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ABSTRACT

Linear attention offers a linear-time alternative to self-attention but often struggles
to capture long-range patterns. We revisit linear attention through a prediction-
correction lens and show that prevalent variants can be written as a combination of
a historical prediction and a single-token correction, which creates an expressivity
bottleneck. To address this bottleneck, we introduce Residual Linear Attention
(RLA), a framework that equips linear attention with an explicit residual-fitting
mechanism. RLA maintains an auxiliary recurrent state that learns to accumulate
residual errors over time and correct the base prediction. We further instantiate
a delta-rule version, Residual Delta Net (RDN), incorporating adaptive gating
and residual clipping for enhanced correction control and stability. Our imple-
mentation leverages highly optimized linear attention kernels and preserves linear
time and memory. Across language modeling and recall-intensive evaluations,
RLA and RDN consistently outperform their respective baselines and other mod-
ern linear-attention methods, narrowing the gap to standard Transformers while
retaining linear scaling.

1 INTRODUCTION

The Transformer (Vaswani et al., 2017) architecture has become the standard for large language
models. However, the quadratic time complexity of its self-attention mechanism remains a crit-
ical bottleneck, limiting its application to long sequences (Li et al., 2024). Linear attention has
recently emerged as an efficient alternative to standard self-attention, directly addressing its pro-
hibitive quadratic complexity. By reformulating the attention computation into a recurrent process,
these models achieve linear-time training and inference, making them well-suited for processing
long sequences. Architectures such as RetNet (Sun et al., 2023) and Mamba (Gu & Dao, 2023; Dao
& Gu, 2024) have demonstrated competitive performances. Methods like GLA (Yang et al., 2023)
and DeltaNet (Yang et al., 2024b) offer further improvements by incorporating data-dependent gat-
ing and state update rules to manage the flow of information within a single state matrix.

Modern linear attention methods can be unified as learning a direct mapping from keys to val-
ues (Sun et al., 2024), a process analogous to test-time training. For example, the delta update
rule (Schlag et al., 2021) can be derived from a single step of online gradient descent on a quadratic
loss objective. This perspective opens several avenues for improvement. These include exploring
different online learning loss functions to derive new update rules (Schlag et al., 2021; Yang et al.,
2024b), employing more sophisticated mapping functions, or modifying the online gradient update
mechanism (von Oswald et al., 2025; Siems et al., 2025). For instance, recent works like TTT-
MLP (Sun et al., 2024) and Titans (Behrouz et al., 2024) utilize a Multi-Layer Perceptron (MLP) as
a deep memory module to achieve a more powerful mapping. However, this approach sacrifices the
model’s linear recurrence, thereby complicating parallel training.

Building on this perspective, we offer a new interpretation of the attention output. We show that
the output of prevalent linear attention models can be decomposed into a base component generated
from historical states and a correction term derived solely from the current token (see Section 2.3).
Relying on a single token to perform this systematic correction imposes a bottleneck and is detri-
mental to the model’s expressive power. To address these issues, we introduce Residual Linear
Attention, a framework that enhances linear attention models with an explicit residual fitting mecha-
nism. Rather than depending on a single token for correction, our method employs an auxiliary state
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matrix to explicitly model and correct systematic prediction errors of the base linear attention. The
final output is a combination of the base prediction and this learned error correction. Our approach
can be generalized to a unified framework applicable to various linear attention methods, offering a
powerful and efficient strategy for building more capable sequence models.

Building upon existing linear attention methods, we propose two variants enhanced with residual fit-
ting: Residual Linear Attention (RLA) and Residual Delta Net (RDN). We evaluate them on a range
of benchmarks, including language modeling and recall-intensive tasks. Our results demonstrate that
these models outperform their respective baselines and other modern linear attention methods, while
our ablation analysis confirms the importance of each key design choice within our framework.

2 PRELIMINARIES

2.1 LINEAR ATTENTION AS A RECURRENT MODEL

Softmax attention mechanisms exhibit quadratic computational complexity with respect to se-
quence length, constituting a significant bottleneck when processing long sequences. Linear at-
tention (Katharopoulos et al., 2020) architectures address this by removing the softmax function,
which allows for a reordering of the computation.

For the t-th token in a sequence, let the query, key, and value vectors be qt ∈ Rdq×1, kt ∈ Rdk×1,
and vt ∈ Rdv×1, where dq , dk, and dv are their respective feature dimensions, with dq = dk. After
applying a kernel function ϕ(·) to the queries and keys (omitted for simplicity in the notation), the
causal linear attention output ot can be expressed as:

ot =

t∑
i=1

vi

(
k⊤
i qt

)
=

(
t∑

i=1

vik
⊤
i

)
qt .

By defining a state matrix St :=
∑t

i=1 vik
⊤
i ∈ Rdv×dk , we arrive at the following recurrent

formulation:
St = St−1 + vtk

⊤
t , ot = Stqt .

This recurrent form maintains constant time and memory complexity per step during inference and
facilitates efficient training through chunk-wise parallel algorithms (Yang et al., 2023). Furthermore,
the use of gating mechanisms has led to the development of more variants such as RetNet (Sun et al.,
2023), Lightning Attention (Qin et al., 2024a), and Mamba-2 (Dao & Gu, 2024).

2.2 AN ONLINE LEARNING PERSPECTIVE

The design of the recurrent update rule can be motivated from an online learning perspective (Sun
et al., 2024; Liu et al., 2024). In this view, the token sequence is a stream of data points (kt,vt),
and the state matrix S acts as model parameters. These parameters are updated online to learn the
mapping k 7→ v, with S functioning as a memory from which information is retrieved using the
query q via Sq.

The state update can be interpreted as one step of gradient descent on a loss function L(k,v;S).
For instance, applying a single descent step with the loss L(kt,vt;S) := −⟨Skt,vt⟩ recovers the
standard linear attention update:

St = St−1 −∇SL(kt,vt;St−1) = St−1 + vtk
⊤
t .

An alternative update rule can be derived by minimizing a squared error loss, L(kt,vt;S) :=
1
2∥Skt − vt∥2. Performing one step of gradient descent on St−1 with a data-dependent learning
rate βt yields the delta rule:

St = St−1 − βt∇SL(kt,vt;St−1) = St−1(I − βtktk
⊤
t ) + βtvtk

⊤
t .

This formulation enables models like Delta Net (Yang et al., 2024b; Schlag et al., 2021) to achieve
fine-grained memory control. Gated Delta Net (Yang et al., 2024a) further enhances this approach
by incorporating weight decay into the learning process.
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2.3 DECOMPOSITION INTO PREDICTION AND CORRECTION

We interpret linear attention through a prediction-correction lens. The standard linear attention
output, ot = Stqt, can be viewed as the sum of a base prediction from the past state and a correction
based on the current token:

ot = St−1qt︸ ︷︷ ︸
Base Prediction

+
(
vtk

⊤
t

)
qt︸ ︷︷ ︸

Error Correction

.

We can generalize this decomposition to the form ot = St−1qt + Rtqt, where we introduce Rt

as a generalized correction state. This framework provides a unified view of several methods, as
shown in Table 1, which differ not only in the design of their associated state update but also in this
correction term.

Table 1: Comparison of different linear attention methods with base prediction and error correction.

Method Output Combination State Update Rule Correction Term

LinearAttn ot = St−1qt +Rtqt St = St−1 + vtk
⊤
t Rt = vtk

⊤
t

Mamba2 ot = αtSt−1qt +Rtqt St = αtSt−1 + vtk
⊤
t Rt = vtk

⊤
t

Gated LinearAttn ot = diag(αt)St−1qt +Rtqt St = diag(αt)St−1 + vtk
⊤
t Rt = vtk

⊤
t

DeltaNet ot = St−1qt + βtRtqt St = St−1(I − βtktk
⊤
t ) + βtvtk

⊤
t Rt = (vt − St−1kt)k

⊤
t

Gated DeltaNet ot = αtSt−1qt + βtRtqt St = αtSt−1(I − βtktk
⊤
t ) + βtvtk

⊤
t Rt = (vt − αtSt−1kt)k

⊤
t

Building on the prediction-correction viewpoint, we introduce a residual fitting framework to en-
hance linear attention. Our framework learns a more expressive correction term by explicitly fitting
on contextual information beyond the current token.

3 METHOD

This section presents our proposed method, which enhances linear attention through a residual-
fitting process. We begin by describing the foundational residual learning framework that underpins
our method. Next, we introduce an adaptive correction factor to enhance modeling capabilities and
clipping methods to stabilize the residual fitting process. Finally, we present two final variants of
our approach.

3.1 EXPLICIT RESIDUAL FITTING

As established in Section 2.3, the output of linear attention can be decomposed into a base prediction
and a correction term. To learn a more expressive correction, we introduce an auxiliary state, Rt,
which modifies the output formulation to ot = St−1qt + Rtqt. Crucially, unlike the standard
correction shown in Table 1, which is derived solely from the current token, our auxiliary state Rt

is updated recurrently, analogous to the primary state St.

The learning target for state Rt is motivated by a second-order analysis of the loss function. Given
a prediction v̂, the Taylor expansion of a loss function L(v̂,v) around v̂ with a small perturbation δ
is:

L(v̂ + δ,v) ≈ L(v̂,v) + (∇v̂L)⊤ δ +
1

2
δ⊤
(
∇2

v̂L
)
δ .

Minimizing this approximation with respect to δ suggests an optimal update step, δ∗ =

−
(
∇2

v̂L
)−1

(∇v̂L). For the commonly used L2 loss, L = 1
2∥v − v̂∥2, this optimal update simpli-

fies directly to the residual error, r := δ∗ = v − v̂. This motivates modeling the residual with our
auxiliary state, which we define as rt := vt − St−1kt.

Leveraging the online learning perspective of linear attention from Section 2, we apply an analogous
update rule to the auxiliary state. This yields the following recurrent process:

3
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rt = vt − St−1kt (Residual Error Computation)

Rt = Rt−1 + rtk
⊤
t (Auxiliary State Update)

ot = St−1qt +Rtqt (Output Combination)

St = St−1 + vtk
⊤
t (Base State Update)

In this formulation, the auxiliary state rt accumulates past residual errors and their corresponding
keys. This allows it to model and correct for systematic prediction errors made by the base state
St−1, yielding a more expressive output. Furthermore, we generalize this residual fitting process
to formulate a unified framework for boosting linear attention, with a detailed derivation provided
in Appendix A.

It is worth noting two special cases of this formulation. If we set Rt = vtk
⊤
t , using information

only from the current token, our method reduces to standard linear attention (Katharopoulos et al.,
2020). If we instead use Rt = (vt − St−1kt)k

⊤
t , the correction mechanism becomes equivalent to

a one-step delta rule update (Schlag et al., 2021).

3.2 ADAPTIVE GATING AND CORRECTION FACTOR

To enhance control over the state dynamics, we incorporate learnable gating scalars, a practice
common in recent recurrent models (Yang et al., 2024a; Dao & Gu, 2024). We introduce a decay
factor αt ∈ [0, 1] to control the retention of past information, and an update rate βt ∈ [0, 1] to
modulate the influence of the current token. These factors can be applied to both state updates and
output combinations:

St = αtSt−1 + βtvtk
⊤
t

Rt = αtRt−1 + βtrtk
⊤
t

ot = αtSt−1qt + βtRtqt

However, using the same update rate βt for both states couples the learning of the base representation
and the error correction. To achieve more fine-grained control, we introduce a dedicated scalar
correction factor, γt ∈ [0, 1]. This factor decouples the update processes and allows the model to
dynamically scale the contribution of the residual correction term. The auxiliary state updates and
output computation are given by:

St = αtSt−1 + βtvtk
⊤
t

Rt = αtRt−1 + γtrtk
⊤
t

ot = αtSt−1qt + γtRtqt

This formulation uses the decay and correction factors to dynamically gate the retrieval from the
base and auxiliary states, respectively.

3.3 NORMALIZATION AND RESIDUAL CLIPPING

To ensure computational stability, we introduce two mechanisms. First, we apply L2 normalization
to the query and key vectors to improve numerical stability. Second, we address potential instability
in the auxiliary state rt by clipping the residual:

rt = Clip[−c,c](vt − St−1kt) .

This ensures that the error-correction state rt maintains a stable learning trajectory, even when the
base model produces transient, large prediction errors. A detailed derivation for this clipping method
is provided in Appendix B.
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3.4 FINAL FORMULATIONS

The residual fitting principle is a general technique that can be integrated with various linear attention
backbones. By applying our residual mechanism to both the standard additive update rule and the
delta update rule, we derive two powerful variants. This leads to our final models:

rt = Clip[−c,c](vt − St−1kt)

Rt = αtRt−1 + γtrtk
⊤
t

St = αtSt−1 + βtvtk
⊤
t

ot = αtSt−1qt + γtRtqt

rt = Clip[−c,c](vt − St−1kt)

Rt = αtRt−1(I − γtktk
⊤
t ) + γtrtk

⊤
t

St = αtSt−1(I − βtktk
⊤
t ) + βtvtk

⊤
t

ot = αtSt−1qt + γtRtqt

Residual Linear Attention (RLA) Residual Delta Net (RDN)

For brevity, the equations omit the L2 normalization and SiLU activation applied to query and key
vectors. Regarding the adaptive gates, the decay factor αt adopts the re-parameterization from
Mamba-2 (Dao & Gu, 2024), while βt and γt are computed via a linear projection followed by a
sigmoid activation. The structure of our attention block is shown in Figure 1.

Attention Block

Linear

SiLU

L2 Norm

Gated Linear Attention / Gated Delta Rule

SigmoidClip

Linear

SiLU

RMSNorm

Linear

Softplus

a

b

𝒒𝒒 𝒌𝒌 𝒗𝒗 
𝒓𝒓 𝛼𝛼 𝛽𝛽 𝛾𝛾 

Residual
Linear Attention

× 𝑁𝑁 

Layer Norm

FFN

Layer Norm

Model Structure

Figure 1: The architecture of our proposed model. The model structure (left) consists of N stacked blocks. The
detailed Attention Block (right) illustrates our core mechanism. Our primary contribution, the explicit residual
fitting process, is highlighted in purple dash lines. This path computes the clipped residual rt = Clip(vt −
St−1kt), which is then modulated by a dedicated correction factor γt = σ(Wγx) to dynamically correct the
base prediction from the model’s primary state. The model also utilizes gates αt = exp(−a softplus(Wαx+
b)) and βt = σ(Wβx) to control the state dynamics, where a and b are learnable scalars.

4 EXPERIMENT

4.1 SETUP

Implementation To maximize efficiency, we implement our custom attention kernels in Tri-
ton (Tillet et al., 2019), building upon the flash-linear-attention library (Yang & Zhang,
2024). We exploit the fact that our state update rule is identical to linear attention’s, requiring only
a minor modification to their kernel: we augment it to return both the attention result and the in-
termediate residual. This design allows the same highly optimized kernel to be reused across all
residual-fitting stages, ensuring high throughput.
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Model Settings We evaluate our model against several recent linear attention architectures, includ-
ing Retentive Network (RetNet) (Sun et al., 2023), Mamba2 (Dao & Gu, 2024), and Gated Delta
Net (GDN) (Yang et al., 2024a). Additionally, we establish a baseline for RLA by evaluating scalar-
gated linear attention (sGLA), a linear attention variant equipped with query-key normalization and
scalar gates (α and β). In our main experiments, we set the clipping threshold to c = 1. All models
contain approximately 1.5 billion parameters and are trained on 100 billion tokens under identical
conditions to ensure a fair comparison. Further details on the training configuration can be found
in Appendix C.

4.2 MAIN RESULTS

Kernel Efficiency We benchmark our kernel’s runtime against linear attention baselines and
FlashAttention (Dao et al., 2022; Dao, 2023), as shown in Figure 2. Although the residual fitting pro-
cess adds computational overhead, our method’s runtime scales linearly with sequence length. This
makes it significantly faster than FlashAttention, which scales quadratically, on longer sequences.
Regarding throughput, our method, like other linear attention mechanisms, maintains a nearly con-
stant high throughput. Conversely, the throughput of the compute-bound FlashAttention degrades
rapidly as sequence length increases.
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Figure 2: Comparison of attention kernel computation time (left) and model throughput (right) with respect to
sequence length.

Language Modeling & Commonsense Reasoning We evaluate RLA and RDN on Wiki-
Text (Merity et al., 2016) perplexity and a suite of benchmarks assessing reasoning and common-
sense understanding. The reasoning tasks include ARC-Easy, ARC-Challenge (Clark et al., 2018),
PIQA (Bisk et al., 2020), and MMLU (Hendrycks et al., 2020), while commonsense understanding is
evaluated on HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), SocialIQA (Sap
et al., 2019), and LAMBADA (Paperno et al., 2016). Our main results, summarized in Table 2, show
that our proposed residual learning variants, RLA and RDN, achieve a consistent improvement in
perplexity over their respective baselines, sGLA and GDN. In addition, our models outperform other
leading linear attention methods across multiple benchmarks and deliver performance competitive
with a standard Transformer.

Recall-intensive tasks To evaluate memory capacity, we benchmark our model on the recall-
intensive tasks from Arora et al. (2024). In addition, we also directly evaluate the model’s retrieval
ability using the "Needle-in-a-Haystack" task (NIAH) (gkamradt, 2023), which requires retrieving
key-value pairs inserted at varying depths within a long document. These benchmarks are challeng-
ing for linear attention models because their finite state-space creates an information bottleneck, as
shown in Table 3. Results demonstrate that our proposed RLA and RDN consistently outperform
their corresponding baselines, with particularly strong gains on the DROP and FDA benchmarks.
Furthermore, they substantially outperform other models on the NIAH task, highlighting an en-
hanced capacity for information recall.
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Table 2: Language modeling, reasoning, and commonsense understanding results. We report perplexity (lower
is better) and accuracy (higher is better). The bold/underlined numbers indicate the first/second best values of
the linear attention models in each column.

Model Wiki LAMB ARC-C ARC-E HellaSwag LAMB MMLU PIQA SIQA Wino Avg Acc
ppl ppl acc_n acc acc_n acc acc_n acc acc acc

Transformer 17.33 19.53 30.2 55.7 49.0 44.3 31.1 70.4 37.9 53.5 46.51

RetNet 18.86 27.62 29.4 56.0 40.5 36.5 30.3 69.9 36.0 50.9 43.69
Mamba2 18.42 20.80 29.1 57.4 46.2 42.7 30.9 69.4 37.6 51.0 45.54
sGLA 17.63 18.06 30.1 56.9 46.4 44.6 30.9 70.4 36.7 50.3 45.79
GDN 17.27 15.76 30.8 54.0 46.8 44.0 31.3 71.3 38.1 51.9 46.03
RLA (ours) 17.35 15.59 30.6 56.6 48.1 46.3 31.0 70.7 38.5 49.7 46.44
RDN (ours) 16.57 14.93 32.1 58.7 47.7 48.7 31.6 71.7 37.7 49.5 47.20

Table 3: Accuracy on recall-intensive benchmarks. The bold/underlined numbers indicate the first/second best
values of the linear attention models in each column.

Model DROP FDA NQ SQD SWDE TQA NIAH Avg

Transformer 26.9 63.0 29.8 35.7 68.7 43.6 70.5 48.31

RetNet 26.2 35.3 20.8 31.5 44.1 39.9 65.7 37.64
Mamba2 26.2 41.2 23.6 33.0 63.4 43.2 67.2 42.54
sGLA 25.7 51.8 24.8 31.6 63.4 41.5 76.6 45.06
GDN 25.9 47.4 26.8 32.4 63.3 43.5 75.7 44.99
RLA (ours) 26.5 51.5 25.2 33.6 64.4 42.3 83.6 46.73
RDN (ours) 27.8 57.5 26.3 32.5 63.4 43.1 79.2 47.11

4.3 ABLATION STUDY

In this section, we present a series of ablation studies to verify the contributions of key components.
We first quantify the advantage of our learned residual fitting approach over a predefined correction.
Next, we investigate the importance of using a dedicated correction factor, followed by an analysis of
the necessity of the gated mechanism for combining the base prediction and the correction. Finally,
we examine the effect of normalization and residual clipping.

Residual Fitting To validate the importance of accumulating past errors, we test a variant that
uses a simpler, predefined correction term. In this ablation, we replace our persistent auxiliary state,
Rt, with a stateless correction derived only from the current residual, Rt = (vt − St−1kt)k

⊤
t .

As demonstrated in Table 4, the variant lacking explicit residual fitting underperforms our full
method. Although this ablated variant maintains competitive performance on some benchmarks,
it exhibits a substantial increase in perplexity on both the training and evaluation sets. This per-
formance drop extends to specialized domains, with a substantial degradation in its math and code
abilities, as measured by perplexity on GSM8k (Cobbe et al., 2021) and HumanEval (Chen et al.,
2021). This demonstrates the critical role of the auxiliary state in accumulating past residuals to
refine the model’s output effectively.

Table 4: Ablation study of the residual fitting process, comparing training loss and perplexity across various
datasets. All models were pretrained for 50B tokens with the same hyperparameters, and the best results are
shown in bold.

Training loss WikiText ppl LAMB ppl GSM8k ppl HumanEval ppl

RLA 2.22 18.76 23.44 3.92 9.61
RLA w/o fitting 2.26 20.19 22.50 6.85 16.23

Dedicated Correction Factor We analyze the benefit of using a dedicated correction factor, γ,
by comparing our full models against variants where γ is tied to the update factor β. In Figure 3a,

7
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the models with an independent γ consistently achieve lower evaluation loss, with the RDN variant
showing greater improvement. This trend extends to downstream performance, as demonstrated by
the results in Figure 3b, which also show that the dedicated correction factor yields performance
gains across multiple benchmarks. Notably, our foundational architecture, which does not require
an additional γ, still marks a notable improvement over the baseline linear attention method.
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Figure 3: Ablation study on the correction factor γ. Using a dedicated γ consistently lowers validation loss
compared to tying it to β. The evaluation uses the same benchmarks as in Section 4.2, divided into three task
types, and confirms that a dedicated γ improves performance across several categories.

Gated Output Combination We conducted an ablation study to analyze the effect of the output
combination formula. This involved comparing our full model, which uses a gated combination of
the base prediction and the error correction (ot = αtSt−1qt + γtRtqt), against a variant using
simple addition (ot = St−1qt + Rtqt). As shown in Table 5, removing the gate causes a slight
performance drop for RDN but a slight increase for RLA. This outcome indicates that the core
benefit is derived from the residual fitting process on the auxiliary state Rt, rather than the specific
weight used to integrate the correction term.

Table 5: Ablation study of different output combination methods. All models share the same 50B tokens
pretraining and hyperparameters, with the best results for each method shown in bold.

Output ARC-C ARC-E HellaSwag LAMB MMLU PIQA SIQA Wino
Avg

Combination acc_n acc acc_n acc acc_n acc acc acc

RLA
αtSt−1qt + γtRtqt 28.5 53.6 42.0 36.8 29.8 68.6 38.1 49.2 43.30

St−1qt +Rtqt 28.9 55.2 41.5 37.0 30.1 68.9 37.3 51.6 43.81

RDN
αtSt−1qt + γtRtqt 29.8 55.2 42.5 39.9 30.4 69.1 40.4 49.9 44.65
St−1qt +Rtqt 27.8 56.3 41.9 39.7 29.4 70.0 37.7 48.9 43.96

Normalization and Residual Clipping Finally, we investigate the importance of normalization
and residual clipping. We perform an ablation study on RLA by removing normalization and clip-
ping. As shown in Figure 4, both components are crucial for stable training; their removal leads to
unbounded activations and degraded performance. In contrast, the RDN model is largely insensitive
to residual clipping. This robustness is attributable to the inherent stability of its delta rule update,
which maintains a consistent loss curve without residual clipping (Figure 4b).

5 RELATED WORKS

Sequence modeling has been historically dominated by Recurrent Neural Networks (RNNs) (Lipton
et al., 2015), including variants like Long Short-Term Memory (LSTM) (Hochreiter & Schmidhu-
ber, 1997) and Gated Recurrent Units (GRU) (Cho et al., 2014). While effective, their inherently
sequential nature impedes training parallelization. The Transformer architecture (Vaswani et al.,

8
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Figure 4: Ablation study on normalization and residual clipping. RLA variants without normalization or clip-
ping exhibit exploding activation norms, indicating training instability. This instability leads to a higher training
loss, highlighting that both components are crucial for stable training and better performance. In contrast, resid-
ual clipping has a negligible impact on the RDN training process.

2017) overcame this limitation, emerging as the de facto standard for sequence modeling. However,
its self-attention mechanism, with a computational complexity quadratic in sequence length, poses
a significant bottleneck for long-context applications.

To address these challenges, recent research has revisited Linear RNNs as a foundation for efficient
Transformer alternatives. By formulating sequence processing as a linear recurrence, these models
achieve both parallelizable training and linear-time inference. Early explorations in this domain,
such as S4 (Gu et al., 2021), LRU (Orvieto et al., 2023), and RetNet (Sun et al., 2023), utilized
structured state transition matrices. A subsequent performance leap was achieved by incorporating
data-dependent dynamics. Models like Mamba (Gu & Dao, 2023; Dao & Gu, 2024), HGRN (Qin
et al., 2023; 2024b), and Gated Linear Attention (Yang et al., 2023) leverage input-dependent gating
to dynamically control state transitions, thereby enhancing their expressive power.

More advanced methods have introduced the delta learning rule, which reframes the state update
from a simple gated decay to a fine-grained memory correction. This approach, exemplified by
DeltaNet (Yang et al., 2024b; Schlag et al., 2021) and Gated DeltaNet (Yang et al., 2024a), enables
more precise dynamic memory modifications. This mechanism can be interpreted from an online
learning perspective, where the state update is framed as an optimization process, as explored in
TTT (Sun et al., 2024). This viewpoint has inspired further work aimed at discovering and improving
the intrinsic learning algorithms within sequence models (von Oswald et al., 2023; 2025).

Concurrent research has focused on increasing the expressivity of the state transition. For instance,
RWKV-7 (Peng et al., 2025) employs a diagonal-plus-low-rank structure, while DeltaProduct (Siems
et al., 2025) generalizes DeltaNet by performing multiple update steps per token. To push capacity
even further, recent architectures such as Titans (Behrouz et al., 2024) and Miras (Behrouz et al.,
2025) have introduced non-linear deep memory, parameterizing the state with an MLP.

6 CONCLUSION

In this paper, we introduced Residual Linear Attention, a framework that enhances linear attention
models with an explicit residual fitting process. Our method leverages an auxiliary state to cor-
rect the predictive errors of the base model, thereby building more robust and accurate contextual
representations. The framework is highly adaptable and can be applied to various linear attention
methods. Our experiments demonstrated this versatility, showing that our approach consistently
outperforms their respective baselines. While this improvement comes at the cost of additional
computation for the fitting process, balancing this trade-off offers a promising direction for future
research.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we will make our resources publicly available. The
complete source code is provided in the supplementary material. Our evaluation is conducted using
the lm-evaluation-harness (Gao et al., 2024) framework to ensure fair and consistent com-
parison with prior work. Details regarding our experimental setup are described in Section 4.1, and
a list of model parameters and hyperparameters can be found in Appendix C.

USE OF LARGE LANGUAGE MODELS

We would like to thank Google’s Gemini for its assistance in editing this manuscript. Its suggestions
were used to improve grammar, spelling, and overall clarity. The authors reviewed all modifications
and take full responsibility for the content of this paper.
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A UNIFIED FORMULA FOR RESIDUAL LINEAR ATTENTION

This section details how our residual fitting process can be framed as a form of online gradient
boosting, providing a unified and extensible framework.

A.1 PRELIMINARY: GRADIENT BOOSTING IN A FUNCTIONAL SPACE

Gradient boosting is an ensemble technique that sequentially adds new models to correct the errors
of previous ones. In a gradient boosting framework, the objective at each stage is to find a new
function h that minimizes the loss when added to the current function f :

h∗ = argmin
h

Ek,v[L(f(k) + h(k),v)] .

As finding the optimal function h is generally infeasible, we approximate the objective using a first-
order Taylor expansion of the loss:

L(f(k) + h(k),v) ≈ L(f(k),v) + h(k)
∂L(f(k),v)

∂f(k)
.

The direction of steepest descent in this functional space is the negative gradient of the loss with
respect to the function’s output. This target is often called a pseudo-residual, r:

r = −∂L(f(k) + h(k),v)

∂h(k)
≈ −∂L(f(k),v)

∂f(k)
.

The objective thus becomes learning a function h(k) that fits this pseudo-residual. After learning,
the boosted function is updated as f(k)← f(k) + h(k), where h(k) is the error correction term.

A.2 UNIFIED RESIDUAL LINEAR ATTENTION

From an online learning perspective, linear attention can be viewed as learning a mapping f(k;S),
where the state matrix S is incrementally updated via online gradient descent to minimize a loss
L(f(k;S),v). We enhance this model by incorporating principles from gradient boosting. This
involves employing an auxiliary state matrix R for iterative refinement. In this framework, state
matrix R is updated at timestep t to learn the mapping from the key kt to the pseudo-residual rt of
the prior prediction. This correction process results in a stronger mapping function.

We can decouple the learning objective into two parts: (1) A global objective, defined by an arbi-
trary, differentiable outer loss Louter, which sets the overall key-to-value mapping goal. (2) A local
objective, defined by a simple inner loss Linner, which governs how each individual state matrix is
updated. While the target pseudo-residual r can be complex, the task for each state is deliberately
kept simple. Ignoring decay factors and learning rates for clarity, the general recurrence is:

rt = −
∂Louter(f(kt;St−1),vt)

∂f(kt;St−1)
(Pseudo-Residual)

Rt = Rt−1 −
∂Linner(f(kt;Rt−1), rt)

∂Rt−1
(Auxiliary State Update)

St = St−1 −
∂Linner(f(kt;St−1),vt)

∂St−1
(Base State Update)

ot = f(qt;St−1) + f(qt;Rt) (Base Prediction and Correction)

The gating mechanism and correction strength can also be easily incorporated into the framework.
This framework allows two simple inner update rules to approximate a more complex global objec-
tive.
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B RESIDUAL FITTING WITH HUBER LOSS

As previously established, our framework can accommodate complex global loss functions, as their
complexity is confined to the pseudo-residual calculation. This allows us to use a more robust
alternative to the standard L2 loss, such as the Huber loss function:

Lhuber(v̂,v) =

d∑
i=1

Lhuber(v̂i, vi) ,

where Lhuber(v̂i, vi) =

{
1
2 (vi − v̂i)

2 for |vi − v̂i| ≤ c

c
(
|vi − v̂i| − 1

2c
)

for |vi − v̂i| > c

This function uses the L2 loss for small errors and the L1 loss for large errors, making it a more
robust alternative. Directly applying this loss yields a non-linear update rule that is difficult to
parallelize:

St = St−1 −
∂Lhuber(vt − St−1kt)

∂St−1

= St−1 + Clip[−c,c](vt − St−1kt)k
⊤
t

Our residual fitting framework elegantly avoids this problem. The complexity is isolated within the
pseudo-residual calculation, while the core state update remains simple. The pseudo-residual for the
Huber Loss is rt = Clip[−c,c](vt − f(kt;St−1)), then the inner update rule is only responsible for
fitting this target pseudo-residual. Using an inner loss of Linner(f(k),v) = −⟨v, f(k)⟩ yields the
following recurrence:

rt = Clip[−1,1](vt − St−1kt)

Rt = Rt−1 − rtk
⊤
t

St = St−1 − vtk
⊤
t

This equivalence provides the theoretical motivation for our clipping mechanism; it is an efficient
implementation of a robust Huber loss objective, which leads to a more stable residual fitting process.
This principle can be generalized by selecting other robust loss functions. For instance, the Log-
Cosh loss has a negative gradient with respect to the prediction f(k) that is equivalent to applying a
tanh function to the residual:

Llog-cosh(f(k),v) = log cosh(v − f(k)) ,

rt = tanh(vt − f(kt;St−1)) .

This can be viewed as a smooth alternative to the clipped residual from the Huber loss. The ability
to easily substitute such loss functions demonstrates our framework’s modularity, allowing for the
integration of powerful learning objectives while maintaining computational efficiency.

C MODEL STRUCTURE AND TRAINING HYPER PARAMETERS

We evaluate several model architectures, with full specifications detailed in Table 6. Our comparison
includes a standard Transformer and Transformers with pure linear attention. For a fair comparison,
all models are trained using an identical set of hyperparameters, which are listed in Table 7. We
initialize the model weights from a normal distribution with a constant standard deviation and use
the AdamW optimizer with a cosine learning rate schedule for training.
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Table 6: Model Configuration

Property Transformer Models Linear Attention Models
Total Params 1.51B 1.55B
Hidden Size 2048 2048
Intermediate Size 8192 8192
Attention Heads 32 16
GQA Groups 4 16
Head Dimension 128 128
Softmax Attention Layers 16 0
Linear Attention Layers 0 16

Table 7: Training hyperparameters

Peak LR Min LR Batch Size Warmup Tokens Total Tokens Weight Decay Gradient Clip Initialization Std
3e-4 3e-5 4M 0.5B 100B 0.1 1.0 0.006

D PSEUDO-CODE IMPLEMENTATION

This section provides a PyTorch-like pseudo-code implementation for our proposed Residual Linear
Attention (RLA). We present the recurrent formulation to clearly illustrate our modifications to a
baseline scalar-gated linear attention mechanism.

1 # q, k, v are in shape [sequence_length, head_dimension].
2 # alpha, beta and gamma are in shape [sequence_length]
3

4 def scalar_gated_linear_attention(q, k, v, alpha, beta):
5 # Recurrently compute linear attention with scalar gates.
6 seq_len, head_dim = q.shape
7 S = torch.zeros(head_dim, head_dim)
8 o = torch.zeros(seq_len, head_dim)
9 for t in range(seq_len):

10 qt, kt, vt = q[t : t + 1], k[t : t + 1], v[t : t + 1]
11 # update state S
12 S = alpha[t] * S + beta[t] * kt.T @ vt
13 # get prediction
14 o[t : t + 1] = qt @ S
15 return o
16

17

18 def residual_linear_attention(q, k, v, alpha, beta, gamma):
19 # Recurrently compute residual linear attention.
20 seq_len, head_dim = q.shape
21 S = torch.zeros(head_dim, head_dim)
22 R = torch.zeros(head_dim, head_dim)
23 o = torch.zeros(seq_len, head_dim)
24 for t in range(seq_len):
25 qt, kt, vt = q[t : t + 1], k[t : t + 1], v[t : t + 1]
26 # l2 normalization
27 qt, kt = F.normalize(qt, dim=-1), F.normalize(kt, dim=-1)
28 # clipped residual error
29 rt = torch.clip(vt - kt @ S, min=-1, max=1)
30 # update auxiliary state R
31 R = alpha[t] * R + gamma[t] * kt.T @ rt
32 # combine basic prediction and error correction
33 o[t : t + 1] = alpha[t] * qt @ S + gamma[t] * qt @ R
34 # update basic state S
35 S = alpha[t] * S + beta[t] * kt.T @ vt
36 return o

Listing 1: Pseudo-code for Residual Linear Attention (RLA) and a baseline linear attention model.
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