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Abstract
WebGL has long been the prevalent API for GPU-accelerated graph-
ics in web browsers, boosting 2D/3D graphical web applications.
Despite widespread adoption, WebGL’s programming model hin-
ders its rendering performance on modern GPU hardware. To this
end, WebGPU has been proposed as the next-generation API of
GPU-accelerated processing in web browsers, exhibiting higher
performance than WebGL. However, considering the complex logic
of WebGL applications and the still-evolving WebGPU specifica-
tion, statically migrating existing WebGL applications to WebGPU
from source code is labor-intensive. To address this issue, we pro-
pose GL2GPU, an intermediate layer that dynamically translates
WebGL to WebGPU at JavaScript runtime to improve rendering
performance. GL2GPU addresses the inconsistencies between the
WebGL and WebGPU programming models by emulating WebGL
rendering states and leverages performance optimization mecha-
nisms introduced by WebGPU to reduce the overhead of dynamic
translation. Evaluation of three representative WebGL benchmarks
shows that GL2GPU significantly enhances end-to-end rendering
performance while maintaining visual consistency, achieving an
average frame time reduction of 45.05% across different devices and
operating systems.

CCS Concepts
• Information systems→ Browsers;Web applications; • Com-
puting methodologies→ Computer graphics; • Software and its
engineering→ Software notations and tools.

Keywords
Web applications; Graphics; WebGL; WebGPU; API translation

1 Introduction
Graphics rendering has become an increasingly popular and essen-
tial component of web applications, significantly enhancing user
experiences in online multimedia domains such as gaming [54, 63],
visual effects [17, 22, 32, 52, 56, 62], data visualization [13, 45, 55–
57], and virtual reality [11, 19, 31, 34, 47].

To enable web developers to perform high-performance inter-
active 3D and 2D graphics rendering, the WebGL [29] API was
introduced in 2009. WebGL employs an imperative API design that
is straightforward and beginner-friendly, allowing developers to
achieve hardware-accelerated graphics rendering with minimal
code. As a result, a substantial base of applications has been de-
veloped using WebGL for over a decade. It is expected that new
WebGL applications will continue to emerge.

Despite the success ofWebGL, the programmingmodel ofWebGL
struggles to meet the performance demands of modern graphics
applications, which often involve heavy computational loads. To
better leverage contemporary hardware capabilities, WebGPU was

proposed in 2017 [65, 68] as the next-generation web graphics API.
WebGPU adopts a declarative programming model, which is more
complex but offers significantly higher performance potential than
WebGL. Recent work has shown that WebGPU substantially outper-
forms WebGL, particularly in applications with intensive rendering
workloads [4, 5, 15, 23]. Therefore, migrating existing WebGL ap-
plications to WebGPU API can enhance rendering performance.
Recognizing the potential of WebGPU, developers have started to
rewrite WebGL applications using the WebGPU API [24, 66].

However, rewriting WebGL applications into WebGPU is labor-
intensive, time-consuming, and error-prone. The differences in the
programming models of these two APIs make trivial API rewrit-
ing difficult [42]. Furthermore, some rendering frameworks fail to
utilize WebGPU’s features during rewriting, leading to decreased
performance [10]. This prevents existing WebGL applications from
quickly and easily benefiting from the performance enhancements
offered by WebGPU.

In this paper, we introduce GL2GPU, a dynamic WebGL-to-
WebGPU translator in the JavaScript runtime. GL2GPU requires no
modifications to the browser or the original logic of WebGL applica-
tions, enabling legacy and newly developed WebGL applications to
benefit fromWebGPU’s performance improvements in an easy way.
The basic idea of GL2GPU is to track imperative rendering state
changes using JavaScript prototype patching, increase the reusabil-
ity of rendering resources, and leverageWebGPU features to reduce
runtime overhead. Specifically, GL2GPU addresses two significant
challenges in the dynamic translation process: the inconsistency
between the WebGL and WebGPU programming models (C1) and
the high translation overhead within the JavaScript runtime (C2).
We propose the following insights to tackle these challenges:
• (C1) Imperative changes in WebGL can be tracked by JavaScript

prototype patching.GL2GPU introduces a novel state-tracking mech-
anism to conduct the translation. We build the model of WebGL
and emulate the global render state in JavaScript runtime. GL2GPU
tracks the imperative rendering context configuration in WebGL by
injecting code into the prototype of the WebGL API. Additionally,
with the help of this rendering state, GL2GPU analyzes the WebGL
shaders and merges shared variables to generate the corresponding
WebGPU shaders accurately.
• (C2) Caching previously encountered WebGL states reduces the

overhead of traversing. GL2GPU proposes a novel representation
of WebGL rendering state transition. GL2GPU introduces a state
transition management algorithm based on a cache mechanism.
This caching design significantly boosts the performance of tracking
state changes.
• (C2) Utilizing bundles can reduce the overhead of recording

rendering commands in the JavaScript runtime. GL2GPU introduces
a bundle management algorithm to improve the reusability of
recordedWebGPU operations, reducing the interpretation overhead
of the JavaScript source code.

1
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We utilize the widely used WebGL benchmarks for our evalua-
tions, using the native WebGL implementation within the browser
as our baseline. Our consistency assessment, conducted through
pixel-by-pixel comparison, confirms that GL2GPU maintains high
visual consistency. Our performance assessment demonstrates sig-
nificant improvements in rendering times, with the average frame
time reduced by 45.05% across various devices compared to the base-
line. The minimum frame time reduction is 3.3%, and the maximum
frame time reduction is 87.7%. The ablation study also validates the
effectiveness of the proposed optimization mechanisms. In sum-
mary, the main contributions of our work are as follows:
• We propose GL2GPU, an intermediate layer to dynamically

translate WebGL invocations to WebGPU at JavaScript runtime
by prototype patching. This seamless translation leverages the
advanced capabilities of WebGPU, enabling existing WebGL
applications to benefit from improved performance without
extensive modifications.

• We design novel optimization mechanisms to reduce the run-
time overhead during dynamic API translation. These opti-
mizations leverage the unique features of WebGPU to boost
the translation process, enhancing overall efficiency.

• We evaluate GL2GPU’s consistency and performance improve-
ments on representative benchmarks over various devices. Our
further ablation study validates the effectiveness of key designs.

We provide background on graphics rendering (§ 2), present the
design (§ 3) , conduct an evaluation (§ 4), discuss related work (§ 5),
and conclude our work (§ 6). To foster further research on this topic,
we release the source code of GL2GPU at https://anonymous.4open.
science/r/gl2gpu-E381/.

2 Rendering Process in Web Apps
Rendering in a web application involves sequentially processing
each object. As shown in Figure 1, the object rendering workflows of
WebGL andWebGPU can be briefly summarized as follows: shaders
take data as input and produce the final image output. A rendering
context configures this process. The GPU generates many threads to
enhance parallelism while rendering an object, each executing the
same shader and sharing the same rendering context. These threads
compute the color of each pixel in the output image concurrently.
We elaborate more on the details of WebGL andWebGPU rendering
processes in Appendix A.
• Shaders encapsulate the core computational logic for the ren-

dering process. Executed directly by the graphics processing unit
(GPU), shaders perform complex rendering calculations efficiently.
In WebGL and WebGPU, the shading process is divided into two
distinct parts: vertex shading, which maps input vertices to their
corresponding coordinates, and fragment shading, which performs
interpolation between pixels.
• The inputs of a shader contains two parts: shared variables and

local variables. The shared variables, shared among all threads, in-
clude uniform buffers and textures. Uniform buffers store a handful
of numbers, such as lighting direction and camera matrices. Tex-
tures contain texture images. Local variables includes vertex buffers
and index buffers and is unique to each thread. Vertex buffers con-
tain information about each vertex, such as coordinates and colors.
Index buffers detail the drawing order of vertices.

ShaderShader

Rendering
Context

OutputInput

· uniform buffer
· texture

· vertex buffer

shared vars

local vars
· index buffer

vertex + fragment

WebGL WebGPU

① WebGL
Commands

② Resources / Cmd-buffer

Figure 1: Comparison between WebGL and WebGPU.

• The rendering context configures details related to rendering.
These include data bindings, specifying from which buffers the
shader’s inputs are retrieved; fragment shader configurations, such
as the enabling of face culling and depth testing; the layout of the
vertex buffer; and more.

The differences between WebGL and WebGPU programming
models lie in how they configure the rendering context. As shown
in Figure 1, the rendering context of WebGL is configured through
the imperative setting of a global state machine (①). In contrast,
the rendering context of WebGPU is set by declaratively setting
rendering resources in a command buffer and submitting the en-
coded command to GPU (②). Meanwhile, WebGL utilizes GLSL
(OpenGL Shading Language) for its shaders, while WebGPU uses
WGSL (WebGPU Shading Language). In GLSL, shared variables
between vertex and fragment shaders are aligned based on their
variable names. In contrast, WGSL requires developers to assign a
unique, incrementing location ID number to each shared variable,
starting from 0. This inconsistency in programming models makes
API translation based on static analysis a hard problem [42].

Another distinction between WebGL and WebGPU is their gran-
ularity of resource management. WebGL’s resource management is
much coarser compared to that of WebGPU. Furthermore, WebGPU
introduces a unique feature tailored for the JavaScript environment:
the rendering bundle. Due to the dynamic nature of JavaScript,
where function calls can be time-consuming, WebGPU’s GPURen-
derBundle represents a partially recorded rendering configuration
that can reduce the time spent on JavaScript function calls. There-
fore, effectively harnessing the reusability of WebGPU resources is
crucial for improving rendering performance.

3 Design
This section introduces the design of GL2GPU, including an overview
of its workflow and module details.

3.1 Overview
The workflow of GL2GPU is illustrated in Figure 2. GL2GPU cap-
tures WebGL invocations from the web application and translates
them into WebGPU commands. Achieving an effective translation

2
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(d)
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(a)

(b)

(c)
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Figure 2: Overall workflow of GL2GPU.

from WebGL to WebGPU within a JavaScript runtime relies on two
key aspects: maintaining rendering consistency and improving
translation performance. The basic modules of GL2GPU, labeled
① through ⑤, address these aspects. Among them, ① and ② are
the modules to ensure the translation consistency. ③, ④ and ⑤ are
three modules to improve the translation performance. We provide
detailed descriptions of these five modules in the remainder of this
section.

GL2GPU classifies the WebGL invocations into four main cat-
egories and deals with them differently. These categories include
(a) drawing and state changes, (b) shader compilation, (c) uniform
updates, and (d) vertices/texture data uploads. Precisely, GL2GPU
emulates a WebGL rendering state (①), represented as GS. For type
(a) invocations, specific sections within GS are modified. For type
(b), GL2GPU utilizes a mechanism to merge shared variables from
GLSL shaders, resulting in the final translated WGSL shader (②).
We design a fast WebGPU resource generator, where the compiled
WGSL code and associated WebGPU resources are cached (③). For
type (c), updates to uniforms are batched to reduce frequent GPU
memory access (④). For type (d), modifications to vertex and tex-
ture buffers are directly uploaded to the GPU. WebGPU resource
and uniform operations are packed using GL2GPU’s render bundle
mechanism (⑤). During drawing operations, GL2GPU retrieves ren-
dering instructions from the render bundle, encodes them into GPU
commands, and submits GPU commands to the WebGPU backend.

3.2 Emulating WebGL Rendering Context
WebGL developers set rendering context imperatively by modify-
ing the GL rendering context [61]. Therefore, GL2GPU needs to
track the rendering context changes and translate the context into
the WebGPU descriptors. GL2GPU maintains an emulated WebGL
global rendering context, denoted as GS. This rendering context
contains the basic components of WebGL, like the textures, vertex
arrays, uniform buffers, programs, and frame buffers [29].

Due to JavaScript’s dynamic nature, we use prototype patching
to capture native WebGL API calls. Upon capturing state change
invocations from WebGL (Figure 2, a), GL2GPU reflects these modi-
fications within GS (Figure 2, ①). When drawing objects, GL2GPU
generates the WebGPU descriptors based on GS. Although many

intermediate rendering contexts can be encountered through ex-
ecuting a WebGL application, many of these rendering contexts
may never be used. In fact, generating the correct WebGPU de-
scriptors at the moment of drawing is essential. For details on the
implementation, please refer to our open-source code.

3.3 Translating Shaders
WebGL’s GLSL shaders must be translated to WebGPU’s WGSL
shaders before GL2GPU can create the correct WebGPU resource
descriptor. The translation from GLSL shaders to WGSL shaders
encompasses two main aspects: syntax translation and shared vari-
ables’ alignment. On the one hand, considerable effort has been
devoted to addressing syntax translation. For instance, rendering
frameworks such as Playcanvas [53] and Babylon [6] utilize a We-
bAssembly module to implement a GLSL lexer within their frame-
work. Considering that shaders in real-world applications are lim-
ited and often generated by frameworks through concatenation, we
can pre-translate GLSL shaders to WGSL. This allows for a direct
lookup of the pre-translated WGSL during dynamic translation.

On the other hand, aligning shared variables is not straightfor-
ward. In GLSL, shared variables are aligned based on their names,
while WGSL requires developers to assign a unique number to each
shared variable. The WGSL compiler uses these location numbers
to align variables from vertex and fragment shaders. Given that
different combinations of vertex and fragment shaders result in
varying sets of shared variables, the assignment of WGSL location
numbers also varies.

As shown in Figure 3, GL2GPU employs a merging mechanism
to address this challenge. GL2GPU analyzes the GLSL shaders when
the web application sets the shader source, generating shared vari-
ables within the GLSL. Meanwhile, the main logic of the GLSL
shader is converted into a partially translated WGSL, which does
not include any shared variables. When the web application links
the vertex and fragment shaders together, GL2GPU combines the
records from both shaders. This mixed record is concatenated with
the partially translated WGSL code to generate a complete WGSL
shader. Finally, this complete WGSL shader will be attached to the
WebGPU pipeline descriptor when translating the WebGL render
state.

3
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Figure 3: Workflow of shared variable merging in GL2GPU.

3.4 Generating WebGPU Resources
Generally, it is necessary to traverse the emulatedWebGL rendering
states when generating declarative WebGPU descriptors. However,
this rendering state is quite complex, and such traversal is costly
in JavaScript runtime. To this end, GL2GPU employs a two-layer
caching strategy (Figure 2, ③) to retrieve WebGPU resources that
correspond to the WebGL rendering state GS efficiently.

The first caching layer maintains a hashed-directed acyclic graph
(DAG) to track the rendering state transitions. These transitions are
WebGL invocations that change the rendering state. We present the
pseudo-code in Algorithm 1. Specifically, in this DAG, each node
represents a GS and its corresponding cached WebGPU resources;
each edge represents a WebGL state-changing function 𝑓 . When
GL2GPU captures a WebGL state-changing invocation 𝑓 (line 5), it
searches within this DAG for an edge that originates from the cur-
rent rendering state (GS) and is associated with function 𝑓 . If such
an edge 𝑒 =

〈
𝑣GS, 𝑣GS′ , 𝑓

〉
is located (line 10), GL2GPU directly

transitions to the target rendering state GS′. If no such edge exists,
a new vertex 𝑣GS′ is created, and the edge 𝑒 =

〈
𝑣GS, 𝑣GS′ , 𝑓

〉
is added to the DAG (line 13-16). The introduction of this first
caching layer mitigates the overhead associated with WebGL state
transitions.

Algorithm 1 Traversal on the DAG in the layer-1 cache.
1: Variables:
2: GS: Current WebGL global rendering state
3: 𝐺 : The hashed-DAG in the layer-1 cache.
4: 𝑐𝑢𝑟 : The DAG node corresponding to current GS
5: uponWebGL state-changing invocation 𝑓 captured, call recordDAG(𝑓 )
6: External Function:
7: transition(GS, 𝑓 ): returns the new rendering state after applying

WebGL invocation 𝑓 to rendering state GS
8: function recordDAG(𝑓 )
9: GS′ ← transition(GS, 𝑓 )
10: if edge ⟨𝑐𝑢𝑟,𝑚, 𝑓 ⟩ ∈ 𝐺 then
11: 𝑐𝑢𝑟 ←𝑚

12: else
13: create a new DAG vertex 𝑛
14: 𝑛.GS ← GS′
15: add edge ⟨𝑐𝑢𝑟,𝑛, 𝑓 ⟩ to𝐺
16: 𝑐𝑢𝑟 ← 𝑛

17: end if
18: GS ← GS′
19: end function

The second caching layer maintains a mapping from a GS to
previously generated WebGPU resources. If a WebGL state change
invocation misses in the first caching layer, we compute the hash
of the GS and search for the corresponding WebGPU resources in
this second caching layer. It is important to note that computing the
hash of a GS, especially in JavaScript, is highly time-consuming.
Therefore, the introduction of the second caching layer reduces the
overhead associated with regenerating WebGPU descriptors and
WebGPU resources for the rendering states that have previously
occurred.

3.5 Batching Uniform Updates
Each object’s uniform buffer must be transferred from the CPU
memory to the GPU memory while rendering a scene. Although
individual uniform buffers are small, the frequent need for commu-
nication leads to substantial overhead. To mitigate this, GL2GPU
leverages the “dynamic uniform offset” feature of WebGPU that en-
ables the merging of uniform buffers for different object drawings.

WebGPU allows developers to specify the offset for the current
draw’s uniform within the uniform buffer. By leveraging this fea-
ture, we can batch the uniforms for multiple draw operations into
a single uniform buffer. GL2GPU maintains a global uniform buffer
on the CPU side to store the uniform buffers of distinct draw calls
(Figure 2, ④). For each WebGL program 𝑝 , GL2GPU maintains a
uniform buffer on the CPU side. For convenience, we denoted the
global uniform buffer as𝑈𝑔 and the uniform buffer of a WebGL pro-
gram 𝑝 as𝑈𝑝 . GL2GPU monitors updates to each WebGL program
𝑝’s uniform buffer (Figure 2, d) and applys these changes to the
corresponding𝑈𝑝 . When a WebGL draw call is invoked (Figure 2,
a), GL2GPU appends the active WebGL program’s 𝑈𝑝 to the end of
the global uniform buffer 𝑈𝑔 . The active WebGL program 𝑝 is iden-
tified by tracking the most recent gl.useProgram(𝑝) call. Once
𝑈𝑔 is filled, GL2GPU uploads it to the GPU and clears it. Both the
updates to 𝑈𝑝 and the appending to 𝑈𝑔 are executed on the CPU
side without transferring data from the CPU to the GPU.

3.6 Managing Render Bundles
After the generation of WebGPU resources, GL2GPU generates
WebGPU operations and packs them in a WebGPU bundle (Figure 2,
⑤). The key to performance enhancement brought byWebGPU bun-
dles lies in their reusability. To enhance the reusability of WebGPU
bundles, GL2GPU employs a Trie structure [41] to organize these
generated bundles. Rendering an object involves a series of consec-
utive operations starting from scratch. The Trie facilitates efficient
search and retrieval capabilities for rendering different objects by
treating the sequence of rendering operations as strings.

As shown in Figure 2, the Trie structure is designed such that
each node represents a render bundle. Each edge represents a
WebGPU operation (e.g., draw, setPipeline, setVertexBuffer and
setBindGroup) that can be packed into a render bundle. The root
node denoted as 𝑟 , represents an empty render bundle. The path
from the root to any given node delineates a sequence of WebGPU
operations, with the order of these operations corresponding to
the order of the edges along the path (starting from the root node).
These operations could be recorded in a bundle, which could be
attached to the node for future reuse. The red arrows in Figure 2 (⑤)
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demonstrate the sequence for five objects in a scene. The first and
second renderings share the same setPipeline() operation. There
are no shared preprocessing operations between the second and
third renderings, and so forth. This structure allows for efficient
reuse of rendering operations sequence across objects.

Algorithm 2 Management of WebGPU operations and bundles
using a Trie structure.
1: Variables:
2: 𝑇 : Trie used for managing WebGPU operations and bundles.
3: 𝑟 : Root node of𝑇 , representing an empty render bundle.
4: 𝑝 : Pointer to the “current node” in𝑇 , initially set to 𝑟 .
5: ∗𝑝 : The “current node”. We have &(∗𝑝 ) = 𝑝 .
6: upon new WebGPU operation 𝑜𝑝 is generated, call 𝑟𝑒𝑐𝑜𝑟𝑑𝑇𝑟𝑖𝑒 (𝑜𝑝 )
7: upon uniforms are flushed, call 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 ( )

8: function recordTrie(op)
9: if no outgoing edge from 𝑝 labeled 𝑜𝑝 exists then
10: 𝑛 ← Create a new Trie node
11: Insert edge ⟨𝑝,𝑛, 𝑜𝑝 ⟩ into𝑇
12: 𝑝 ← &𝑛
13: else
14: 𝑝 ← &𝑚 where ⟨𝑝,𝑚,𝑜𝑝 ⟩ ∈ 𝑇 ⊲ Move 𝑝 to the node𝑚

connected by 𝑜𝑝
15: end if
16: end function

17: function execute
18: if WebGPU bundle 𝑏 is not attached to node ∗𝑝 then
19: Generate WebGPU bundle 𝑏 recording all operations on edges

along the path from 𝑟 to ∗𝑝
20: Attach 𝑏 to node ∗𝑝
21: end if
22: Execute WebGPU bundle 𝑏 attached to node ∗𝑝
23: Update 𝑝 to point to root node 𝑟
24: end function

Algorithm 2 describes the nodemanagement of this Trie. GL2GPU
maintains a pointer 𝑝 , where the node pointed to by 𝑝 (represented
as 𝑝∗) is referred to as the “current node”. Initially, the Trie consists
solely of the root node 𝑟 , with 𝑝 pointing to 𝑟 . Upon generating a
new WebGPU operation 𝑜𝑝 (line 6), GL2GPU first checks whether
∗𝑝 has an outgoing edge labeled 𝑜𝑝 . If such an edge does not exist,
GL2GPU creates a new Trie node 𝑛 and inserts the edge ⟨∗𝑝, 𝑛, 𝑜𝑝⟩
into the Trie (line 10). Then, an edge ⟨∗𝑝,𝑚, 𝑜𝑝⟩ must exist. We
update 𝑝 to point to node𝑚 (line 12 and 14).

GL2GPU generates at least four WebGPU operations at the end
of an object drawing invocation (Figure 2, a). These operations in-
clude setBindGroup, setPipeline, setVertexBuffer, and draw
(or drawIndexed). However, the previously mentioned uniform
batching mechanism delays the update of uniforms, meaning the
uniforms in GPU memory still need to be updated. Therefore, the
submission of WebGPU operations to the GPU is also postponed to
ensure the accuracy of the rendered objects. As a result, GL2GPU
packs WebGPU operations from multiple drawing invocations into
a single WebGPU bundle. GL2GPU executes this WebGPU bun-
dle once the global uniform buffer is flushed to GPU. Upon the
global uniform is flushed (line 7), GL2GPU executes all WebGPU
operations along the path from the root node 𝑟 to ∗𝑝 (line 19). If

no WebGPU bundle is associated with ∗𝑝 , GL2GPU creates a new
WebGPU bundle 𝑏, attaches this bundle to the corresponding Trie
node (line 20), and executes (line 22) this bundle. After executing
the render bundle, GL2GPU set 𝑝 to point back to the root node 𝑟
(line 23) for the next drawing.

4 Evaluation
We evaluate our translator with the following questions:
• RQ1: Consistency. Does GL2GPU maintain consistency in

rendering results?
• RQ2: Performance. How is the scalability of GL2GPU’s per-

formance improvement? How does this improvement vary
across different devices?

• RQ3: Ablation Study. Are the proposed optimization mecha-
nisms effective?

4.1 Experiment Setup
Implementation.We implement GL2GPU as a Node.js package,
comprising approximately 5,200 lines of TypeScript code. We em-
ploy Webpack [7] to bundle this into a standalone JavaScript file,
facilitating direct integration of GL2GPU into applications. For ex-
ample, developers can embed it using the <script> tag in HTML
or import this JavaScript module into a browser extension.

Benchmarks. Following existing work on WebGL graphics ren-
dering, we evaluate the consistency and performance of GL2GPU
on three well-known benchmarks in the web ecosystem. These
benchmarks cover various rendering techniques, including 2D and
3D rendering, texturing, lighting, and shadows. The details of these
benchmarks are as follows:
• MotionMark [3]. Developed by theWebKit team, this benchmark

measures a browser’s capacity to handle complex animations.
We use theWebGL performance test included in this benchmark
to assess the performance of the rendering performance capa-
bility. This WebGL performance test renders many triangles
with gradient colors but without binding textures. It primarily
evaluates the performance of increasing the number of vertices.

• JSGameBench [20]. Introduced by Meta in 2011 [1], this bench-
mark evaluates web gaming performance by simulating heavy
yet adjustable workloads. It renders a large number of textured
sprites with configurable sprite counts.

• Aquarium [2]. This WebGL benchmark stems from a real-world
application, which renders an aquarium with complex 3D mod-
els, textures, and lighting effects. Previous research utilized this
benchmark to evaluate the performance of WebGL/OpenGL ES
implementations [59] or conduct object segmentation [64]. It is
also frequently discussed in the community, with over 200 is-
sues in the Chromium issue tracker related to a specific version
failing to run this app. The success of this application has also
drawn industry attention, as seen in Intel’s native implemen-
tation of this web app to measure the performance of native
graphics rendering [36].
We added a <src> element to each benchmark’s HTML source

code to conduct our evaluation.
Devices.We selected a range of commonly used devices from

the market to ensure a comprehensive analysis. For Apple devices,
our selection includes a MacBook Pro with an M1 chip and another
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Figure 4: Comparison of output before and after translation.

with an M3 chip. For PC devices, we equipped our workstation
with a high-performance AMD 6900XT GPU and another with
an NVIDIA RTX 3070 GPU. Additionally, we are using a mini-PC
with an integrated AMD 7840HS GPU, a laptop featuring a discrete
NVIDIA GTX 1650 GPU, and another laptop with an integrated
Intel i5-8265U GPU. For mobile devices, our study includes a Redmi
K60 powered by a Qualcomm Snapdragon 8 gen 2 SoC, an Oppo
Find X3 with a Snapdragon 870 and a Redmi Note 11T Pro with a
Dimensity 8100.

Browsers.We conduct experiments in both Firefox and Chrome;
however, we encounter issues due to the incomplete implementa-
tion of the basic WebGPU functionality within Firefox [50]. We
have reported the issue to Firefox developers, who have confirmed
and are currently addressing it. Consequently, we select Chrome
version 114.0.5735, the earliest version supporting WebGPU, as our
testing browser.

Baseline. To the best of our knowledge, GL2GPU is the first to
focus on improving WebGL application’s rendering performance
by translating to WebGPU. Therefore, we utilize the native WebGL
implementation provided by the browser as the baseline.

4.2 Consistency
We follow the established pixel-by-pixel comparison method in the
field of computer graphics [8, 16, 37, 48] for consistency assess-
ment to evaluate whether GL2GPU faithfully finishes the original
rendering tasks. We utilize the Mean Squared Error (MSE) as the
error metric. Given two images of identical dimensions, where 𝐼𝑥
represents the original image and 𝐼𝑦 is the generated image, both
with dimensions𝑀 ×𝑁 ×𝐶 (width𝑀 , height 𝑁 , and color channels
𝐶), the MSE is calculated as shown in Equation (1):

MSE
(
𝐼𝑥 , 𝐼𝑦

)
=

1
𝑀 · 𝑁 · 𝐶

𝑀−1∑︁
𝑖=0

𝑁 −1∑︁
𝑗=0

𝐶−1∑︁
𝑘=0

(
𝐼𝑥 (𝑖, 𝑗, 𝑘 ) − 𝐼𝑦 (𝑖, 𝑗, 𝑘 )

)2 (1)

In Equation (1), 𝐼𝑥 (𝑖, 𝑗, 𝑘) and 𝐼𝑦 (𝑖, 𝑗, 𝑘) denote the intensity of
the 𝑘𝑡ℎ color channel at pixel position (𝑖, 𝑗) in the original and
generated images, respectively. Each color channel is a floating-
point number, scaled between 0 and 1. We develop a tool for this

evaluation that waits until the page has fully loaded and render-
ing initialization is complete before saving 𝑁 (𝑁 = 100) consecu-
tive frames of canvas contents. Since the traces from WebGL and
GL2GPU belong to different runs, we match the frames captured
from both to compute the MSE.

We modified the benchmarks to minimize inconsistencies across
multiple runs. The modifications are as follows: (1) We disabled
antialiasing and set the HTML canvas element size to 1024 pixels for
both height and width. (2) We replace the default random number
generator Math.random() with a pseudo-random number genera-
tor, which ensures the controllable generation of random numbers.
(3) We replace the performance.now()with a linear function. This
JavaScript function originally generates a high-resolution times-
tamp in milliseconds, which fails to deliver consistent return values
in different runs.

Figure 4 illustrates examples of the canvas content of frames
before and after translation for the three benchmarks, showing the
matched frames. The comparison reveals minimal differences be-
tween theWebGL-rendered images and those generated byGL2GPU.
Specifically, the average MSE across 100 consecutive frames is
1.50 × 10−3 for the MotionMark benchmark, 1.87 × 10−3 for the
JSGameBench benchmark, and 5.37 × 10−3 for the Aquarium. A
similar pixel-by-pixel comparison of images rendered on a Mac-
Book M1 and a PC with an AMD 6900XT using the baseline WebGL
for the Aquarium benchmark showed an MSE of 5.89 × 10−3. The
MSE error of GL2GPU is smaller than the difference observed be-
tween two hardware platforms, validating GL2GPU’s effectiveness
in maintaining visual consistency.

4.3 Performance
4.3.1 Scalability. Following previous research [10, 14, 15, 27], we
measure the time spent on rendering a single frame (denoted as
frame time, FT) to evaluate the performance improvement delivered
by GL2GPU. A lower FT indicates better performance. We adjust
the complexity of the rendering scene by changing the number
of rendered objects. We compare the end-to-end rendering perfor-
mance of the original WebGL backend, denoted as 𝑡webgl, with the
performance achieved by our method, denoted as 𝑡gl2gpu.

Figure 5 presents the evaluation results, which contains three
subfigures, each illustrating the FT results of our evaluation across
varying object counts within the MotionMark, JSGameBench, and
Aquarium. The 𝑥-axis denotes the number of objects rendered:
triangle number inMotionMark, fish number in theAquarium, sprite
number in JSGameBench. The 𝑦-axis of each subfigure denotes the
averaged FT in milliseconds. The performance trends with varying
object counts are similar across different devices. Therefore, we
only present the results drawn from the MacBook Pro M1 due to
space constraints.

The results indicate that GL2GPU demonstrates a pronounced
improvement in end-to-end rendering performance compared to na-
tive WebGL as the rendering backend. This improvement becomes
evident, especially as the rendering scene becomes complicated.
Moreover, we also find that the 𝑡webgl tends to increase linearly as
the number of rendered objects increases. However, for 𝑡gl2gpu, we
observe that the slope of the FT is not a constant in MotionMark.
For instance, in Figure 5(a), the slope decreases between 𝑥 = 0.7 to
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Figure 5: Frame times across different benchmarks with varying object numbers (lower is better).

Table 1: Frame times (FT, in milliseconds) and reduction in FT across multiple devices. The columns labeled 𝑡webgl and 𝑡gl2gpu
represent the FT in milliseconds for the WebGL baseline and GL2GPU, respectively. Columns marked with ↓ indicate the
reduction in FT.

OS Device MotionMark JSGameBench Aquarium

𝑡webgl 𝑡gl2gpu ↓ 𝑡webgl 𝑡gl2gpu ↓ 𝑡webgl 𝑡gl2gpu ↓
MacOS MacBook Pro M3 482.4 125.0 74.1% 647.7 351.8 45.7% 497.5 280.2 43.7%
MacOS MacBook Pro M1 596.9 156.0 73.9% 822.7 478.3 41.9% 610.3 350.6 42.6%
Windows PC with AMD 6900XT 280.8 121.6 56.7% 615.7 410.0 33.4% 268.4 172.3 35.8%
Windows PC with Nvidia RTX3070 320.4 125.8 60.7% 646.6 522.1 19.3% 249.1 184.1 26.1%
Windows PC with AMD 7840HS 420.4 166.7 60.3% 956.2 885.0 7.4% 239.4 231.5 3.3%
Windows PC with Nvidia GTX1650 970.1 395.5 59.2% 1,912.4 1,798.3 6.0% 696.9 491.9 29.4%
Windows PC with Intel 8265U 1,162.9 362.6 68.8% 3,069.5 2,383.3 22.4% 892.3 553.4 38.0%
Android Mobile Redmi K60 2,406.2 295.3 87.7% 2,058.4 1,048.4 49.1% 1,756.8 763.9 56.5%
Android Mobile Oppo Find X3 2,601.4 469.3 82.0% 3,366.9 1,298.9 61.4% 2,582.5 935.9 63.8%
Android Mobile Redmi Note 11T Pro 1,412.0 440.3 68.8% 2,025.2 1,478.6 27.0% 1,174.1 1,098.7 6.4%

0.8 and 0.9 to 1.0. This phenomenon is because as scene complexity
increases, GL2GPU can reuse existing WebGPU resources, which
may prevent the rendering time from increasing linearly with scene
complexity.

We present the detailed FT on this MacBook in the second row
of Table 1, where the device name is “MacBook Pro M1”. The per-
formance gains achieved with GL2GPU are significant across all
tested scenarios. At the highest tested object count of 500,000, the
average FT for the MotionMark is reduced from 596.9 ms to 156.0
ms, equating to an FT reduction of 73.9%. Similar improvements are
also observed in the JSGameBench and Aquarium, where GL2GPU
reduced the average FT to 478.3 ms and 350.6 ms, respectively,
thereby achieving FT reductions of 41.9% and 42.6% compared to
the baseline. The results indicate that GL2GPU exhibits the most
substantial improvement in theMotionMark, followed by Aquarium,
and then JSGameBench.

The differences in the improvement are attributed to the dif-
fering complexities of the WebGL global state across benchmarks.
MotionMark does not involve texture processing, and its global state
transitions are infrequent, making CPU-GPU communication a per-
formance bottleneck. GL2GPU enhances performance significantly
by reusing resources, thus reducing the overhead of CPU-GPU com-
munication. Both JSGameBench and Aquarium involve extensive
texture processing. However, the scene’s complexity in Aquarium
necessitates complex WebGL global state configurations, leading to

frequent context switches that increase the CPU time when execut-
ing the WebGL baseline. GL2GPU mitigates this overhead through
context caching and render bundle packaging. In contrast, the scene
in JSGameBench does not require complex context switches, hence
the limited performance improvement with GL2GPU.

4.3.2 Adaption on Heterogeneous Devices. We evaluated the per-
formance improvement of GL2GPU on heterogeneous devices. Ta-
ble 1 demonstrates the FT on three benchmarks when rendering
500,000 objects across our experiment devices, with each bench-
mark comprising three columns of data: the baseline FT for WebGL
(𝑡webgl), the FT after translation via GL2GPU (𝑡gl2gpu), and the per-
centage of FT reduction achieved by GL2GPU (↓, calculated by
𝑡webgl−𝑡gl2gpu

𝑡webgl
× 100%). The evaluation results reveal that equipped

with GL2GPU, all the devices show a markable improvement in ren-
dering FT across different benchmarks. For instance, the MacBook
M3 exhibited performance gains in all three benchmarks, most
notably in the JSGameBench benchmark with a 46.82% improve-
ment. Additionally, with the same operating system, an increase
in hardware specs reduces the FT. The results further highlight
the variability of GL2GPU’s impact on reducing FT across different
operating systems and devices.

The experimental results demonstrate that the average frame
time was reduced by 45.05%. The frame time reduction varied across
different operating systems. For instance, on theWindows platform,
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Table 2: Frame times (in milliseconds) across different
GL2GPU configurations.

Benchmark GL2GPU No-C No-L1C No-GU No-B

MotionMark 156.0 9,060.2 1,131.1 > 105 221.0
JSGameBench 478.3 > 105 1,810.1 > 105 571.8
Aquarium 350.6 > 105 3,143.3 > 105 354.6

a PC with an Nvidia GTX1650 GPU showed a 29.4% improvement
in the Aquarium benchmark. In contrast, a laptop with an Intel
8265U integrated GPU showed a 38.0% improvement. On Redmi K60,
GL2GPU achieved an average performance improvement of 64.43%,
in which the FT of MotionMark decreased from 2,406.2 ms to 295.3
ms, representing an 87.7% improvement. This variation is primarily
due to differences in the implementation of native graphics drivers
(like OpenGL, Vulkan, and Direct3D) across different operating
systems.

4.4 Ablation Study
We conduct an ablation study to validate the performance opti-
mization mechanisms proposed in the design of GL2GPU. Table 2
presents the FT evaluation results for GL2GPU on the MacBook M1
device under five different configurations. Specifically, the column
labeled “GL2GPU” contains the FT of GL2GPUwith all optimization
mechanisms. Column “No-C” represents FT with the cache mecha-
nism removed; “No-L1C” denotes FT without the Layer-1 Cache;
“No-GU” indicates FT without the uniform batching mechanism;
“No-B” shows FT without the bundle management.

ForMotionMark, GL2GPU with all optimizations enabled records
an FT of 156.0 ms. Removing the bundle design results in an FT of
221.0 ms, while removing the cache design leads to an FT of 9,060.2
ms, and removing the first layer of cache results in an FT of 1,131.1
ms. Similar trends are observed in JSGameBench andAquarium. Our
findings indicate that removing the uniform optimization results in
execution times exceeding 10 seconds across all three benchmarks.
Similarly, removing the entire cache optimization leads to FT greater
than 10 seconds in both JSGameBench and Aquarium. Only when
removing the first caching layer or the bundle optimization does the
FT drop below 10 seconds. Among these, the impact of removing
the bundle optimization is significantly less detrimental than that
of removing the first caching layer. However, regardless of the
optimization mechanism removed, the final performance is worse
than that of GL2GPU with all optimizations included. The results
of our ablation study validate the effectiveness of the key design of
GL2GPU.

5 Related Work
WebGPU. In recent years, there has been a surge in research fo-
cusing on WebGPU, aiming for shader testing, security enhance-
ments, and rendering performance improvements. Levine et al. in-
troduced a technique for testing memory consistency in WebGPU
Shader Language (WGSL) [43, 44]. FusionRender [10] enhances
end-to-end performance by merging object signatures in WebGPU.
NNJit [35] enables just-in-time (JIT) auto-generation of optimized

WGSL kernels for edge devices. Ferguson et al. explored cache at-
tacks in WebGPU to identify browser clients through side-channel
attacks [21]. Giner et al. employed side-channel attack techniques
to conduct memory leakage attacks on WebGPU [25]. Practical
applications of WebGPU are also studied [12, 17, 32, 33, 56, 67].
GL2GPU focuses on dynamically translating WebGL applications
to WebGPU within the JavaScript runtime to boost end-to-end
rendering performance.

Graphics API Mapping Frameworks.Many efforts have been
made to implement API mapping at the OS level. ANGLE [26] (Al-
most Native Graphics Layer Engine) translates OpenGL ES [40] calls
to other graphics API backends like Direct3D 9 or OpenGL. Recently,
ANGLE has expanded its support to include modern graphics APIs
such as Vulkan [38] and Metal [9]. As a driver for OpenGL ES, AN-
GLE requires adaptation for each specific graphics rendering back-
end API, necessitating substantial development and maintenance
effort. Other API transition layers that preserve the programming
model include Vkd3d [30] and MoltenVK [39]. MoltenVK maps
Vulkan API calls to their Metal equivalents, allowing applications
originally designed for Vulkan to run on Apple’s Metal framework
without altering the underlying programming paradigm. Similarly,
Vkd3d maps Direct3D 12 calls to Vulkan, enabling applications
designed for Direct3D 12 to leverage Vulkan’s capabilities without
requiring changes to the original Direct3D 12 programming model.
In contrast, GL2GPU translates WebGL applications to WebGPU
within the JavaScript runtime, eliminating the need for developing
additional drivers for specific devices to harness the advantages of
WebGPU.

JavaScript Prototype Patching. Researchers use JavaScript’s
inherent flexibility to implement language-level (i.e., in-band) in-
strumentation within JavaScript applications during runtime. Roes-
ner et al. [58] devised a client-side approach for detecting and
categorizing common web tracking techniques. Besides, JavaScript
Zero [60] leverages sophisticated JavaScript functionalities to iden-
tify potential attacks. Furthermore, ObjLupAnsys [46] detects pro-
totype pollution vulnerabilities through object lookup analysis. Ad-
ditionally, OpenWPM [18] utilizes instrumentation to gather data
across various websites. Unlike previous research, our approach uti-
lizes JavaScript prototype patching to capture WebGL invocations
and translate them into WebGPU.

6 Conclusion
In this paper, we have proposed GL2GPU, a novel dynamic WebGL
to WebGPU translator of web graphics rendering applications. We
have designed mechanisms to maintain rendering consistency and
enhance rendering performance significantly. Experimental results
have demonstrated that GL2GPU preserves visual consistency and
significantly improves rendering performance. Our ablation study
has validated the effectiveness of the performance optimization
mechanisms. The extension of GL2GPU to further application-level
optimizations (e.g., bundle prediction) constitutes an exciting av-
enue for future works. By bridging the gap between the widespread
WebGL and the advanced performance of WebGPU, GL2GPU aims
to enhance the current web ecosystem in next-generation multime-
dia and inspire future research in this rapidly evolving field.
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A Web Graphics Rendering API
A.1 WebGL
Introduced by the Khronos Group in 2011 [29], WebGL is a high-
performance graphics API for web browsers, derived from OpenGL
ES (OpenGL for Embedded Systems) [28]. WebGL manages the
rendering context using a global state1, which encapsulates all
configurations necessary for rendering. Developers establish the
rendering context in WebGL by initiating a global state and defin-
ing essential rendering parameters such as color, depth testing,
1A detailed visualization diagram of this global state can be viewed at https://
webglfundamentals.org/webgl/lessons/resources/webgl-state-diagram.html.

and blending modes. They activate shaders to process scene ge-
ometry, create vertex buffers for defining object shapes, manage
texture mapping, and set uniforms and attributes to transfer data
to the shaders, ensuring objects are rendered with accurate visual
properties.

Once the necessary states are configured, the rendering process
can begin. The WebGL driver leverages these states to execute
drawing commands, directing the GPU to render the defined ge-
ometry using the current state configuration, shaders, and textures.
This process culminates in the generation of pixels on the canvas,
resulting in the final image being displayed.

A.2 WebGPU
Introduced in 2017 [68], WebGPU is a cutting-edge web-based
graphics and computation API that leverages modern GPU capabil-
ities. The API design of WebGPU draws inspiration from modern
APIs such as Vulkan[38], Direct3D 12[51], and Metal[9]. Unlike
WebGL, which uses a global state to configure rendering settings,
WebGPU organizes rendering configurations into more indepen-
dent resources. This granular management of resources enhances
the reusability of WebGPU and improves rendering performance.

Command Encoder

Render Pass

Pipeline BindGroup Vertex Buffer

Vertex Layout
Descriptor

BindGroup
Descriptor

Pipeline
Descriptor

Bundle

Array/Texture Updates

WebGPU
Descriptors

WebGPU
Resources

① ① ①
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④

⑤

⑥

(including shaders)

GPU Queue WebGPU
Queue

List of  WebGPU
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Figure 6: The rendering workflow of WebGPU.

As shown in Figure 6, resource creation in WebGPU begins
with defining properties in descriptors (①), including Pipeline,
BindGroup, and VertexBuffer. A Pipeline controls the GPU’s
vertex and fragment shader stages, bind groups define data usage in
shader stages, and vertex buffers store graphical vertex attributes.
The BindGroup defines how the data are used in shader stages,
and the vertex buffer contains the graphical vertex attributes. Next,
resources are packed into a RenderPass (②), which describes a
sequence of GPU-executed rendering operations. Additionally, re-
sources can also be packed into a bundle (③), which is then loaded
into the RenderPass (④), and passed to the command encoder (⑤).
The command encoder encodes commands for GPU execution, and
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the resulting commands, along with necessary buffers and tex-
tures, are submitted to the GPU (⑥). The GPURenderBundle [49] in
WebGPU is a partially encoded RenderPass that can be executed
multiple times within future RenderPasses. This feature, coupled
with JavaScript operations like setBindGroup() and setPipeline(),
reduces CPU overhead by allowing the reuse of pre-encoded com-
mands, optimizing resource utilization and enhancing rendering
efficiency.

A bundle (named GPURenderBundle[49] in WebGPU API) is a
partially RenderPass that is encoded once and can subsequently
be executed multiple times within future RenderPass-es. The pro-
cess of packing resources into a RenderPass is achieved through
WebGPU operations, which is a series of JavaScript calls, such
as setBindGroup() and setPipeline(). The introduction of the
bundles aims to reduce the CPU overhead associated with packing
WebGPU operations within the JavaScript runtime. This unique fea-
ture optimizes overall resource utilization and enhances rendering
efficiency by enabling developers to reuse pre-encoded commands
effectively.
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