
FlashFoley: Fast Interactive Sketch2Audio Generation

Zachary Novack1,2∗, Koichi Saito3, Zhi Zhong2, Takashi Shibuya3, Shuyang Cui2,
Julian McAuley1, Taylor Berg-Kirkpatrick1, Christian Simon2,

Shusuke Takahashi2, Yuki Mitsufuji2,3
1UC – San Diego 2Sony Group Corporation, Japan 3Sony AI, USA

TTA Model
(Flow)

||ෝ𝒗 − 𝒗||2
2

Sketch Controls

caption

Sketch Control Adaptation

filter & project to DiT hidden dim

Feature
Extraction

Sketch Control Module

Sketch-Conditioned ARC Post-Training

TTA Model
(Few-Step)

Sketch Controls

caption

generated audioℒ𝑅

Sketch Controls

caption

batch-permuted

text

caption

ℒ𝐶

𝐷𝝍 𝐷𝝍

Zero-Shot Chunked Streaming Generation

TTA Model
(Few-Step)

previous chunk

set overlap to previous chunk

𝑇 steps

𝑚 ≤ 𝑇 steps

previous chunk

generated chunk

VAE
Decoder

Eq. X-Fade

Streaming
Generation!

Pitch (Pesto)

Volume (RMS)

Brightness (Centroid)

add noise

Figure 1: FlashFoley finetuning, including sketch control adaptation and ARC post-training.

Abstract

Despite the growth of Text-to-Audio (TTA) models for creative applications like
sound design and live jamming, existing systems, particularly in the open-source,
lack the ability for flexible fine-grained control (such as vocal “sketches") while
maintaining fast inference speeds for real-time interaction. We address this unneces-
sary tradeoff between speed and control through FlashFoley, the first open-source,
accelerated sketch2audio model. With FlashFoley, we extend the Sketch2Sound
framework, wherein we finetune TTA models with pitch, volume, and brightness
controls through simple linear adaptation, to adversarial post-training, allowing
the model to generate 11s samples from audio sketches in 75ms. We combine this
with a novel zero-shot chunked streaming algorithm, enabling real-time interactive
generation while maintaining high-quality fast offline sampling. Audio examples
can be found at https://anonaudiogen.github.io/web.

1 Introduction

Generative Text-to-Audio (TTA) models [1, 2, 3, 4, 5, 6] have achieved a modern renaissance, with
systems capable of generating rich soundscapes for a range of creative tasks, including multimedia
sound design, Foley generation [7], and real-time jamming [8, 9]. Such focus for creative applications
has shifted research directions in two orthogonal research thrusts: (1) designing systems that allow
for controllable generation beyond broad text for fine-grained controls [10, 11, 12], and in particular,
audio “sketches" [7], and (2) building algorithmic/hardware accelerations to overcome the slow and
non-interactive inference in TTA flow-based models [13, 14, 4, 9, 15] (We refer to Appendix A
for a review of related work.). However, such developments in fine-grained controllability and
fast sampling (i.e. <0.5s) have proceeded in isolation: broadly, controllable models are not fast
[7, 10, 11, 16], and fast models are not controllable [13, 4, 14, 15].

∗Work done during the internship at Sony.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI for Music.

https://anonaudiogen.github.io/web/

We present FlashFoley: the first open-source2, accelerated real-time interactive sketch2audio model.
FlashFoley extends the control setup from Sketch2Sound [7], where we extract time-varying, median-
filtered pitch [17], volume, and brightness controls and condition a pre-trained TTA model using
simple linear adaptation. This allows the model to both turn vocal “sketches" into realistic audio and
perform audio-to-audio style transfer. We then develop the Adversarial Relativistic Contrastive (ARC)
Post-Training [4] acceleration method for time-varying controllable generation, allowing generation
of 11.88s of stereo 44.1kHz audio in 75ms, 10x faster than existing controllable TTA systems. While
these contributions alone enable fast, controllable generation, they cannot by themselves enable
real-time interactivity, as non-autoregressive TTA models’ bidirectional context prevents streaming
use cases like live jamming [9]. To circumvent this, we propose a zero-shot block-autoregressive
algorithm that bestows FlashFoley with semi-streaming generation without training causally, allowing
the initial generated audio to be streamed while the user is actively inputting sketch controls.

2 Method

2.1 Background: Text-to-Audio Rectified Flows

FlashFoley is based on the rectified flow (RF) paradigm [18, 19], which is equivalent to diffusion [20]
but enjoys better empirical performance [19]. Given a text prompt ctxt and stereo audio x0 ∈ R2×Sfs ,
(i.e. S seconds at fs sampling rate), we first embed the audio in some pretrained VAE latent space
z0 = E(x0) ∈ RD×N . RFs [21] learn the velocity of the flow from a standard Gaussian p1 to the
data distribution p0 given ctxt. By defining the forward corruption process (from data to noise) as
zt = (1 − t)z0 + tϵ where t ∈ [0, 1], t ∼ pgen(t), and ϵ ∼ N (0, I)3. We can derive the ordinary
differential equation (ODE) for the reverse process (i.e. noise to data) as dzt = −vdt, where
v = ϵ− z0 is the velocity of the ODE. Thus, our goal is to learn vθ(zt, t, ctxt) ≈ v, which can be
achieved with a simulation-free objective that simply adds noise to samples and predicts the velocity:

argmin
θ

Ez0,ctxt∼X ,ϵ∼N (0,I),t∼pgen(t)[∥v − vθ(zt, t, ctxt)∥22]. (1)

Samples can then be generated by integrating the ODE with vθ using any numerical ODE solver. As
no existing TTA models to our knowledge are both fast and controllable through fine-grained signals,
it is initially unclear how to achieve both simultaneously. We start from insight from [22] and [13]: it
is better to add controls and then distill, rather than vice versa or trying both simultaneously.

2.2 Finetuning with Local Sketch Controls through Pre-Transformer Projection

Our goal is to finetune our TTA model with a set of l additional features F = {fi}li=1 where
fi ∈ RKi×N , i.e. time-varying local controls. As existing methods for finetuning generally require
long tuning runs and introduce 10s-100s of millions of new parameters [23, 10], we instead use the
method from Sketch2Sound [7], which we refer to as Pre-Transformer Projection (PTP).

The top of Figure 1 describes our PTP-based sketch control adaptation. Given a Diffusion Transformer
(DiT) [24]-based model with hidden dimension H , the initial hidden state of the model given some
noisy latent input zt is hinit := ProjInθ(zt) ∈ RH×N , where ProjInθ is the input projector of the
model, generally comprised of a chain of linear layers with residual connections. Notably, hinit occurs
before any DiT blocks. PTP works by learning only a single linear operator Wi ∈ RKi×H per control,
and projecting it directly to hinit, making the new input to the DiT blocks h′

init = hinit +
∑

i W
⊤
i fi.

Training involves finetuning the entire model with Eq. 1, though in order to ensure that the model
does not overfit to the spectral features present in the controls, the controls are convolved with
randomly-sized median filters. This filtering enables flexible control at inference-time between
rendering the controls exactly (small filters) or using inputs as broad “sketches" (large filters). We
additionally discovered further practical benefits to PTP, as noted in Appendix B.

In this work, we focus on three main features [7]: i). Volume: the root-mean-squared (RMS) in
decibels (dB) of A-weighted magnitude spectra, ii). Pitch: the 384-bin pitch probabilities predicted
by PESTO [17], dropping out probabilities below 0.1, iii). Brightness: the frequency center of mass
for each time frame (i.e. the spectral centroid), rescaled to a logarithmic range 0-127 and then to 0-1,
where higher values denote more higher harmonics, and thus a perceptually “brighter" sound.

2Note that leading sketch2audio models like Sketch2Sound [7] are fully closed source.
3We denote this process as sampling from the forward distribution q(zt | z0)

2

TTA Model
(Flow)

||ෝ𝒗 − 𝒗||2
2

Sketch Controls

caption

Sketch Control Adaptation

filter & project to DiT hidden dim

Feature
Extraction

Sketch Control Module

Sketch-Conditioned ARC Post-Training

TTA Model
(Few-Step)

Sketch Controls

caption

generated audioℒ𝑅

Sketch Controls

caption

batch-permuted

text

caption

ℒ𝐶

𝐷𝝍 𝐷𝝍

Zero-Shot Chunked Streaming Generation

TTA Model
(Few-Step)

previous chunk

set overlap to previous chunk

𝑇 steps

𝑚 ≤ 𝑇 steps

previous chunk

generated chunk

VAE
Decoder

Eq. X-Fade

Streaming
Generation!

Pitch (Pesto)

Volume (RMS)

Brightness (Centroid)

add noise

Figure 2: FlashFoley Zero-Shot chunked streaming inference.

2.3 Locally-Conditioned ARC Post Training

Given our sketch-controlled model, we now aim to turn this model into a generator Gϕ that can
generate with considerably fewer (e.g. 1-8) steps. We begin with following the ARC Post-Training [4]
paradigm, show in Figure 1 (bottom). ARC replaces the velocity loss with an adversarial one (using
discriminator Dψ initialized from the TTA model itself) to drastically improve output realism at any
noise level, thus needing fewer steps during sampling and accelerating inference. ARC is mainly
driven by a relativistic adversarial [25] objective: Given paired real z0 and generated ẑ0 samples
and C = {ctxt,F}, ẑ0 = Gϕ(zt, t, C) is generated from a noisy version of the real sample, and the
Gϕ, Dψ are trained to minimize/maximize the relative difference between discriminator scores:

min
ϕ

max
ψ

LR(ϕ,ψ) = Ez0,C,s,ẑ0

[
f
(
Dψ(q(ẑs | ẑ0), s, C)−Dψ(q(zs | z0), s, C)

)]
, (2)

where f(x) = − log(1 + e−x). This relativistic objective on paired samples forms a decision
boundary around each real sample, preventing mode collapse and improving quality relative to
standard adversarial objectives. As post-training objectives lack direct supervision from teacher
models (which is core to distillation methods) and thus suffer on control following, ARC also involves
a contrastive objective, where Dψ is jointly trained to maximize the same relativistic objective
from Eq. 2, but between real samples with correct conditions and real samples with conditions
batch-shuffled by some random permutation operator P , forcing Dψ to consider the semantic content
of the input controls and not focus too much on high-frequency features (as common in GANs [26]):

max
ψ

LC(ψ) = Ez0,C,s

[
f
(
Dψ(q(zs | z0), s,P[C])−Dψ(q(zs | z0), s, C)

)]
. (3)

Gϕ then samples by iteratively denoising the output and re-noising to some lower noise level.

In adapting ARC to time-varying local controls L, though the relativistic loss can remain largely
unchanged (as the local conditions only strengthen the pairing between real and generated samples),
the contrastive loss raises an important question: which features, between the text and the varied
local conditions, should we train Dψ to pay attention to? While [4] would suggest we should
contrast on all controls, the different semantic granularity between text vs. time-varying controls
changes the difficulty of the contrastive objective for Dψ . We ablate this design choice in Section 3
and show that LC should only be calculated with randomized text inputs, as randomizing the local
conditions functionally breaks the discriminators capacity to focus on anything but the local controls.

2.4 Zero-Shot Block Autoregressive Generation

While control finetuning and ARC post-training enable a fast and controllable TTA offline system,
Gϕ is not inherently streamable. This poses an issue particularly for interactive applications like
real-time timbre transfer or sound design, as the entire sequence of sketch controls must be captured
before starting generation. While streamable architectures (like codec LMs [27, 9]) do exist, turning
flow models into causal variants remains unexplored for audio systems.

Instead, we designed an approximate block-causal streaming algorithm that works without any
finetuning, shown in Figure 2. This works by performing generation in chunks of B frames with
a stride of k, where the first B − k frames of the current chunk are set to the last B − k frames of
the previous chunk during sampling, combined with an equal-power crossfade in the audio domain.
We provide a detailed algorithm in Appendix D. With respect to capturing the input controls, audio
output can be streamed with a latency of BS/N + δ seconds (where δ ≈ 75ms accounts for latency
from inference and other overhead, which is negligible compared to B), while offline sampling
requires a full S + δ seconds. Though this approach is essentially the “naïve" outpainting method

3

Table 1: Experimental Results on VimSketch Dataset

Filter Control L1 (↓) FAD CLAP GL SL
Method Size Steps RMS Centroid Pitch Chroma (↓) (↑) (↓) (↓)

SAOS N/A 50 15.81 15.92 15.19 3.68 0.23 0.32 0.63 12.52
+ controls 5 50 4.89 4.14 10.05 2.87 0.33 0.26 0.63 12.52
FlashFoley 5 8 4.08 3.21 8.02 2.55 0.35 0.23 0.08 11.96
+ BAR 5 8 4.22 3.27 8.58 2.70 0.44 0.21 0.08 6.02
+ sketch LC 5 8 3.80 2.88 7.52 2.50 0.53 0.13 0.08 11.96

[11, 16] commonly maligned for its reported harsh artifacts at chunk boundaries, there are a few
key differences: (1) the constant stream of local control features gives the model fine-grained local
supervision, and (2) the audio-domain crossfade explicitly accounts for artifacts. Our results show that
this surprisingly simple solution enables streaming generation without significant audio degradation.

3 Experiments

3.1 Setup

FlashFoley is built from the recent Stable Audio Open Small (Base) [4], or SAOS, as our base model.
We detail further training information in Appendix C. For evaluation, we use the VimSketch dataset
[28], which contains ≈10k vocal imitations of 500 audio classes. We generate 10k samples from
each imitation, and evaluate these generations along: (1) sketch control accuracy by measuring L1
distance for all controls, with RMS in dB, and centroid and pitch in semitones (as well as measuring
chroma, or pitch class, in semitones) [7] (2) audio quality, using Frechet Distance (FAD) with the
CLAP audio backbone [29], and (3) text adherence using CLAP cosine similarity. We also report the
Generation Latency (GL, the time it takes to generate output) and the Streaming Latency (SL, the
time it takes for the first audio sample to be played given streaming input sketch controls).

3.2 Results
“Train horn followed by a man talking” “birds chirping in the forest”

A
ll
 C

o
n

tr
o

ls
Te

x
t

O
n

ly

Figure 3: Differences between using LC for all
inputs (top) vs. only text inputs (bottom). Dψ
contrasting sketch controls severely impacts text
following and quality.

We display our results in Table 1, comparing be-
tween our base model (SAOS), the model with
finetuned sketch controls (+ controls), sketch
controls + ARC Post-Training (FlashFoley), run-
ning FlashFoley with our block-AR sampling (+
BAR), and performing ARC with LC shuffling
all conditions, not only text (+ sketch LC). De-
spite the degradation in quality / text adherence
from adding controls (as expected from [7]), the
near 10x acceleration from ARC Post-Training
in FlashFoley did not lead to a large drop in these
metrics, and even improved control accuracy in
all controls. Using the zero-shot Block-AR sam-
pling halves the streaming latency, and while
this led to degraded audio quality, it is not significantly worse, and notably is still better than using
the sketch-based LC , which severely degraded FAD and CLAP score. In particular, we found that
contrasting on all controls caused the discriminator to overfit to the sketch controls, making the
generator largely ignore the text inputs and negatively affecting its ability to model higher frequency
timbral information, as seen in Figure 3.

4 Conclusion and Future Work

We have presented FlashFoley, the first open-source, accelerated sketch2audio model, capable of both
offline generation in 75ms and streaming generation with a latency of 6s as sketch controls stream in.
We hope FlashFoley lays the groundwork for future work both in achieving even faster and higher
quality streaming generation, but also learning how such sketch2audio systems can be used in real
creative audio generation workflows.

4

References
[1] Zach Evans, Julian D Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Stable

audio open. arXiv:2407.14358, 2024.

[2] Zach Evans, CJ Carr, Josiah Taylor, Scott H. Hawley, and Jordi Pons. Fast timing-conditioned
latent audio diffusion. In ICML, 2024.

[3] Zach Evans, Julian Parker, CJ Carr, Zack Zukowski, Josiah Taylor, and Jordi Pons. Long-form
music generation with latent diffusion. arXiv:2404.10301, 2024.

[4] Zachary Novack, Zach Evans, Zack Zukowski, Josiah Taylor, CJ Carr, Julian Parker, Adnan
Al-Sinan, Gian Marco Iodice, Julian McAuley, Taylor Berg-Kirkpatrick, and Jordi Pons. Fast
text-to-audio generation with adversarial post-training. In WASPAA, 2025.

[5] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In ICML,
2023.

[6] Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu
Wang, Yuxuan Wang, and Mark D. Plumbley. Audioldm 2: Learning holistic audio generation
with self-supervised pretraining. TASLP, 2024.

[7] Hugo Flores García, Oriol Nieto, Justin Salamon, Bryan Pardo, and Prem Seetharaman.
Sketch2sound: Controllable audio generation via time-varying signals and sonic imitations. In
ICASSP. IEEE, 2025.

[8] Hugo Flores Garcia, Prem Seetharaman, Rithesh Kumar, and Bryan Pardo. VampNet: Music
generation via masked acoustic token modeling. In ISMIR, 2023.

[9] Lyria Team, Antoine Caillon, Brian McWilliams, Cassie Tarakajian, Ian Simon, Ilaria Manco,
Jesse Engel, Noah Constant, Pen Li, Timo I Denk, et al. Live music models. arXiv preprint
arXiv:2508.04651, 2025.

[10] Shih-Lun Wu, Chris Donahue, Shinji Watanabe, and Nicholas J. Bryan. Music ControlNet:
Multiple time-varying controls for music generation. TASLP, 2024.

[11] Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J. Bryan. DITTO:
Diffusion inference-time T-optimization for music generation. In ICML, 2024.

[12] Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J. Bryan. DITTO-2:
Distilled diffusion inference-time t-optimization for music generation. In ISMIR, 2024.

[13] Zachary Novack, Ge Zhu, Jonah Casebeer, Julian McAuley, Taylor Berg-Kirkpatrick, and
Nicholas J. Bryan. Presto! distilling steps and layers for accelerating music generation. In
ICLR, 2025.

[14] Yatong Bai, Trung Dang, Dung Tran, Kazuhito Koishida, and Somayeh Sojoudi. Accelerating
diffusion-based text-to-audio generation with consistency distillation. In Interspeech, 2024.

[15] Koichi Saito, Dongjun Kim, Takashi Shibuya, Chieh-Hsin Lai, Zhi Zhong, Yuhta Takida,
and Yuki Mitsufuji. SoundCTM: Unifying score-based and consistency models for full-band
text-to-sound generation. In ICLR, 2025.

[16] Fang-Duo Tsai, Shih-Lun Wu, Weijaw Lee, Sheng-Ping Yang, Bo-Rui Chen, Hao-Chung Cheng,
and Yi-Hsuan Yang. Musecontrollite: Multifunctional music generation with lightweight
conditioners. arXiv preprint arXiv:2506.18729, 2025.

[17] Alain Riou, Stefan Lattner, Gaëtan Hadjeres, and Geoffroy Peeters. Pesto: Pitch estimation
with self-supervised transposition-equivariant objective. In ISMIR, 2023.

[18] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. arXiv:2209.03003, 2022.

5

[19] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transform-
ers for high-resolution image synthesis. In ICML, 2024.

[20] Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple
data augmentation. NeurIPS, 36, 2023.

[21] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In ICLR, 2023.

[22] Kangfu Mei, Mauricio Delbracio, Hossein Talebi, Zhengzhong Tu, Vishal M Patel, and Peyman
Milanfar. Codi: Conditional diffusion distillation for higher-fidelity and faster image generation.
In CVPR, pages 9048–9058, 2024.

[23] Tom Baker and Javier Nistal. Lilac: A lightweight latent controlnet for musical audio generation.
arXiv preprint arXiv:2506.11476, 2025.

[24] William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF
International Conference on Computer Visio (ICCV), 2023.

[25] Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The gan is dead; long
live the gan! a modern baseline gan. In ICML Workshop on Structured Probabilistic Inference
and Generative Modeling, 2024.

[26] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, NeurIPS, volume 27. Curran
Associates, Inc., 2014.

[27] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
compression. arXiv:2210.13438, 2022.

[28] Bongjun Kim, Mark Cartwright, Fatemeh Pishdadian, and Bryan Pardo. Vimsketch dataset,
March 2019.

[29] Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo
Dubnov. Large-scale contrastive language-audio pretraining with feature fusion and keyword-
to-caption augmentation. In ICASSP, 2023.

[30] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
ICLR, 2020.

[31] Ho Kei Cheng, Masato Ishii, Akio Hayakawa, Takashi Shibuya, Alexander Schwing, and Yuki
Mitsufuji. Taming multimodal joint training for high-quality video-to-audio synthesis. arXiv,
2024.

[32] Ziyang Chen, Prem Seetharaman, Bryan Russell, Oriol Nieto, David Bourgin, Andrew Owens,
and Justin Salamon. Video-guided foley sound generation with multimodal controls. In CVPR,
2025.

[33] Yiming Zhang, Yicheng Gu, Yanhong Zeng, Zhening Xing, Yuancheng Wang, Zhizheng Wu,
and Kai Chen. Foleycrafter: Bring silent videos to life with lifelike and synchronized sounds.
arXiv preprint arXiv:2407.01494, 2024.

[34] Junqi Zhao, Jinzheng Zhao, Haohe Liu, Yun Chen, Lu Han, Xubo Liu, Mark Plumbley, and
Wenwu Wang. Audioturbo: Fast text-to-audio generation with rectified diffusion. arXiv preprint
arXiv:2505.22106, 2025.

[35] Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D.
Plumbley, Yuexian Zou, and Wenwu Wang. WavCaps: A ChatGPT-assisted weakly-labelled
audio captioning dataset for audio-language multimodal research. TASLP, pages 1–15, 2024.

[36] Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai,
Enze Xie, and Song Han. Sana-sprint: One-step diffusion with continuous-time consistency
distillation. arXiv:2503.09641, 2025.

6

A Related Work

Growth of TTA systems has been driven largely by the advent of diffusion models [30] for audio
generation [5, 6, 2, 3, 1, 4]. As broad text controls offer limited controllability for generating creative
audio scenes, there has been growing interest in imbuing TTA systems with more flexible, fine-grained
controls [7, 10], such as text-queried video-to-audio generation [31, 32, 33]. Our work is inspired by
Sketch2Sound [7], which instead extracts sketch-like signals (volume, pitch, and spectral brightness)
from audio signals as conditioning, allowing control of TTA systems with flexible, time-varying
signals with minimal finetuning cost. However, Sketch2Sound is both fully closed-source and
operates on standard slow diffusion models, restricting its practical use case for real-time creativity.

There has also been considerable research into the acceleration of text-only TTA systems, through dis-
tillation approaches such as consistency-based methods [14, 15, 12], rectification [34], or distribution
matching [13]. In this work, we instead focus on the recent ARC Post-Training [4] method, which is
the current SOTA for TTA acceleration and notably avoids the need for a strong teacher model, and
extend it to time-varying controllable TTA generation with real-time interaction.

B Analysis of PTP Dynamics

PTP is particularly beneficial for easy finetuning beyond the clear parameter efficiency for a number
of reasons: (1) PTP minimizes changes in the computational graph of the model, which makes PTP
exceedingly easy to implement in complex DiT implementations without breaking the pretrained
model, (2) it learns independent parameters for each control only, with no parameter sharing across
controls or new parameters for the noisy latent input. We found this latter point to be critical when
designing FlashFoley: Other conditioning methods, like channel-wise concatenation or projection
to the VAE space D (rather than the hidden dimension) resulted in training instability and degraded
audio quality. To expand more upon this latter point, consider three possible methods for injecting
local conditions into a pre-trained RF model:

1. PTP, where we project the conditions into the initial DiT hidden state.

2. Input Addition, where we project the conditions instead onto the noisy VAE latent before
entering the model.

3. Channel concatenation, where we append the local conditions to the input VAE latent,
before entering the model.

While the differences between these methods may appear unclear, we will show below that they can
lead to very different practical implementations of local conditioning depending on the structure of
ProjInθ that may effect training dynamics.

First, consider the case where ProjInθ(z) := W⊤
z z, i.e. we transfer from the VAE space D to the

hidden state of the model H with a single linear layer. In this case, PTP and channel concatenation
are equivalent: Denote our input (noisy) VAE latent z ∈ RD×N , and W.L.O.G. single local feature
f ∈ RK×N . For channel concatenation, we must modify our pretrained ProjInθ to accept double the
channel count, which means initializing the new weight matrix as:

W ′
z =

[
Wz

Wf

]
∈ R(K+D)×H ,

where Wf ∈ RK×H . We denote this modified operator as ProjInθ′ . If we denote the concatenated
input as z′ = [z f]⊤ ∈ R(K+D)×N , then:

ProjInθ′(z′) = W ′⊤
z z′

=
[
W⊤

z W⊤
f

] [z
f

]
= W⊤

z z+W⊤
f f

= ProjInθ(z) +W⊤
f f ,

7

which is equivalent to PTP. Contrast this with input addition, where instead Wf ∈ RK×D, Wz is left
unmodified, and z′ = z+W⊤

f f . Then:

ProjInθ′(z′) = W⊤
z z′

= W⊤
z (z+W⊤

f f)

= ProjInθ(z) +W⊤
z W⊤

f f

It is clear that input addition is not equivalent to PTP (and thus channel concatenation), but importantly,
it is different in that Wz is now shared between z and f for projection into the DiT hidden space. This
may explain the empirical instability observed for input addition: while PTP/channel concatenation
let each matrix independently learn to project the latent and control distributions separately, input
addition prevents Wz from solely focusing on the latent distribution.

However, now consider the case where ProjInθ is more complicated, which is the case for the
architecture of FlashFoley (building off of SAO-Small). Here, ProjInθ(z) := W⊤

z (W⊤
zzz + z),

i.e. we transfer from the VAE space to the hidden state by first using a square matrix transformation
Wzz ∈ RD×D on z with a residual connection, and then up-projecting to the hidden state. While
PTP still only learns a single linear layer Wf , channel concatenation must now modify both Wz and
Wzz to accomodate the higher channel count, giving us:

W ′
zz =

[
Wzz Wzf

Wfz Wff

]
∈ R(K+D)×(K+D) W ′

z =

[
Wz

Wf

]
∈ R(K+D)×H

If we consider the concatenated input as z′ = [z f]⊤ ∈ R(K+D)×N once more, then

ProjInθ′(z′) = W ′⊤
z (W ′⊤

zz z
′ + z′)

=
[
W⊤

z W⊤
f

]([W⊤
zz W⊤

fz

W⊤
zf W⊤

ff

] [
z
f

]
+

[
z
f

])
=

[
W⊤

z W⊤
f

] [W⊤
zzz+W⊤

fz f + z
W⊤

zfz+W⊤
ff f + f

]
= W⊤

z W⊤
zzz+W⊤

z W⊤
fz f +W⊤

z z+W⊤
f W⊤

zfz+W⊤
f W⊤

ff f +W⊤
f f

= ProjInθ(z) +W⊤
z W⊤

fz f +W⊤
f W⊤

zfz+W⊤
f W⊤

ff f +W⊤
f f ,

which is drastically different than PTP, as PTP maintains its form independent of the architecture
of ProjInθ. In particular, in this scenario channel concatenation also introduces weight-sharing on
the final projection matrices like in input addition, and while the representative capacity for channel
concatenation is clearly larger than in PTP, this behavior may explain the issues with finetuning from
a pre-trained checkpoint. Broadly, this means that PTP can be seen as channel concatenation with
block-diagonal projection matrices (if one represents all of the control matrices as their single
product matrix), where all feature projection is performed independently before pooling to the hidden
state.

C Experimental Details

We use the recent Stable Audio Open Small (Base) [4], or SAOS, as our base model, which is a 340M
parameter DiT with both text and total seconds conditioning. SAOS operates within a stereo 44.1kHz
VAE with 2048x temporal compression (i.e. 21.5 Hz) on 256 latent frames, or about 11.88s of audio.
For both finetuning stages, we use the WavCaps dataset [35], which is comprised of 400K samples of
general audio at varying sampling rates (mostly 32 kHz and 48 kHz), which we resample to 44.1kHz
and truncate to 11.88 seconds. Following Sketch2Sound[7], we perform control finetuning for 40K
steps, and perform ARC Post-Training for 70K steps, both with a batch size of 256 across 4 H100s.

For inference with the base SAOS model and SAOS+sketch controls, we use the Flow-DPM solver
[36] with 50 steps and a CFG weight of 7, while all FlashFoley experiments use 8 steps with no
CFG. For SAOS+sketch controls, we follow [7] in their CFG design, where the “conditional" branch
receives both sketch and text controls, and the “unconditional" branch receives only the sketch
controls. For all experiments with sketch controls, we use a median filter width of 5, which roughly
matches the 0.25s filter width from [7]. For FlashFoley with the Block-AR sampling, we test with
B = 128 (i.e. ≈6s of latent frames), k = 64 (3s of latents), and a sampling depth of m = 5, which
controls how many of the sampling steps we apply the overlap operation.

8

D Block Autoregressive Sampling Algorithm

Algorithm 1 FlashFoley Zero-Shot Block Autoregressive Sampling
input : Model Gϕ, prompt ctxt, stream of sketch controls L, block size B, stride k, sampling depth

m, number of sampling steps T , timestep schedule {ti}Ti=0, max generation length Nmax, VAE
Decoder D, output audio buffer a, XFADE function.

1: zbuff ,xbuff = ∅, ∅ // Initiliaze chunk buffer and # of blocks
2: NB = ⌈(Nmax −B)/k + 1⌉
3: for b = 0 to NB do
4: z(b) ∼ N (0, I) // Initialize noise & current block sketch controls
5: Lb = L[bk : bk +B]
6: for i = 0 to T do
7: ẑ

(b)
0 = Gϕ(z

(b), ti, ctxt,Lb) // Predict clean latent
8: if zbuff ̸= ∅ and i < m then
9: ẑ

(b)
0 [: B − k] = zbuff [−(B − k) :] // Set overlap to previous chunk

10: end if
11: z(b) = (1− ti+1)ẑ

(b)
0 + ti+1ϵ, ϵ ∼ N (0, I) // Re-noise to lower level

12: end for
13: x(b) = D(ẑ

(b)
0) // Decode to audio

14: if xbuff ̸= ∅ then
15: a[(b− 1)k : bk +B] = XFADE(xbuff ,x

(b)) // Crossfade and write to buffer
16: end if
17: zbuff ,xbuff = ẑ

(b)
0 ,x(b)

18: end for
output : a

9

	Introduction
	Method
	Background: Text-to-Audio Rectified Flows
	Finetuning with Local Sketch Controls through Pre-Transformer Projection
	Locally-Conditioned ARC Post Training
	Zero-Shot Block Autoregressive Generation

	Experiments
	Setup
	Results

	Conclusion and Future Work
	Related Work
	Analysis of PTP Dynamics
	Experimental Details
	Block Autoregressive Sampling Algorithm

