models were trained for 300 iterations with a learning rate of
ηθ = 1e− 2. Out of all settings, 36 models with training set accuracy < 85% were discarded. Statistics for accepted models
are given in table 4. Of 180 accepted models, 9 (5%) had a small negative generalization gap in loss (−0.0258± 0.0161).
These models were not screened out before evaluating the metrics because the generalization gap is not estimatable without
access to labelled test data.

Mean Standard deviation Max Min

Train loss 0.1265 0.1603 0.5757 0.0018
Train accuracy 0.9680 0.0479 1.0000 0.8600
Test loss 0.1984 0.1593 0.5487 0.0247
Test accuracy 0.9356 0.0568 0.9960 0.7880

Table 4. Performance statistics of 180 accepted models.

Constrained optimization. In each learning iteration, the gradient of the relaxed problem θs ← θs − ηθs∇θs

[(
−

1
|s|
∑

(x,y)∈s

(
log 1

k

∑k
j=1 qθs(y|zj)

))
+λ(ρ− Î(X;Zs

l))
]

was applied to update the model and λ← λ+ηλ(ρ− Î(X;Zs
l))

was applied to update the multiplier λ, where ηθs and ηλ are learning rates. For a similar use case for dual gradient descent,
see Eysenbach et al. (2021). Example plots showing the change in Î(X;Zs

l) and λ during training are given in fig. 4. Note
that the gradient of λ is a term in the gradient of θs, thus updating λ incurs negligible additional cost.

A.2. Metrics

SWAG provides an estimate of the posterior as a multivariate Gaussian by averaging gradient updates across training epochs.
SWAG was used in the estimator Ĭ(S; θSl) = (1/|D|)

∑
s∈D(1/k)

∑k
j=1(log p(w

j |s))− ((1/|D|)
∑

s′∈D log p(wj |s′)) ≥

13

https://github.com/xu-ji/information-bottleneck

How Does Information Bottleneck Help Deep Learning?

0 50 100 150 200 250 300
Training steps

1.00

1.25

1.50

1.75

2.00

2.25

2.50

I(X
;Z

s l)

0 50 100 150 200 250 300
Training steps

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Figure 4. Example plots of Î(X;Zs
l) and λ during constrained optimized of a neural network model with ρ = 1.5.

(1/|D|)
∑

s∈D(1/k)
∑k

j=1 log(p(w
j |s)/((1/|D|)

∑
s′∈D p(wj |s′))), where wj ∼ P(θSl |S = s) for all j and the upper

bound is obtained via Jensen’s inequality. We found that averaging in the log domain by using the upper bound improved
numerical stability compared to averaging in the probability domain due to large magnitudes of log p(wj |s).

Mutual information between variables is a measure of their statistical dependence and is defined in our setting as:

I(X;Zs
l) = EX,Zs

l
log

qθs(Zs
l |X)

EX′qθs(Zs
l |X ′)

, (8)

I(X;Zs
l |Y) = EY EXY ,Zs

l
log

qθs(Zs
l |XY)

EX′
Y
qθs(Zs

l |X ′
Y)

, (9)

I(S; θSl) = ESEθS
l |S log

P(θSl |S)
ES′′P(θS′′

l |S′′)
, (10)

(11)

where X ′, X ′
Y , S′′ are independent copies of variables X , XY , S respectively. Let C be the set of classes and sc denote

dataset samples for class c. We use Î to denote estimation by Monte-Carlo sampling and Ĭ to denote upper bounding via the
Jensen inequality:

Î(X;Zs
l) =

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

log
qθs(zj |x)

1
|s|
∑

(x′,y′)∈s qθs(zj |x′)
, (12)

Î(X;Zs
l |Y) =

1

|s|
∑
c∈C

∑
(x,y)∈sc

1

k

k∑
j=1

log
qθs(zj |x)

1
|sc|
∑

(x′,y′)∈sc
qθs(zj |x′)

, (13)

Ĭ(X;Zs
l) =

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

log qθs(zj |x)−
(

1

|s|
∑

(x′,y′)∈s

log qθs(zj |x′)

) , (14)

Ĭ(X;Zs
l |Y) =

1

|s|
∑
c∈C

∑
(x,y)∈sc

1

k

k∑
j=1

log qθs(zj |x)−
(

1

|sc|
∑

(x′,y′)∈sc

log qθs(zj |x′)

) , (15)

where zj ∼ qθs(Zs
l |x) for all j.

For mutual information between the model and training dataset, we compute:

Ĭ(S; θSl) =
1

|D|
∑
s∈D

1

k

k∑
j=1

(
log p(wj |s)−

(
1

|D|
∑
s′∈D

log p(wj |s′)
))

, (16)

14

How Does Information Bottleneck Help Deep Learning?

where wj ∼ P(θSl |S = s). The learning algorithm is defined by the variables excluding the training dataset, i.e. architecture,
weight decay, multiplier learning rate, seed. Denote the average values of Ĭ(S; θSl) and Î(X;Zs

l |Y) across learning
algorithms by µ and µ′ respectively. The rescaled value Ĩ(S; θSl) is defined by:

Ĩ(S; θSl) =
µ′

µ
Ĭ(S; θSl). (17)

Note that MI is measured in universal units, but we test multiple estimation procedures for I(X;Zs
l) and I(S; θSl). Scaling

was tested because of the difference of estimators, rather than of units of the estimated quantity.

A.3. Additional results

As the true data generator is available for the toy dataset, 2 sample set sizes were considered for computing estimators of
I(X;Zs

l) and I(X;Zs
l |Y) during evaluation of the metrics (appendix A.1): using the training dataset (50 data points), and

using a sample 10 times larger drawn from the generator (500 data points). Using the larger sample size (tables 1 and 5)
improved the predictive ability of the baseline representation compression metrics compared to using the small sample size
(table 6).

Metric Spearman Pearson Kendall

Num. params. m -0.0576 -0.0294 -0.0402
m logm -0.0576 -0.0287 -0.0402∑

l θ
s
l -0.2550 -0.1366 -0.1567∏

l θ
s
l -0.2172 -0.0871 -0.1374

Î(X;Zs
l) 0.1816 0.2878 0.1280

Î(X;Zs
l |Y) 0.1749 0.3167 0.1129

Ĭ(X;Zs
l) 0.1648 0.3712 0.1223

Ĭ(X;Zs
l |Y) 0.2293 0.3842 0.1515

Ĭ(S; θSl) 0.0020 0.0211 0.0074
Ĭ(S; θSD+1) -0.0221 0.0091 -0.0090
Ĭ(S; θSl) + Î(X;Zs

l) 0.0178 0.0211 0.0178
Ĭ(S; θSl) + Î(X;Zs

l |Y) 0.0163 0.0211 0.0167
Ĭ(S; θSl) + Ĭ(X;Zs

l) 0.0135 0.0212 0.0162
Ĭ(S; θSl) + Ĭ(X;Zs

l |Y) 0.0164 0.0211 0.0167
Ĩ(S; θSl) + Î(X;Zs

l) 0.1104 0.1401 0.0794
Ĩ(S; θSl) + Î(X;Zs

l |Y) 0.2253 0.3177 0.1567
Ĩ(S; θSl) + Ĭ(X;Zs

l) 0.2684 0.3928 0.1912
Ĩ(S; θSl) + Ĭ(X;Zs

l |Y) 0.3015 0.4130 0.2085

Table 5. Correlation coefficients for metrics and the generalization gap in loss, large sample setting for estimation of I(X;Zs
l) and

I(X;Zs
l |Y). θSl denotes parameters of layer l and θSl denotes parameters up to layer l. Layer l is fixed to the penultimate layer. > 0

indicates positive correlation.

Metric Spearman Pearson Kendall

Î(X;Zs
l) -0.1066 -0.0972 -0.0709

Î(X;Zs
l |Y) 0.0868 0.0394 0.0698

Ĭ(S; θSl) + Î(X;Zs
l |Y) 0.2360 0.2489 0.1611

Ĩ(S; θSl) + Î(X;Zs
l |Y) 0.3277 0.2888 0.2257

Table 6. Correlation coefficients for metrics and the generalization gap in loss, small sample setting for estimation of I(X;Zs
l) and

I(X;Zs
l |Y). Best metric and ablation shown. Layer l is fixed to the penultimate layer. > 0 indicates positive correlation.

15

How Does Information Bottleneck Help Deep Learning?

(a) Ĭ(X;Zs
l |Y) (b) Ĩ(S; θSl) + Ĭ(X;Zs

l) (c) Ĩ(S; θSl) + Ĭ(X;Zs
l |Y)

Figure 5. Correlation of best 3 metrics with the generalization gap. Color denotes network width. Dashed line denotes best polynomial fit
with degree 2. Values are normalized by subtracting the minimum and dividing by the range.

B. MNIST and Fashion MNIST
We conducted experiments on the MNIST and Fashion MNIST datasets. These experiments follow the same protocol
described in section 5.1 and appendix A except that MI was not constrained, in order to investigate predictive ability of the
metrics in the setting of unconstrained stochastic feature models. 144 models were trained over all combinations of options:
2 datasets, 3 ReLU-activated architectures (1 convolutional layer and 3 linear layers, with per hidden layer channel sizes of
[64, 512, 512], [32, 256, 256], [16, 128, 128]), 2 weight decay rates (0, 1e-3), 2 batch sizes (128, 32), 3 dataset draws, 2
random seeds. As in section 5.1 and appendix A, the penultimate layer of the network infers mean and standard deviation
vectors that define a distribution over latent features. To construct multiple instances of the training dataset, we sampled
training datasets of size 8K from the training set, and each test set was the original 10K test set. Performance of trained
models are given in tables 7 and 8. In line with sections 5.1 and 5.2 and appendices A and D, results on MNIST and Fashion
MNIST indicate that metrics which combine model compression with representation compression outperform metrics for
representation compression alone (tables 9 and 10).

Mean Standard deviation Max Min

Train loss 0.0071 0.0165 0.1053 0.0001
Train accuracy 0.9986 0.0060 1.0000 0.9628
Test loss 0.1355 0.0285 0.2564 0.0915
Test accuracy 0.9673 0.0065 0.9737 0.9358

Table 7. Performance statistics for MNIST models.

Mean Standard deviation Max Min

Train loss 0.0692 0.0640 0.1908 0.0003
Train accuracy 0.9765 0.0234 1.0000 0.9329
Test loss 0.5609 0.1682 0.8819 0.3791
Test accuracy 0.8721 0.0090 0.8864 0.8262

Table 8. Performance statistics for Fashion MNIST models.

16

How Does Information Bottleneck Help Deep Learning?

Metric Spearman Pearson Kendall

Î(X;Zs
l) 0.2738 -0.1268 0.2178

Î(X;Zs
l |Y) 0.4399 0.2059 0.3243

Ĭ(X;Zs
l) 0.7895 0.5467 0.6346

Ĭ(X;Zs
l |Y) 0.7931 0.5348 0.6416

Ĭ(S; θSl) 0.6004 0.7044 0.4193
Ī(S; θSl) 0.5328 0.6906 0.3771
Ĭ(S; θSD+1) 0.5384 0.6619 0.3768
Ī(S; θSD+1) 0.5328 0.6507 0.3771
Ĩ(S; θSl) + Î(X;Zs

l) 0.6021 0.7043 0.4130
Ĩ(S; θSl) + Î(X;Zs

l |Y) 0.5958 0.7044 0.3955
Ĩ(S; θSl) + Ĭ(X;Zs

l) 0.8352 0.6367 0.6452
Ĩ(S; θSl) + Ĭ(X;Zs

l |Y) 0.8303 0.6242 0.6384
Ĭ(S; θSl) + Î(X;Zs

l) 0.6021 0.7044 0.4130
Ĭ(S; θSl) + Î(X;Zs

l |Y) 0.5958 0.7044 0.3955
Ĭ(S; θSl) + Ĭ(X;Zs

l) 0.7128 0.7626 0.5119
Ĭ(S; θSl) + Ĭ(X;Zs

l |Y) 0.6566 0.7329 0.4610

Table 9. MNIST. Correlation coefficients for metrics and the generalization gap in loss. Layer l is fixed to the penultimate layer. > 0
indicates positive correlation.

Metric Spearman Pearson Kendall

Î(X;Zs
l) -0.0299 -0.2056 -0.0261

Î(X;Zs
l |Y) 0.2318 0.1185 0.1458

Ĭ(X;Zs
l) 0.3861 0.5146 0.2293

Ĭ(X;Zs
l |Y) 0.3848 0.5115 0.2308

Ĭ(S; θSl) 0.3479 0.3191 0.2682
Ī(S; θSl) 0.3471 0.2804 0.2684
Ĭ(S; θSD+1) 0.3479 0.3187 0.2682
Ī(S; θSD+1) 0.3928 0.3121 0.2998
Ĩ(S; θSl) + Î(X;Zs

l) 0.3377 0.3188 0.2469
Ĩ(S; θSl) + Î(X;Zs

l |Y) 0.3446 0.3191 0.2660
Ĩ(S; θSl) + Ĭ(X;Zs

l) 0.5623 0.6488 0.4238
Ĩ(S; θSl) + Ĭ(X;Zs

l |Y) 0.5637 0.6441 0.4344
Ĭ(S; θSl) + Î(X;Zs

l) 0.3377 0.3191 0.2469
Ĭ(S; θSl) + Î(X;Zs

l |Y) 0.3446 0.3191 0.2660
Ĭ(S; θSl) + Ĭ(X;Zs

l) 0.3734 0.3280 0.2677
Ĭ(S; θSl) + Ĭ(X;Zs

l |Y) 0.3679 0.3217 0.2766

Table 10. Fashion MNIST. Correlation coefficients for metrics and the generalization gap in loss. Layer l is fixed to the penultimate layer.
> 0 indicates positive correlation.

C. Feature binning
Binning is a method for characterizing feature compression in neural networks with deterministic features (Shwartz-Ziv &
Tishby, 2017). To investigate the performance of feature and model compression for predicting generalization, we trained
models for the toy clustering problem of section 5.1 using MLPs with deterministic features. The binning implementation
of Saxe et al. (2019) was reused to discretize the activity of each node into 10 buckets. 216 models were trained over all

17

How Does Information Bottleneck Help Deep Learning?

combinations of: 3 ReLU-activated MLP acrhitectures (5 fully connected layers with per hidden layer channel sizes of [512,
512, 256, 256], [256, 256, 128, 128], [128, 128, 64, 64]), 3 weight decay rates (0, 1e-3, 1e-2), 3 dataset draws, 3 random
seeds, with and without information bottleneck (IB) feature regularization. For models trained with IB regularization,
we used the surrogate objective of Kirsch et al. (2020, Eq. 1). While feature compression and model compression both
performed reasonably in the setting without IB regularization (table 11), utilizing IB regularization significantly impaired
the performance of metrics based solely on feature compression (table 12).

Metric Spearman Pearson Kendall

Î(X;Zs
l) 0.3271 0.3032 0.2235

Î(X;Zs
l |Y) 0.2431 0.2194 0.1643

Num. param. m 0.0078 -0.0259 0.0064
m logm 0.0078 -0.0267 0.0064∑

l θ
s
l 0.0557 0.0770 0.0444∏

l θ
s
l -0.0559 -0.1755 -0.0191

Ĭ(S; θSl) 0.1955 0.1851 0.1335
Ī(S; θSl) 0.1955 0.1940 0.1347
Ĩ(S; θSl) + Î(X;Zs

l) 0.2046 0.2419 0.1423
Ĩ(S; θSl) + Î(X;Zs

l |Y) 0.1846 0.2389 0.1272
Ĭ(S; θSl) + Î(X;Zs

l) 0.1530 0.2041 0.1043
Ĭ(S; θSl) + Î(X;Zs

l |Y) 0.1377 0.2041 0.0920

Table 11. Results for clustering experiments using feature binning for estimation of MI, without information bottleneck regularization.
Correlation coefficients for metrics and the generalization gap in loss. Layer l is fixed to the penultimate layer. > 0 indicates positive
correlation.

Metric Spearman Pearson Kendall

Î(X;Zs
l) -0.0403 -0.0440 -0.0426

Î(X;Zs
l |Y) 0.0252 0.0390 -0.0012

Num. param. m -0.0103 0.0057 -0.0229
m logm -0.0103 0.0053 -0.0229∑

l θ
s
l -0.0579 0.0158 -0.0457∏

l θ
s
l -0.1460 -0.1640 -0.1111

Ĭ(S; θSl) 0.0252 0.0567 0.0159
Ī(S; θSl) 0.0370 0.0665 0.0208
Ĩ(S; θSl) + Î(X;Zs

l) 0.0498 0.0545 0.0381
Ĩ(S; θSl) + Î(X;Zs

l |Y) 0.0688 0.0647 0.0512
Ĭ(S; θSl) + Î(X;Zs

l) 0.0757 0.0815 0.0530
Ĭ(S; θSl) + Î(X;Zs

l |Y) 0.0794 0.0815 0.0525

Table 12. Results for clustering experiments using feature binning for estimation of MI, with information bottleneck regularization.
Correlation coefficients for metrics and the generalization gap in loss. Layer l is fixed to the penultimate layer. > 0 indicates positive
correlation.

D. Experimental details for section 5.2
D.1. Training

540 models were trained for all combinations of the options: 3 architecutres (PreResNet56, PreResNet83, PreResNet110), 3
weight decay rates (1e-3, 1e-4, 1e-5), 3 batch sizes (64, 128, 1024), 5 dataset draws and 4 random seeds. The PreResNet
architecture (He et al., 2016) consists of a convolutional layer, 3 residual blocks and a final linear prediction layer. We
consider representations from D = 5 layers: input layer, after convolutional layer, and after each residual block. Models

18

How Does Information Bottleneck Help Deep Learning?

were trained for 200 epochs with SGD and a learning rate of 1e− 2. Statistics are given in table 13.

Mean Standard deviation Max Min

Train loss 0.2157 0.2815 1.4174 0.0005
Train accuracy 0.9282 0.0937 1.0000 0.5433
Test loss 0.9704 0.2023 1.6269 0.5989
Test accuracy 0.8043 0.0554 0.8770 0.5192

Table 13. Performance statistics of 540 models.

D.2. Metrics

We used the same metrics as defined in appendix A.2 and additionally test excluding the seed from the definition of the
learning algorithm by averaging across seeds. Let G denote the set of seeds and let Γ denote the seed variable:

Ī(S; θSl) =
1

|D||G|
∑
s∈D

∑
γ∈G

1

k

k∑
j=1

((
1

|G|
∑
γ′∈G

log p(wj |s, γ′)

)
(18)

−
(

1

|D||G|
∑
s′∈D

∑
γ′∈G

log p(wj |s′, γ′)

))

where wj ∼ P(θSl |S = s,Γ = γ) is sampled from the estimated posterior produced by SWAG.

D.3. Kernel Density Estimation

Without the addition of noise in the hidden representation, mutual information between inputs and deterministic continuous
features is ill-defined (Saxe et al., 2019). One way to add noise is to discretize hidden activity into bins (Shwartz-Ziv &
Tishby, 2017; Burhanpurkar et al., 2021). Another approach is kernal density estimation (Kolchinsky & Tracey, 2017; Ji
et al., 2021a;b), which assumes for the purpose of analysis that Gaussian noise with variance σ2

l is added to the representation
produced by layer l. In adaptive KDE (Chelombiev et al., 2019) σ2

l is scaled from a base by the maximum observed activation
level in the layer, improving on constant σ2

l (Saxe et al., 2019) by allowing the level of noise to vary with layers. Following
the previous work, we found 1e− 3 to work well as the base value.

As an alternative method for specifying σ2
l , we selected σ2

l from a discrete set by maximum log likelihood of observed
features,

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

log
1

|s|
∑

(x′,y′)∈s

qθs(zj |x′) where zj ∼ qθs(Zs
l |x), (19)

under the constraint that estimated MI decreased with layer, which follows from the information processing inequality. This
was performed by iterating from layer D to layer 1 and choosing σ2

l with maximum likelihood such that the estimator of MI
was non-decreasing, i.e. Î(X;Zs

l) ≥ Î(X;Zs
l+1) for l < D. As with estimators in appendix A.2, averaging can be done in

the log domain to yield the lower bound:

1

|s|
∑

(x,y)∈s

1

k

k∑
j=1

1

|s|
∑

(x′,y′)∈s

log qθs(zj |x′) where zj ∼ qθs(Zs
l |x). (20)

For consistency, eq. (19) was used with Î(X;Zs
l) (eq. (12)) and eq. (20) with Ĭ(X;Zs

l) (eq. (14)).

D.4. Further results

We provide further results below.

19

How Does Information Bottleneck Help Deep Learning?

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Generalization gap in loss

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 e
rro

r
1e 1

Batch size
64
128
1024

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Generalization gap in loss

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 e
rro

r

1e 1
Model

PreResNet56
PreResNet83
PreResNet110

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Generalization gap in loss

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 e
rro

r

1e 1
Weight decay

1e-05
0.0001
0.001

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Generalization gap in loss

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 e
rro

r

1e 1
Dataset instance

0
1
2
3
4

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Generalization gap in loss

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 e
rro

r

1e 1
Seed

0
1
2
3

Figure 6. Illustration of performance-based clustering behaviour that emerged from training, attributed mostly to batch size and weight
decay.

Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Train loss -0.8075 -0.7229 -0.8376 -0.8730 -0.5632 -0.5307
Test loss 0.6970 0.6095 0.6497 0.5210 0.5938 0.4777
Train error -0.8114 -0.7269 -0.8489 -0.8831 -0.5707 -0.5381
Test error -0.4609 -0.3834 -0.5896 -0.6087 -0.2652 -0.2020
Gen. gap error 0.9443 1.0000 0.9562 1.0000 0.8149 1.0000
Gen. gap loss 1.0000 0.9443 1.0000 0.9562 1.0000 0.8149

Table 14. Results for prediction with performance metrics.

Layer index l: 1 2 3 4 5

Ĭ(X;Zs
l) 5.9422E+04 1.8236E+04 1.5514E+04 7.7865E+03 5.7027E+03

Ĭ(X;Zs
l |Y) 5.7783E+04 1.7790E+04 1.5429E+04 7.6948E+03 5.3298E+03

Ī(S; θSl) 0.0000E+00 3.7136E+03 9.4890E+05 2.1247E+06 5.8244E+06
Ī(S; θSl) + Ĭ(X;Zs

l |Y) 5.7783E+04 2.1504E+04 9.6433E+05 2.1324E+06 5.8297E+06

Table 15. Example values of metrics, for best performing model by test loss (PreResNet56, batch size 128, weight decay 0.001). l = 1 is
the input layer.

20

How Does Information Bottleneck Help Deep Learning?

Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Ĭ(S; θSD+1) 0.4688 0.3112 0.2512 0.0775 0.2121 0.1208
Ī(S; θSD+1) 0.5370 0.3800 0.2924 0.1218 0.2442 0.1526

Table 16. Results for model compression metrics.

Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l) l = 1 0.7345 0.6156 0.5722 0.3853 0.5174 0.4215

Î(X;Zs
l) l = D 0.7170 0.5740 0.7063 0.5602 0.4784 0.3721

Î(X;Zs
l |Y) l = 1 0.7199 0.6073 0.5724 0.3854 0.5005 0.4111

Î(X;Zs
l |Y) l = D 0.7126 0.5691 0.7071 0.5616 0.4768 0.3700

Ĭ(X;Zs
l) l = 1 0.6765 0.5655 0.1554 0.1328 0.4553 0.3781

Ĭ(X;Zs
l) l = D 0.7145 0.5602 0.7203 0.5719 0.4461 0.3404

Ĭ(X;Zs
l |Y) l = 1 0.6476 0.5292 0.1557 0.1331 0.4307 0.3504

Ĭ(X;Zs
l |Y) l = D 0.7004 0.5434 0.7062 0.5560 0.4386 0.3305

Table 17. Results for representation compression metrics for l ∈ {1, D} summarization over layers (MLE selection of σ2
l).

Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l) l = 1 -0.0681 -0.0659 -0.0645 -0.0617 -0.0464 -0.0447

Î(X;Zs
l) l = D 0.7019 0.5452 0.4596 0.2845 0.4329 0.3293

Î(X;Zs
l |Y) l = 1 0.0050 0.0032 0.0146 0.0191 0.0035 0.0022

Î(X;Zs
l |Y) l = D 0.6977 0.5403 0.4544 0.2798 0.4302 0.3268

Ĭ(X;Zs
l) l = 1 -0.0196 -0.0080 -0.0070 -0.0029 -0.0139 -0.0051

Ĭ(X;Zs
l) l = D 0.7314 0.5848 0.5109 0.3350 0.4645 0.3624

Ĭ(X;Zs
l |Y) l = 1 0.0005 -0.0060 0.0036 -0.0001 0.0005 -0.0038

Ĭ(X;Zs
l |Y) l = D 0.7033 0.5465 0.4587 0.2846 0.4342 0.3304

Table 18. Results for metrics for l ∈ {1, D} summarization over layers (adaptive KDE selection of σ2
l).

21

How Does Information Bottleneck Help Deep Learning?

Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l) Mean 0.7598 0.6184 0.5781 0.3911 0.4970 0.3936

Î(X;Zs
l) Max 0.7345 0.6156 0.5722 0.3853 0.5174 0.4215

Î(X;Zs
l) Min 0.7170 0.5740 0.7063 0.5602 0.4784 0.3721

Î(X;Zs
l |Y) Mean 0.7720 0.6378 0.5790 0.3920 0.5186 0.4145

Î(X;Zs
l |Y) Max 0.7049 0.5814 0.5723 0.3853 0.4712 0.3785

Î(X;Zs
l |Y) Min 0.7137 0.5701 0.7112 0.5679 0.4775 0.3697

Ĭ(X;Zs
l) Mean 0.8481 0.7410 0.2116 0.1831 0.6425 0.5436

Ĭ(X;Zs
l) Max 0.6765 0.5655 0.1554 0.1328 0.4553 0.3781

Ĭ(X;Zs
l) Min 0.7145 0.5602 0.7203 0.5719 0.4461 0.3404

Ĭ(X;Zs
l |Y) Mean 0.8481 0.7406 0.2140 0.1853 0.6427 0.5435

Ĭ(X;Zs
l |Y) Max 0.6486 0.5297 0.1557 0.1331 0.4316 0.3511

Ĭ(X;Zs
l |Y) Min 0.7004 0.5434 0.7062 0.5560 0.4386 0.3305

Ĭ(S; θSl) + Î(X;Zs
l) Mean 0.4546 0.3055 0.1867 0.0160 0.2304 0.1398

Ĭ(S; θSl) + Î(X;Zs
l) Max 0.5111 0.3609 0.2572 0.0858 0.2634 0.1715

Ĭ(S; θSl) + Î(X;Zs
l) Min 0.8134 0.6906 0.5363 0.3729 0.5840 0.4870

Ĭ(S; θSl) + Î(X;Zs
l |Y) Mean 0.4543 0.3052 0.1858 0.0152 0.2305 0.1397

Ĭ(S; θSl) + Î(X;Zs
l |Y) Max 0.5112 0.3609 0.2572 0.0858 0.2637 0.1718

Ĭ(S; θSl) + Î(X;Zs
l |Y) Min 0.8136 0.6949 0.5193 0.3591 0.5817 0.4871

Ĭ(S; θSl) + Ĭ(X;Zs
l) Mean 0.4513 0.3026 0.1832 0.0132 0.2305 0.1398

Ĭ(S; θSl) + Ĭ(X;Zs
l) Max 0.5112 0.3609 0.2572 0.0858 0.2636 0.1715

Ĭ(S; θSl) + Ĭ(X;Zs
l) Min 0.8489 0.7353 0.8459 0.7216 0.6354 0.5386

Ĭ(S; θSl) + Ĭ(X;Zs
l |Y) Mean 0.4513 0.3026 0.1832 0.0132 0.2301 0.1397

Ĭ(S; θSl) + Ĭ(X;Zs
l |Y) Max 0.5113 0.3609 0.2572 0.0858 0.2638 0.1716

Ĭ(S; θSl) + Ĭ(X;Zs
l |Y) Min 0.8434 0.7313 0.8437 0.7195 0.6270 0.5332

Ī(S; θSl) + Î(X;Zs
l) Mean 0.4770 0.3244 0.2901 0.1155 0.2510 0.1568

Ī(S; θSl) + Î(X;Zs
l) Max 0.5709 0.4205 0.2993 0.1311 0.2878 0.1946

Ī(S; θSl) + Î(X;Zs
l) Min 0.7898 0.6548 0.6706 0.4929 0.5432 0.4412

Ī(S; θSl) + Î(X;Zs
l |Y) Mean 0.4764 0.3241 0.2869 0.1128 0.2489 0.1558

Ī(S; θSl) + Î(X;Zs
l |Y) Max 0.5709 0.4205 0.2993 0.1311 0.2882 0.1952

Ī(S; θSl) + Î(X;Zs
l |Y) Min 0.7917 0.6595 0.6490 0.4753 0.5447 0.4450

Ī(S; θSl) + Ĭ(X;Zs
l) Mean 0.4429 0.2910 0.2785 0.1060 0.2353 0.1432

Ī(S; θSl) + Ĭ(X;Zs
l) Max 0.5707 0.4205 0.2993 0.1311 0.2880 0.1946

Ī(S; θSl) + Ĭ(X;Zs
l) Min 0.8635 0.7576 0.8493 0.7544 0.6660 0.5684

Ī(S; θSl) + Ĭ(X;Zs
l |Y) Mean 0.4429 0.2908 0.2783 0.1059 0.2349 0.1426

Ī(S; θSl) + Ĭ(X;Zs
l |Y) Max 0.5711 0.4204 0.2993 0.1311 0.2886 0.1945

Ī(S; θSl) + Ĭ(X;Zs
l |Y) Min 0.8632 0.7576 0.8511 0.7562 0.6626 0.5664

Table 19. Results for metrics for mean, min, max summarization over layers (MLE selection of σ2
l). Best metrics highlighted.

22

How Does Information Bottleneck Help Deep Learning?

Layer Spearman corr. Pearson corr. Kendall corr.
Generalization gap: Loss Error Loss Error Loss Error

Î(X;Zs
l) Mean 0.7322 0.5837 0.6823 0.5067 0.4606 0.3605

Î(X;Zs
l) Max 0.7805 0.6521 0.6848 0.5088 0.5299 0.4360

Î(X;Zs
l) Min 0.7726 0.6450 0.8131 0.7004 0.5126 0.4205

Î(X;Zs
l |Y) Mean 0.7323 0.5833 0.6863 0.5110 0.4604 0.3598

Î(X;Zs
l |Y) Max 0.7865 0.6548 0.6920 0.5160 0.5378 0.4380

Î(X;Zs
l |Y) Min 0.7731 0.6451 0.8175 0.7041 0.5131 0.4221

Ĭ(X;Zs
l) Mean 0.7401 0.5933 0.7078 0.5334 0.4739 0.3727

Ĭ(X;Zs
l) Max 0.7452 0.6264 0.6891 0.5116 0.4927 0.4109

Ĭ(X;Zs
l) Min 0.7981 0.6720 0.8515 0.7262 0.5490 0.4500

Ĭ(X;Zs
l |Y) Mean 0.7375 0.5894 0.7010 0.5263 0.4701 0.3685

Ĭ(X;Zs
l |Y) Max 0.7449 0.6177 0.7056 0.5289 0.4924 0.4053

Ĭ(X;Zs
l |Y) Min 0.7686 0.6270 0.8130 0.6699 0.5093 0.4055

Ĭ(S; θSl) + Î(X;Zs
l) Mean 0.4555 0.3070 0.1856 0.0153 0.2334 0.1425

Ĭ(S; θSl) + Î(X;Zs
l) Max 0.5133 0.3633 0.2580 0.0865 0.2650 0.1735

Ĭ(S; θSl) + Î(X;Zs
l) Min 0.8112 0.7033 0.8272 0.7243 0.5775 0.4914

Ĭ(S; θSl) + Î(X;Zs
l |Y) Mean 0.4542 0.3058 0.1849 0.0146 0.2322 0.1414

Ĭ(S; θSl) + Î(X;Zs
l |Y) Max 0.5126 0.3625 0.2578 0.0863 0.2643 0.1730

Ĭ(S; θSl) + Î(X;Zs
l |Y) Min 0.8205 0.7203 0.8281 0.7313 0.5913 0.5108

Ĭ(S; θSl) + Ĭ(X;Zs
l) Mean 0.4602 0.3115 0.1878 0.0172 0.2378 0.1468

Ĭ(S; θSl) + Ĭ(X;Zs
l) Max 0.5146 0.3647 0.2588 0.0871 0.2666 0.1748

Ĭ(S; θSl) + Ĭ(X;Zs
l) Min 0.8014 0.6854 0.8423 0.7107 0.5658 0.4760

Ĭ(S; θSl) + Ĭ(X;Zs
l |Y) Mean 0.4598 0.3111 0.1874 0.0168 0.2374 0.1464

Ĭ(S; θSl) + Ĭ(X;Zs
l |Y) Max 0.5143 0.3643 0.2584 0.0868 0.2661 0.1743

Ĭ(S; θSl) + Ĭ(X;Zs
l |Y) Min 0.8069 0.6913 0.8440 0.7135 0.5732 0.4849

Ī(S; θSl) + Î(X;Zs
l) Mean 0.4783 0.3249 0.2868 0.1134 0.2495 0.1577

Ī(S; θSl) + Î(X;Zs
l) Max 0.5765 0.4250 0.3021 0.1333 0.2971 0.2057

Ī(S; θSl) + Î(X;Zs
l) Min 0.8031 0.6920 0.8270 0.7149 0.5664 0.4793

Ī(S; θSl) + Î(X;Zs
l |Y) Mean 0.4766 0.3242 0.2842 0.1110 0.2468 0.1551

Ī(S; θSl) + Î(X;Zs
l |Y) Max 0.5759 0.4247 0.3013 0.1326 0.2958 0.2049

Ī(S; θSl) + Î(X;Zs
l |Y) Min 0.8130 0.7070 0.8295 0.7203 0.5799 0.4963

Ī(S; θSl) + Ĭ(X;Zs
l) Mean 0.4864 0.3335 0.2946 0.1205 0.2613 0.1689

Ī(S; θSl) + Ĭ(X;Zs
l) Max 0.5769 0.4253 0.3048 0.1356 0.2978 0.2067

Ī(S; θSl) + Ĭ(X;Zs
l) Min 0.7974 0.6749 0.8206 0.6842 0.5608 0.4684

Ī(S; θSl) + Ĭ(X;Zs
l |Y) Mean 0.4851 0.3317 0.2933 0.1192 0.2596 0.1674

Ī(S; θSl) + Ĭ(X;Zs
l |Y) Max 0.5770 0.4253 0.3034 0.1343 0.2981 0.2068

Ī(S; θSl) + Ĭ(X;Zs
l |Y) Min 0.7989 0.6763 0.8242 0.6891 0.5628 0.4703

Table 20. Results for metrics for mean, min, max summarization over layers (adaptive KDE selection of σ2
l). Best metrics highlighted.

23

How Does Information Bottleneck Help Deep Learning?

E. Additional Results and Explanations for Theory
We present additional results and explanations for theoretical results in appendix E, full proofs in appendix F, and additional
results and details for experimental results in appendix A.

E.1. On Theorems 1–2

The mutual information I(ϕS
l ;S) in Theorem 2 does not appear in Conjecture 1. However, the sample complexity bound in

Conjecture 1 is invalid for the setting of learning ϕs
l , because the encoder ϕs

l can overfit to the training data, which was
demonstrated with the counter-example in Hafez-Kolahi et al. (2020, Example 3.1). The mutual information I(ϕS

l ;S) is
measuring the effect of overfitting the encoder, which is necessary to avoid the counter-example.

Using additional notation defined in appendix E.1.1, we will discuss the details of the formulas of Gl
1(0), Gl2 and Gl

3 of
Theorems 1 and Gl

1(ζ), Ĝl2, Ǧl2, and Gl
3 of Theorem 2 in appendix E.1.2.

E.1.1. ADDITIONAL NOTATION

We define the variables for the (hidden) input generating process as follows. Each x ∈ X is generated with a hidden
function χ by x = χ(y, ξ(y)), where ξ(y) = (ξ

(y)
1 , . . . , ξ

(y)
m) ∈ ϖy ⊆ Rm is the nuisance variable. We denote the

random variable for ξ(y) by Ξy; i.e., Ξy(ωy) = ξ(y) where ωy ∈ Ωy is the element of the sample space Ωy of the
nuisance variable, conditioned on Y = y. Then, we denote the random variables for X and Zs

l conditioned on Y = y
by Xy and Zs

l,y: Xy(ωy) = χ(y,Ξy(ωy)) ∈ X and Zs
l,y = ϕs

l ◦ Xy. For any l ∈ [D] and y ∈ Y , we define the
sensitivity cyl (ϕ

s
l) of the trained encoder ϕs

l with respect to the nuisance variable ξ(y) by the number such that for all
i ∈ [m], cyl (ϕ

s
l) ≥ sup

ξ
(y)
1 ,...,ξ

(y)
i−1,ξ

(y)
i ,ξ̃

(y)
i ,ξ

(y)
i+1,...,ξ

(y)
m
| log py((ϕs

l ◦χy)(ξ
(y)
1 , . . . , ξ

(y)
i−1, ξ

(y)
i , ξ

(y)
i+1, . . . , ξ

(y)
m))− log py((ϕ

s
l ◦

χy)(ξ
(y)
1 , . . . , ξ

(y)
i−1, ξ̃

(y)
i , ξ

(y)
i+1, . . . , ξ

(y)
m))|, where χy(ξ

(y)) = χ(y, ξ(y)) and py(q) = P(Zs
l,y = q).

For any l ∈ [D + 1] and λl > 0, define

Cλl,l =
1

eλlH(ϕS
l)

∑
q∈Ml

(P(ϕS
l = q))1−λl , (21)

where H(ϕS
l) is the entropy of the random variable ϕS

l . We define the set of the latent variable per class by Zs
l,y =

{(ϕs
l ◦ χy)(ξ

(y)) : ξ(y) ∈ ϖy}. For any γ > 0, we then define a (typical) subset Zs
γ,l,y (of the set Zs

l,y) by Zs,l
γ,y = {z ∈

Zs
l,y : − logP(Zs

l,y = z)−H(Zs
l,y) ≤ cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2 }. Let us write the element of Zs,l
γ,y by Zs,l

γ,y = {al,y1 , . . . , al,y
T l
y
}

where T l
y = |Zs,l

γ,y|. Finally, define maximum training loss L(fs) = maxi∈{1,...,n} ℓ(f
s(xi), yi).

E.1.2. DETAILS OF OTHER TERMS

In Theorem 1, we have that Gl
1(q) =

L(fs)
√

2γl|Y|
n1/4

√
q + ln(2|Y|/δ) + γlR(fs), Gl2 = Gl

2 ln(2) + ln(2|Y|/δ), Gl
3 =

max
y∈Y

∑T l
y

k=1 ℓ(g
s
l (a

l,y
k), y)

√
2|Y|P(Zs

l,y = al,yk), and Gl
2 = Ey[c

y
l (ϕ

s
l)]

√
m ln(

√
n

γl
)

2 + H(Zs
l |X,Y). Theorem 1 holds for

any (fixed) γl > 0.

In Theorem 2, the definitions of Gl
1(q), G

l
2, G

l
3 are the same as in Theorem 1, and we have that ζ = (I(ϕS

l ;S)+Gl
4) ln(2)+

ln(2|D|), Ĝl2 =
(
Gl

2 +Gl
4

)
ln(2)+ln(4|Y||D|/δ), Ǧl2 = Gl

4 ln(2)+ln(2/δ), and Gl
4 = 1

λl
ln

Cλl,l
|D|

δ +H(ϕS
l |S). Theorem

2 holds for any (fixed) γl > 0 and λl > 0 for all l ∈ D.

Proposition 2 below shows that Gl
3 can be bounded by a constant value, which is much smaller than and independent of the

size of the set Zs
γ,l,y .

Proposition 2. Let l ∈ {1, . . . , D}. Let vk(y) = ℓ(gsl (a
l,y
jk
), y)2P(Zs

l,y = al,yjk) where k 7→ jk is a permutation of
the index such that v1(y) ≥ v2(y) ≥ · · · ≥ vT l

y
(y). If there exist some constants αy ≥ 1 and βy, Cy > 0 such that

vk(y) ≤ Cye
−(k/βy)

αy , then

Gl
3 ≤

√
2|Y|max

y∈Y

(√
v1(y)⌈β̃y⌉+ (Cyβ̃y)/(αye)

)
, (22)

24

How Does Information Bottleneck Help Deep Learning?

without assuming that ϕs
l is fixed independently of the training dataset s, where β̃y = 21/αyβy .

Proof. The proof is provided in appendix F.8.

Proposition 3 shows that the value of lnCλl,l (recall from (21)) in the formula of Gl
4 can be bounded by a constant value

independently of ln |Ml| and is much smaller than ln |Ml| and H(ϕS
l):

Proposition 3. Let l ∈ {1, . . . , D + 1}. We denote N = |Ml|, and enumerateMl as q1, q2, q3, · · · , qN with decreasing
probability, i.e. pi = P(ϕS

l = qi) and p1 ≥ p2 ≥ · · · ≥ pN .

1. If pi decays sufficiently fast, i.e., pi ≤ C/iα with some α > 1 and C ≥ 1, then for 0 < λl < 1− 1/α, both the entropy
H(ϕS

l) and Cλl,l are bounded and independent of N :

H(ϕS
l) ≤ 1 + Cα

(
ln(2)

2α
+

ln(3)

3α
+

31−α((a− 1) ln(3) + 1)

(α− 1)2

)
,

Cλl,l ≤ C1−λl
α(1− λl)

α(1− λl)− 1
.

2. If pi decays slowly, i.e., pi = ci/(Ziα) with 0 ≤ α < 1 and 0 < c ≤ ci ≤ C where Z is the normalization constant,
then the entropy H(ϕS

l) grows as ln(N) +O(1) where O(1) depends only on α, but Cλl,l is bounded and independent
of N as:

Cλl,l ≤ (ln(1− (1− λl)α)− (1− 2λl) ln(1− α)) + (2− λl) ln(C/c) +
C

c(1− α)
.

Proof. The proof is provided in appendix F.9.

We now discuss the factors Gl
1(q) and Gl

2 in Theorem 1. The formula of Gl
1(q) is simplified as Gl

1(q) = γl for any q ∈ R≥0

in a common scenario of deep learning where we use the 0-1 loss (to measure generalization) and have zero training error.
This is because L(fs) = 0 andR(fs) ≤ 1 for the scenario. In the formula of G2, we have H(Zs

l |X,Y) = 0 if the function
ϕs
l is deterministic, which is the typical case for deep neural networks, because ϕs

l is the function used at inference or
test time as opposed to training time (when dropout for example can be used). When the function ϕs

l is stochastic, we
have H(Zs

l |X,Y) = O(1) as n→∞. The networks can be stochastic, for example, with randomization defenses against
adversarial attacks (Xie et al., 2018; Pinot et al., 2019; 2020; Levine & Feizi, 2020) or noise injections (Goldfeld et al.,
2019). The value of Ey[c

y
l (ϕ

s
l)] in the formula of G2 measures the sensitivity with respect to the nuisance variable ξ(y); i.e.,

minimizing this value should result in better generalization, which is consistent with Theorem 1. The sensitivity cyl (ϕ
s
l) is a

measure on the single final encoder ϕs
l ; i.e., increasing the complexity of hypothesis spaces does not imply an increase in

this value.

All the discussions and results, including Proposition 2, on the factors Gl
1(q), G

l
2, and Gl

3 in Theorem 1 hold true for these
factors in Theorem 2 (because we do not assume the use of the fixed encoder for these). Accordingly, we now discuss the
new factor, G4, in Theorem 2. The value of lnCλl,l in the formula of Gl

4 is analyzed in Proposition 3. In the formula of G4,
H(ϕS

l |S) measures the randomness of algorithm Al. To understand this, let us consider a real-world experiment with a coin
tossing. We can model the coin tossing by a stochastic model (by saying that coin tossing has 50-50 chance of getting heads
and tails) or by a deterministic model to predict the exact outcome with an exact initial condition of the physical system.
similarly, we can model a single real-world algorithm with a stochastic model Al (by saying that something has some
random chances) or a deterministic model Al with the exact initial condition, which is the random seed in the numerical
experiments. That is, as in any mathematical theories and symbols, Al is a theoretical placeholder with its mathematical
definition; i.e., Al does not have one-to-one correspondence to a real-world algorithm implemented in experiments. In
other words, given a single real-world algorithm, there are many different ways to model the real-world algorithm and
different ways result in different Al. For example, let us fix the real-world algorithm implemented in experiments to be one
with dropout (Srivastava et al., 2014) and stochastic gradient descent (SGD). At this point, Al in Theorem 2 is not fully
determined yet and we can choose Al differently for the same real-world algorithm by modeling the real-world differently.
For instance, we can model the one with dropout and SGD as a stochastic algorithm or as a deterministic algorithm given a
fixed random seed in practice. Thus, we can setAl in 2 to be either a stochastic algorithm or a deterministic algorithm for the

25

How Does Information Bottleneck Help Deep Learning?

exact same real-world and the same fixed algorithm implemented in experiments. If we setAl to be a deterministic algorithm
with a fixed seed, then we have H(ϕS

l |S) = 0. If we set Al to be a stochastic algorithm, then we increase H(ϕS
l |S) but we

can potentially decrease I(ϕS
l ;S) since the extra randomness can potentially reduce the mutual information of ϕS

l and S.
Thus, there is a trade-off in how we model the real-world via Al and we cannot reduce the bound arbitrarily. Our theorems
allow to instantiate our bounds with both deterministic and stochastic views of the learning algorithms, without changing the
real-world algorithms.

More generally, a randomized algorithm can be defined as a deterministic algorithm with an additional input that consists of
a sequence of random bits (Hromkovič, 2004). Here, the sequence of random bits corresponds to the sequence of random
seeds in the numerical experiments with SGD. In other words, on the one hand, we can model SGD as a stochastic process
when we analyze a set of experiments with SGD over a set of random seeds that are generated randomly. On the other
hand, we can model SGD as a deterministic process when we analyze one experiment with SGD for one random seed.
Moreover, as Hromkovič (2004) explains, we can bridge those two cases by modeling SGD as a deterministic algorithm with
its additional inputs being the seed; then (1) it is deterministic for each seed, and (2) we can recover the stochastic model by
considering a sequence of the randomly generated seeds. If we analyze one experiment of SGD for one random seed, then
we have a deterministic algorithm, and a typical worst-case analysis provides a guarantee on the SGD with the worst seed.
But, if we analyze a set of experiments of SGD over a set of random seeds that are generated randomly, then we have a
stochastic algorithm, and we can analyze its expected performance or high-probability guarantee w.r.t. the random seeds.

To formally treat the learning algorithm Al as a stochastic one, we replace S with S̃ in eq. (5) where S̃(ω, ω′) = (S(ω), ω′)
with ω and ω′ being elements of the sample spaces for S and Al respectively. Similarly, when the encoder ϕs

l is stochastic,
we replace X with X̃ in eq. (3) where X̃(ω, ω′) = (X(ω), ω′) with ω and ω′ being elements of the sample spaces for X
and ϕs

l respectively. All of the proofs work in any of these cases.

E.2. On the application to the case of infinite mutual information

Section 4.2 discusses a way to apply a sample complexity bound with mutual information to the cases of infinite mutual
information by using binning methods. This section considers a more general method of computing the mutual information
to achieve the following goal: we demonstrate that a theoretical work on a bound with mutual information is an important and
sensible research area more generally beyond our paper, even for the cases of infinite mutual information. This section also
provides theoretical justifications on previous methods of computing mutual information even for the case of deterministic
neural networks with continuous random variables with injective activations (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019;
Chelombiev et al., 2019). We use the notation of ϕs = ϕs

l and gs = gsl for a fixed l in this subsection.

This is based on the following simple observation: we can bound the generalization error of a given encoder, G[ϕ̃s], by using
the generalization bound of another encoder, Bδ[ϕ

s], if we add the term measuring a distance between the two encoders,
D(ϕs, ϕ̃s). This is formalized in Remark 2:

Remark 2. Define G[ϕs] = EX,Y [ℓg(ϕ
s(X), Y)] − 1

n

∑n
i=1 ℓg(ϕ

s(xi), yi) and L[ϕs] = ℓg(ϕ
s(X), Y) where

ℓg(ϕ
s(X), Y) = ℓ((gs ◦ ϕs)(X), Y). Suppose that for any δ > 0, P(G[ϕs] ≤ Bδ[ϕ

s]) ≥ 1 − δ for some functional
Bδ and that PX,Y (|L[ϕs]− L[ϕ̃s]| ≤ D(ϕs, ϕ̃s)) = 1 for some functional D. Then, for any δ > 0, with at least probability
1− δ,

G[ϕ̃s] ≤ Bδ[ϕ
s] + 2D(ϕs, ϕ̃s). (23)

Proof. Since P(|L[ϕs] − L[ϕ̃s]| ≤ D(ϕs, ϕ̃s)) = 1, we have with probability one, G[ϕ̃s] ≤ G[ϕs] + 2D(ϕs, ϕ̃s). Since
P(G[ϕs] ≤ B[ϕs]) ≥ 1−δ, we have with at least probability 1−δ, G[ϕ̃s] ≤ G[ϕs]+2D(ϕs, ϕ̃s) ≤ Bδ[ϕ

s]+2D(ϕs, ϕ̃s).

Here, let us set Bδ[ϕ
s] to be a generalization bound on ϕs with mutual information. Then, given an original model ϕ̃s,

its direct bound Bδ[ϕ̃
s] can be infinite since its mutual information can be infinite, for example, for deterministic neural

networks ϕ̃s with sigmoid activations for continuous random variables. However, instead of using its direct bound Bδ[ϕ̃
s],

we can bound the generalization error of the original model ϕ̃s by invoking Remark 2 to use the bound Bδ[ϕ
s] of another

model ϕs ̸= ϕ̃s such that ϕs has finite mutual information and D(ϕs, ϕ̃s) is small.

Indeed, this is a theoretical formalization of what is implicitly done in practice when we compute mutual information of
deterministic models. That is, in practice, we often compute the mutual information of the original model ϕ̃s by computing

26

How Does Information Bottleneck Help Deep Learning?

the mutual information of another model ϕs where ϕs is a binning version of ϕ̃s or a noise injected version of ϕ̃s with kernel
density estimation (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019; Chelombiev et al., 2019).

Indeed, all of such methods of computing mutual information in experiments are theoretically valid and meaningful based
on our results in Section 4.2 and Remark 2 along with Proposition 4 below, even for the case of mutual information being
infinite for the original model ϕ̃s.

As a concrete example, we now study the case when ϕs is obtained from ϕ̃s by injecting noise, i.e. ϕs(x) = ϕ̃s(x) + λϑ,
where ϑ ∼ N (0, Id/d) is the Gaussian noise (d is the dimension of the intermediate output ϕ̃s(x)):

Proposition 4. Let ϕs(x) = ϕ̃s(x) + λϑ, where ϑ ∼ N (0, Id/d). Let L be the Lipschitz constant of the function
q 7→ ℓg(q, Y) y w.r.t. the metric induced by ∥ · ∥2 almost surely. Then, we can take D(ϕs, ϕ̃s) = λL∥ϑ∥2, and with
probability at least 1− 2δ,

G[ϕ̃s] ≤ Bδ[ϕ
s] + 2λL

√
log(2/δ). (24)

Proof. Since the function q 7→ ℓ(gsl (q), Y) is Lipschitz almost surely, we have that with probability one,

|ℓg(ϕs(X), Y)− ℓg(ϕ̃
s(X), Y)| ≤ |ℓg(ϕ̃s(X) + λϑ, Y)− ℓg(ϕ̃

s(X), Y)| ≤ λL∥ϑ∥2.

Thus, we can take D(ϕs, ϕ̃s) = λL∥ϑ∥2. Since ϑ ∼ N (0, Id/d) is a Gaussian vector, by Bernstein inequality, P(∥ϑ∥2 ≥
t) ≤ 2e−t2/2. If we take t = 2

√
log(2/δ), we get D(ϕs, ϕ̃s) ≤ λL∥ϑ∥2 ≤ 2λL

√
log(2/δ) with probability 1− δ. Thus,

Proposition 4 follows from Remark 2 by taking union bounds.

In Proposition 4, let us set Bδ[ϕ
s] to be a generalization bound on ϕs with mutual information I(Z;X) where Z = ϕs ◦X .

Then, by the construction of ϕs(x) = ϕ̃s(x) + λϑ, the output is stochastic, and the mutual information I(Z;X) in Bδ[ϕ
s]

is bounded, although I(Z̃;X) with Z̃ = ϕ̃s ◦X can be infinite. Moreover, there is a trade-off between the two terms on
the righthand side of (24): injecting more noise by increasing λ reduces the mutual information I(Z;X) in Bδ[ϕ

s], but
increases error 2λL

√
log(2/δ). Thus, we cannot arbitrarily change values of the bounds of the original model G[ϕ̃s] by

choosing different methods of computing the mutual information even for the case of deterministic neural networks with
continuous random variables with injective activations.

E.3. On comparisons with previous information-theoretic bounds

We discuss the difference between our bounds and the previous information-theoretic bounds (Xu & Raginsky, 2017; Bassily
et al., 2018) in Section 3.2; e.g., the previous bounds do not utilize the information bottleneck term. In this subsection, we
provide additional discussion on the relation between them.

We first note that Theorem 2 recovers the previous bounds if we set D = {D + 1}. If D = {D + 1}, then our bound in
Theorem 2 removes I(X;Zs

l |Y) and only keeps I(ϕS
D+1;S) = I(fS ;S), resulting in the previous bounds. This is because

the hypothesis space of the decoder after the output layer is always a singleton (since there is no learnable parameter) and
thus there is no need of “(information) bottleneck” to avoid overfitting of such decoder. Indeed, the previous bounds only
consider the setting where the hypothesis space of the decoder is a singleton; e.g., g is the identity function. In the previous
bounds, since the hypothesis space of the decoder g is singleton, there is no need for the encoder to provide a bottleneck to
control the complexity of the hypothesis space of the decoder. In contrast, we consider non-singleton hypothesis spaces
of decoders and utilize the information bottleneck of the encoder to control the complexity of the decoder. This also
illustrates the difficulty to prove our sample complexity bounds with the information bottleneck where we need to consider
the non-singleton hypothesis space for the decoder.

Another challenge of proving our bounds comes from the fact that we need to efficiently utilize different sources of
randomness while the previous bounds only consider the single source of randomness; i.e., fS = AD+1 ◦ S is a random
variable through the randomness of training data S (and potentially of algorithm AD+1) whereas Zs

l = ϕs
l ◦X is a random

variable through the randomness of the new unseen input X (and potentially of encoder ϕs
l). Thus, I(X;Zs

l |Y) and I(fS ;S)
measures different types of mutual information with the different sources of randomness. Our bound needs to utilize both
types of randomness efficiently while the previous bound only uses the randomness of S.

The main factor I(X;Zs
l |Y) + I(ϕS

l ;S) in Theorem 2 captures the novel tradeoff between the two types of mutual
information. It tells us that as we minimize the information bottleneck I(X;Zs

l |Y) by optimizing ϕs
l based on the training

27

How Does Information Bottleneck Help Deep Learning?

data s, we must pay the price of mutual information I(ϕS
l ;S). If ϕS

l depends more on S, then we can more easily minimize
the information bottleneck I(X;Zs

l |Y) (while minimizing the training loss for s), which comes at the cost of increasing
I(ϕS

l ;S). This trade-off is not captured by any of previous bounds.

As a result of utilizing the both types of randomness, we show in Section 5 that the main factor I(X;Zs
l |Y) + I(ϕS

l ;S) in
our bound is a better predictor than the main factor I(fS ;S) in the previous bounds.

E.4. On the standard arguments for proving the conjecture

The previous work (Shwartz-Ziv et al., 2019) provided the arguments of using the Probably Approximately Correct (PAC)
bound for a finite hypothesis spaceH to obtain Õ(

√
(log |H|)/n) (Shalev-Shwartz & Ben-David, 2014) and bounding its

cardinality |H| via H(Zs
l). However, this argument results in the exponential factor 2I(X;Zs

l) as in Conjecture 1.

F. Proofs
F.1. Overview of Proofs of Theorems

Before providing complete proofs, we first provide a overview of the proofs of Theorem 1–2. Let l ∈ [D]. We first prove
two properties of the typical set of Zl, Lemma 1 and Lemma 2 (in appendix F.2), by combining a standard proof used
in information theory and the McDiarmid’s inequality. A typical set is a concept in information theory and we utilize
the properties of a typical set to obtain the information-theoretic bounds. To achieve this, Lemma 3 (in appendix F.2)
decomposes the generalization gap into four terms as EX,Y [ℓ(f

s(X), Y)] − 1
n

∑n
i=1 ℓ(f

s(xi), yi) = A + B + C + D,
where the one term A corresponds to the case of X being in the typical set, while other three terms B,C, and D are for the
case of X being outside of the typical set. The rest of the proof of Theorem 1 analyzes each of these terms (with Lemma 1
and Lemma 2), proving that A and B+ C+D are bounded by the first term and the second term on the right-hand side of
eq. (6), respectively. That is, we show C+D ≤ γlR(fs)√

n
in Lemma 4 (in appendix F.2) by invoking Lemma 1. Lemma 5

(in appendix F.2) then bounds the terms A and B by recasting the problem into that of multinomial distributions and by
incorporating Lemma 2 into the concentration inequality of multinomial distributions.

Lemmas 1–4 (in appendix F.2) are carefully proven for the trained encoder ϕs
l instead of a hypothesis space of encoders ϕl.

This is achieved by combining deterministic decompositions and probabilistic bounds with respect to the randomness of new
fresh samples X instead of the training data S. In contrast, Lemma 5 (in appendix F.2) is proven for a hypothesis space Φ of
encoders using the randomness of S, where Φ must be independent of s. These decompositions and probabilistic bounds
for different sample spaces enable the exponential improvement over the previous bounds. Combining Lemmas 3-5 (in
appendix F.2) produces Lemma 6, which proves Theorem 1 by setting the hypothesis space as Φ = {ϕs

l } where ϕs
l is fixed

independently of s.

The standard proof techniques result in the exponential factor 2I(X;Zs
l) as in Conjecture 1 (see appendix E for more details).

This paper provides a novel proof technique to avoid the exponential factor. Compared to arguments for Conjecture 1, our
proof discards the non-mathematical arguments regarding the typical set, keeps track of all the effects of the approximation
and non-typicality rigorously, and discards the assumption of the input dimension approaching infinity with an ergodic
Markov random field.

Another main challenge in proving our main result, Theorem 2, is avoiding the dependence on the hypothesis space for the
value of I(X;Zs

l |Y). That is, with a relatively simpler proof, we could prove a similar bound with supϕl∈Φl
I(X;ϕl ◦X|Y)

where Φl is a fixed hypothesis space of the encoder ϕl. However, this dependence on the hypothesis space is not preferred
since enlarging the hypothesis space can increase the value, whereas the value of I(X;Zs

l) in our bound is independent of
the hypothesis space given the final hypothesis ϕs

l .

We carefully construct and prove our key lemmas in the following subsection, which enables us to avoid the
dependence over the entire hypothesis space and the exponential factor.

F.2. Proofs of Key Lemmas

We use the notation of ln = loge and log = log2. Fix l ∈ {1, . . . , D} throughout this section. For the simplicity of the
notation, we write Z = Zs

l and Zy = Zs
l,y in the following; we must to be always aware of the dependence on s for related

28

How Does Information Bottleneck Help Deep Learning?

variables. We recall that
Zy = ϕs

l ◦Xy.

We write ξ(y) ∈ ϖy ⊆ Rm, and define the set of the latent variable per class by

Zy =
{
(ϕs

l ◦ χy)(ξ
(y)) : ξ(y) ∈ ϖy

}
.

For any γ > 0, we then define the typical subset Zs
γ,y of the set Zy by

Zs
γ,y =

{
z ∈ Zy : − logP(Zy = z)−H(Zy) ≤ cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2

}
.

Then, for any set A and any function φ, we have that

P(Z ∈ A|Y = y) = P(Zy ∈ A) = P({ωy ∈ Ωy : Zy(ωy) ∈ A})
= P({ωy ∈ Ωy : (ϕs

l ◦ χy)(Ξy(ωy)) ∈ A})
= P((ϕs

l ◦ χy ◦ Ξy) ∈ A),

and

P((φ ◦ Z) > 0|Y = y) = P((φ ◦ Zy) > 0) = P({ωy ∈ Ωy : φ(Zy(ωy)) > 0})
= P({ωy ∈ Ωy : φ((ϕs

l ◦ χy)(Ξy(ωy))) > 0})
= P((φ ◦ ϕs

l ◦ χy ◦ Ξy) > 0).

Thus, for example, we can write

P(Z /∈ Zs
γ,y|Y = y) = P

(
(ϕs

l ◦ χy ◦ Ξy) /∈ Zs
γ,y

)
= P ({ωy ∈ Ωy : − logP(Zy = ϕs

l (Xy(ωy)))−H(Zy) > ϵ})
= P

({
ωy ∈ Ωy : − logP

(
{ω′

y ∈ Ωy : Zy(ω
′
y) = Zy(ωy)}

)
−H(Zy) > ϵ

})
,

where ϵ = cyl (ϕ
s
l)

√
m ln(

√
n/γ)

2 .

F.2.1. PROBABILITY OF GOING OUTSIDE OF THE TYPICAL SUBSET

The following lemma shows that the conditional probability of going outside of Zγ,y is bounded by γ√
n

:

Lemma 1. For any γ > 0, it holds that
P(Z /∈ Zs

γ,y | Y = y) ≤ γ√
n
.

Proof. Fix y ∈ Y . We then write ξ = ξ(y) for the simplicity of the notation. We now consider the statistical property of the
function ξ 7→ − logP(Zy = ϕs

l (χ(y, ξ))). That is, in the following, we will apply McDiarmid’s inequality w.r.t. the sample
space ωy ∈ Ωy to the following function:

ξ 7→ − logP(Zy = ϕs
l (χ(y, ξ))) = − logP({ω′

y ∈ Ωy : Zy(ω
′
y) = ϕs

l (χ(y, ξ))}).

For the simpler notation, define the function py by

py(q) = P(Zy = q).

Then, we can rewrite the above function of ξ as

ξ = (ξ1, . . . , ξm) 7→ − log py(ϕ
s
l (χ(y, ξ))).

We also define
Z̃s

ϵ,y = {z ∈ Zy : − log py(z)−H(Z) ≤ ϵ} .

29

How Does Information Bottleneck Help Deep Learning?

For any (h, φ) and t = h(q) with a probability mass function p, since p(t) =
∑

q∈h−1(t) p(q),

Et∼p [φ(t)] =
∑
t

φ(t)p(t) =
∑
t

φ(t)
∑

q∈h−1(t)

p(q)

=
∑
t

∑
q∈h−1(t)

φ(t)p(q)

=
∑
t

∑
q∈h−1(t)

φ(h(q))p(q)

=
∑
q

φ(h(q))p(q) = Eq∼p[φ(h(q))].

Thus, by choosing q = ξy , h(q) = ϕs
l (χ(y, q)), and φ(t) = − log py(t), we have that

EΞy
[− log py(ϕ

s
l (χ(y,Ξy)))] = Eq[φ(h(q))] = Et [φ(t)] = EZy

[− log py(Zy)] = H(Zy).

Thus, by using McDiarmid’s inequality,

PΞy (− log py((ϕ
s
l ◦ χy)(Ξy))−H(Zy) ≥ ϵ) ≤ exp

(
− 2ϵ2

mcyl (ϕ
s
l)

2

)
.

By setting δ = exp
(
− 2ϵ2

cyl (ϕ
s
l)

2

)
and solving for ϵ, we set

ϵ = cyl (ϕ
s
l)

√
m ln(1/δ)

2
,

with which

P(Z /∈ Z̃s
ϵ,y | Y = y) = PΞy

(
(ϕs

l ◦ χy)(Ξy) /∈ Z̃s
ϵ,y

)
= PΞy

(− log py((ϕ
s
l ◦ χy)(Ξy))−H(Zy) > ϵ)

≤ PΞy
(− log py((ϕ

s
l ◦ χy)(Ξy))−H(Zy) ≥ ϵ) ≤ δ.

Therefore, by setting δ = γ√
n

and accordingly ϵ = cyl (ϕ
s
l)
√

m ln(1/δ)
2 = cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2 , we have proven the desired

statement, since Z̃s
ϵ,y = Zs

γ,y when ϵ = cyl (ϕ
s
l)

√
m ln(

√
n/γ)

2 .

F.2.2. SIZE OF THE TYPICAL SUBSET

The following lemmas bounds the size of the subset Zs
γ,y:

Lemma 2. For any γ > 0,

|Zs
γ,y| ≤ 2Hy(Zy)+cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2 .

Proof. Set ϵ = cyl (ϕ
s
l)

√
m ln(

√
n/γ)

2 . We define the function py by py(q) = P(Zy = q). Then, from the definition of Zs
γ,y,

we have that for any a ∈ Zs
γ,y ,

− log py(a)−H(Zy) ≤ ϵ⇐⇒ − log py(a) ≤ H(Zy) + ϵ

⇐⇒ − (H(Zy) + ϵ) ≤ log py(a)

⇐⇒ 2−H(Zy)−ϵ ≤ py(a).

Using 2−H(Zy)−ϵ ≤ py(a) = P(Zy = a) for all a ∈ Zs
γ,y ,

1 ≥ P(Zy ∈ Zs
γ,y) =

∑
a∈Zs

γ,y

P(Zy = a) ≥
∑

a∈Zs
γ,y

2−H(Zy)−ϵ = |Zs
γ,y|2−H(Zy)−ϵ.

30

How Does Information Bottleneck Help Deep Learning?

This implies that using ϵ = cyl (ϕ
s
l)

√
m ln(

√
n/γ)

2 ,

|Zs
γ,y| ≤ 2H(Zy)+ϵ = 2H(Zy)+cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2 .

F.2.3. DECOMPOSITION OF EXPECTED LOSS USING THE TYPICAL SUBSET

Let us write
zi = ϕs

l (xi) ∈ Zl ⊆ Rml ,

and
ℓl(q, y) = ℓ(gsl (q), y).

Then, by the law of the unconscious statistician,

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) = EZ,Y [ℓl(Z, Y)]− 1

n

n∑
i=1

ℓl(zi, yi).

For simplicity of the notation, define Ay = Zs
γ,y . We now consider a partition of the spaceZl asZl = {z ∈ Ay}∪{z /∈ Ay}.

Fix an order and write the element of Ay by Ay = {ay1, . . . , a
y
Ty
} where Ty = |Ay| ≤ 2Hy(ϕl◦Xy)+cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2 from

the Lemma 2. We define Iy = {i ∈ [n] : yi = y}, Ĩy = {i ∈ [n] : zi /∈ Ay, yi = y}, Iyk = {i ∈ [n] : zi =

ayk, yi = y}, Ỹ = {y ∈ Y : |Ĩy| ≠ 0}, 1
|Ĩy|

∑
i∈Ĩy ℓl(zi, y)q ≜ 0 for any q if |Ĩy| = 0, and 1

|Iy
k |
∑

i∈Iy
k
ℓl(zi, y)q ≜

0 for any q if |Iyk | = 0. Here, for example, Z, ayk, Ay, |Iyk |, and |Ĩy| depend on the training dataset s through the function
ϕs
l due to their definitions.

Using these, we can decompose the expected loss as in the following lemma:

Lemma 3. The following holds (deterministically):

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) =
∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)
(25)

+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)
+
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y).

Proof. we can decompose the expected loss by using conditionals as

EZ,Y [ℓl(Z, Y)] =
∑
y∈Y

P(Y = y)EZ,Y [ℓl(Z, Y)|Y = y].

Furthermore, we can decompose the conditional expectation as

EZ,Y [ℓl(Z, Y)|Y = y] = P(Z /∈ Ay|Y = y)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

+ P(Z ∈ Ay|Y = y)EZ,Y [ℓl(Z, Y)|Z ∈ Ay, Y = y]

= P(Z /∈ Ay|Y = y)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

+

Ty∑
k=1

P(Z = ayk|Y = y)EZ,Y [ℓl(Z, Y)|Z = ayk, Y = y]

31

How Does Information Bottleneck Help Deep Learning?

= P(Z /∈ Ay|Y = y)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

+

Ty∑
k=1

P(Z = ayk|Y = y)ℓl(a
y
k, y)

Summarising above,

EZ,Y [ℓl(Z, Y)] =
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

+
∑
y∈Y

Ty∑
k=1

P(Y = y, Z = ayk)ℓl(a
y
k, y).

Similarly, we can decompose the training loss as

1

n

n∑
i=1

ℓl(zi, yi) =
1

n

∑
y∈Y

∑
i∈Iy

ℓl(zi, y)

=
1

n

∑
y∈Y

∑
i∈Ĩy

ℓl(zi, y) +

Ty∑
k=1

∑
i∈Iy

k

ℓl(zi, y)


=
∑
y∈Ỹ

|Ĩy|
n

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) +
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)

Using these, we now decompose the expected loss as follows:

EZ,Y [ℓl(Z, Y)]− 1

n

n∑
i=1

ℓl(zi, yi) =
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

+
∑
y∈Y

Ty∑
k=1

P(Y = y, Z = ayk)ℓl(a
y
k, y)−

1

n

n∑
i=1

ℓl(zi, yi)

±
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)±
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)

By rearranging,

EZ,Y [ℓl(Z, Y)]− 1

n

n∑
i=1

ℓl(zi, yi)

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)


+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) +
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)−
1

n

n∑
i=1

ℓl(zi, yi)

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

32

How Does Information Bottleneck Help Deep Learning?

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)


+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) +
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)

−
∑
y∈Ỹ

|Ĩy|
n

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)−
∑
y∈Y

Ty∑
k=1

|Iyk |
n

ℓl(ak, y)

By combining the relevant terms,

EZ,Y [ℓl(Z, Y)]− 1

n

n∑
i=1

ℓl(zi, yi)

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)


+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)
+
∑
y∈Y

Ty∑
k=1

|Iyk |
n

(ℓl(ak, y)− ℓl(ak, y))

=
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)

 1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)


+
∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

+
∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)

This implies the desired statement.

F.2.4. BOUNDING THE THIRD AND FORTH TERMS IN THE DECOMPOSITION

Define
Ry = EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y].

Then, the following lemma bounds the third and forth terms in the decomposition of (25) from the previous subsection:

Lemma 4. For any γ > 0, the following holds:∑
y∈Y

P(Y = y)
γRy√

n
≥
∑
y∈Y

P(Y = y, Z /∈ Ay)EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]

33

How Does Information Bottleneck Help Deep Learning?

−
∑
y∈Ỹ

P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y). (26)

Proof. Recalling the definition of Ay = Zs
γ,y, the third term can be written as∑

y∈Y
P(Y = y, Z /∈ Ay)Ry =

∑
y∈Y

P(Y = y)P(Z /∈ Zs
γ,y|Y = y)Ry.

Then, using Lemma 1, for any γ > 0,
P(Z /∈ Zs

γ,y|Y = y) ≤ γ√
n
.

Since
∑

y∈Ỹ P(Y = y, Z /∈ Ay)
1

|Ĩy|

∑
i∈Ĩy ℓl(zi, y) ≥ 0, combining these implies the desired statement.

F.2.5. BOUNDING THE FIRST AND SECOND TERM IN THE DECOMPOSITION

Let Φ be fixed such that Φ is independent of s, while Φ can depend on the underlying data distribution. The following
lemma probabilistically bounds the first and second term in the decomposition of (25):

Lemma 5. If ϕs
l ∈ Φ, for any γ > 0 and δ > 0, with probability at least 1− δ, the following holds:

∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)
(27)

≤

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

, and,

∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

≤
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√2 (I(Xy;Zy) +Gy
2) ln(2) + 2 ln(2|Φ||Y|/δ)

n
.

where

Gy
2 = cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2
+H(Zy|Xy).

Proof. Let γ > 0 fixed. Define

Xy =
{
χy(ξ

(y)) : ξ(y) ∈ ϖy

}
,

and

Ây(ϕl) =

{
x ∈ Xy : − logP(Zy = ϕl(x))−H(Zy) ≤ cyl (ϕl)

√
m ln(

√
n/γ)

2

}
.

For each ϕl, write the element of Ây(ϕl) by Ây(ϕl) = {ây1(ϕl), . . . , â
y

T̂y(ϕl)
(ϕl)} (with a fixed order) where T̂y(ϕl) =

|Ây(ϕl)|. Moreover, we define

Îyk (ϕl) =

{
{i ∈ [n] : ϕl(xi) = âyk(ϕl), yi = y} if k ∈ [T̂y(ϕl)]

{i ∈ [n] : ϕl(xi) /∈ Ây(ϕl), yi = y} if k = T̂y(ϕl) + 1.

These are defined such that the previously defined notations are recovered when we set ϕl = ϕs
l as

Zs
γ,y = Ây(ϕ

s
l), Ay = Ây(ϕ

s
l), (28)

34

How Does Information Bottleneck Help Deep Learning?

(ay1, . . . , a
y
T) = (ây1(ϕ

s
l), . . . , â

y

T̂y(ϕs
l)
(ϕs

l)), Iyk = Îyk (ϕ
s
l),

Ĩy = Îy
T̂y(ϕs

l)+1
(ϕs

l), Ty = T̂y(ϕ
s
l).

We begin with bounding terms for a fixed encoder, before extending it to the case of encoders learned from the training set.
Let ϕl fixed and define

pyk =

{
P((ϕl ◦X) = âyk(ϕl), Y = y) if k ∈ [T̂y(ϕl)]

P((ϕl ◦X) /∈ Ây(ϕl), Y = y) if k = T̂y(ϕl) + 1.

Let y ∈ Y and k ∈ [T̂y(ϕl) + 1]. Then, we first prove the following statement: for any δ > 0, with probability at least 1− δ,

pyk −
|Îyk (ϕl)|

n
≤
√

2pyk ln(1/δ)

n
. (29)

To prove this statement, fix y ∈ Y and k ∈ [T̂y(ϕl) + 1]. Let us write Îk = Îyk (ϕl) and pk = pyk. If pk = 0, then the

desired statement holds trivially because pk − |Îk|
n = − |Îk|

n ≤
√

2pk ln(1/δ)
n where |Îk|

n = 0 and
√

2pi ln(1/δ)
n = 0. Thus,

for the rest, we consider the case where pk ̸= 0. We notice that (|Î1|, . . . , |ÎT+1|) follows the multinomial distribution with
parameter n and (p1, . . . , pT+1). Thus, we invoke Lemma 3 of (Kawaguchi et al., 2022a) with āi = 1 and āj = 0 for all
j ̸= i (which satisfies

∑K
i=1 āipi ̸= 0 since pi ̸= 0), yielding that for any M > 0,

P

(
pk −

|Îk|
n

> M

)
≤ exp

(
−nM2

2pk

)
.

By setting M =
√

2pi ln(1/δ)
n ,

P

(
pk −

|Îk|
n

>

√
2pk ln(1/δ)

n

)
≤ δ.

This proves the statement of (29). Using (29), we can bound the first and second terms for a fixed ϕl as follows. For the first
term with a fixed ϕl, using (29), by taking union bounds over all y ∈ Y , we have that for any δ > 0, with probability at least
1− δ, the following holds for all y ∈ Y:

P(ϕl(X) /∈ Ây(ϕl), Y = y)−
|Îy

T̂y(ϕl)+1
(ϕl)|

n
(30)

≤

√
2P(ϕl(X) /∈ Ây(ϕl), Y = y) ln(|Y|/δ)

n
.

For the second term with a fixed ϕl, using (29), by taking union bounds over all y ∈ Y and all k ∈ [T̂y(ϕl)], we have that
for any δ > 0, with probability at least 1− δ, the following holds for all y ∈ Y and all k ∈ [T̂y(ϕl)],

P(ϕl(X) = âyk(ϕl), Y = y)−
|Îyk (ϕl)|

n

≤
√
P(ϕl(X) = âyk(ϕl), Y = y)

√
2 ln(|Y|T̂y(ϕl)/δ)

n
.

We now extend the results for the case of encoders learned from the training set; i.e., ϕl is no longer fixed. By taking union
bounds with the previous two bounds, we have that for any δ > 0, with probability at least 1− δ, the following holds for all
ϕl ∈ Φ:

P(ϕl(X) /∈ Ây(ϕl), Y = y)−
|Îy

T̂y(ϕl)+1
(ϕl)|

n

35

How Does Information Bottleneck Help Deep Learning?

≤

√
2P(ϕl(X) /∈ Ây(ϕl), Y = y) ln(2|Φ||Y|/δ)

n
,

and for all k ∈ [T̂y(ϕl)],

P(ϕl(X) = âyk(ϕl), Y = y)−
|Îyk (ϕl)|

n

≤
√
P(ϕl(X) = âyk(ϕl), Y = y)

√
2 ln(2|Φ||Y|T̂y(ϕl)/δ)

n
.

Thus, if ϕs
l ∈ Φ, then we have that for any δ > 0, with probability at least 1− δ, the following holds:

P(ϕs
l (X) /∈ Ây(ϕ

s
l), Y = y)−

|Îy
T̂y(ϕs

l)+1
(ϕs

l)|

n

≤

√
2P(ϕs

l (X) /∈ Ây(ϕs
l), Y = y) ln(2|Φ||Y|/δ)
n

.

and for all k ∈ [T̂y(ϕ
s
l)],

P(ϕs
l (X) = âyk(ϕ

s
l), Y = y)−

|Îyk (ϕs
l)|

n

≤
√
P(ϕs

l (X) = âyk(ϕ
s
l), Y = y)

√
2 ln(2|Φ||Y|T̂y(ϕs

l)/δ)

n
.

By using (28), this means that if ϕs
l ∈ Φ, for any δ > 0, with probability at least 1− δ, the following holds:

P(Z /∈ Zs
γ,y, Y = y)− |Ĩ

y|
n
≤
√

2P(Z /∈ Zs
γ,y, Y = y) ln(2|Φ||Y|/δ)

n
,

and for all k ∈ [Ty],

P(Z = ayk, Y = y)−
|Iyk |
n
≤
√

P(Z = ayk, Y = y)

√
2 ln(2|Φ||Y|Ty/δ)

n
.

Since ℓl(zi, y) ≥ 0 and ℓl(a
y
k, y) ≥ 0, this implies that if ϕs

l ∈ Φ, for any δ > 0, with probability at least 1−δ, the following
holds:

∑
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y)

(
P(Y = y, Z /∈ Ay)−

|Ĩy|
n

)

≤

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

,

and for all k ∈ [Ty],

∑
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

(
P(Y = y, Z = ayk)−

|Iyk |
n

)

≤
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√2 ln(2|Φ||Y|Ty/δ)

n
.

36

How Does Information Bottleneck Help Deep Learning?

Here, using Lemma 2, we have that Ty = |Zs
γ,y| ≤ 2H(Zy)+cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2 . Thus,√
2 ln(2|Φ||Y|Ty/δ)

n
=

√
2 ln(Ty) + 2 ln(2|Φ||Y|/δ)

n

≤

√√√√√2

(
H(Zy) + cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2

)
ln(2) + 2 ln(2|Φ||Y|/δ)

n

Finally, since H(Zy) = I(Xy;Zy) +H(Zy|Xy), we have that

H(Zy) + cyl (ϕ
s
l)

√
m ln(

√
n/γ)

2
= I(Xy;Zy) +Gy

2.

Combining these, we have proven the desired statement of this lemma.

F.2.6. COMBINE LEMMAS

By combining Lemmas 3, 4, and 5, we have proven the following statement:

Lemma 6. Let l ∈ {1, . . . , D}. If ϕs
l ∈ Φ, then for any γ > 0 and δ > 0, with probability at least 1 − δ, the following

holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l)(X), Y)]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l)(xi), yi)

≤ G3

√
I(X;Z|Y) ln(2) +G2 ln(2) + ln(2|Φ||Y|/δ)

n
+

G1(ln |Φ|)√
n

,

where

G1(q) =
L(fs)

√
2γ|Y|

n1/4

√
ln(q) + ln(2|Y|/δ) + γR(fs),

G2 = Ey[c
y
l (ϕ

s
l)]

√
m ln(

√
n/γ)

2
+H(Z|X,Y),

G3 = max
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y).

Proof. Define the radius of the expected loss R by

R = Ey[Ry] = Ey [EZ,Y [ℓl(Z, Y)|Z /∈ Ay, Y = y]] , (31)

and the maximum over y of the average training loss per y by

L̂(fs) = max
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓl(zi, y) = max
y∈Ỹ

1

|Ĩy|

∑
i∈Ĩy

ℓ(fs(xi), y). (32)

Let l ∈ {1, . . . , D}. By combining Lemmas 3, 4, and 5, if ϕs
l ∈ Φ, then for any γ > 0 and δ > 0, with probability at least

1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l)(X), Y)]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l)(xi), yi)

≤
√
2
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√ (I(Xy;Zy) +Gy
2) ln(2) + ln(2|Φ||Y|/δ)

n

37

How Does Information Bottleneck Help Deep Learning?

+

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

+
∑
y∈Y

P(Y = y)
γRy√

n
.

Define

G̃3 = max
y∈Y

√
2

Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk|Y = y).

Then, we have

√
2

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)


=
√

P(Y = y)
√
2

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk|Y = y)


≤ G̃3

√
P(Y = y)

Using this and Jensen’s inequality, we have that

√
2
∑
y∈Y

 Ty∑
k=1

ℓl(a
y
k, y)

√
P(Z = ayk, Y = y)

√ (I(Xy;Zy) +Gy
2) ln(2) + ln(2|Φ||Y|/δ)

n

≤ G̃3

∑
y∈Y

|Y|
|Y|
√

P(Y = y)

√
(I(Xy;Zy) +Gy

2) ln(2) + ln(2|Φ||Y|/δ)
n

≤ G̃3|Y|

√√√√∑
y∈Y

1

|Y|
P(Y = y) (I(Xy;Zy) +Gy

2) ln(2) + P(Y = y) ln(2|Φ||Y|/δ)
n

= G̃3

√
|Y|

√∑
y∈Y P(Y = y) (I(Xy;Zy) +Gy

2) ln(2) +
∑

y∈Y P(Y = y) ln(2|Φ||Y|/δ)
n

= G̃3

√
|Y|
√

(I(X;Z|Y) +G2) ln(2) + ln(2|Φ||Y|/δ)
n

where

G2 =
∑
y∈Y

P(Y = y)Gy
2 =

∑
y∈Y

P(Y = y)

(
cyl (ϕ

s
l)

√
m ln(

√
n/γ)

2
+H(Zy|Xy)

)
.

Moreover, ∑
y∈Y

P(Y = y)
γRy√

n
=

γ√
n

∑
y∈Y

P(Y = y)Ry =
γR√
n
.

Using Lemma 1 and Jensen’s inequality, since PZ(Z /∈ Zs
γ,y|Y = y) ≤ γ√

n
,

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

=
∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y|Y = y)
√
P(Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

≤ L̂(fs)

√
γ

n1/4

∑
y∈Y

|Y|
|Y|
√
P(Y = y)

≤ L̂(fs)

√
γ

n1/4
|Y|
√∑

y∈Y

1

|Y|
P(Y = y)

38

How Does Information Bottleneck Help Deep Learning?

= L̂(fs)

√
γ|Y|
n1/4

Thus, since R ≤ R(fs) and L̂(fs) ≤ L(fs),

G1(ln |Φ|)√
n

≥

∑
y∈Ỹ

√
P(Z /∈ Zs

γ,y, Y = y)

∑
i∈Ĩy ℓl(zi, y)

|Ĩy|

√2 ln(2|Φ||Y|/δ)
n

+
∑
y∈Y

P(Y = y)
γRy√

n
,

where

G1(q) =
L(fs)

√
2γ|Y|

n1/4

√
q + ln(2|Y|/δ) + γR(fs).

Combining these imply the desired statement.

F.3. Completing the Proof of Theorem 1 with Key Lemmas

Recall that we have proven the following lemma in the previous subsection:

Lemma 6. Let l ∈ {1, . . . , D}. If ϕs
l ∈ Φ, then for any γ > 0 and δ > 0, with probability at least 1 − δ, the following

holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l)(X), Y)]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l)(xi), yi)

≤ G3

√
I(X;Z|Y) ln(2) +G2 ln(2) + ln(2|Φ||Y|/δ)

n
+

G1(ln |Φ|)√
n

,

where

G1(q) =
L(fs)

√
2γ|Y|

n1/4

√
ln(q) + ln(2|Y|/δ) + γR(fs),

G2 = Ey[c
y
l (ϕ

s
l)]

√
m ln(

√
n/γ)

2
+H(Z|X,Y),

G3 = max
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y).

Theorem 2 directly follows from Lemma 6; i.e., we complete the proof of Theorem 2 using Lemma 6. Since ϕs
l is fixed

independently of the training dataset s in Theorem 1, we can invoke Lemma 6 with Φ = {ϕs
l }, with which |Φ| = 1 and

ϕs
l ∈ Φ. Thus, by noticing that fs = gsl ◦ ϕs

l for any l ∈ {1, . . . , D}, Lemma 6 implies the desired statement.

F.4. Completing the Proof of Theorem 2 with Key Lemmas

We complete the proof of Theorem 2 by extending Lemma 6 in the following.

F.4.1. FINDING A LIKELY SPACE OF ENCODER

Fix l ∈ {1, . . . , D} throughout this section. Let λ = λl and Cλ = Cλ,l. Recall that Al(s) ∈ Ml and |Ml| < ∞. For
simplicity of notation, we define the random variable As by As = ϕS

l . For any q ∈Ml, we denote

p(q) = P(As = q). (33)

The entropy of the random variable As is given by

EAs [− log p(As)] = H(As).

39

How Does Information Bottleneck Help Deep Learning?

Define the typical subset
Φl

ϵ = {ϕl ∈Ml : − logP(As = ϕl)−H(As) ≤ ϵ} .

The following proposition shows that the probability of going outside of the typical subset Φl
ϵ is bounded by δ when we take

ϵ = (1/λ) log(Cλ/δ):

Lemma 7. For any λ > 0, if we take ϵ = (1/λ) ln(Cλ/δ), then we have

P(ϕS
l ̸∈ Φl

ϵ) ≤ δ, (34)

and

|Φl
ϵ| ≤ 2H(ϕS

l)+ϵ = 2H(ϕS
l)+ 1

λ log
Cλ
δ . (35)

Proof. By the definition of the set Φl
ϵ, we have

P(As ̸∈ Φl
ϵ) = P(q ∈Ml : − log p(q) ≥ H(As) + ϵ) (36)

= P(q ∈Ml : −λ log p(q) ≥ λH(As) + λϵ) (37)

= P(q ∈Ml : p
−λ(q) ≥ eλH(As)+λϵ) (38)

≤ e−λH(As)−λϵ
∑

q∈Ml

p−λ(q)p(q) (39)

=
Cλ

eλϵ
= δ. (40)

Now we compute the size of Φl
ϵ. From the definition of Φl

ϵ, we have

− log p(ϕl)−H(As) ≤ ϵ⇐⇒ − log p(ϕl) ≤ H(As) + ϵ

⇐⇒ −H(As)− ϵ ≤ log p(ϕl)

⇐⇒ 2−H(As)−ϵ ≤ p(ϕl).

Using 2−H(As)−ϵ ≤ p(ϕl),

1 ≥ Ps(As ∈ Φl
ϵ) =

∑
ϕl∈Φl

ϵ

P(As = ϕl) ≥
∑

ϕl∈Φl
ϵ

2−H(As)−ϵ = |Φl
ϵ|2−H(As)−ϵ.

This implies that using ϵ = (1/λ) ln(Cλ/δ),

|Φl
ϵ| ≤ 2H(As)+

1
λ ln

Cλ
δ .

F.4.2. RESULT WITH FIXED LAYER INDEX

Combining Lemmas 6 and 7 implies the following lemma, which is a main result for a fixed layer index l:

Lemma 8. Let l ∈ {1, . . . , D}. Then, for any γ > 0 and any δ > 0, with probability at least 1− δ, the following holds:

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (41)

≤ G3

√(
I(X;Z|Y) + I(ϕS

l ;S) +G2 +G4

)
ln(2) + ln(4|Y|/δ)

n
+

G1(q̃)√
n

.

where q̃ = (I(ϕS
l ;S) +G4) ln(2) + ln(2),

G1(q̃) =
L(fs)

√
2γ|Y|

n1/4

√
q̃ + ln(2|Y|/δ) + γR(fs),

40

How Does Information Bottleneck Help Deep Learning?

G2 = Ey[c
y
l (ϕ

s
l)]

√
m ln(

√
n/γ)

2
+H(Z|X,Y),

G3 = max
y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y),

G4 =
1

λ
ln

Cλ

δ
+H(ϕS

l |S).

Proof. Fix l ∈ {1, . . . , D}. Let λ > 0 and ϵ = (1/λ) ln(Cλ/δ). Using Lemma 6, if ϕs
l ∈ Φl

ϵ, then for any γ > 0 and δ > 0,
with probability at least 1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l)(X), Y)]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l)(xi), yi) (42)

≤ G3

√
(I(X;Z|Y) +G2) ln(2) + ln(2|Φl

ϵ||Y|/δ)
n

+
G1(ln |Φl

ϵ|)√
n

.

From Lemma 7,
P(As ̸∈ Φl

ϵ) ≤ δ

Ps(ϕ
s
l /∈ Φl

ϵ) ≤ δ̄.

Thus, since P(A ∩B) ≤ P(B) and P(A ∩B) = P(A)P(A | B), we have that

PS(Inequality (42) holds)

≥ PS(ϕ
S
l ∈ Φl

ϵ

⋂
Inequality (42) holds)

= PS(ϕ
S
l ∈ Φl

ϵ)PS(Inequality (42) holds | ϕS
l ∈ Φl

ϵ)

≥ PS(ϕ
S
l ∈ Φl

ϵ)(1− δ)

≥ (1− δ)(1− δ) = 1− 2δ + δ2 ≥ 1− 2δ.

Therefore, by setting δ = δ′

2 , we have that for any δ′ > 0,

PS(Eq (42) holds) ≥ 1− δ′.

In other words, for any γ > 0 and δ > 0, with probability at least 1− δ, the following holds:

EX,Y [ℓ((g
s
l ◦ ϕs

l)(X), Y)]− 1

n

n∑
i=1

ℓ((gsl ◦ ϕs
l)(xi), yi) (43)

≤ G3

√
(I(X;Z|Y) +G2) ln(2) + ln(4|Φl

ϵ||Y|/δ)
n

+
G1(ln 2|Φl

ϵ|)√
n

.

From Lemma 7, we have |Φl
ϵ| ≤ 2H(ϕS

l)+ 1
λ ln

Cλ
δ and thus

ln(4|Φl
ϵ||Y|/δ) = ln(|Φl

ϵ|) + ln(4|Y|/δ) ≤
(
H(ϕS

l) +
1

λ
ln

Cλ

δ

)
ln(2) + ln(4|Y|/δ).

From the definition of the entropy, conditional entropy, and mutual information, we have that

H(ϕS
l) = I(ϕS

l ;S) +H(ϕS
l |S).

Using this,

H(ϕS
l) +

1

λ
ln

Cλ

δ
= I(ϕS

l ;S) +G4.

41

How Does Information Bottleneck Help Deep Learning?

By combining these and noticing that fs = gsl ◦ ϕs
l for any l ∈ {1, . . . , D}, we have that for any γ > 0 and δ > 0, with

probability at least 1− δ, the following holds:

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (44)

≤ G3

√(
I(X;Z|Y) + I(ϕS

l ;S) +G2 +G4

)
ln(2) + ln(4|Y|/δ)

n
+

G1(q̃)√
n

.

F.4.3. COMPLETING THE PROOF

We complete the proof of Theorem 2 using Lemma 8. Let γl > 0 and λl > 0 for all l ∈ {1, 2, . . . , D + 1}. Recall that
fs = gsl ◦ ϕs

l for any l ∈ {1, . . . , D}. Thus, by making the dependence of the layer index l explicit, Lemma 8 states that for
any δ > 0 and (fixed) l ∈ {1, . . . , D}, with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (45)

≤ Gl
3

√(
I(X;Zs

l |Y) + I(ϕS
l ;S) +Gl

2 +Gl
4

)
ln(2) + ln(4|Y|/δ)

n
+

Gl
1(q̃)√
n

,

where q̃ = (I(ϕS
l ;S) +G4) ln(2) + ln(2),

Gl
1(q) =

L(fs)
√
2γl|Y|

n1/4

√
q + ln(2|Y|/δ) + γlR(fs),

Gl
2 = Ey[c

y
l (ϕ

s
l)]

√
m ln(

√
n/γl)

2
+H(Zs

l |X,Y).

Gl
3 = max

y∈Y

Ty∑
k=1

ℓl(a
y
k, y)

√
2|Y|P(Z = ayk|Y = y),

G̃l
4 =

1

λl
ln

Cλl,l

δ
+H(ϕS

l |S).

We now consider the case of l = D + 1. Let l = D + 1 and λD+1 > 0. Fix f = ϕD+1 ∈ ΦD+1
ϵ with

ϵ = (1/λ) ln(CλD+1,D+1/δ). Then, by using Hoeffding’s inequality, for any δ > 0, with probability at least 1− δ,

EX,Y [ℓ(f(X), Y)]− 1

n

n∑
i=1

ℓ(f(xi), yi) ≤ R(f)
√

ln(1/δ)

2n
.

By taking union bounds over elements of ΦD+1
ϵ , this implies that for any δ > 0, with probability at least 1− δ, the following

holds for all f ∈ ΦD+1
ϵ ,

EX,Y [ℓ(f(X), Y)]− 1

n

n∑
i=1

ℓ(f(xi), yi) ≤ R(f)

√
ln(|ΦD+1

ϵ |/δ)
2n

.

This implies that for any δ > 0, if ϕs
D+1 ∈ ΦD+1

ϵ , then with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ R(fs)

√
ln(|ΦD+1

ϵ |/δ)
2n

. (46)

Here, from Lemma 7, we have that

P(ϕS
D+1 ̸∈ ΦD+1

ϵ) ≤ δ.

42

How Does Information Bottleneck Help Deep Learning?

Since P(A ∩B) ≤ P(B) and P(A ∩B) = P(A)P(A | B), we have that

PS(Inequality (46) holds)

≥ PS(ϕ
S
D+1 ∈ ΦD+1

ϵ

⋂
Inequality (46) holds)

= PS(ϕ
S
D+1 ∈ ΦD+1

ϵ)PS(Inequality (46) holds | ϕS
D+1 ∈ ΦD+1

ϵ)

≥ PS(ϕ
S
D+1 ∈ ΦD+1

ϵ)(1− δ)

≥ (1− δ)(1− δ)

≥ 1− 2δ.

Therefore, by setting δ = δ′

2 , we have that for any δ′ > 0,

PS(Eq (46) holds) ≥ 1− δ′.

In other words, for any δ′ > 0, with probability at least 1− δ′,

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ R(fs)

√
ln(2|ΦD+1

ϵ |/δ′)
2n

. (47)

Here, from Lemma 7, we have that

|ΦD+1
ϵ | ≤ 2

H(ϕS
D+1)+

1
λD+1

log
CλD+1,D+1

δ .

Substituting this,

ln(2|ΦD+1
ϵ |/δ′) = ln(|ΦD+1

ϵ |) + ln(2/δ′)

≤
(
H(ϕS

D+1) +
1

λD+1
log

CλD+1,D+1

δ

)
ln(2) + ln(2/δ′)

Using H(ϕS
D+1) = I(ϕS

D+1;S) +H(ϕS
D+1|S),

H(ϕS
D+1) +

1

λD+1
log

CλD+1,D+1

δ
= I(ϕS

D+1;S) + G̃D+1
4 .

Substituting these into (47), we have that for any δ > 0, with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ R(fs)

√√√√(I(ϕS
D+1;S) + G̃D+1

4

)
ln(2) + ln(2/δ)

2n
. (48)

By combining (45) and (48) with union bounds over D, we have that for any δ > 0 and D ⊆ {1, 2, . . . , D + 1}, with
probability at least 1− δ, the following holds for all l ∈ D:

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) (49)

≤ 1{l ̸= D+}

Gl
3

√(
I(X;Zs

l |Y) + I(ϕS
l ;S) +Gl

2 +Gl
4

)
ln(2) + ln(4|Y||D|/δ)

n
+

Gl
1√
n


+ 1{l = D+}R(fs)

√(
I(ϕS

D+1;S) +GD+1
4

)
ln(2) + ln(2/δ)

2n
,

where D+ = D + 1,

Gl
4 =

1

λl
ln

Cλl,l|D|
δ

+H(ϕS
l |S).

43

How Does Information Bottleneck Help Deep Learning?

Since the right-hand side of this inequality holds for all l ∈ D and the left-hand side does not depend on l, this implies that
for any δ > 0 and D ⊆ {1, 2, . . . , D + 1}, with probability at least 1− δ,

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ min
l∈D

Ql, (50)

where Ql =

Gl
3

√
(I(X;Zs

l |Y)+I(ϕS
l ;S)) ln(2)+Ĝl

2

n +
Gl

1(ζ)√
n

if l ≤ D

R(fs)

√
I(ϕS

l ;S) ln(2)+Ǧl
2

2n if l = D + 1,

where ζ = (I(ϕS
l ;S) + Gl

4) ln(2) + ln(2|D|), Ĝl2 =
(
Gl

2 +Gl
4

)
ln(2) + ln(4|Y||D|/δ), Ǧl2 = Gl

4 ln(2) + ln(2/δ), and

Gl
4 = 1

λl
ln

Cλl,l
|D|

δ +H(ϕS
l |S).

F.5. Proof of Remark 1

The desired statement follows from

I(θSl ;S) +H(θSl |S) = H(θSl) ≥ H(ϕl,θS
l
) = H(ϕS

l) = I(ϕS
l ;S) +H(ϕS

l |S),

where the inequality holds because all the randomness of ϕl,θS
l

comes from the randomness of θSl = Aθ
l ◦ S (where Aθ

l is
the version of Al that outputs the parameter vector instead of the encoder function), and because one ϕl,θS

l
corresponds

to one or more θSl ; i.e., we have ϕl,θs
l
= ϕl,θ̄s

l
whenever θsl = θ̄sl and it is possible that ϕl,θs

l
= ϕl,θ̄s

l
for θsl ̸= θ̄sl . In other

words, the desired statement does not hold only if ϕl,θs
l
̸= ϕl,θ̄s

l
for some θsl = θ̄sl , which is not the case.

F.6. Proof of Corollary 1

Proof. Set ϕs
l = El[ϕ̃s

l] ◦ ϕ̃s
l . Then, Theorems 1–2 hold true for this choice of encoder ϕs

l since this does not violate any
assumption of Theorems 1–2. Thus, Theorems 1–2 hold with eq. (6) and eq. (7) in their original forms: i.e.,

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ Q̂l, and, (51)

EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) ≤ min
l∈D

Ql,

Since P(|ℓ((gsl ◦ ϕ̃s
l)(X), Y) − ℓ((gsl ◦ El[ϕ̃s

l] ◦ ϕ̃s
l)(X), Y)| ≤ Cl) = P(|ℓ(f̃s(X), Y) − ℓ(fs(X), Y)| ≤ Cl) = 1, we

have that with probability one,

ℓ(f̃s(xi), yi) = ℓ(fs(xi), yi) + (ℓ(f̃s(x), y)− ℓ(fs(xi), yi)) ≤ ℓ(fs(xi), yi) + Cl. (52)

Thus, with probability one,

EX,Y [ℓ(f̃
s(X), Y)]− 1

n

n∑
i=1

ℓ(f̃s(xi), yi) ≤ EX,Y [ℓ(f
s(X), Y)]− 1

n

n∑
i=1

ℓ(fs(xi), yi) + 2Cl. (53)

Combining eq. (51) and eq. (53) with union bounds concludes that Theorems 1–2 hold when we replace eq. (6) and eq. (7)
by

EX,Y [ℓ(f̃
s(X), Y)]− 1

n

n∑
i=1

ℓ(f̃s(xi), yi) ≤ Q̂l + 2Cl, and, (54)

EX,Y [ℓ(f̃
s(X), Y)]− 1

n

n∑
i=1

ℓ(f̃s(xi), yi) ≤ min
l∈D

Ql + 2Cl,

Finally, the values of Q̂l and Ql are finite since |Zs
l | <∞ and |Ml| <∞; e.g., |Zs

l | <∞ implies that I(X;Zs
l |Y) <∞.

Thus, if CE <∞, we have Q̂l + 2Cl <∞ and minl∈D Ql + 2Cl <∞.

44

How Does Information Bottleneck Help Deep Learning?

F.7. Proof of Proposition 1

Proof. Let l be fixed and ϕs = ϕs
l . For deterministic neural networks, the intermediate output Z is a deterministic function

of the input X , i.e. Z = ϕs(X). In this case the conditional mutual information between X and Z simplifies to the
conditional entropy of Z:

I(X,Z|Y) = H(Z|Y) = H(ϕs(X)|Y). (55)

It has been proven in (Amjad & Geiger, 2019) that if X has absolutely continuous component, which has continous density
on a compact set, and the activation is bi-Lipschitz or continuous differentiable with strictly positive derivative, then the
entropy of ϕs(X) is infinite.

In the following, we first give some simple examples with ReLU activation where the entropy of ϕs(X) is finite for an initial
intuition, and then we generalize the examples for more practical settings. Finally, we discuss generality and practicality of
our construction.

Consider an arbitrary (continuous or discrete) distribution such that the distribution of X|Y consists of several components
(which may correspond to further subclasses). For simplicity, we assume that there are two components C1 and C2. We start
with the linearly separable case where C1 and C2 are separated by a hyperplane ax+ b = 0 with margin at least r. In other
words ax+ b ≥ r for x ∈ C1, and ax+ b ≤ −r for x ∈ C2. Then the following simple one layer network

σ(ax+ b+ c)− σ(ax+ b− c), 0 < c ≤ r (56)

maps x ∈ C1 to 2c and C2 to 0. Thus, the output Z = ϕs(X) follows a Bernoulli distribution, which has bounded entropy.
Thus, we have I(X,Z|Y) <∞.

More generally, if C1 and C2 are separable, with margin at least r using some metric d(C1, C2) ≥ r, we can take a Lipschitz
function g w.r.t. this metric d with lipschitz constant 1/r such that it equals 0 on C1 and equals 1 on C2. By the universal
approximation theory, ReLU neural network can approximate arbitrary continuous function to arbitrary precision as we
increase the network size. In particular, there exists a finite-size ReLU neural network N such that |N(x)−g(x)| ≤ 1/8. As
a consequence, we have N(x) ≤ 1/8 for x ∈ C1 and N(x) ≥ 7/8 for x ∈ C2. We consider the following neural network:

σ(N − 1/2 + c)− σ(N − 1/2− c), 0 < c < 3/8, (57)

which maps x ∈ C1 to 2c and C2 to 0. Thus, the output Z = ϕs(X) follows a Bernoulli distribution, which has bounded
entropy. Thus, we have I(X,Z|Y) <∞. Since the distribution in this general example is arbitrary except for the separable
components, there exists infinitely many such distributions.

Finally, we observe that these examples are general and practical. First, the above proof works for any finite number of
separable components instead of two components. Second, it is also observed in practice that trained neural networks behave
like these examples discussed above, which maps different class to different points; this is sometimes referred as a neural
collapse phenomenon (Papyan et al., 2020).

F.8. Proof of Proposition 2

We will use the following lemma to prove Proposition 2:

Lemma 9. Let v1, . . . , vT ∈ R such that 0 ≤ vk ≤ Ce−(k/β)α for some constants α ≥ 1 and β,C > 0. Then,

T∑
k=1

√
vk ≤

⌈β̃⌉∑
k=1

√
vk +

Cβ̃

αe

where β̃ = 21/αβ.

Proof. Using the condition on vk,

√
vk ≤

√
Ce−(k/β)α =

√
C
√
e−(k/β)α =

√
Ce−

kα

2βα =
√
Ce−(k/β̃)α

45

How Does Information Bottleneck Help Deep Learning?

Then,
T∑

k=1

√
vk =

⌈β̃⌉∑
k=1

√
vk +

T∑
k=⌈β̃⌉+1

√
vk ≤

⌈β̃⌉∑
k=1

√
vk +

√
C

T∑
k=⌈β̃⌉+1

e−(k/β̃)α

We now bound the last term by using integral as

T∑
k=⌈β̃⌉+1

e−(k/β̃)α ≤
∫ ∞

β̃

e−(q/β̃)αdq =
β̃

α

∫ ∞

(β̃/β̃)α
t

1
α−1e−tdt =

β̃

α

∫ ∞

1

t
1
α−1e−tdt

Here, since α ≥ 1 and t ≥ 1 in the integral, we have t
1
α−1 ≤ 1 in the integral. Thus,∫ ∞

1

t
1
α−1e−tdt ≤

∫ ∞

1

e−tdt = e−1.

By combining these, we have
T∑

k=1

√
vk ≤

⌈β̃⌉∑
k=1

√
vk +

Cβ̃

αe

Using Lemma 9, we complete the proof of Proposition 2 in the following:

Proof of Proposition 2. Let y ∈ Y and l ∈ {1, . . . , D}. To invoke Lemma 9, we rearrange the expression of Gl
3 as

Gl
3 = max

y∈Y

T l
y∑

k=1

ℓ(gsl (a
l,y
k), y)

√
2|Y|P(Zs

l,y = al,yk)

≤
√

2|Y|max
y∈Y

T l
y∑

k=1

√
ℓ(gsl (a

l,y
k), y)2P(Zs

l,y = al,yk)

Then, we invoke Lemma 9 with vk = v
(y)
k = ℓ(gsl (a

l,y
k), y)2P(Zs

l,y = al,yk), where we define v
(y)
k = vk(y). This implies

that
T l
y∑

k=1

√
ℓ(gsl (a

l,y
k), y)2P(Zs

l,y = al,yk) ≤
⌈β̃y⌉∑
k=1

√
v
(y)
k +

Cyβ̃y

αye
,

where β̃y = 21/αyβy . Thus,

Gl
3 ≤

√
2|Y|max

y∈Y

⌈β̃y⌉∑
k=1

√
v
(y)
k +

Cyβ̃y

αye



F.9. Proof of Proposition 3

Proof. Let l ∈ {1, 2, . . . , D + 1} and let us write λ = λl and Cλ = Cλl,l. We first note that the value of Cλ is always
bounded as

Cλ ≤
∑

q∈Ml

(P(ϕS
l = q))1−λ ≤ |Ml|

 1

|Ml|
∑

q∈Ml

P(ϕS
l = q)

1−λ

= |Ml|λ, (58)

46

How Does Information Bottleneck Help Deep Learning?

which is a very loose bound and we will provide tighter bounds in below. Before proceeding to the proof, we recall the
following bounds. For a > 1 we have

1

a− 1
≤
∫ ∞

1

dx

xa
≤

∞∑
i=1

1

ia
≤ 1 +

∫ ∞

1

dx

xa
=

a

a− 1
, (59)

∞∑
i=1

ln(i)

ia
≤ ln(2)

2a
+

ln(3)

3a
+

∫ ∞

3

ln(x)dx

xa
=

ln(2)

2a
+

ln(3)

3a
+

31−a((a− 1) ln(3) + 1)

(a− 1)2
, (60)

∞∑
i=1

ln(i)

ia
≥ ln(2)

2a
+

∫ ∞

3

ln(x)dx

xa
≥ ln(2)

2a
+

31−a((a− 1) ln(3) + 1)

(a− 1)2
. (61)

For a < 1, we have

N1−a − 1

1− a
=

∫ N

1

dx

xa
≤

N∑
i=1

1

ia
≤ 1 +

∫ N

1

dx

xa
=

N1−a − a

1− a
≤ N1−a

1− a
. (62)

In the first case, we have

Cλ ≤
N∑
i=1

p1−λ
i ≤

N∑
i=1

C1−λ

iα(1−λ)
≤ C1−λ α(1− λ)

α(1− λ)− 1
, (63)

which is bounded and independent of N . For the entropy, we notice that on [0, 1] the function −p ln p is non-negative,
increasing on [0, 1/e] and decreasing on [1/e, 1].

H(As) =

N∑
i=1

−pi ln(pi) ≤
∑

pi>1/e

1

e
+
∑

pi<1/e

C

iα
ln

iα

C
(64)

≤ 1 +
∑
i≥1

Cα ln i

iα
≤ 1 + Cα

(
ln(2)

2α
+

ln(3)

3α
+

31−α((α− 1) ln(3) + 1)

(α− 1)2

)
. (65)

In the second case, the normalization constant Z diverges with N ,

Z =

N∑
i=1

ci
iα
≤

N∑
i=1

C

iα
≤ C

(
1 +

∫ N

1

dx

xα

)
≤ C

(
N1−α

1− α

)
. (66)

And using ci ≥ c, we have a lower bound for Z

Z ≥ c

(∫ N

1

dx

xα

)
≥ c(N1−α − 1)

1− α
. (67)

Thus Z is of order N1−α, i.e. Z = Ω(N1−α).

We recall the formula of Cλ from (21)

lnCλ = ln

(
N∑
i=1

p1−λ
i

)
− λH(As). (68)

For the first term on the righthand side of (68), we have

ln

(
N∑
i=1

p1−λ
i

)
= ln

(
N∑
i=1

(ci
Ziα

)1−λ
)

= −(1− λ) ln(Z) + ln

(
N∑
i=1

c1−λ
i

i(1−λ)α

)
= −(1− λ) ln(N1−α) + ln(N1−(1−λ)α) + E0 = λ lnN + E0,

(69)

47

How Does Information Bottleneck Help Deep Learning?

where

|E0 − (ln(1− (1− λ)α)− (1− λ) ln(1− α))| ≤ (1− λ) ln(C/c) (70)

Next we compute the entropy H(As) and show it diverges as lnN .

H(As) = −
N∑
i=1

pi ln(pi) = −
N∑
i=1

pi ln
ci
iαZ

= α

N∑
i=1

pi ln(i) + ln(Z)−
N∑
i=1

pi ln(ci)

= α

N∑
i=1

pi ln(i) + (1− α) lnN + E1,

(71)

where

ln(c/C)− ln(1− α) ≤ E1 ≤ ln(C/c)− ln(1− α) (72)

To compute the first term on the righthand side of (71), we introduce

si =
c1
1α

+
c2
2α

+ · · ·+ ci
iα

, 1 ≤ i ≤ N, (73)

then sN = Z. Next we can do a summation by part

N∑
i=1

pi ln(i) =
1

Z

N∑
i=1

ci
iα

ln(i) =
1

Z

N∑
i=1

(si − si−1) ln(i)

=
1

Z

N−1∑
i=1

si(ln(i)− ln(i+ 1)) +
sN lnN

Z

=
1

Z

N−1∑
i=1

si(ln(i)− ln(i+ 1)) + lnN

(74)

The same as in (66), we have |si| ≤ Ci1−α/(1−α). Moreover ln(1 + 1/i) ≤ 1/i. Thus the first term on the righthand side
of (74) can be bounded as ∣∣∣∣∣ 1Z

N−1∑
i=1

si(ln(i)− ln(i+ 1))

∣∣∣∣∣ ≤ 1

Z

N∑
i=1

C

(
i1−α

1− α

)
1

i
≤ C

c(1− α)
(75)

By plugging (74) and (75) into (71), we conclude the following bound on the entropy

H(As) = ln(N) + E2. (76)

where

ln(c/C)− ln(1− α)− C

c(1− α)
≤ E2 ≤ ln(C/c)− ln(1− α) +

C

c(1− α)
(77)

The two estimates (69) and (76) together imply that Cλ = E0 − λE2, and

|Cλ − (ln(1− (1− λ)α)− (1− 2λ) ln(1− α))| ≤ (2− λ) ln(C/c) +
C

c(1− α)
(78)

48

