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Abstract

Supervised Fine‑Tuning (SFT) adapts pre‑trained Large Language Models
(LLMs) to domain‑specific instructions by training on a carefully curated
subset of high‑quality instruction–response pairs, typically drawn from a
larger dataset that often contains many low‑quality or noisy samples. De-
spite its effectiveness, this quality‑first paradigms often suffer from two
caveats. On the one hand, quality filters are inherently imperfect, many
samples that pass through these filters are not truly high‑quality. On the
other hand, discarding the vast majority of low‑quality or frequently occur-
ring examples may lose potentially valuable signal. As much of the readily
available instruction-following data online has already been utilized, fur-
ther improvements now depend on leveraging, rather than discarding, the
examples that were previously filtered out. To address these two issues, we
introduce ENTP, which stands for Enhancing low-quality SFT data via
Neural-symbolic Text Purge-Mix. Similar to the ENTP personality type
from MBTI, ENTP is creative in enhancing the low-quality data via purg-
ing (noisy information removal) and mixing (with extracted information
from all available data and model knowledge). Specifically, the symbolic
component identifies and isolates low-quality raw corpora using statisti-
cal priors, while the connectionist component extracts latent representa-
tions to guide the reconstruction of missing or corrupted information. This
synergy generates hybrid instruction-response pairs that augment informa-
tional value while preserving corpus diversity. Our experiments demon-
strate that fine-tuning LLMs on data augmented by ENTP, which are de-
rived solely from low-quality sets, consistently outperforms 13 established
data‑selection methods across 5 standard instruction‑following benchmarks.
Notably, it can even surpass fine-tuning on the full original dataset (≈300K
examples). Our findings demonstrate that ostensibly low-quality data is a
critical resource; leveraging it through intelligent purification and synthesis
is key to efficient and effective instruction alignment.

1 Introduction

LLMs have demonstrated exceptional performance in a plenty of downstream tasks, ranging
from natural language understanding to generative AI applications (Zhang et al., 2024b;
Cheng et al., 2024; Tayebi Arasteh et al., 2024; He et al., 2024; Wei et al., 2025b; Biswas &
Talukdar, 2024). A pivotal technique that has contributed to enhancing the effectiveness of
LLMs is Supervised Fine-Tuning (SFT), also known as Instruction Tuning. SFT involves fur-
ther training a pre-trained LLM on a curated dataset comprising instruction-response pairs,
aligning the model’s responses more closely with human preference or expectations (Wei
et al., 2025a; Gupta et al., 2025; Yu et al., 2025). This process bridges the gap between the
model’s inherent next-word prediction capabilities and the nuanced understanding required
for specific tasks.
However, some studies have demonstrated that, during the SFT phase, the quality of data
becomes more crucial than the quantity (Zhou et al., 2023). This highlights the importance
of high-quality data selection for SFT, which can greatly reduce training costs and improve
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/Perfect/ Imperfect Corpora;/ : Selected High/ Low-Quality Corpus;:

(b) ENTP (Ours): Low-Quality Corpus Fusion Paradigm
Low-Quality Part Purification

(a) Classical Data-Selection Paradigm
Corpus High-Quality Part Corpus Corpus Fusion

Merged Corpus

(c) Legend

Figure 1: Traditional “quality‑first” paradigm (a) v.s. our proposed paradigm (b). Part(a)
represents the traditional data-selection paradigm, where only the high-quality data is se-
lected (encircled by a green circle); Part (b) illustrates our proposed paradigm, which ex-
ploits information from neglected low-quality corpora to generate more expressive synthetic
corpora. Part (c): the legend includes Non-regular circles (corpora with varying degrees
of imperfections), Regular circles (larger diameters correspond to more information). Each
symbol is color-coded to represent a distinct corpus.

efficiency. Earlier studies have designed rule-based systems in conjunction with empirical
metrics, such as perplexity and completion length, to perform data filtering (Gao, 2021).
Recently, using LLMs as data selectors has become a mainstream paradigm for high-quality
data selection (Liu et al., 2024a; Wei et al., 2024; Pang et al., 2025; Zhao et al., 2023).
Detailed discussion is given in Appendix A. Although significant attention has been directed
toward the extraction of high-quality raw data, a persistent yet underappreciated limitation
has emerged. Most publicly accessible data on the internet have already been incorporated
into existing datasets, resulting in a scarcity of untapped high-quality raw data. Besides,
the high-quality native data within widely used public datasets have largely been exhausted,
and such data typically constitute less than 10% of the total dataset volume (Pang et al.,
2025; Xia et al., 2024; Li et al., 2024b). Consequently, due to insufficient new data sources,
continued reliance on this small subset of high-quality native data for SFT places inherent
constraints on further scaling the capabilities of LLMs, revealing a fundamental limitation of
the high-quality data selection paradigm. This observation is also supported by experiments
from several other studies (Wang et al., 2024).

Purge + Mix of the Low Quality Data In Figure 1, to alleviate the shortage of the
high-quality raw data, we propose a novel paradigm (part (b)) that leverages low quality
raw corpora, in contrast to the typical paradigm of extracting high quality subsets from
raw corpora (part (a)). Specifically, our approach builds on the traditional data selection
paradigm, initially partitioning data into high- and low-quality sets via calibrated LLM
scores. Subsequently, all low-quality corpora are input into the purification stage, where key
representations, such as important terms or potential matching patterns from instruction-
response pairs, are extracted. In the following corpora fusion stage, all input representations
are integrated into a new synthetic corpus. This new synthetic corpus retains most of
the key features from the sourced corpora while also providing additional complementary
information, thereby significantly enhancing the expressive capability of each data instance.
The final step involves combining the high-quality corpus with the synthetic corpus to form
the blended dataset. Our key contributions are summarized as follows:

• A Novel Paradigm of Corpora Fusion: We propose ENTP, which first extracts
predefined knowledge from the input corpus using a set of explicit symbolic rules, and
subsequently leverages LLMs to enrich this knowledge with supplementary information,
yielding a merged corpus that exhibits substantial informational depth and encapsulates
knowledge across multiple dimensions.

• Empirical Observations: Extensive experiment results reveal two key findings: (1)
Low-quality data makes a non-trivial contribution and should not be overlooked, align-
ing with the scaling‐law conclusion; (2) Fine-tuning 3 representative LLMs on the syn-
thetic dataset surpasses 13 baselines across 5 commonly used benchmarks. These base-
lines encompass 4 LLM-free approaches, 6 LLM-based methods, as well as native low-
quality/high-quality datasets and full-data configurations.
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2 Preliminary

In this section, we introduce the essential technology underpinning ENTP: Score Transition
Matrix, which estimates the transition probabilities between observed and unseen ground
true labels to correct noisy labels. Besides, ENTP also builds upon another well-established
preliminary, Average Silhouette Score, evaluating clustering quality by balancing cohesion
and separation. Its technical details are given in the Appendix B.1.

Score Transition Matrix Recent studies have demonstrated that LLM-based data-
quality assessment suffers from knowledge inconsistency, whereby the identical data may
receive different and occasionally vastly divergent scores depending on the LLM em-
ployed (Zheng et al., 2024; Pang et al., 2025). To detect and correct potential errors in
the raw LLM‐generated scores, ENTP employs the Score Transition Matrix (Zhu et al.,
2021), modeling misclassification probabilities under the clusterability condition. This en-
ables error adjustment without ground-truth annotations.
Following the same setup as Pang et al. (2025), our sourced corpora set D, composed of N
corpus-score pairs, is defined as D := {xn, ỹn}Nn=1, where xn stands for the embedding vector
of the nth corpus generated by the embedding model1, and ỹn represents the corresponding
raw LLM-rated score. Meanwhile, yn denotes the unseen ground-truth score. In our setting,
both ỹn and yn are assumed to lie within the same discretized K-class classification space
Y . We have K = 6, where all LLM-rated scores span from 0 to 5. The score transition
matrix T(x) is defined as a K ×K square matrix indexed by the feature-space embedding
x. Its entry, Ti,j(x), denotes the probability that an unseen ground-true label i is flipped
to an observed label j. Applying this theory to our problem setting, Ti,j(xn) is defined as
follows:

Ti,j(xn) = P(ỹn = j|yn = i, xn), n ∈ [N ], i, j ∈ [K].

Remark. The sets [N ] = {1, 2, ..., N} and [K] = {0, 1, ...,K − 1} are as above. In the ideal
case where ỹn = yn for all n ∈ [N ], T(x) becomes the identity matrix I, signifying zero
misclassification error. Consequently, the deviation of T(x) from I quantifies the error rate
in the raw LLM-generated scores.

3 ENTP: Enhancing Low-Quality SFT Data via
Neural-Symbolic Text Purge-Mix

Merged
Corpus

Merged
Corpus

Selected/ Unselected 
Corpus: 

Score Correction ...

Cluster Center Serves 
As Representative 
Corpus:

Step 3: Corpus Fusion

/

Step 2: Representative Corpus Selection

Intra-Cluster FusionEmbedding SpaceLLM RatingRaw Corpora Target Scores: [0,1,2]

Step 1: Low-Quality Dataset Construction 

2

5

1

4

0

3

Inter-Cluster Fusion

Figure 2: Overview of ENTP. Step (1) separates the corpora into two subsets based
on corrected LLM scores: high-quality (scores 3–5) and low-quality (scores 0–2); Step (2)
clusters the raw low-quality corpora by inter-corpus similarity and then selects the repre-
sentative corpora for each cluster; Step (3) integrates connectionist and symbolism to fuse
corpora through an iterative multi-step process, offering Intra-Cluster Fusion, combining
representative corpora within the same cluster, and Inter-Cluster Fusion, merging those
from different clusters; yielding hybrid datasets that preserve diversity while enriching in-
formational value.

We introduce ENTP, which consists of: Low-Quality Dataset Construction, One-Hop
Cluster-Based Representative Selection, and Neural-Symbolic Two-to-One Corpora Fusion,
a workflow is given in Figure 2.

1Hugging Face Embedding Model Used In ENTP: BAAI/bge-large-en-v1.5
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3.1 Step 1: Low-Quality Dataset Construction

We begin by prompting one of the most intelligent LLMs, gpt-4o-mini2, to assign quality
scores to each sample tuple (Instruction, Input, Response). These scores reflect multi-
ple dimensions of interest, such as rarity, complexity, and informativeness. We adopt the
prompt template from DS2 (Pang et al., 2025), where the complete prompt is included in
the Appendix C.1 for reference.

LLM-Rating Score Correction Because the LLM-generated ratings often suffer from
inaccuracy and inconsistency, we integrate a rating correction step inspired by Zhu et al.
(2021):
Theorem 1. (K-NN Score Clusterability) Sourced Corpora D satisfies K-NN Score
Clusterability if ∀ n, the embedding vector xn and its k-Nearest Neighbors xn1

, ..., xnk
belong

to the same ground-truth class.
Remark. Although T cannot be computed directly due to inaccessibility to the ground-truth
scores, an effective estimation method is provided by Zhu et al. (2021).

Score Transition Matrix & Consensus Vectors Our objective can be cast as a K-
class classification task, where, given the raw corpus and the corresponding LLM-generated
score, the goal is to determine which ground-truth score should be assigned. The probability
distribution of the ground truth score is defined as p := [P(ỹn), n ∈ [N ], i ∈ [K]]T , and the
score transition matrix is given by Tg = T·Hg, ∀g ∈ [K], where Hg := [eg+1, ..., eK , e1, ..., eg]
is a cyclic permutation matrix. eg denotes a K×1 column vector with a 1 in the g-th position
and 0s elsewhere. The matrix Hg cyclically shifts each column of T to the left by g positions.
We define (i + g)K := [(i + g − 1) mod K] + 1 as the index resulting from a cyclic shift by
g positions within a range of size K. Therefore, the corresponding first-, second-, and the
third-order consensus vectors are defined as follows:

q[1] :=[P(ỹ1 = i), i ∈ [K]]T = TT p ,

q[2]
z :=[P(ỹ1 = i, ỹ2 = (i+ z)K), i ∈ [K]]T = (T� Tz)

T p ,

q[2]
z,g :=[P(ỹ1 = i, ỹ2 = (i+ z)K , ỹ3 = (i+ g)K), i ∈ [K]]T = (T� Tz � Tg)

T p , (1)

where ỹ1−3 denote the LLM-rated scores for three embedding vectors x1, x2, x3. x2 and
x3 are top-2 nearest neighbors of x1 in the embedding space. These consensus vectors
capture the probability that neighboring embedding features are assigned identical scores,
effectively embedding the score transition dynamics into the measure of score agreement.
More importantly, all consensus vectors can be estimated by analyzing the distribution of
raw LLM-rated scores. Eq. 1 provides the theoretical foundation for inferring T and p from
the estimated consensus vectors (Zhu et al., 2021). Liu et al. (2023) and Zhu et al. (2021)
further established that, under the third-order consensus vector setting, the problem can be
effectively solved to recover accurate estimates of T and p. With T and p estimated, we can
straightforwardly apply Bayes’ theorem (Joyce, 2003) to infer the most likely ground-truth
score conditioned on the observed LLM-rated score and the input corpus.
Drawing inspiration from the LLM-based data selection (Pang et al., 2025) and heuristic
noisy data identification (Zhu et al., 2021), this step integrates these two paradigms, starting
with LLM Rating and Score Correction, to derive corrected overall scores, denoted as so,
ranging from 0 to 5 for all raw samples. As depicted in Figure 2 (Step 1), the raw dataset
is partitioned into two subsets based on these scores: the low-quality set defined as Slq =
{so|so ∈ [0, 1, 2]}, and the high-quality set defined as Shq = {so|so ∈ [3, 4, 5]}.

3.2 Step 2: One-Hop Cluster-Based Representative Selection

After isolating the low-quality subset, this step selects a representative subset of observa-
tions that best captures its defining characteristics. As shown in Figure 2 (Step 2), we
randomly select a corpus as the cluster centroid, compute cosine similarities with all other
corpora, and assign to the same cluster any corpus with a similarity of at least 0.9. This

2gpt-4o-mini-2024-07-18
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forms a One-Hop Cluster, where each member is within one similarity-threshold “hop” of
the centroid. Such clusters capture latent similarities and preserve inter-data diversity, en-
hancing representation without over-homogenization.
Next, we apply k-means clustering (MacQueen, 1967) to partition each initial cluster into
sub-clusters, determining the optimal number of sub-clusters (k) by evaluating clustering
quality over a predefined range of k values using the Silhouette method (Rousseeuw, 1987),
where its detailed calculation is provided in the Appendix C.2. For any initial cluster com-
prising at least two sub-clusters of three or more corpora, two representative corpora are
chosen from each sub-cluster. The first representative, r0, is selected based on the highest
cosine similarity to the averaged embedding vector of the sub-cluster. To promote diversity,
we adopt a Maximal Marginal Relevance-inspired scoring function (MMR Score) parameter-
ized by α (Carbonell & Goldstein, 1998). Once r0 is determined, we compute the MMR score
for each remaining corpus within the sub-cluster. The entire procedure can be computed as
follows:

Given: ravg =
1

N

∑
ra∈R

ra(.), N = |R|; r0 = arg max
ra∈R

Sim(ra, ravg); S = {r0}

⇒ MMR Score(ri) = arg max
ri∈R\S

[
α Sim(ri, ravg) − (1− α) max

rj∈S
Sim(ri, rj)

]
,

where R and S denote the candidate set comprising all corpora from the same sub-cluster
and the selected set of representative corpora (with first element r0), respectively; N is
the cardinality of the set R (i.e., the number of its elements); and ravg stands for the
component‑wise mean (centroid) vector computed over all vectors in the candidate set R.
To compute the MMR score for selecting additional representatives, ri ∈ R\S signifies that
ri lies in the set‑difference of R and S — that is, it is a member of the candidate set R
but has not yet been selected into S. Sim(·, ·) represents the cosine-similarity operation,
and α ∈ [0, 1] is the weighting parameter that controls the trade‑off between relevance and
diversity — smaller values of α place greater emphasis on selecting corpora that lie farther
from the cluster center.
In the alternative scenario, when a resulting sub-cluster contains fewer than three vectors,
all vectors in that sub‑cluster are selected as representative vectors. We provide Algorithm 1
in the Appendix C.2.

3.3 Step 3: Neural‑Symbolic Two-to-One Corpus Fusion

Symbolic Loss

Symbolic Prompt Optimizer

Symbolic Prompt Optimizer

Back Propagation

Optimal Merged Corpus ABFinal Answer Update

Strategy SelectionDomain Analysis Merged Corpus Generation Information Completeness DetectionCorpus A
& 

Corpus B

Final Answer Check

Logic Flow of Step 3

Symbolic Loss

Back Propagation

Cycle 2 Cycle 1

Figure 3: Logic flow of Step 3: all purple blocks represent the connectionist components,
corresponding to different LLM-invoking operators, while all orange blocks stand for the
symbolic components, involving the utilization of symbolic rules. Step 3 effectively com-
bines the generalization capability of connectionism with the explicit symbolic rule, thereby
achieving the purification, and fusion of the low-quality corpus.

As shown in Figure 3, the black arrow denotes the forward pass, where each module’s output
feeds into the next in sequence. The red arrow signifies back‑propagation: the prompt
template modified in the later Symbolic Prompt Optimizer is propagated back to the earlier
Merged Corpus Generation/ Final Answer Check operator to update the corresponding
content of the merged corpus. The complete process is comprised of a preparation step and
two sequential cycles. Full details are provided in the Appendix C.3.

Preparation Step We first provide the LLM with the prompt template PDA to perform
domain analysis of the input corpus pair, after which their relationship is classified as same-,
related-, or unrelated-domain. To generate the merged corpus, we provide the LLM with
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nine relation-dependent strategies inspired by writing-studies literature (Nelson & King,
2023; Knobel, 2017; Bazerman, 2003), rather than letting it autonomously search for an
optimal fusion paradigm. Relying solely on the LLM’s internal priors greatly increases
reasoning time and cost, whereas supplying external, stable prior knowledge narrows the
search space, reduces computation, and accelerates convergence toward human-preferred
outcomes. For each relation category, three natural-language fusion strategies incorporating
prior knowledge are provided, yielding S = {Ssame, Srel, Sunrel}. Hence, F(PDA(CA, CB)) =
S, S ∈ S, where F(.) denotes the LLM operator, and CA, CB stand for the input corpus
pair.

Cycle 1 After obtaining the fusion strategies from the preparation step, we generate the
initial merged corpus via the Merged Corpus Generation (MCG) operator, which serves as
the starting point of the first cycle. This corpus is then passed to the Information Com-
pleteness Detection (ICD) operator, with prompt template PICD, to compute the symbolic
loss LSym. The symbolic loss, essentially a JSON object, specifies which information in the
current merged corpus should be removed or retained. It is subsequently provided to the
Symbolic Prompt Optimizer (SPO) to update the prompt template PMCG for the MCG
operator in the next iteration, marking the end point of the entire iteration. This cycle is
dedicated to generating the optimal “### User” session3. Thus, the complete first cycle
is formulated as:
F(P i

MCG(CA, CB,S)) = Ci
AB ⇒ F(PICD(Ci

AB)) = LSym ⇒ SPO(P i
MCG,LSym) = P i+1

MCG .

⇒ The (i + 1)th iteration : Starting From F(P i+1
MCG)

Remark. Ci
AB indicates the ith generated merged corpus from the source corpora; P i+1

MCG
represents the updated prompt template for the MCG operator used in the next iteration.

Consequently, the task of determining the optimal merged corpus in this cycle can be framed
as an optimization problem, where the objective is to identify the optimal prompt template
P∗

MCG that minimizes the symbolic loss of the finalized merged corpus CAB. This can be
mathematically expressed as follows:

P∗
MCG = arg min

PMCG

LSym = arg min
PMCG

F(PICD(F(PMCG))) ⇒ CAB = F(P∗
MCG) .

Cycle 2 Once this optimal “### User” session is determined, its corresponding “###
Assistant” session3 is fed into the second cycle, beginning with the evaluation of the final
answer driven by the Final Answer Check (FAC) operator using prompt template PFAC.
The symbolic loss corresponding to the current answer content is then produced by the
FAC operator and input to the SPO operator. As in Cycle 1, the prompt template for
the Final Answer Update (FAU) operator, PFAU, is updated to revise the current answer
content, marking the end of this iteration and preparing for the next. Therefore, the entire
Cycle 2 is formulated as:

F(PFAC(Ci
c1)) = LSym ⇒ SPO(P i−1

FAU,LSym) = P i
FAU ⇒ F(P i

FAU(Ci
c1)) = Ci+1

c1 .

⇒ The (i + 1)th iteration

Remark. Ci
c1 denotes the optimal merged corpus generated from the Cycle 1, equivalent

to CAB when i = 1. Additionally, P0
FAU denotes the initial prompt template for the FAU

operator. Similar to the Cycle 1, determining the optimal answer is posed as finding the
prompt template P∗

FAU that minimizes the symbolic loss of the finalized answer from Cc1,
expressed as:

P∗
FAU = arg min

Pi
FAU

LSym = arg min
Pi

FAU

F(PFAC(F(P i−1
FAU))) ⇒ Cc1 = F(P∗

FAU) .

This implies that the optimal P∗
FAU corresponds to the prompt template from the previous

iteration, as this cycle updates the answer for iteration i + 1 using the loss from iteration
3ENTP-generated merged corpus consists of paired “### User” session (containing all the

necessary context and the relevant question) and “### Assistant” session (containing the corre-
sponding answer).
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i. Overall, Cc1 encompasses both the optimal final answer derived from the current cycle
and the corresponding optimal question from the preceding cycle, collectively representing
a valid merged corpus generated by ENTP. Full Algorithm 2 is given in Appendix C.3, and
a comprehensive workflow is depicted in Figure 5 (Appendix C.3.2).

4 Experiments Table 1: Sourced Corpora Components
Datasets Stanford Alpaca Flan V2 Open-Assistant 1 WizardLM Dolly Overall
Data Size 52K 100K 33K 100K 15K 300K

4.1 Experimental Setup

Source Corpora We select different proportions of five instruct-following datasets as the
source corpora in ENTP, including Stanford Alpaca (Taori et al., 2023), Flan_v2 (Longpre
et al., 2023), Open Assistant 1 (Köpf et al., 2023), and WizardLM (Xu et al., 2024b),
Dolly (Conover et al., 2023). Complete statistics of our sourced corpora are provided in
Table 1. Additional details of data pool are listed in Appendix D.1.1.

Evaluation Dataset & Metrics In order to demonstrate the validity of our merged
corpora, we adopt five tasks from the OpenLLM Leaderboard as benchmarks for evaluation:
MMLU (Hendrycks et al., 2020), TruthfulQA (Lin et al., 2021), GSM8K (Cobbe et al., 2021),
BBH (Suzgun et al., 2022), and TyDiQA (Clark et al., 2020). For MMLU, TruthfulQA,
GSM8K, and BBH, we use Exact Match (EM) as the evaluation metric. For TyDiQA, we
report the 1-shot F1 score. Comprehensive details about our evaluation benchmarks are
presented in Appendix D.1.2.

Base Models & Rating Model We adopt three widely recognized open-source LLMs
as our base models: Qwen2.5-7B (Team, 2024), LLaMA-3.1-8B (Grattafiori et al., 2024),
and Mistral-7B-v0.3 (Jiang et al., 2023). These models are fine-tuned on datasets derived
from various baseline methods, with the aim of evaluating the performance of ENTP. In
addition, we use gpt-4o-mini2 as our rating model.

Baselines The full set given by ENTP consists of 54888 samples drawn from the LQ
Set (123786 samples): 15488 samples are obtained via intra-cluster fusion, and 39400 via
inter-cluster fusion. We adopte 13 representative data‑selection methods for comparison,
applying each to the LQ Set for fair comparison, including: 1 Vanilla Base Model; 2
LQ Set & HQ Set represent the low/high-quality set (samples with the curated score in
range [0, 2]/[3, 5]), obtained from Full Set; 3 Full Set (≈ 300K samples); 4 Completion
Length utilizes the length of the whole corpus as an indicator to assess to sample quality;
5 KNNi is defined as the Average Euclidean Distance from each raw embedding vector to
its i nearest neighbors; 6 Perplexity; 7 Random Selection; 8 AlpaGasus (Random) (Chen
et al., 2023) employs gpt-4o-mini2 to score each sample and retains only the highest-rated
samples for fine-tuning; and: 9 IFD (Li et al., 2024b); 10 Superfiltering (Li et al., 2024a);
11 DEITA (Liu et al., 2024b); 12 RDS+ & RDS+ (best) (Ivison et al., 2025); 13 DS2 (Pang
et al., 2025); 14 LESS (Xia et al., 2024); 15 MathFusion (Pei et al., 2025); 16 Evol-
Instruct (Xu et al., 2024b); 17 Self-Instruct (Wang et al., 2023b); 18 1-to-1 Rewriting/
Enhancement; 19 Direct Corpora Fusion Without Step 2&3; 20 Direct Corpora Fusion
Without Step 3. Comprehensive details of all baselines are provided in the Appendix D.1.3.

Implementation Details. In the one-hop clustering stage, ENTP sets the cosine sim-
ilarity threshold to 0.9. For representative corpus selection, we set α = 0.2 to encourage
diversity. The gpt-4o-mini2 model is used as the API-accessed LLM in ENTP, with tem-
perature set to 0.4 during the DA operator to encourage broader exploration, and 0.2 for
all other modules to ensure consistency. In the two-to-one corpus fusion step, we propose
two configurations: intra-cluster fusion, where multiple corpora from the same cluster are
progressively merged until a single representative corpus is obtained; and inter-cluster fu-
sion, where two corpora from different clusters are merged in a single pass. Besides, we limit
regeneration attempts to 3.
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Table 2: Performance comparison on the OpenLLM leaderboard. The default data
size is 54888. The fine-tuning base model is Mistral-7B-v0.3. Best and second-best results
on average are highlighted in bold red and bold black, respectively. Performance changes
of ENTP w.r.t. the LQ Set across all benchmarks are also reported.

Dataset MMLU
(EM ↑)

TruthfulQA
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Mistral-7B-v0.3
Vanilla Base Model 59.7 30.4 38.0 47.6 54.8 46.1
LQ Set (123786) 47.5 43.7 43.5 52.7 41.1 45.7
HQ Set (131247) 58.4 39.2 46.0 55.5 52.5 50.3
Full Set (300932) 60.0 43.5 43.5 52.5 53.4 50.6
Completion Length 25.4 43.5 43.0 55.7 45.8 42.7
KNN10 53.7 43.7 40.0 54.4 39.5 46.3
Perplexity 53.8 41.8 34.5 54.8 41.9 45.4
Random Selection 52.8 42.0 41.5 56.7 48.4 48.3
AlpaGasus (Random) 53.8 48.5 44.5 55.6 41.5 48.8
IFD 40.3 43.8 44.0 49.5 33.6 42.2
Superfiltering 51.8 40.7 45.0 52.6 37.8 45.6
DEITA 44.5 39.9 43.5 50.2 46.1 44.8
DEITA (Our Curated Score) 52.2 36.6 44.0 54.3 51.7 47.8
RDS+ 47.9 41.1 43.0 52.9 41.8 45.3
RDS+ (Best) 51.0 43.4 46.0 54.9 44.6 48.0
DS2 48.7 44.1 47.5 55.1 46.9 48.5
LESS 54.1 46.2 44.0 53.8 50.5 49.7
MathFusion 50.8 59.6 44.5 52.8 41.4 49.8
Evol-Instruct 54.0 57.5 33.5 53.1 42.8 48.2
Self-Instruct 53.1 43.8 45.0 55.2 50.9 49.6
1-to-1 Rewriting/ Enhancement 47.3 42.4 41.5 49.4 49.9 46.1
Direct Corpora Fusion Without Step2&3 40.4 41.4 37.5 48.8 50.7 43.8
Direct Corpora Fusion Without Step3 45.9 42.8 40.0 50.0 50.3 45.8
ENTP 58.6 (+11.1) 43.0 (-0.7) 44.0 (+0.5) 53.8 (+1.1) 58.3 (+17.2) 51.5 (+5.8)

Table 3: Performance comparison on the OpenLLM leaderboard. The default data
size is 54888. The fine-tuning base model is Llama-3.1-8B. Best and second-best results on
average are highlighted in bold red and bold black, respectively. Performance changes of
ENTP with respect to the LQ Set across all benchmarks are also reported.

Dataset MMLU
(EM ↑)

TruthfulQA
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Llama-3.1-8B
Vanilla Base Model 64.1 32.9 58.0 55.3 22.1 46.5
LQ Set (123786) 52.7 44.3 57.0 61.0 43.9 51.8
HQ Set (131247) 62.3 41.8 57.5 59.3 58.9 56.0
Full Set (300932) 63.5 42.0 61.0 59.1 62.8 57.7
Completion Length 59.5 45.8 60.0 58.6 61.2 57.0
KNN10 59.3 37.6 52.0 59.5 55.7 52.8
Perplexity 60.5 37.5 51.0 57.8 55.0 52.4
Random Selection 60.2 38.0 57.0 57.7 60.4 54.7
AlpaGasus (Random) 53.0 44.1 56.0 59.4 49.0 52.3
IFD 45.9 46.7 57.0 56.6 42.8 49.8
Superfiltering 58.0 43.8 61.5 56.5 51.0 54.2
DEITA 57.6 43.3 58.5 59.0 60.8 55.8
DEITA (Our Curated Score) 60.0 46.8 58.0 58.1 61.3 56.8
RDS+ 57.1 43.6 52.5 58.6 42.0 50.8
RDS+ (Best) 57.1 46.6 59.5 60.8 53.0 55.4
DS2 59.9 44.8 55.5 58.2 60.8 55.8
LESS 59.9 40.5 56.0 61.4 66.2 56.8
Self-Instruct 52.1 18.3 56.5 57.9 57.3 48.4
1-to-1 Rewriting/ Enhancement 58.3 42.5 58.5 57.9 46.1 52.7
Direct Corpora Fusion Without Step2&3 54.1 40.7 60.0 56.9 43.1 51.0
Direct Corpora Fusion Without Step3 54.5 48.8 56.0 58.3 39.6 51.4
ENTP 61.7 (+9.0) 47.8 (+3.5) 54.5 (-2.5) 60.7 (-0.3) 61.3 (+17.4) 57.2 (+5.4)

4.2 Empirical Observations

All observations reported in this section stem from experiments conducted with the Mis-
tral‑7B‑v0.3 and Llama‑3.1‑7B models. Additional findings based on various base models
are provided in the Appendix D.2.
Observation 1: A structural bottleneck in the classical data‑selection paradigm
progressively emerges. In Table 2-3, all data‑selection baselines, LLM‑free or LLM‑based,
and regardless of whether they leverage a validation split from the test set, exhibit av-
erage performance that oscillates around the results obtained with the LQ Set: (1) For
Mistral‑7B‑v0.3, average performance fluctuates near 45.7, with values spanning from 42.7
(Completion Length) to 48.8 (AlpaGasus (Random)); (2) For Llama‑3.1‑8B, performance
centers near 51.8, ranging from 49.8 (IFD) to 57.0 (Completion Length). The majority of
baselines produce results that differ only marginally. Hence, our experiments pinpoint a
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structural bottleneck in this paradigm: once the most informative subset is extracted from
the source pool, further gains become unattainable.
Observation 2: LQ Set does contain the valuable sample which can contribute to
the average performance. As shown in Table 3, two score-aware baselines, Completion
Length and DEITA using our curated scores, achieve average scores of 57.0% and 56.8%
respectively. Both outperform the HQ Set configuration (56%), which advocates discarding
the whole LQ Set. Hence, relying solely on a small portion of native high‑quality data,
while discarding the majority of native low‑quality data, risks losing valuable information
that may enhance model performance.
Observation 3: Our proposed paradigm offers a viable alternative to the clas-
sical data‑selection paradigm. As shown in Tables 2-3, regardless of what base model
equipped with, ENTP consistently outperform all baselines on average that follow the
traditional data-selection paradigm, which extracts an optimal subset from the LQ Set.
Specifically, when equipping with the Mistral-7B-v0.3 model, on average ENTP achieves
superior performance over all baselines, including the Full Set configuration (see Table 2).
When switching to the Llama-3.1-8B model, ENTP achieves the second‑highest average
performance among all baselines, trailing only the Full Set setting (see Table 3). In com-
parison with the source dataset (LQ Set), the main improvements of ENTP are reflected
on two benchmarks: on MMLU and TyDiQA. With Mistral‑7B‑v0.3, ENTP achieves gains
of 11.1% on MMLU and 17.2% on TyDiQA; with Llama‑3.1‑7B, the improvements are
9.0% (MMLU) and 17.4% (TyDiQA). In terms of overall performance, ENTP improves by
5.8% when using Mistral‑7B‑v0.3, and by 5.4% when using Llama‑3.1‑8B; in both cases,
it outperforms all optimal subsets drawn from the LQ Set. Therefore, all empirical results
demonstrate that ENTP could overcome the bottleneck inherent in the paradigm of relying
solely on native, high‑quality data.

4.3 Ablation Study
Table 4: Performance comparison among the LQ Set, HQ Set, Full Set, and var-
ious proportions of the ENTP ‑generated dataset. The fine-tuning base models are
Mistral-7B-v0.3 and Llama-3.1-8B. Best and second-best results on average are highlighted
in bold red and bold black, respectively. The average performance changes of ENTP,
relative to the LQ Set, are also reported.

Dataset MMLU
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Mistral-7B-v0.3
LQ Set (123786) 47.5 43.5 52.7 41.1 46.3
HQ Set (131247) 58.4 46.0 55.5 52.5 53.1
Full Set (300932) 60.0 43.5 52.5 53.4 52.4
ENTP-20% 59.3 41.5 54.6 55.4 52.7 (+6.4)
ENTP-40% 58.9 42.0 50.5 56.8 52.1 (+5.8)
ENTP-60% 59.1 45.5 52.3 56.2 53.3 (+7.0)
ENTP-80% 58.5 44.0 53.8 57.4 53.4 (+7.1)
ENTP-100% 58.6 44.0 53.8 58.3 53.7 (+7.4)

Base Model: Llama-3.1-8B
LQ Set (123786) 52.7 57.0 61.0 44.7 53.9
HQ Set (131247) 62.3 57.5 59.3 58.9 59.5
Full Set (300932) 63.5 61.0 59.1 62.8 61.6
ENTP-20% 63.9 57.5 61.5 52.5 58.9 (+5.0)
ENTP-40% 62.3 56.5 58.0 56.5 58.3 (+4.4)
ENTP-60% 62.3 57.5 60.1 57.2 59.3 (+5.4)
ENTP-80% 62.0 56.0 61.5 57.8 59.3 (+5.4)
ENTP-100% 61.7 54.5 60.7 61.3 59.6 (+5.7)

Ablation Setup To gain a more comprehensive understanding of how ENTP-generated
dataset affects the performance of LLMs, we employ the LQ Set, HQ Set and Full Set as
control groups. For the experimental groups, we evaluate five configurations of the full
ENTP ‑generated dataset, ranging from 20% to 100%, denoted as ENTP-x%, where x%
indicates the random selection of x% of the merged corpus obtained via intra‑cluster and
inter‑cluster fusion.
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Empirical Scaling Law Holds For ENTP-Generated Data: Full Dataset Ourper-
forms All Subsets We experiment with subsets of varying volumes (20%–100%) of the
full ENTP ‑generated dataset to systematically assess scaling behavior. As shown in Ta-
ble 4, regardless of the options of the base model, as the dataset size increases, average per-
formance also exhibits an upward trend, consistent with empirical scaling laws. Moreover,
across configurations ranging from 20% to 100% of our merged corpus, each ENTP-based
setting outperforms the source LQ Set, demonstrating the effectiveness of ENTP. More
ablation studies using different base model with various experimental setup are given in the
Appendix E.

5 Conclusion
We introduced ENTP, re-examining the long-held “quality-first” dogma in supervised
fine-tuning. Rather than discarding the vast pool of low-score or head-frequency instruction
data, ENTP purges the genuinely noisy elements, mixes the remaining signal with
model-generated knowledge, and delivers a topic-focused corpus that is both compact and
information-rich. Empirically, LLMs fine-tuned on ENTP-created corpora consistently
outperformed models trained on the full 300K dataset or on conventional “high-quality”
subsets across five instruction-following benchmarks. In addtion, our empirical results
yield two key insights: (1) Hidden value in low-quality data. Even ostensibly poor
examples contain complementary information that, when properly distilled, improves
downstream performance—corroborating scaling-law observations that “more diverse data”
can be as valuable as “better data.” (2) Neural-symbolic fusion is effective for
corpus construction. Symbolic rules provide reliable noise filters, while connection-
ist models enrich and complete missing content, jointly producing a superior training signal.
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Appendix

Use of Large Language Models In our ENTP, the LLM is designed as an atomic
capability and primarily contributes to the data quality evaluation and data fusion stages.

Data and Code Availability We will release the implementation code of ENTP,
along with all merged corpora sets used in our experiments, including those generated via
intra-cluster and inter-cluster fusion, upon acceptance of the paper.

The rest of Appendix is organized as follows:

• Section A: We give detailed discussions about related work.
• Section B: We provide comprehensive technical details of an additional preliminary com-

ponent employed by ENTP.
• Section C: We provide comprehensive details about ENTP.
• Section D: We include omitted experiment details, designs, additional experiment results,

and GPU Runtime & API Cost & Validation Set Requirement Analysis.
• Section E: We include a supplementary ablation study.
• Section F: We provide the curated overall score distributions for both the original low-

quality corpora and the ENTP-generated merged corpora.
• Section G: We provide a concrete end-to-end example.
• Section H: We present several ENTP-generated samples.
• Section I: We provide potential future directions.

A Related Work

Data selection paradigms can be broadly classified into two categories: those that rely solely
on empirical metrics (without LLM involvement) and those that incorporate LLMs.

Data Selection Without LLM Sabbineni et al. (2023) introduced entropy and Error
L2-Norm (EL2N) scores to evaluate the “usefulness” or “difficulty” of data examples, demon-
strating that score-based selection can reduce semantic error rates and domain classification
errors compared to random selection. Xie et al. (2023) extended the classic importance
resampling method to high-dimensional settings, proposing the Data Selection with Impor-
tance Resampling (DSIR) framework. DSIR estimates importance weights in a reduced
feature space and selects data accordingly, achieving significant improvements in down-
stream tasks such as GLUE. Wainer and Cawley (2017) conducted an extensive empirical
evaluation of 15 resampling procedures for Support Vector Machine (SVM) hyperparameter
selection, concluding that a 2-fold procedure is appropriate for datasets with 1000 or more
data points, while a 3-fold procedure is suitable for smaller datasets.

LLM-based Data Selection Li et al. (2024b) introduced the Instruction-Following Dif-
ficulty (IFD) metric, enabling LLMs to autonomously identify challenging instruction-
response pairs by measuring discrepancies between expected and actual responses, thereby
enhancing model performance with a reduced dataset. Lu et al. (2023) developed the IN-
STAG framework, leveraging fine-grained tagging of instruction semantics to select diverse
and complex examples, which improved instruction-following capabilities. Additionally, Liu
et al. (2024b) employed a comprehensive analysis combining diversity, quality, and complex-
ity metrics to systematically select high-performing data subsets, demonstrating significant
improvements in model robustness.
As previously noted, this paradigm overlooks the potential contributions of low-quality data,
leading methods that adhere to it to inevitably encounter bottlenecks due to the scarcity
of high-quality raw data. In contrast, ENTP maximizes the potential of each low-quality
corpus, transforming them into rare and expressive synthetic corpora.
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B More Preliminary

B.1 Average Silhouette Score

Clustering quality hinges on both how tightly points group within their own clusters (co-
hesion) and how well they separate from other clusters (separation). The Silhouette Score
uniquely captures both dimensions in a single metric, enabling an immediate, interpretable
gauge of cluster validity (Rousseeuw, 1987). Mathematically, for each data point i assigned
to cluster CI , the cohesion a(i) and separation b(i) are defined as follows:

a(i) =
1

|CI | − 1

∑
j∈CI ,j 6=i

d(i, j),

b(i) = min
J 6=I

1

|CJ |
∑
j∈CJ

d(i, j),

where d(·, ·) represents the Euclidean distance; a(i) is computed as the average distance
between point i and all other members of its own cluster; b(i) denotes the minimum of the
average distances from i to the members of any other cluster CJ . Based on these quantities,
the silhouette coefficient s(i) for each point i is then defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, −1 ≤ s(i) ≤ 1,

where max{a(i), b(i)}, normalizing denominator, ensures s(i) lies in the range of [-1,1].
When s(i) ≈ +1, the intra-cluster distance a(i) is much smaller than the nearest inter-cluster
distance b(i), indicating that point i lies deep inside its own cluster and is well separated
from all others. When s(i) ≈ 0, the cohesion and separation distances are approximately
equal (a(i) ≈ b(i)), suggesting that i sits near the boundary between two clusters and could
plausibly belong to either. Conversely, when s(i) ≈ −1, the intra-cluster distance exceeds
the nearest inter-cluster distance (a(i) > b(i)), which implies that i is likely misassigned and
would be better placed in its neighboring cluster. Finally, the overall clustering quality is
captured by the Average Silhouette Score s̃, defined as the mean of all individual silhouette
coefficients s(i):

s̃ =
1

N

∑N

i=1
s(i),

where N is the total number of examples. A higher s̃ (closer to +1) indicates that clusters
are both cohesive, whereas values near 0 or negative signal ambiguous or poor clustering
assignments.

C ENTP: Enhancing Low-Quality SFT Data via
Neural-Symbolic Text Purge-Mix

C.1 Step 1: Low-Quality Dataset Construction

For the initial LLM rating step, we follow the same setup as Pang et al. (2025), where
the LLM is prompted to rate each corpus based on four dimensions, ‘Rarity’, ‘Complexity’,
‘Informativeness’, and ‘Overall Rating’, with each dimension scored on a scale from 1 to 10.
The corresponding detailed prompt template is shown in Figure 6. All initial scores in the
range of 1–4 are mapped to 4, those in 9–10 are mapped to 9, and the remaining scores
in between are uniformly downscaled to a 0–5 range (Pang et al., 2025). Subsequently, we
adopt the K-NN Score Clusterability theory (Zhu et al., 2021) to refine the overall scores
generated by the LLM.

C.2 Step 2: One-Hop Cluster-Based Representative Selection

The complete implementation details are presented in Algorithm 1.
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Algorithm 1 One-Hop Cluster-Based Representative Selection
Input: Low-Quality Corpora Set, Slq = {so|so ∈ [0, 2]}
Output: Representative Corpora, R = {C0

r , ..., C
m
r }, where Ci

r stands for the selected
representative corpora set for the ith cluster
1: Prepare empty list, rsel, clusterone−hop = [ ]; Shuffle Slq
2: for each soi ∈ Slq do . Step 1: One-Hop Cluster Formation
3: if soi not in rsel : then
4: CandidateListi ← CosineSimilarityOver0.9(soi , {soj ; soi ∈ Slq, i 6= j})
5: clusterone−hop ← clusterone−hop.append(CandidateListi)
6: rsel ← rsel.extend(CandidateListi)
7: end if
8: end for
9: Initialize α = 0.2, num_reps = 2

10: for each cluster ∈ clusterone−hop do . Step 2: Representative Corpora Selection
11: Collect Centroid Corpus, r0 ← cluster . First Representative Corpus
12: cluster.remove(r0)
13: if len(cluster) >= 3 then
14: K = [2,max(10, len(cluster))]
15: best_k ← FindBestK(K, cluster) . Finding Out k-value With The Maximum

ASS
16: sub_cluster_labels← KMeans(best_k)
17: if len(sub_cluster_labels) >= 2 and ClusterSize(sub_cluster_labels) >= 3

then
18: # Collect The 2nd & 3th Representative Corpus
19: Collect r0 & r1 ← mmr_selection(sub_cluster_labels, num_reps, α)
20: else
21: All c ∈ cluster Are Updated To The Representative Corpora Set
22: end if
23: else
24: All c ∈ cluster Are Updated To The Representative Corpora Set
25: end if
26: end for
27: return Full Representative Corpora Set, R
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C.3 Step 3: Neural-Symbolic Two-To-One Corpora Fusion

C.3.1 Stepwise Component Analysis

As illustrated in the internal logic flow in Figure 3, Step 3 primarily comprises the con-
nectionist and symbolism components. All connectionist components are essentially LLM-
invoking operators, each responsible for a distinct task and equipped with its own carefully
designed prompt template, defined as follows:

• Domain Analysis (DA): Based on the prompt template defined in Figure 10, the LLM
extracts salient domain knowledge and the potential matching pattern from the given
pair of input corpora.

• Merged Corpus Generation (MCG): With the initial prompt template defined in
Figure 13, and given the raw corpus pair and three predefined fusion strategies, the LLM
produces three corpus fusion variants that fully leverage the prior knowledge embedded
in these strategies. Subsequently, the initial prompt template will be updated in re-
sponse to the corresponding symbolic loss, with all candidate prompt templates defined
in Figures 17-25.

• Information Completeness Detection (ICD): Utilizing the prompt template in Fig-
ure 14, the LLM evaluates the completeness of the merged corpus and its coverage of
all elements necessary for the intended use across three aspects: (1) Key-Term Cover-
age For each key term extracted from the raw corpora, the LLM determines whether
the merged corpus retains the term, either explicitly or through related information, or
omits it, and subsequently outputs two lists: one of retained terms and one of missing
terms; (2) Question Quality Since each source corpus primarily consists of one or more
question–answer pairs, we analyze the question component of the merged corpus by in-
structing the LLM to: 1 verify the presence of a well-formed question; 2 classify it as
open- or closed-ended; 3 determine whether external knowledge is needed to answer it;
4 identify included contextual details; and 5 highlight any missing contextual informa-
tion; (3) Answer Quality Similarly, for the answer component of the merged corpus, we
engage the LLM to: 1 verify the presence of a direct answer to the question; and 2
determine whether regeneration is necessary, providing justification if so.

• Final Answer Check (FAC): Referring to the prompt template defined in Figure 12,
unlike the answer quality check in ICD, the LLM in this operator focuses not only
on verifying the presence of a direct answer but also on identifying any unnecessary,
irrelevant or redundant information that needs to be removed.

• Final Answer Update (FAU): The prompt templates designed for this operator are re-
sponsible for pruning the answer section labeled “### Assistant” without modifying any
information in the “### User” section. They primarily address cases of omitted direct
answers (see Figure 15) as well as the removal of unnecessary, irrelevant, or redundant
information (see Figure 16).

Furthermore, the symbolism components are defined as follows:

• Strategy Selection (SS): As illustrated in Figure 11, we define nine fusion strategies,
three for each of the three relationship types (“same-domain”, “related-domain”, and
“unrelated-domain”), derived from the literature‑writing study (Nelson & King, 2023;
Knobel, 2017; Bazerman, 2003), leveraging prior knowledge to guide the LLM in merging
two corpora on a case-by-case basis.

• Symbolic Loss (denoted as LSym): As shown in Figure 26 and Figure 27, symbolic
loss is represented as a structured, schema-compliant JSON-like object. All root nodes
are explicitly defined as attribute nodes, such as “context_contain” (from ICD), “con-
text_missing” (from ICD), and “direct_answer” (from FAC); the branch nodes capture
the corresponding information, such as the context contained in the current corpus, the
necessary context that is missing, and the direct answer itself.

• SPO (Symbolic Prompt Optimizer): A logic controller that enforces the regeneration
budget and checks whether all root node conditions from ICD and FAC are satisfied
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(i.e., LSym = 0). It quantifies symbolic loss by counting unsatisfied root node condi-
tions and updates the candidate prompt templates for the MCG or FAC operator via
backpropagation to address the identified symbolic loss.

C.3.2 Stepwise Workflow

The completed and detailed stepwise workflow is depicted in Figure 5, structured into two
sequential sub-processes: Cycle 1, followed by Cycle 2. More specifically, we first input two
raw corpora into the DA operator. Once the relationship is determined (“related-domain”
in our example), the corresponding strategy set is then allocated to participate in the MCG
operator. With the generation of three merged corpora from distinct fusion strategies,
they are then input to the ICD operator to obtain the corresponding symbolic loss. This
step also serves as the entry point of the Cycle 1. Subsequently, all symbolic losses are
input to the SPO operator, which prepares candidate prompt templates to address the
corresponding losses. Thereafter, these templates are used to update the MCG operator’s
prompt template via backpropagation for the next iteration. Once all checking conditions
from the ICD operator are satisfied (i.e., LSym = 0) or the maximum number of regenerations
is reached, the merged corpus with the minimum symbolic loss is then selected as the
optimal corpus from Cycle 1, denoted as CC1. In the next step, this optimal corpus CC1
is provided to the FAC operator to derive the symbolic loss for its answer section labeled
“### Assistant”. Similarly, this symbolic loss is then passed to the SPO operator to obtain
the candidate prompt template, marking the commencement of Cycle 2. Immediately
afterward, the candidate prompt template is back-propagated to the FAU operator to modify
the corpus CC1 in preparation for the next iteration. Immediately thereafter, upon satisfying
all checking conditions specified by the FAC operator (i.e., LSym = 0) or reaching the
maximum number of regenerations, the final “### Assistant” content (containing only
the answer) with the minimum symbolic loss from Cycle 2 is combined with the retained
optimal “### User” section from Cycle 1, yielding the optimal merged corpus, CAB.

C.3.3 Discussion of LLM Inference Space Exploration

Compared to one of the prevalent paradigms for LLM inference space search (Zhang et al.,
2024a; Xu et al., 2024a), which primarily relies on Monte Carlo Tree Search (MCTS) en-
compassing four core steps, selection, expansion, simulation, and backpropagation, the back-
propagation phase in MCTS updates nodes sequentially from the simulation node back up
to the root node. This paradigm is generally applied in scenarios where no specialized
prior knowledge is available, and the process must rely solely on the LLM’s inherent prior
knowledge. However, in our case, the core question is:

What should the combination of corpus A and corpus B actually be?

Following the traditional MCTS paradigm, where the fusion process relies entirely on the
LLM’s prior knowledge, regardless of the relationship between corpus A and corpus B, the
LLM would simply concatenate the two corpora to form the merged corpus AB. From a hu-
man cognitive perspective, such a merged corpus lacks a clear theme or focus. Even worse,
the response generated from this merged corpus may be unrelated to significant thematic
content, resulting in a corpus that is entirely uninterpretable and essentially meaningless.
Therefore, instead of relying solely on the LLM’s prior knowledge, we incorporate prior
knowledge from the literature-writing domain, which not only provides clear guidelines but
also significantly narrows the LLM’s reasoning search space, thereby reducing its compu-
tational cost and enabling faster convergence to the most probable optimal solution. As
illustrated in Figure 5, our iterative procedure of Cycle 1 and Cycle 2 progressively achieves
global optimality through sequential local optimizations.

C.3.4 Full implementation details can be found in Algorithm 2.
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Algorithm 2 Neural-Symbolic Two-To-One Corpora Fusion
Input: Raw Corpus A and B, {CA, CB}; Carefully Designed Prompt Set, {PDA,PMCG,PICD,PFAC,PFAU}
Output: Optimal Merged Corpora Generated By Different Fusion Strategies, {CAB, ...}
1: # Prompt LLM: Perform Domain Analysis (DA) Task
2: symbolic reportDA ← F(PDA(CA, CB))
3: Strategy SetAB ← FusionStrategySelection(symbolic reportDA) . Symbolic Logic Controller
4: # Prompt LLM: Perform Merged Corpus Generation (MCG) Task
5: Merged Corpus List← F(PMCG(CA, CB,Strategy SetAB))
6: Final Optimal Merged Corpus List, Loptimal ← []
7: for each corpus ∈ Merged Corpus List do
8: temp corpus, Ctemp ← corpus
9: temp strategy, stemp ← corresponding strategy

10: # Prompt LLM: Perform Information Completeness Detection (ICD) Task
11: symbolic loss, LSym ← F(PICD(Ctemp))
12: num_retry ← 2
13: buffer list for storing all temporary merged corpus, C← [Ctemp]
14: buffer list for storing all symbolic loss of the corresponding temporary merged corpus, L← [LSym]
15: while LSym 6= 0 and num_retry < 4 do . Cycle 1
16: # Update Prompt Template for MCG Task
17: PMCG ← SymbolicPromptOptimizer(PMCG,LSym) . Back Propagation
18: # Update Merged Corpus, Ctemp
19: Ctemp ← F(PMCG(CA, CB, ∫temp)
20: # Collect The Latest Merged Corpus
21: C.append(Ctemp)
22: # Update Symbolic Loss, LSym
23: LSym ← F(PICD(Ctemp))
24: L.append(LSym)
25: num_retry += 1
26: end while
27: if LSym == 0 then
28: optimal merged corpus from Cycle 1, Cc1 ← Ctemp
29: else if L.count(min(L)) == 1 and num_retry > 3 then
30: optimal merged corpus from Cycle 1, Cc1 ← C[L.index(min(L))]
31: else if L.count(min(L)) > 1 and num_retry > 3 then
32: optimal merged corpus from Cycle 1, Cc1 ← C[random.choice([i for i, v in enumerate(L) if v == min(L)])]
33: end if
34: symbolic loss, LSym ← F(PFAC(Cc1))
35: num_retry ← 2
36: buffer list for storing all temporary merged corpus, C← [Cc1]
37: buffer list for storing all symbolic loss of the corresponding temporary merged corpus, L← [LSym]
38: while LSym 6= 0 and num_retry < 4 do . Cycle 2
39: # Update Prompt Template for FAU Task
40: PFAU ← SymbolicPromptOptimizer(PFAU,LSym) . Back Propagation
41: # Update Merged Corpus, Cc1
42: Cc1 ← F(PFAU(Cc1))
43: # Collect The Latest Merged Corpus
44: C.append(Cc1)
45: # Update Symbolic Loss, LSym
46: LSym ← F(PFAU(CC1))
47: L.append(LSym)
48: num_retry += 1
49: end while
50: if LSym == 0 then
51: optimal merged corpus from Cycle 2, CAB ← Cc1
52: else if L.count(min(L)) == 1 and num_retry > 3 then
53: optimal merged corpus from Cycle 2, CAB ← C[L.index(min(L))]
54: else if L.count(min(L)) > 1 and num_retry > 3 then
55: optimal merged corpus from Cycle 2, CAB ← C[random.choice([i for i, v in enumerate(L) if v == min(L)])]
56: end if
57: # Collect The Finalized Merged Corpus
58: Loptimal.append(CAB)
59: end for
60: return Eligible Merged Corpus List, Loptimal
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D More Experiments

D.1 Experimental Setup

Table 5: Comprehensive overview of the source corpora used in this work. We report three
additional descriptive dimensions, the average number of conversation turns (N̄rounds), the
average prompt length (L̄prompt), and the average response length (L̄response), to provide a
more nuanced understanding of the composition of our source corpora.

Datasets Derived From Data size N̄rounds L̄prompt L̄response
Stanford Alpaca Generated w/ Davinci-003 52K 1.0 23.5 56.4
Flan V2 Human Annotation 100K 1.0 304.1 27.7
Open-Assistant 1 Human Annotation 33K 1.6 32.3 189.1
WizardLM ChatGPT Annotation 100K 1.0 122.3 352.5
Dolly Human Annotation 15K 1.0 99.5 79.3

D.1.1 Source Corpora

For the source corpora used in this work, we follow the same setup as DS2 (Pang et al.,
2025), where the corpora consist of five instruction-following datasets originating either
from human annotations or generated by powerful LLMs. A comprehensive overview of our
source corpora is provide in Table 5. Notably, all of the component datasets differ across
format, annotation quality, prompt length, and target task, underscoring the rich diversity
of our source data pool.

D.1.2 Evaluation Setup

In this paper, we conduct experiments on five evaluation tasks: MMLU (Hendrycks et al.,
2020), TruthfulQA (Lin et al., 2021), BBH (Suzgun et al., 2022), GSM8K (Cobbe et al.,
2021), and TyDiQA (Clark et al., 2020). The hyperparameter settings primarily fol-
low those used in recent work by Wang et al. (2023a). Besides, to ensure consistency
with the format of our generated merged corpora, we apply our marker format (###
User\n{input}\n### Assistant\n{output}) to each input-output pair, embedding
it into the corresponding official prompt template in the evaluation set. For reproducibility,
we provide a brief summary of the key details:

• MMLU (Hendrycks et al., 2020): Following the original MMLU setup, all evaluations
are conducted in the zero-shot setting.

• TruthfulQA (Lin et al., 2021): We follow the default QA prompt template with
6 in-context examples to generate answers for 818 TruthfulQA questions. In alignment
with the setup in Wang et al. (2023a), we use two LLaMA-2-7B-based models to evaluate
the truthfulness4 and informativeness5 of the generated responses. These judge models
assess the truthful and informative rates separately. Similarly, we report the Informative-
Truthful Rate as our final metric, calculated as the product of the informativeness and
truthfulness rates (Lin et al., 2021).

• BBH (Suzgun et al., 2022): Using the official prompts, we perform generation under
a 3-shot setting without CoT reasoning. Additionally, 40 examples from each BBH sub-
task are selected for evaluation.

• GSM8K (Cobbe et al., 2021): We evaluate the fine-tuned models on a randomly
selected subset of 200 samples from the original test set (1319 samples). Specifically,
we adopt an 8-shot in-context learning setup to simulate the chain-of-thought (CoT)
reasoning setting.

• TydiQA (Clark et al., 2020): We use this dataset to evaluate model performance on
multilingual question answering across nine languages. For each language, 100 examples
4Hugging Face Model: allenai/truthfulqa-truth-judge-llama2-7B
5Hugging Face Model: allenai/truthfulqa-info-judge-llama2-7B
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are selected. To help the models adapt to the answer format, one in-context example is
provided during evaluation. The average F1 score across all languages is reported.

D.1.3 Detailed Baseline Method Descriptions

Our ENTP-generated synthetic dataset comprises 54888 samples drawn from the LQ set
(totaling 123786 samples); of these, 15488 are generated via intra‑cluster fusion and 39400
via inter‑cluster fusion. To assess the efficacy of ENTP, we compare it against 13 rep-
resentative data‑selection baselines, each applied uniformly to the LQ Set to ensure a fair
comparison:

1. Vanilla Base Model denotes the original base model without any fine-tuning;
2. LQ Set & HQ Set represent the low-quality set (123786 samples) and high-quality set

(131247 samples), both extracted from Full Set. We first employ the LLM‑rating step
from DS2 (Pang et al., 2025) to assign overall‑quality scores to every sample in the source
data pool. Subsequently, we apply the clusterability-based method (Zhu et al., 2021) to
correct the potential scoring bias. Samples with curated scores in the range [0, 2] form
the LQ Set, while those with scores in [3, 5] compose the HQ Set;

3. Full Set comprises 300932 samples as our source data pool;
4. Completion Length utilizes the length of the whole corpus as an indicator to assess to

sample quality. Intuitively, longer completions tend to reflect richer, higher-quality dia-
logues, providing more context, depth, and informativeness;

5. KNNi is defined as the Average Euclidean Distance (AED) from each raw embedding
vector to its i nearest neighbors within the embedding space. We obtain all embeddings
using the same model1 and then rank samples by their AED in ascending order. Samples
with smaller distances are considered more centrally located and thus more representative
in the embedding space;

6. Perplexity, computed using a pre-trained language model in a zero‑shot fashion, is
employed as the evaluation metric. We compute perplexity for each sample using
LLaMA‑3.1‑8B‑Instruct model. Samples are then selected in descending order of per-
plexity. A larger perplexity score indicates greater model uncertainty, suggesting the
sample is more difficult or rare;

7. Random Selection, all samples are randomly selected;
8. AlpaGasus (Random) (Chen et al., 2023) employs ChatGPT to score each sample and

retains only the highest-rated samples for fine-tuning. For a fair comparison, we use
gpt-4o-mini2 as the scoring model. Since the number of samples receiving the top score
(55530) exceeds our required dataset size (54888), we randomly sample the final set from
among those highest-scoring samples;

9. IFD (Li et al., 2024b), Instruction‑Following Difficulty, quantifies how much an instruc-
tion aids a model’s generation by comparing the model’s loss (or perplexity) with and
without instruction context. A higher IFD score indicates that the model is less familiar
with a given sample, implying this sample is relatively rare;

10. Superfiltering (Li et al., 2024a) utilizes a small and weaker model, GPT-2 (Radford et al.,
2019)6, for the data selection;

11. DEITA (Liu et al., 2024b) jointly uses two pre-trained scoring model to rate data samples
based on complexity7 and quality8. However, all the single-turn samples are rated as 3.
In order to further demonstrate the effectiveness of this method, we also employ our
curated scores as an alternative, which is reported as DEITA (Our Curated Score);

12. RDS+ (Ivison et al., 2025), representation-based data selection, utilizes a weighted mean
pooling of a pre-trained model’s final hidden states for computing the cosine similarity
between the raw dataset and the validation set. Accordingly, this method extracts an
6Hugging Face Model: openai-community/gpt2
7Hugging Face Model: hkust-nlp/deita-complexity-scorer
8Hugging Face Model: hkust-nlp/deita-quality-scorer
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optimal subset from the source pool for each test benchmark individually. Nevertheless,
this test-specific subset does not necessarily yield superior performance on that specific
benchmark, in fact, a subset curated using a different validation set may outperform it.
Consequently, to showcase the upper performance bound of this method, we also report
the best result achieved for each test benchmark, denoted as RDS+ (best);

13. DS2 (Pang et al., 2025) leverages LLM-generated quality scores, corrected via a score
transition matrix, and further integrates cosine similarity-based long-tail scoring to select
samples that are both high-rated and rare;

14. LESS (Xia et al., 2024) requires a validation set for each evaluation benchmark. It first
constructs a gradient datastore for the validation set and then computes the influence
score for every sample in the entire low-quality set. For a fair comparison, we collect
the top 54888 samples ranked by LESS for each validation set. Moreover, to present
the optimal performance of LESS, we report results only on the corpus subsets selected
exclusively for each corresponding task;

15. MathFusion (Pei et al., 2025) provides three fusion strategies, including conditional fu-
sion, parallel fusion, and sequential fusion. We apply all three strategies to the low-quality
corpora via random pairing using gpt-4o-mini2. We then evenly select 18296 merged cor-
pora per strategy, resulting in a total of 54888 merged corpora;

16. Evol-Instruct (Xu et al., 2024b) offers five In-depth Evolving prompt templates and one
In-breadth Evolving prompt template. Following the official configuration, we set the
number of evolution iteration to M = 4. After completing all four evolution rounds, we
randomly sample 54888 evolved corpora as the final selection;

17. Self-Instruct (Wang et al., 2023b) provides two types of prompt templates: one for clas-
sification corpora and one for non-classification corpora. For a fair comparison, we use
gpt-4o-mini2 to generate the augmented corpora. Similarly, we randomly sample 54888
augmented corpora as the final selection;

18. 1-to-1 Rewriting/ Enhancement serves as a simple baseline in which we use gpt-4o-
mini2 to directly rewrite or enhance for each low-quality corpus. After obtaining all the
augmented corpora, we randomly sample 54888 of them as the final selection;

19. Direct Corpora Fusion Without Step 2&3 represents the baseline in which we use gpt-4o-
mini2 to directly fuse two corpora via randomly pairing samples from the low-quality set,
bypassing both our clustering step (Step 2) and neural-symbolic fusion step (Step 3);

20. Direct Corpora Fusion Without Step 3 represents the baseline in which we use gpt-4o-
mini2 to directly fuse two corpora via randomly pairing samples from the representative
low-quality set, bypassing our neural-symbolic fusion step (Step 3) only.

D.1.4 Training Setup

In our experiments, we fine-tune three LLMs, including Mistral-7B-v0.3 (Jiang et al., 2023),
LLaMA-3.1-8B (Grattafiori et al., 2024), and Qwen2.5-7B (Team, 2024) using eight NVIDIA
H20 or A800 GPUs. Following the experimental setup of Wang et al. (2023a), we apply
LoRA (Hu et al., 2022) with a rank of 64 and a scaling factor of 16 to all experiments. The
training configuration includes a batch size of 128, a learning rate of 1e-4, 5 training epochs,
a dropout rate of 0.1, and a warm-up ratio of 0.03. The maximum input length is set to
2048 tokens for all models by default.

D.2 More Empirical Observations

Further evidence supporting the effectiveness of ENTP. As shown in Table 6, even
when paired with the Qwen2.5‑7B model, our ENTP consistently outperforms all 13 base-
lines, including the Full Set setting, on average, further demonstrating its ability to overcome
the limitations of relying solely on raw high‑quality data.
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Table 6: Performance comparison on the OpenLLM leaderboard. The default data
size is 54888. The fine-tuning base model is Qwen2.5-7B. Best and second-best results on
average are highlighted in bold red and bold black, respectively. Performance changes of
ENTP with respect to the LQ Set across all benchmarks are also reported.

Dataset MMLU
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Qwen2.5-7B
Vanilla Base Model 71.8 83.5 58.1 25.3 59.7
LQ Set (123786) 69.3 77.5 58.6 55.4 65.2
HQ Set (131247) 72.2 79.0 60.4 60.2 68.0
Full Set (300932) 72.0 78.0 59.8 65.2 68.8
Completion Length 67.2 75.5 57.9 62.7 65.8
KNN10 70.4 77.5 57.7 63.2 67.2
Perplexity 70.1 76.0 52.9 63.7 65.7
Random Selection 69.3 75.5 57.3 65.4 66.9
AlpaGasus (Random) 65.8 74.0 58.1 57.6 63.9
IFD 63.9 68.5 53.2 52.1 59.4
Superfiltering 68.3 76.0 55.0 59.4 64.7
DEITA 68.6 76.0 59.4 59.5 65.9
DEITA (Our Curated Score) 68.0 73.0 57.6 62.6 65.3
RDS+ 69.1 78.5 55.4 55.1 64.5
RDS+ (Best) 69.1 78.5 57.9 55.1 65.2
DS2 67.2 79.5 58.1 61.6 66.6
ENTP 69.2 (-0.1) 79.5 (+2.0) 59.1 (+0.5) 69.3 (+13.9) 69.3 (+4.1)

D.2.1 GPU Runtime & API Cost & Validation Set Requirement Comparison

Regarding the cost analysis, Table 7 presents a comparison of GPU runtime, API cost, and
validation set requirements across several baselines. In addition, we report the average API
cost per resultant corpus.

Table 7: Comparison of GPU Runtime, API Cost, and Validation Set Requirement Across
Baselines

LESS (2024) MathFusion (2025) Evol-Instruct (2024b) ENTP
Average API Cost (in USD) 0 0.004 0.003 0.005
GPU Runtime (in GPU-hours) 152.5 17 17 17
Validation Set Required Not Required Not Required Nor Required

E More Ablation Study

E.1 Supplementary Ablation Setup

We introduce the Vanilla Base Model, LQ Set, HQ Set and Full Set as control groups. More
experimental-group configuration for different research objectives are provided as follows:

• To gain deeper insight into the effects of ENTP ’s two fusion mechanisms, In-
tra‑Cluster and Inter‑Cluster fusion, on LLM performance across four downstream tasks
(MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), GSM8K (Cobbe et al.,
2021), and TyDiQA (Clark et al., 2020)), we independently sample varying proportions
from each fusion‑generated merged corpora to create experimental groups. These settings
are denoted as “Intra‑x%” and “Inter‑x%”, where x% indicates the proportion of data
selected from the corresponding fusion‑produced dataset;

• To further investigate the impact of thees two fusion mechanisms on the HQ Set, we
configured three experimenetal groups: (1) HQ+Intra‑x% (adding x% samples from In-
tra‑Cluster Fusion), (2) HQ+Inter‑x% (adding x% from Inter‑Cluster Fusion), and (3)
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HQ+ENTP-x% (adding x% of both fusion types). In all three cases, the entire HQ
Set is included. We then evaluate these configurations across five downstream tasks:
MMLU (Hendrycks et al., 2020), Truthfulqa (Lin et al., 2021), BBH (Suzgun et al.,
2022), GSM8K (Cobbe et al., 2021), and TyDiQA (Clark et al., 2020)

E.2 More Empirical Observations

Additional Observation 1: Empirical scaling laws consistently hold across all
ENTP ‑generated datasets. As shown in Table 8-13, across all configurations, whether
using only the Intra‑Cluster Fusion, only the Inter‑Cluster Fusion, both fusion types, and
irrespective of combining with the full HQ Set, increasing the volume of ENTP ‑generated
data consistently improves average model performance, aligning with established empirical
neural scaling laws.
Additional Observation 2: Low-Quality does contribute to the average perfor-
mance. According to the results from Table 13, across all three testing-model settings,
the Full Set, which comprises the entire HQ Set and the LQ set, yields higher average per-
formance than the HQ Set alone: 50.6 (+0.3), 57.7 (+1.7), and 63.3 (+1.3), respectively.
These experimental results also align with the predictions of the scaling laws (Kaplan et al.,
2020), indicating that the prevailing data-selection paradigm’s claim, that a small subset
of data can outperform the full dataset, has significant limitations. Similarly, Pang et al.
(2025) demonstrated that fine-tuning LLMs on a curated subset can outperform using the
full dataset. However, their curated subset does not entirely consist of the highest-scoring
data points. This indicates that: (1) so-called low-quality data still contains substantial in-
formational value; and (2) relying solely on native high-quality data may be insufficient for
significantly enhancing LLM performance on downstream tasks. Therefore, it is inadvisable
to discard low-quality data outright.
Additional Observation 3: Using just portions of the ENTP ‑generated data,
whether from Intra‑Cluster or Inter‑Cluster Fusion, consistently outperforms
the HQ Set alone, and in some cases, even surpasses the Full Set configuration
on average. As shown in Table 8, when Qwen2.5‑7B or Mistral‑7B‑v0.3 serves as the base
model, using just 60% of Intra‑Cluster Fusion–generated samples consistently surpasses all
baselines from the control group. In the case of LlaMA-3.1‑8B, the same subset achieves the
second‑best average performance, nearly matching the full‑set result, and still outperforming
the HQ Set. Similarly, according to the Table 9, when using the Mistral‑7B‑v0.3 model, even
a dataset comprised of only 60% Inter‑Cluster Fusion–generated samples achieves an aver-
age performance of 53.1, on par with the best-performing baseline from the control group.
Moreover, increasing this proportion to 100% raises average performance to 54.6, thereby
attaining state-of-the-art results across both the experimental and control groups. There-
fore, all of our experimental results demonstrate that our proposed paradigm consistently
exceeds the performance ceiling of the traditional paradigm trained solely on high‑quality
data, effectively serving as a viable alternative.
Additional Observation 4: Advanced LLM benefits more from fusion data built
on heterogeneous corpora. As shown in Table 11-12, the more advanced LLM, Qwen2.5-
7B, benefits the most from the HQ+Inter setup, in comparison with the HQ+Intra config-
uration. This is because Inter-Cluster Fusion involves merging corpus pairs with lower
similarity, which likely introduces rarer and more diverse information into the merged cor-
pus, thereby enhancing the expressiveness of individual samples. Additionally, advanced
LLMs are pre-trained on larger, more diverse, and more up-to-date corpora, leading to a
more balanced data distribution. This enables them to better interpret and utilize the rare
or novel information produced by heterogeneous corpus fusion, a conclusion also supported
by the FuseRL framework (Zhong et al., 2025).

F Curated Overall Score Distribution Comparison

To visually highlight the quality gap between the original low-quality corpora set and the
ENTP-generated merged corpora set, we reuse the curated overall score (higher-is-better)
employed in Step 1 to distinguish high- from low-quality samples; the resulting distributions
for both set are shown in Figure 4.
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Table 8: Performance comparison among the Vanilla Base Model, LQ Set, HQ
Set, Full Set, and various proportions of the ENTP ‑generated dataset from
Intra-Cluster Fusion. The fine-tuning base models are Qwen2.5-7B, Mistral-7B-v0.3,
and Llama-3.1-8B. Best and second-best results on average are highlighted in bold red and
bold black, respectively. The average performance changes of ENTP, relative to the LQ
Set, are also reported.

Dataset MMLU
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Qwen2.5-7B
Vanilla Base Model 71.8 83.5 58.1 25.3 59.7
LQ Set (123786) 69.3 77.5 58.6 55.4 65.2
HQ Set (131247) 72.2 79.0 60.4 60.2 68.0
Full Set (300932) 72.0 78.0 59.8 65.2 68.8
Intra-20% 71.2 86.5 58.1 67.8 70.9 (+5.7)
Intra-40% 71.0 84.5 59.4 62.4 69.3 (+4.1)
Intra-60% 70.6 81.5 61.4 69.9 70.9 (+5.7)

Base Model: Mistral-7B-v0.3
Vanilla Base Model 59.7 38.0 47.6 54.8 50.0
LQ Set (123786) 47.5 43.5 52.7 41.1 46.3
HQ Set (131247) 58.4 46.0 55.5 52.5 53.1
Full Set (300932) 60.0 43.5 52.5 53.4 52.4
Intra-20% 59.6 40.0 52.9 56.1 52.2 (+5.9)
Intra-40% 59.9 39.5 54.5 55.1 52.3 (+6.0)
Intra-60% 60.1 43.5 53.5 57.3 53.6 (+7.3)

Base Model: Llama-3.1-8B
Vanilla Base Model 64.1 58.0 55.3 22.1 49.9
LQ Set (123786) 52.7 57.0 61.0 44.7 53.9
HQ Set (131247) 62.3 57.5 59.3 58.9 59.5
Full Set (300932) 63.5 61.0 59.1 62.8 61.6
Intra-20% 63.9 54.5 57.5 52.0 57.0 (+3.1)
Intra-40% 64.0 59.5 60.6 53.9 59.5 (+5.6)
Intra-60% 63.6 56.5 59.6 60.1 60.0 (+6.1)

For each corpora set, we report the frequency of each score level (from 0 to 5) and compute
the corresponding average. As illustrated in the Figure 4, the average score of the merged
corpora obtained after applying our Step 2 and Step 3 (3.13) is two times larger than the
average score of the corpora (1.51) without applying these steps.
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Table 9: Performance comparison among the Vanilla Base Model, LQ Set, HQ
Set, Full Set, and various proportions of the ENTP ‑generated dataset from
Inter-Cluster Fusion. The fine-tuning base models are Mistral-7B-v0.3 and Llama-3.1-
8B. Best and second-best results on average are highlighted in bold red and bold black,
respectively. The average performance changes of ENTP, relative to the LQ Set, are also
reported.

Dataset MMLU
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Mistral-7B-v0.3
Vanilla Base Model 59.7 38.0 47.6 54.8 50.0
LQ Set (123786) 47.5 43.5 52.7 41.1 46.3
HQ Set (131247) 58.4 46.0 55.5 52.5 53.1
Full Set (300932) 60.0 43.5 52.5 53.4 52.4
Inter-20% 59.4 37.0 54.3 57.5 52.1 (+5.8)
Inter-40% 59.1 42.5 51.8 57.1 52.6 (+6.3)
Inter-60% 58.9 45.0 52.1 56.3 53.1 (+6.8)
Inter-80% 58.9 47.0 52.2 56.7 53.7 (+7.4)
Inter-100% 58.0 49.0 53.1 58.1 54.6 (+8.3)

Base Model: Llama-3.1-8B
Vanilla Base Model 64.1 58.0 55.3 22.1 49.9
LQ Set (123786) 52.7 57.0 61.0 44.7 53.9
HQ Set (131247) 62.3 57.5 59.3 58.9 59.5
Full Set (300932) 63.5 61.0 59.1 62.8 61.6
Inter-20% 63.6 55.0 57.7 53.2 57.4 (+3.5)
Inter-40% 62.1 58.5 58.6 53.4 58.2 (+4.3)
Inter-60% 62.3 55.5 57.8 55.9 57.9 (+4.0)
Inter-80% 62.3 55.5 58.4 55.8 58.0 (+4.1)
Inter-100% 61.9 60.5 59.9 54.0 59.1 (+5.2)

Table 10: Performance comparison among the Vanilla Base Model, LQ Set, HQ
Set, Full Set, and datasets mixing the entire HQ Set with various proportions
of the ENTP ‑generated Inter-Cluster Fusion samples. The fine-tuning base model
is Llama-3.1-8B. Best and second-best results on average are highlighted in bold red and
bold black, respectively. The average performance changes of ENTP, relative to the HQ
Set, are also reported.

Dataset MMLU
(EM ↑)

TruthfulQA
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Llama-3.1-8B
Vanilla Base Model 64.1 32.9 58.0 55.3 22.1 46.5
LQ Set (123786) 52.7 44.3 57.0 61.0 43.9 51.8
HQ Set (131247) 62.3 41.8 57.5 59.3 58.9 56.0
Full Set (300932) 63.5 42.0 61.0 59.1 62.8 57.7
HQ+Inter-40% 62.0 45.3 58.0 59.9 55.0 56.0 (+0.0)
HQ+Inter-60% 63.3 44.6 61.0 62.4 57.5 57.8 (+1.8)
HQ+Inter-100% 62.5 44.6 65.0 60.6 57.8 58.1 (+2.1)
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Table 11: Performance comparison among the Vanilla Base Model, LQ Set, HQ
Set, Full Set, and datasets mixing the entire HQ Set with various proportions
of the ENTP ‑generated Intra-Cluster Fusion samples. The fine-tuning base model
is Qwen2.5-7B. Best and second-best results on average are highlighted in bold red and
bold black, respectively.

Dataset MMLU
(EM ↑)

TruthfulQA
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Qwen2.5-7B
Vanilla Base Model 71.8 11.1 83.5 58.1 25.3 50.0
LQ Set (123786) 69.3 43.5 77.5 58.6 55.4 60.9
HQ Set (131247) 72.2 38.2 79.0 60.4 60.2 62.0
Full Set (300932) 72.0 41.4 78.0 59.8 65.2 63.3
HQ+Intra-40% 72.0 36.3 72.5 58.7 63.6 60.6
HQ+Intra-60% 72.0 36.5 80.0 58.1 64.1 62.1
HQ+Intra-100% 71.0 45.8 76.5 59.4 64.7 63.5

Table 12: Performance comparison among the Vanilla Base Model, LQ Set, HQ
Set, Full Set, and datasets mixing the entire HQ Set with various proportions
of the ENTP ‑generated Inter-Cluster Fusion samples. The fine-tuning base model
is Qwen2.5-7B. Best and second-best results on average are highlighted in bold red and
bold black, respectively.

Dataset MMLU
(EM ↑)

TruthfulQA
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Qwen2.5-7B
Vanilla Base Model 71.8 11.1 83.5 58.1 25.3 50.0
LQ Set (123786) 69.3 43.5 77.5 58.6 55.4 60.9
HQ Set (131247) 72.2 38.2 79.0 60.4 60.2 62.0
Full Set (300932) 72.0 41.4 78.0 59.8 65.2 63.3
HQ+Inter-20% 71.6 37.3 73.0 59.5 64.0 61.1
HQ+Inter-40% 71.7 42.0 75.0 57.0 61.7 61.5
HQ+Inter-60% 71.6 44.8 74.0 57.1 63.1 62.1
HQ+Inter-80% 71.4 41.9 81.5 59.7 64.5 63.8
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Table 13: Performance comparison among the Vanilla Base Model, LQ Set, HQ
Set, Full Set, and datasets mixing the entire HQ Set with various proportions of
the ENTP ‑generated samples from both Inter-Cluster and Intra-Cluster Fusion.
The fine-tuning base models are Mistral-7B-v0.3, Llama-3.1-8B, and Qwen2.5-7B. Best and
second-best results on average are highlighted in bold red and bold black, respectively.

Dataset MMLU
(EM ↑)

TruthfulQA
(EM ↑)

GSM8K
(EM ↑)

BBH
(EM ↑)

TydiQA
(1-Shot F1 ↑) Average ↑

Base Model: Mistral-7B-v0.3
Vanilla Base Model 59.7 30.4 38.0 47.6 54.8 46.1
LQ Set (123786) 47.5 43.7 43.5 52.7 41.1 45.7
HQ Set (131247) 58.4 39.2 46.0 55.5 52.5 50.3
Full Set (300932) 60.0 43.5 43.5 52.5 53.4 50.6
HQ+ENTP-40% 57.8 42.4 45.0 54.4 55.2 51.0
HQ+ENTP-60% 58.2 45.8 45.0 52.4 54.5 51.2
HQ+ENTP-100% 57.2 47.2 46.0 52.2 53.4 51.2

Base Model: Llama-3.1-8B
Vanilla Base Model 64.1 32.9 58.0 55.3 22.1 46.5
LQ Set (123786) 52.7 44.3 57.0 61.0 43.9 51.8
HQ Set (131247) 62.3 41.8 57.5 59.3 58.9 56.0
Full Set (300932) 63.5 42.0 61.0 59.1 62.8 57.7
HQ+ENTP-40% 62.5 44.6 59.0 58.7 57.4 56.4
HQ+ENTP-60% 62.7 43.0 59.5 61.3 61.5 57.6
HQ+ENTP-100% 62.7 47.2 61.5 61.1 56.1 57.7

Base Model: Qwen2.5-7B
Vanilla Base Model 71.8 11.1 83.5 58.1 25.3 50.0
LQ Set (123786) 69.3 43.5 77.5 58.6 55.4 60.9
HQ Set (131247) 72.2 38.2 79.0 60.4 60.2 62.0
Full Set (300932) 72.0 41.4 78.0 59.8 65.2 63.3
HQ+ENTP-40% 72.1 44.3 75.5 59.4 60.7 62.4
HQ+ENTP-60% 72.2 43.0 74.0 60.9 59.6 61.9
HQ+ENTP-100% 71.7 45.1 76.0 59.0 63.4 63.1
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Figure 4: Curated overall score distributions for the low-quality corpora set (obtained from
Step 1) and for ENTP-generated merged corpora set (obtained from Step 3)
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G Concrete End-To-End Example

We present a concrete end-to-end example that systematically demonstrates the operational
mechanism of the neural–symbolic fusion step (Step 3). The example is described step-by-
step and includes all intermediate outputs to facilitate reproducibility and interpretability.
We begin by randomly selecting two corpora from the representative low-quality set� which
is obtained from the clustering step (Step 2), as the input:
Raw Corpus A:
### User
input question: Write a sentence not in English.
output answer: от того, что появляется белая лилия, которая цветет с

июня по сентябрь, который распространяется на соленый воздух
нежный аромат.

↪→

↪→

input question: Write a sentence not in English.
output answer: При других заболеваниях лечение может идти до 1 года

и далее. Биокоррекция Васильева может осуществляться как в
клинических условиях, так и амбулаторно.

↪→

↪→

input question: Write a sentence not in English.
output answer: Насколько существенно ее воздействие на важные

бизнес-процессы?↪→

input question: Write a sentence not in English.
output answer:
### Assistant
Ваш входной идентификационный код будет также Вашим кодовым именем

при участии в конкурсе. Информация про введение данных будет
отослана Вам по электронной почте FTP с адресом и паролем.

↪→

↪→

Raw Corpus B:
### User
input question: Write a sentence not in English.
output answer: Отель Fayal Resort Hotel будет показан на карте, если

Вы включите JavaScript.↪→

Q: Translate "How to eat: Just drink it." to Russian?
Yes: Как употреблять: просто выпейте!

[Q]: За 72 года своего существования "Башнефть" сформировалась как
мощный многопрофильный нефтегазодобывающий комплекс.↪→

Translate this to English?
[A]: Within 72 years of its existence, Bashneft has become powerful

multi-structural oil and gas extracting enterprise.↪→

Question:
Для Профессионального комплекта существуют корпоративные решения с

возможностью определять состав дополнительных специализированных
словарей.

↪→

↪→

Could you please translate this to English?
Answer:
For the Professional package there exist enterprise solutions with

the possibility to determine the composition of special
dictionaries.

↪→

↪→
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test: Балахтинский район
English?

translation: Balakhtinsky District

input question: Write a sentence not in English.
output answer:
### Assistant
Лангоун, Майкл

Step 1: Domain Analysis (Prompt template is shown in Figure 10)
LLM Response:
{

"corpus_A_domain": "Language Translation",
"corpus_B_domain": "Language Translation",
"corpus_A_key_terms_list": [

"sentence construction",
"foreign language",
"biocorrection",
"business processes"

],
"corpus_B_key_terms_list": [

"translation",
"enterprise solutions",
"specialized dictionaries",
"multilingual"

],
"matching_rules_derived_from_corpus_A": "Questions from the '###

User' section often ask for non-English sentences or
contexts, and answers in the '### Assistant' section provide
translations or related foreign phrases.",

↪→

↪→

↪→

"matching_rules_derived_from_corpus_B": "The '### User'
questions request either translations or sentences in
non-English, while the '### Assistant' responses deliver
translations or contextual explanations in both English and
Russian.",

↪→

↪→

↪→

↪→

"relationship": "related-domain"
}

Once the relationship is identified, the corresponding fusion strategy is selected (all strategies
are provided in Figure 11). The MCG template (Figure 13) is then applied to generate the
initial merged corpus.
Step 2 & 3: Strategy Selection & Merged Corpus Generation
LLM Response:
{

"overall_response": [
{

"domain_type": "related-domain",
"applied_strategy": "conceptual_analogy",
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"corpus_fusion_variant": "### User\nIn the realm of
Language Translation, both corpora emphasize the
importance of constructing sentences in foreign
languages. For instance, corpus A provides examples
of non-English sentences, while corpus B focuses on
translating these sentences into English. This
highlights the interconnectedness of language
processing and multilingual communication. How can
we further enhance the understanding of cultural
linguistics in translation?\n\n### Assistant\nWe can
enhance the understanding of cultural linguistics in
translation by incorporating cultural context into
the translation process, ensuring that idiomatic
expressions and cultural references are accurately
conveyed."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"domain_type": "related-domain",
"applied_strategy": "process_mapping",
"corpus_fusion_variant": "### User\nWhen considering

enterprise solutions for Language Translation,
corpus B discusses specialized dictionaries that can
aid in translation tasks. Meanwhile, corpus A
mentions biocorrection and its relevance to business
processes. This suggests a need for a structured
approach to integrating these specialized tools into
translation workflows. What are the best practices
for implementing such solutions in a multilingual
environment?\n\n### Assistant\nBest practices for
implementing specialized tools in a multilingual
environment include conducting thorough needs
assessments, training staff on the use of these
tools, and continuously evaluating the effectiveness
of the solutions in improving translation accuracy."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
{

"domain_type": "related-domain",
"applied_strategy": "term_bridging",
"corpus_fusion_variant": "### User\nBoth corpora

highlight key terms such as 'sentence construction'
from corpus A and 'translation' from corpus B. This
overlap indicates a shared focus on the mechanics of
language. Additionally, terms like 'foreign
language' and 'multilingual' suggest a broader
context of language processing. How can we leverage
these shared terms to create a more cohesive
language translation framework?\n\n### Assistant\nWe
can leverage these shared terms by developing a
unified glossary that defines each term in the
context of both corpora, facilitating better
communication and understanding among language
professionals."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
]

}

Since we provide three fusion strategies for each relationship, three different merged corpora
will be generated. However, for clarity of presentation, we illustrate the process using only
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the initial merged corpus produced by the ‘term_bridge’ strategy. The following step is to
obtain the Symbolic Loss for this merged corpus.
Step 4: Information Completeness Detection (Prompt template is shown in Figure 14.)
LLM Response:
{

"technical_report": {
"term_coverage": {

"included": {
"corpus_A_key_terms_list": [

"sentence construction",
"foreign language",
"biocorrection",
"business processes"

],
"corpus_B_key_terms_list": [

"translation",
"enterprise solutions",
"specialized dictionaries",
"multilingual"

]
},
"missing": {

"corpus_A_key_terms_list": [],
"corpus_B_key_terms_list": []

}
},
"question_analysis": {

"question_exists": {
"question_type": "open-ended",
"needs_extra_knowledge_or_background_supplementation": {

"context_contain": "The '### User' section discusses
the overlap of key terms and asks how to
leverage them for a cohesive framework.",

↪→

↪→

"context_missing": "The '### User' section lacks
specific examples or details on what aspects of
the shared terms should be leveraged, which
could help in formulating a more precise
answer."

↪→

↪→

↪→

↪→

}
}

},
"answer_quality": {

"if_needs_to_re_answer": {
"explanation": "The answer provided in the '###

Assistant' section does not directly address the
last question from the '### User' section, which
asks how to leverage shared terms to create a
cohesive language translation framework. The
response is more about developing a glossary rather
than providing a cohesive framework."

↪→

↪→

↪→

↪→

↪→

↪→

}
}

}
}

According to the resultant symbolic loss, the current merged corpus has missing necessary
context in the ‘### User’ section, and the ‘### Assistant’ section does not
provide a direct and clear answer to the question from ‘### User’ section. Thus,
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the initial prompt template for Merged Corpus Generation (Figure 13) is updated to the
version shown in Figure 24 to generate the enhanced merged corpus.
Step 5: Enhanced Corpus Generation (Prompt template is shown in Figure 24.)
LLM Response:
{

"enhanced_corpus": "### User\nBoth corpora highlight key terms
such as 'sentence construction' from corpus A and
'translation' from corpus B. This overlap indicates a shared
focus on the mechanics of language. Additionally, terms like
'foreign language' and 'multilingual' suggest a broader
context of language processing. How can we leverage these
shared terms, particularly 'sentence construction' and
'translation', to create a more cohesive language
translation framework? For instance, what specific
strategies can we implement that utilize 'business
processes' and 'specialized dictionaries' to enhance our
approach to multilingual translation?\n\n### Assistant\nWe
can leverage these shared terms by developing a unified
glossary that defines each term in the context of both
corpora, facilitating better communication and understanding
among language professionals. In addition, we should
consider implementing strategies that integrate 'business
processes' with 'sentence construction' techniques to
streamline translation workflows. Utilizing 'specialized
dictionaries' can also enhance accuracy in translations,
particularly in a multilingual context. By aligning these
elements, we can create a cohesive language translation
framework that not only addresses the mechanics of language
but also improves the overall efficiency and effectiveness
of translation practices."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}

Again, the following step is to obtain the Symbolic Loss for the resultant enhanced merged
corpus from the last step.
Step 4: Information Completeness Detection (ICD) For Enhanced Corpus (Prompt template
has been shown in Figure 14.)
LLM Response:
{

"technical_report": {
"term_coverage": {

"included": {
"corpus_A_key_terms_list": [

"biocorrection",
"business processes",
"foreign language"

],
"corpus_B_key_terms_list": [

"translation",
"enterprise solutions",
"specialized dictionaries",
"multilingual"

]
},
"missing": {

"corpus_A_key_terms_list": [
"sentence construction"
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],
"corpus_B_key_terms_list": []

}
},
"question_analysis": {

"question_exists": {
"question_type": "open-ended",
"needs_extra_knowledge_or_background_supplementation":

"nope"↪→

}
},
"answer_quality": {

"if_needs_to_re_answer": "nope"
}

}
}

Compared to the symbolic loss of the initial merged corpus, the current symbolic loss only
reflects missing key terms from source corpus A. This indicates that the enhanced merged
corpus contains clear questions and answers and provides sufficient background knowledge
to address the questions. The only remaining issue is that the coverage of key terms is
slightly insufficient. Nonetheless, compared to the initial merged corpus, the current version
represents a significant improvement. Therefore, to address the issue of missing key terms,
we update the current template to the version shown in Figure 17 to generate a better
merged corpus covering a broader range of domains.
Step 5: Enhanced Corpus Generation (Prompt template is shown in Figure 17.)
LLM Response:
{

"enhanced_corpus": "### User\nBoth corpora highlight key terms such
as 'sentence construction' from corpus A and 'translation' from
corpus B. This overlap indicates a shared focus on the mechanics
of language. Additionally, terms like 'foreign language' and
'multilingual' suggest a broader context of language processing.
How can we leverage these shared terms, particularly 'sentence
construction' and 'translation', to create a more cohesive
language translation framework? For instance, what specific
strategies can we implement that utilize 'business processes'
and 'specialized dictionaries' to enhance our approach to
multilingual translation?\n\n### Assistant\nWe can leverage
these shared terms by developing a unified glossary that defines
each term in the context of both corpora, facilitating better
communication and understanding among language professionals. In
particular, the concept of 'sentence construction' is crucial as
it involves the mechanisms of structuring sentences effectively
in various languages. Additionally, we should consider
implementing strategies that integrate 'business processes' with
'sentence construction' techniques to streamline translation
workflows. For example, application scenarios such as utilizing
'specialized dictionaries' can enhance accuracy in translations,
particularly in a multilingual context. By aligning these
elements, we can create a cohesive language translation
framework that not only addresses the mechanics of language but
also improves the overall efficiency and effectiveness of
translation practices."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

}
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Again, the following step is to obtain the Symbolic Loss for the resultant enhanced merged
corpus from the last step.
Step 4: Information Completeness Detection (ICD) For Enhanced Corpus
LLM Response:
{

"technical_report": {
"term_coverage": {

"included": {
"corpus_A_key_terms_list": [

"biocorrection",
"business processes",
"foreign language",
"sentence construction"

],
"corpus_B_key_terms_list": [

"enterprise solutions",
"multilingual",
"specialized dictionaries",
"translation"

]
},
"missing": {

"corpus_A_key_terms_list": [],
"corpus_B_key_terms_list": []

}
},
"question_analysis": {

"question_exists": {
"question_type": "open-ended",
"needs_extra_knowledge_or_background_supplementation":

"nope"↪→

}
},
"answer_quality": {

"if_needs_to_re_answer": "nope"
}

}
}

According to the current symbolic loss, all conditions have been satisfied: no key terms
are missing, the ‘### User’ section provides a clear question along with the necessary
background knowledge to answer it, and the ‘### Assistant’ section provides a precise
answer to the question. Thus, the resultant merged corpus successfully completes
the entire Cycle 1 process. The next step is to double-check the quality of the answer
in the ‘### Assistant’ section of the current resultant merged corpus (obtaining the
symbolic loss from the FAC operator).
Step 6: Final Answer Check (Prompt template has been shown in Figure 12.)
LLM Response:
{

"if_containing_direct_answer": {
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"direct_answer": "We can leverage these shared terms by
developing a unified glossary that defines each term in
the context of both corpora, facilitating better
communication and understanding among language
professionals. Additionally, we should consider
implementing strategies that integrate 'business
processes' with 'sentence construction' techniques to
streamline translation workflows. For example, utilizing
'specialized dictionaries' can enhance accuracy in
translations, particularly in a multilingual context."

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
"if_containing_information_needed_to_delete": "nope"

}

According to the symbolic loss from the FAC operator, the current ‘### Assistant’ section
contains a direct answer to the question from ‘### User’ and includes no irrelevant or
redundant information, indicating that the current merged corpus has successfully
passed the entire Cycle 2 process.

Final Merged Corpus We present the input corpora pair and their resultant merged
corpus (‘enhanced_corpus’) below:
{

"raw_corpus_A": "### User\ninput question: Write a sentence not
in English.\noutput answer: от того, что появляется белая
лилия, которая цветет с июня по сентябрь, который
распространяется на соленый воздух нежный аромат.\ninput
question: Write a sentence not in English.\noutput answer:
При других заболеваниях лечение может идти до 1 года и
далее. Биокоррекция Васильева может осуществляться как в
клинических условиях, так и амбулаторно.\ninput question:
Write a sentence not in English.\noutput answer: Насколько
существенно ее воздействие на важные бизнес-процессы?\ninput
question: Write a sentence not in English.\noutput
answer:\n### Assistant\nВаш входной идентификационный код
будет также Вашим кодовым именем при участии в конкурсе.
Информация про введение данных будет отослана Вам по
электронной почте FTP с адресом и паролем.",

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

"raw_corpus_B": "### User\ninput question: Write a sentence not
in English.\noutput answer: Отель Fayal Resort Hotel будет
показан на карте, если Вы включите JavaScript.\n\n\nQ:
Translate \"How to eat: Just drink it.\" to Russian?\nYes:
Как употреблять: просто выпейте!\n\n\n[Q]: За 72 года своего
существования \"Башнефть\" сформировалась как мощный
многопрофильный нефтегазодобывающий комплекс.\n\nTranslate
this to English?\n[A]: Within 72 years of its existence,
Bashneft has become powerful multi-structural oil and gas
extracting enterprise.\n\n\nQuestion:\nДля Профессионального
комплекта существуют корпоративные решения с возможностью
определять состав дополнительных специализированных
словарей.\n\nCould you please translate this to
English?\nAnswer:\nFor the Professional package there exist
enterprise solutions with the possibility to determine the
composition of special dictionaries.\n\n\ntest: Балахтинский
район\nEnglish?\n\ntranslation: Balakhtinsky
District\n\n\ninput question: Write a sentence not in
English.\noutput answer:\n### Assistant\nЛангоун, Майкл",
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"enhanced_corpus": "### User\nBoth corpora highlight key terms
such as 'sentence construction' from corpus A and
'translation' from corpus B. This overlap indicates a shared
focus on the mechanics of language. Additionally, terms like
'foreign language' and 'multilingual' suggest a broader
context of language processing. How can we leverage these
shared terms, particularly 'sentence construction' and
'translation', to create a more cohesive language
translation framework? For instance, what specific
strategies can we implement that utilize 'business
processes' and 'specialized dictionaries' to enhance our
approach to multilingual translation?\n\n### Assistant\nWe
can leverage these shared terms by developing a unified
glossary that defines each term in the context of both
corpora, facilitating better communication and understanding
among language professionals. In particular, the concept of
'sentence construction' is crucial as it involves the
mechanisms of structuring sentences effectively in various
languages. Additionally, we should consider implementing
strategies that integrate 'business processes' with
'sentence construction' techniques to streamline translation
workflows. For example, application scenarios such as
utilizing 'specialized dictionaries' can enhance accuracy in
translations, particularly in a multilingual context. By
aligning these elements, we can create a cohesive language
translation framework that not only addresses the mechanics
of language but also improves the overall efficiency and
effectiveness of translation practices."
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}

H Merged Corpus Example

For illustrative purposes, we randomly select three merged corpora in this section: two
derived from Intra-Cluster Fusion and one from Inter-Cluster Fusion.

H.1 Merged Corpus From Intra-Cluster Fusion

As illustrated in Figure 7, the two raw corpora originate from the same cluster and contain
a large amount of overlapping surface-level information. One focuses on locating positions
with alphabetical elements in the input list, while the other counts the total number of such
elements. However, both fail to explicitly convey the underlying conceptual principles. This
indicates that these raw corpora have very limited capacity to guide the LLM in developing
a deeper, principle-based understanding. In contrast, our merged corpus not only makes full
use of the background knowledge provided by the raw corpora, but also includes concrete
procedural steps in the answer section. Moreover, it explicitly references relevant technical
domains and concepts, such as data structures, list traversal, and element evaluation. As
a result, our merged corpus is clearly better positioned to guide the LLM toward deeper
reasoning and generate outputs that are closer to ground-truth inferences.
Similarly, in another five-to-one corpora fusion example (see Figure 9), all five raw corpora
focus on the same task, “Generate a 5-star review for a given software.” However, none
of them provide any background information about the software itself. While the last two
raw corpora contain multiple Q-A pairs, there is little to no semantic connection between
the pairs, and in some cases, the answers appear unrelated to the corresponding questions.
Such fragmented and context-deficient corpora may negatively impact the LLM’s reasoning
capabilities. By contrast, our merged corpus not only retains key features from the original
raw corpora in the question formulation but also provides substantial contextual background.
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Furthermore, the answer section offers clear directions and actionable steps tailored to the
question, significantly enhancing the expressive power and utility of each individual merged
corpus.

H.2 Merged Corpus From Inter-Cluster Fusion

Furthermore, as shown in Figure 8, the two raw corpora come from entirely unrelated do-
mains, one focuses on official languages and industries, while the other discusses leeks and
grass. In contrast, our merged corpus introduces a hypothetical scenario that not only incor-
porates elements from both raw corpora, such as Spanish, leeks, and grass, but also raises a
more profound question: How do cultural values and language influence agrotourism? The
answer section goes further by outlining a concrete strategic plan in response. This further
validates the capacity of our merged corpora to guide the LLM in exploring a broader range
of reasoning possibilities.

I Future Work

Looking ahead, we plan to address the boundary cases where fusion consistently fails, par-
ticularly for highly structured inputs such as tables, code snippets, and mathematical ex-
pressions. Our current approach sidesteps this challenge by filtering out mathematics- and
coding-related corpora, but a more general solution is needed. A promising direction is to
develop a unified fusion paradigm that can seamlessly handle both structured–structured
and structured–unstructured data pairs, enabling robust corpus integration across diverse
domains. Additionally, we intend to adopt more up-to-date benchmarks covering a wider
range of domains and tasks as evaluation sets, in order to more thoroughly assess LLM
performance across different fields.
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Figure 5: Neural-Symbolic Two-To-One Corpora Fusion Stepwise Logical Execution Workflow
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<System Prompt>: As a data quality estimator, your task is to assess 
the quality of the data sample based on the criteria: Rarity, 
Complexity, and Informativeness. Please rate the sample on a scale 
from 1 to 10 for each criterion, and return an overall rating on a scale 
from 1 to 10, where a higher score indicates a higher level of quality. 
Ensure that the ratings are not overly concentrated around a specific 
score. If multiple samples have similar qualities, consider spreading 
the scores more evenly to reflect subtle differences.

<User Prompt>: Now, please carefully evaluate the following data 
sample and return the integral evaluation scores using the JSON 
format:

{"Rarity": <number, 1-10>,
"Complexity": <number, 1-10>,
"Informativeness": <number, 1-10>,
"Overall rating": <number, 1-10>}

Instruction: [Instruction]
Input: [Input]
Response: [Response]

LLM Rating Prompt Template From DS^2

Figure 6: LLM-rating Prompt Template From DS2 (Pang et al., 2025)

41



2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291

Under review as a conference paper at ICLR 2026

Two Raw Corpora:

"### User\nYou will be given a definition of a task first, then some input of the task.
\nIn this task, you are given an input list. A list contains several comma-separated 
items written within brackets. You need to return the position of all the alphabetical 
elements in the given list in order. Assume the position of the 1st element to be 1. 
Return -1 if no alphabetical element is in the list.\n\n['2385', 'i', 'Y', 'T', '4011', 
'f', 'Q']\nOutput:\n### Assistant\n2, 3, 4, 6, 7",

"### User\nQ: In this task, you are given an input list. A list contains several 
comma-separated items written within brackets. You need to return the count of all 
the alphabetical elements in the given list. Return 0 if no alphabetical element in the 
list\n['1029', '9675', '5911', '2311', '781', '1357', 'T', 'p', '2795', 'H', 'G', 'a', 'd', 
'u', '6253', 'c', '2287', 'g', 'c', '2881', 'D', '3405', '7357', '7193', 'y', '6545']
\nA:\n### Assistant\n12"

Two-to-One Corpora Fusion Example

Merged Corpus:

### User\nIn the context of Data Structures and Algorithms, we often analyze lists 
to extract specific information. For instance, when given an input list like ['2385', 'i', 
'Y', 'T', '4011', 'f', 'Q'], we can identify the positions of alphabetical elements. This 
process is similar to counting how many alphabetical elements are present in another 
list, such as ['1029', '9675', '5911', '2311', '781', '1357', 'T', 'p', '2795', 'H', 'G', 'a'
, 'd', 'u', '6253', 'c', '2287', 'g', 'c', '2881', 'D', '3405', '7357', '7193', 'y', '6545']. 
How do these two tasks relate in terms of their underlying principles, particularly 
regarding the concepts of identifying the position of alphabetical elements and 
counting them in a list? What are the fundamental similarities in their methodologies, 
and how do they utilize the input list to derive meaningful output?\n\n
### Assistant\nBoth tasks involve processing a list to extract information based on 
specific criteria, highlighting the importance of character analysis and element 
identification in list processing. Specifically, identifying the positions of alphabetical 
elements requires traversing the input list and checking each element against the 
criteria of being alphabetical, which results in a list of indices where these elements 
are found. In contrast, counting the alphabetical elements involves a similar traversal 
but focuses on tallying the total number of elements that meet the alphabetical 
criteria, ultimately yielding a single numerical output. Thus, both tasks share the 
underlying principle of list traversal and element evaluation, emphasizing the 
significance of systematic analysis in data structures.

Figure 7: Merged Corpus Example from Two-To-One Intra-Cluster Fusion
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Two Raw Corpora:

"### User\nUsing available sources, can you provide the current population, official 
language, and top 3 industries of the city that serves as the administrative and 
political center of Bolivia?\n### Assistant\nThe city that serves as the 
administrative and political center of Bolivia is La Paz.\nAccording to the World 
Population Review, as of 2021, the population of La Paz is approximately 2.8 million 
people.\nThe official languages of Bolivia are Spanish, Quechua, and Aymara. However, 
Spanish is the most widely spoken language in La Paz.\nThe top three industries in 
La Paz are finance and banking, tourism, and manufacturing.",

"### User\nFor this chain-of-thought reasoning and answer, what was the question?
\nChives grow upwards in thin green cylindrical shoots. Grass grows upwards in thin 
green flat shoots.\n A: yes\n\n### Assistant\nQ: Could chives be mistaken for 
grass?"

Two-to-One Corpora Fusion Example

Merged Corpus:

### User\nImagine a scenario where La Paz, with its 2.8 million residents, is hosting 
an international conference on botany. The discussions revolve around the similarities 
between local plants like chives and grass, which both grow upwards but in different 
forms—cylindrical and flat shoots, respectively. As the conference unfolds, 
participants explore how the official languages of Bolivia, primarily Spanish, Quechua, 
and Aymara, influence the understanding of these plants in cultural contexts. What 
would be the key takeaways from such a conference regarding the relationship 
between local flora and the economic sectors in La Paz, particularly in terms of how 
cultural perceptions and language might affect industries such as agriculture and 
tourism?\n\n### Assistant\nKey takeaways would likely include the importance of 
local flora in promoting tourism, particularly through eco-tourism initiatives that 
highlight unique plant species. Additionally, the role of agriculture in economic 
stability would be emphasized, showcasing how crops like chives can be marketed both 
locally and internationally. Furthermore, the conference would reveal how cultural 
identity, shaped by the official languages of Bolivia, influences the perception and 
utilization of these plants in various industries, suggesting that a deeper 
understanding of these relationships could enhance economic opportunities in La Paz."

Figure 8: Merged Corpus Example from Two-To-One Inter-Cluster Fusion
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Five Raw Corpora:

### User\nQuestion: Generate a 5-star review (1 being lowest and 5 being highest) 
about an app with package com.google.android.gms.\nAnswer:\n### Assistant\n
faster,

### User\nQuestion: Generate a 5-star review (1 being lowest and 5 being highest) 
about an app with package com.google.android.gms.\nAnswer:\n### Assistant\nIts 
very great,

### User\nAnswer the following question: Generate a 5-star review (1 being lowest 
and 5 being highest) about an app with package org.telegram.messenger.\nAnswer:
\n### Assistant\nwelldone,

### User\nQuestion: Generate a 5-star review (1 being lowest and 5 being highest) 
about an app with package com.google.android.gms.\nAnswer: i love it\n\nQuestion: 
Generate a 5-star review (1 being lowest and 5 being highest) about an app with 
package com.google.android.gms.\nAnswer: I can't think about it all the best thing to 
happen to you and your not going out with a smile and laugh at me for the first place 
in my life \"\"...😏\n\nQuestion: Generate a 5-star review (1 being lowest and 5 
being highest) about an app with package com.google.android.gms.\nAnswer:\n
### Assistant\nNAGABABU VASANTHABA 333",

"### User\ninput: Please answer the following: Generate a 5-star review (1 being 
lowest and 5 being highest) about an app with package com.numix.icons_circle.\n
++++++++++\noutput: Wow Really like it.\n\n\ninput: Please answer the following: 
Generate a 4-star review (1 being lowest and 5 being highest) about an app with 
package org.telegram.messenger.\n++++++++++\noutput: Good\n\n\ninput: Please 
answer the following: Generate a 5-star review (1 being lowest and 5 being highest) 
about an app with package com.google.android.gms.\n++++++++++\noutput: salidos\n\n
\ninput: Please answer the following: Generate a 5-star review (1 being lowest and 5 
being highest) about an app with package com.mgaetan89.showsrage.\n++++++++++\n
output:\n### Assistant\nNice redesign! This app works great! And the new icon is 
beautiful!"

Five-to-One Corpora Fusion Example

Merged Corpus:

### User\nIn the realm of mobile applications, user feedback acts as a compass 
guiding developers toward user satisfaction. Just as a well-crafted itinerary enhances 
a journey, a '5-star review' serves as a beacon of success for an app like 
com.mgaetan89.showsrage. Users often express their delight, saying things like, 
\"Nice redesign! This app works great!\" This feedback is crucial for potential users 
navigating the digital landscape. How can we further explore the metaphor of apps as 
companions in this journey, and what other terms can we bridge to deepen our 
understanding of user experiences?\n\n### Assistant\nWe can explore the 
metaphor of apps as companions by identifying additional terms like 
'user-friendly experience' and 'companion apps' that enhance user satisfaction. By 
analyzing how these terms relate to user feedback, we can gain insights into the 
emotional connections users form with their apps.

Figure 9: Merged Corpus Example from Five-To-One Intra-Cluster Fusion
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## Role
You are a domain relationship analyzer

## Task
Analyze two QA corpora and output domain relationship analysis in JSON format

## Input
- corpus_A: Full QA block including ### User and ### Assistant
- corpus_B: Full QA block including ### User and ### Assistant

## Output Requirements
1. Identify primary domains for both corpora using professional terminology
2. Extract as many key technical terms as possible from both corpora
3. Identify and extract the potential matching rules or patterns that align questions 
    from the '### User' section with corresponding answers in the '### Assistant' 
    section for both corpora 
4. Calculate semantic similarity between corpora based on conceptual overlap 
    (0-1 scale)
5. Propose candidate **bridging_concepts** that enable cross-domain integration
    - Specifically, generate potential bridging concepts that incorporate and unify the 
       key terms from both the **corpus_A_key_terms_list** and the 
       **corpus_B_key_terms_list**
6. Refer to the '## Example Output' section below, and make sure all the key must 
    have a valid value
7. Please ensure that **none of your responses** contain any information related to 
    **sexual explicitness, violence, drug use, threats to social order, or 
    racial prejudice**.

## Example Output
{
    "corpus_A_domain": "Network Security",
    "corpus_B_domain": "Medical Device Regulation",
    "corpus_A_key_terms_list": ["encryption", "firewall", "VPN", ...],
    "corpus_B_key_terms_list": ["sterilization", "FDA", "compliance", ...],
    "matching_rules_derived_from_corpus_A": 
        "Provide a detailed description of the potential matching rules or patterns that 

align questions from the '### User' section with corresponding answers in the 
        '### Assistant' section within **corpus_A**",
    "matching_rules_derived_from_corpus_B": 

"Provide a detailed description of the potential matching rules or patterns that 
        align questions from the '### User' section with corresponding answers in the

'### Assistant' section within **corpus_B**",
    "relationship": "same-domain"/ "related-domain"/ "unrelated-domain"
}

## Input
- corpus_A: {corpus_A from user input}
- corpus_B: {corpus_B from user input}

Domain Analysis (DA)

Figure 10: Prompt template for the LLM-invoking Domain Analysis (DA) Operator
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Symbolic Fusion Strategy Selection (SS)
"same-domain": {{
        "knowledge_merging": 

"Combine complementary knowledge points from corpora within the same 
domain to create comprehensive expertise integration",

        "procedure_extension": 
"Enhance operational workflows by integrating detailed steps from 
multiple sources within the same field",

        "case_integration": 
"Develop composite scenarios that unify specialized cases from different 
sub-domains"

}},
"related-domains": {{
        "conceptual_analogy": 

"Establish cross-domain connections through abstract principle 
similarities",

        "process_mapping": 
"Adapt standard processes from one domain to another's framework 
while preserving core logic",

        "term_bridging": 
"Create conceptual links through shared terminology with domain-specific 
interpretations"

}},
"unrelated-domains": {{
        "creative_metaphor": 

"Construct innovative connections using figurative language and symbolic 
representations",

        "hypothetical_scenario": 
"Design artificial situations that force meaningful interaction between 
disparate domains",

        "structural_parallelism": 
"Identify and leverage formal pattern similarities in knowledge 
organization"

}}

Figure 11: Symbolic fusion strategy definition for Strategy Selection (SS) Operator
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Final Answer Check (FAC)

## Role
You are a cross-corpus fusion quality auditor.

## Task
Given the merged corpus containing '### User' and '### Assistant' sections, 
assess the quality of **the last '### Assistant' section only** (if the merged 
corpus contains multiple '### Assistant' sections) following the 
'### Evaluation Criteria':

### Evaluation Criteria For the '### Assistant' section:
1. **Direct Response**:
    - Does the '### Assistant' section offer a clear answer to the unanswered 
       question from the '### User' section?
2. **Content Relevance**:
    - Does the '### Assistant' section contain unnecessary, redundant, or unrelated 
      information?
    
### Input Merged Corpus:
<begin>
{merged_corpus}
<end>

### Expected Output Structure:
{{
    "if_containing_direct_answer": 

"nope" (indicating that the last '### Assistant' section **does not provide an 
answer** to the final question posed in the last '### User' section)

    /
    "if_containing_direct_answer": {{
        'direct_answer': 

"Extracting only the direct, complete answer from the last 
'### Assistant' section, ensuring that the extracted information is both 
clear and coherent."

    }},
    "if_containing_information_needed_to_delete": 

"nope" (indicating that the last '### Assistant' section provides 
**a perfect answer** to the final question from the last '### User' section, 
**with no redundant or irrelevant information**)

    /
    "if_containing_information_needed_to_delete": {{
        "information_needs_to_remove": 

"Extracting all redundant, irrelevant, or unnecessary information from the 
last '### Assistant' section that does not contribute to answering the 
final question in the last '### User' section"

    }}
}}

Figure 12: Prompt template for the Final Answer Check (FAC) Operator
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## Role
You are a strategy architect specializing in cross-corpus fusion, skilled in leveraging 
domain analysis to design effective merging strategies.

## Task
Utilize the provided domain analysis and selected strategies to generate three 
unique corpus fusion variants. Each variant must employ a distinct strategy to merge 
corpus_A and corpus_B, ensuring that no strategy is repeated. The fusion for each 
variant should not only integrate the two corpora but also reflect the specific 
domain characteristics identified in the analysis.

## Input
{{
    "raw_corpus_A": {raw_corpus_A},
    "raw_corpus_B": {raw_corpus_B}
}}

## Domain Analysis
{{
    "corpus_A_domain": {corpus_A_domain},
    ...
    "relationship": {relationship_label}
}}

## Selected Strategy
{strategy_dict_str}

## Output Requirements
- For all three corpus fusion variants generation:
    1. For the '### User' section:
        a. The '### User' section must conclude with an unanswered question
            - This section should integrate **essential context** with **one or more 

       related, logically connected questions**.
            - If there are multiple questions in the newly generated '### User' section,
              **do make sure to provide the corresponding direct answer to each question 
              except the final one**
        b. In the '### User' section, ensure that the background information is 
            logically structured and coherently presented. The question posed should be 

    directly related to the provided background, with a natural and seamless 
            transition between the background information and the question, resulting in 
            an overall smooth and readable flow.
    2. '### Assistant' section must provide a direct answer exclusively to the 
        unanswered question posed in the '### User' section
    3. Preserve all key terms from both corpus_A_key_terms_list and 
        corpus_B_key_terms_list in all three corpus fusion variants
    4. Adhere to the matching rules or patterns from both raw corpora 
        (**matching_rules_A** and **matching_rules_B**), ensuring that the resulting 
        matching rules or patterns explicitly encompass those from both original 
        corpora
    5. Ensure logical coherence and semantic fluency throughout the content
    6. Utilize the **Selected Strategies** for the corpus 
        fusion variants generation
    7. Strictly maintain:
        - The '### User' and '### Assistant' markers.
        - The formatting identical to that of the original corpora.
    8. Each corpus fusion variant **must include at leaset** one '### User' section 
        and one '### Assistant' section
        - Which means the resultant corpus fusion variant may contain multiple 
          '### User' and '### Assistant' section pairs if deemed indeed necessary.
    9. Please ensure that **none of your responses** contain any information related 
        to **sexual explicitness, violence, drug use, threats to social order, or racial 
        prejudice**.

## Example Output Structure
{{
    "overall_response": [
        {{
            "domain_type": "same-domain"/ "related-domain"/ "unrelated-domain" 
            "applied_strategy": "creative_metaphor"/ ...,
            "corpus_fusion_variant": 

"""### User
<The content in the ### User section may be a single question (with or
without context) or a series of question-answer pairs that culminate in a 
final question, in accordance with the original corpora.>

### Instruction
<This section is optional. Sometimes the raw corpora include an Instruction
section. For the newly generated corpus fusion variant, you may choose whether
or not to include it.>

### Input
<This section is optional. Sometimes the raw corpora include an Input section. For 
the newly generated corpus fusion variant, you may choose whether or not to 
include it.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>"""

   or you can also include multiple '### User' and '### Assistant' section 
   pairs derived from some raw corpus if you deem it indeed necessary

            
            "corpus_fusion_variant": 

"""### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>

...

### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>"""
        }},

{{
  ...
}},
{{
  ...
}}

    ]
}}

Merged Corpus Generation (MCG)

Figure 13: Prompt design for the Merged Corpus Generation (MCG) Operator.
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## Role
You are a cross-corpus fusion quality auditor.

## Task
Evaluate the completeness of merged corpus content against strict quality criteria 
and generate a detailed supplementation report.

### Evaluation Criteria:
1. **Key Term Coverage**
    - Verify inclusion of ALL key technical terms from:
        - Corpus A Key Technical Terms List: {corpus_A_key_terms_list}
        - Corpus B Key Technical Terms List: {corpus_B_key_terms_list}
    - Categorize terms as included/missing

2. **'### User' Section Quality Check**
    a. Unanswered Questions Presence Check:
        - Does the '### User' section end with an unanswered question?
    b. Unanswered Question Type Analysis:
        - Open-ended: This type of question normally does not have an unique golden 
          answer. So, it requires **no additional context** (such as: why do you like 
          Spring?).
        - Closed-ended: This type of question normally does have an unique golden 
          answer. So, it **requires specific context** (such as: what is the first 
          sentence of the input paragraph? The 'input' paragraph is the specific 
          context in this case.).
    c. Background Provision:
        - For open-ended unanswered question: Verify self-contained background
        - For closed-ended unanswered question: Does the '### User' section provide 
          sufficient background to address the unanswered question?
    d. Multiple Questions Handling:
        - If multiple questions are present, does '### User' section answer all except 
          the final one explicitly?

3. **'### Assistant' Section Evaluation**:
    a. **Direct Response**:
        - Does the '### Assistant' section offer a clear answer to the unanswered 
          question from the '### User' section?
    b. **Content Relevance**:
        - Does the '### Assistant' section contain unnecessary, redundant, or 
          unrelated information?
        
4. **Matching Rules Or Patterns Verification**
    - Confirm that the merged corpus’s mapping from the question (from '### User' 
      section) to the answer (from '### Assistant' section) preserves the implicit 
      patterns observed in both original corpora:
        - Matching Rules or Patterns derived from Corpus A: 

  {matching_rules_derived_from_corpus_A}
        - Matching Rules or Patterns derived from Corpus B: 

  {matching_rules_derived_from_corpus_B}

### Input Data:
- Source Corpus A:
<begin>
{corpus_A}
<end>

- Source Corpus B:
<begin>
{corpus_B}
<end>

- Merged Corpus:
<begin>
{merged_corpus}
<end>

### Output Requirements:
- Strict JSON format
- Detailed technical breakdown
- Missing elements must be explicitly listed

### Evaluation Process:
1. **Phase 1: Term Inventory Audit**
    a. Cross-reference terms from both corpora
    b. Generate inclusion/missing lists

2. **Phase 2: Question Analysis**
    a. Question existence verification
    b. Question type classification
    c. Background context assessment

3. **Phase 3: Answer Validation**
    a. Directness of answer to question
    b. Completeness for question type

### Example Output:
{{
    "technical_report": {{
        "term_coverage": {{
            "included": {{
                "corpus_A_key_terms_list": ["term_1", "term_3", ...],
                "corpus_B_key_terms_list": ["term_2", "term_3", ...]
            }},
            "missing": {{
                "corpus_A_key_terms_list": ["term_2", ...],
                "corpus_B_key_terms_list": ["term_1", ...]
            }}
        }},
        "question_analysis": {{
            "question_exists": 

"no_questions_found" (indicating that the '### User' section dose not 
provide any unanswered questions)

            /
            "question_exists": {{
                "question_type": "open-ended"/ "close-ended",
                "needs_extra_knowledge_or_background_supplementation": {{
                    "context_contain": 

"Provide a detailed description about what context information had 
been provided by the '### User' section of the current merged 
corpus",

                    "context_missing": 
"Provide a detailed explanation of the necessary context information 
that is still absent from the '### User' section, which is required 
to answer this question."

                }}
                /
                "needs_extra_knowledge_or_background_supplementation": 

"nope" (indicating that the context provided in the '### User' 
section is sufficient to answer the question without any additional 
background information)

            }}
        }},
        "answer_quality": {{
            "if_needs_to_re_answer": 

"nope" (indicating that the current answer provided in the 
'### Assistant' section had directly addressed **the last question** 
from the '### User' section)

            /
            "if_needs_to_re_answer": {{
                "explanation": "Offer a comprehensive rationale explaining why the answer 

provided in the '### Assistant' section does not adequately address the 
question posed in the '### User' section. This explanation should detail 
whether the response is incomplete, only partially addresses the question, 
or is entirely irrelevant."

            }}
        }}
    }}
}}

Information Completeness Detection (ICD)

Figure 14: Prompt design for the Information Completeness Detection (ICD) Operator.
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## Role
You are an expert assistant. 

## Task
Below is a conversation that may contain one or more pairs of "### User" and 
"### Assistant" sections. The final "### User" section ends with an unanswered 
question. Please review the conversation and provide a concise, direct answer to that 
unanswered question without any unnecessary filler. Your answer should be concise 
and directly address that unanswered question.

## Input Conversation
{conversation}

## Expected Output Structure
{{
    "answer": "providing a direct answer to the unanswered question from the 

     '### User' section only"
}}

Candidate FAU Prompt Template
Symbolic Loss: 
Omission of Directed Answer

Figure 15: Candidate FAU Prompt Template for The Case of Omission of Directed Answer
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## Role
You are an expert assistant. 

## Task
You are provided with a conversation that contains one or more pairs of "### User" 
and "### Assistant" sections. The final "### Assistant" section includes an 
answer that not only addresses the question from the last "### User" section but 
also contains redundant or irrelevant information. Additionally, you are given 
feedback specifying the **direct_answer** (the essential part to keep) and the 
**information_needs_to_remove** (the parts to discard).

Your task is to review the conversation and the feedback, then provide a revised 
answer that is concise and contains only the direct answer to the question from 
the last "### User" section, with all extraneous content removed.

## Input Conversation
{conversation}

## Feedback For The Answer From The Final '### Assistant' Section
{{
    "direct_answer": {direc_ans},
    "information_needs_to_remove": {removed_infor}
}}

## Expected Output Structure
{{
    "answer": "provide a revised answer that is concise and contains only the direct 
                     answer to the question from the last "### User" section, with all 
                     extraneous content removed."
}}

Candidate FAU Prompt Template
Symbolic Loss: 
Existing Irrelevant or Redundant Information

Figure 16: Candidate FAU Prompt Template for The Case of Existing Irrelevant or Redundant Information
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## Role
You are a Corpus Enhancement Specialist.

## Task
Intelligently expand existing merged corpus based on term coverage reports while 
strictly adhering to the following rules:

### Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

2. Term Coverage Report:
{{
    "included_terms_list": {included_terms_list},
    "missing_terms_list": {missing_terms_list}
}}

### Processing Rules
1. **Content Preservation Principle**
   - Preserve all unanswered questions from the '### User' section and their 
     corresponding answers in the '### Assistant' section without alteration.
   - Ensure that any modifications to the existing content do not exceed 20%% of 
     the original content.
    
2. **Term Integration Guidelines**
    - **Insertion of Missing Terms**: Insert each missing term from 
      **missing_terms_list** using one of the following methods:
        a. Integrate the term naturally within an explanatory statement 
            (e.g., "...which involves {{term}} mechanisms...").
        b. Incorporate the term into practical examples (e.g., "Application scenarios 
            such as {{term}}...").
   
    - **Handling of Already Included Terms**: For every term listed in 
      **included_terms_list** that is present in the current merged corpus, choose 
      one of the following approaches:
        a. Retain the original content from the **Current Merged Corpus** if it is 
            relevant to the term—meaning the content contains either an explicit 
            mention or an implicit reference to the concept represented by the term.
        b. Rephrase the original content from the **Current Merged Corpus** that 
            pertains to the term, ensuring that the revised version explicitly includes 
            the term while also integrating all the missing terms.
   
    - **Prohibition**: Do not simply list terms without integrating them into the 
                                 context.
    
3. **Coherence Assurance**
    - Ensure that all newly inserted or rephrased content is seamlessly integrated 
       using explicit transitional phrases (e.g., "Considering", "In light of", "Particular 
       attention should be paid to", etc.).
    - Preserve the original paragraph structure to maintain the logical flow and 
       organization of the content.

### Expected Output Sturcture
{{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Key Technical Terms

Figure 17: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms
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## Role
You are a Corpus Enhancement Specialist.

## Task
Intelligently expand existing merged corpus based on targeted supplementation 
while preserving original structure

### Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

2. Supplementation Requirements:
{{
    "terms_coverage": {{
        "included_terms_list": {included_terms_list},
        "missing_terms_list": {missing_terms_list}
    }},
    "answer_quality_feedback": {assistant_feedback}
}}

### Processing Rules
1. **Content Preservation Principle**
   - Preserve all unanswered questions from the '### User' section.
   - Ensure that any modifications to the existing content do not exceed 20%% of 
     the original content.
    
2. **Term Integration Guidelines**
    - **Insertion of Missing Terms**: Insert each missing term from 
      **missing_terms_list** using one of the following methods:
        a. Integrate the term naturally within an explanatory statement 
           (e.g., "...which involves {{term}} mechanisms...").
        b. Incorporate the term into practical examples (e.g., "Application scenarios 
            such as {{term}}...").
   
    - **Handling of Already Included Terms**: For every term listed in 
      **included_terms_list** that is present in the current merged corpus, choose 
      one of the following approaches:
        a. Retain the original content from the **Current Merged Corpus** if it is 
            relevant to the term—meaning the content contains either an explicit 
            mention or an implicit reference to the concept represented by the term.
        b. Rephrase the original content from the **Current Merged Corpus** that 
            pertains to the term, ensuring that the revised version explicitly includes 
            the term while also integrating all the missing terms.
   
    - **Prohibition**: Do not simply list terms without integrating them into the 
                                context.
        
3. **Answer Regeneration Guidelines**
    - Regenerate only the responses in the '### Assistant' section.
    - Ensure that the regenerated answer explicitly addresses the unanswered 
      questions from the '### User' section.
    - Utilize the insights from "answer_quality_feedback" to inform the regeneration 
      process, ensuring that the newly regenerated answers do not repeat the issues 
      identified in the feedback.
    - Maintain logical coherence and consistent terminology throughout the 
      regenerated response.
               
4. **Coherence Assurance**
    - Ensure that all newly inserted or rephrased content is seamlessly integrated 
      using explicit transitional phrases (e.g., "Considering", "In light of", "Particular 
      attention should be paid to", etc.).
    - Preserve the original paragraph structure to maintain the logical flow and 
      organization of the content.

### Expected Output Sturcture
{{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}}

Symbolic Loss: 
Omission of Key Technical Terms & Directed Answer

Candidate MCG Prompt Template

Figure 18: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Directed Answer
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## Role
You are a Corpus Enhancement Specialist.

## Task
Intelligently expand existing merged corpus based on targeted supplementation 
while preserving original structure

### Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

4. Supplementation Requirements:
{{
    "terms_coverage": {{
        "included_terms_list": {included_terms_list},
        "missing_terms_list": {missing_terms_list}
    }},
    "question-answer_matching_rules": {{
        "matching_rules_derived_from_corpus_A": 

{matching_rules_derived_from_corpus_A},
        "matching_rules_derived_from_corpus_B": 

{matching_rules_derived_from_corpus_B}  
    }},
    "question_feedback": {{
        "question_type": {question_type},
        "context_contain": {context_contain},
        "context_missing": {context_missing}
    }}    
}}

### Processing Rules
1. **Content Preservation Principle**
    - Avoid regenerating the entire content of both the '### User' and 
      '### Assistant' sections:
        - Instead, only regenerate the unanswered questions from the '### User' 

  section (expanding necessary background details as needed) and update the 
          corresponding answers in the '### Assistant' section based on the newly 
          generated questions.
    - Ensure that the total modifications do not exceed 20%% of the original content.

2. **Term Integration Guidelines**
    - **Insertion of Missing Terms**: Insert each missing term from 
      **missing_terms_list** using one of the following methods:
        a. Integrate the term naturally within an explanatory statement 
            (e.g., "...which involves {{term}} mechanisms...").
        b. Incorporate the term into practical examples (e.g., "Application scenarios 
            such as {{term}}...").
   
    - **Handling of Already Included Terms**: For every term listed in 
      **included_terms_list** that is present in the current merged corpus, choose 
      one of the following approaches:
        a. Retain the original content from the **Current Merged Corpus** if it is 

    relevant to the term—meaning the content contains either an explicit 
    mention or an implicit reference to the concept represented by the term.

        b. Rephrase the original content from the **Current Merged Corpus** that 
    pertains to the term, ensuring that the revised version explicitly includes 

            the term while also integrating all the missing terms.
   
    - **Prohibition**: Do not simply list terms without integrating them into the 
                                 context.

3. **Unanswered Question From '### User' Section Regeneration Guidelines**
    - Enhance the original unanswered question by incorporating additional background 
       knowledge:
        - Specifically, based on the provided **context_missing**, the regenerated 
           question must integrate both the existing context (**context_contain**) and 
           the additional required context (**context_missing**).
    - Ensure that the regenerated unanswered question retains the same question 
      type as specified by the provided **question_type**.
    - Fuse the matching rules or patterns from source corpus A 
      (**matching_rules_derived_from_corpus_A**) and source corpus B 
      (**matching_rules_derived_from_corpus_B**) into the regenerated unanswered 
      question and its corresponding answer from the '### Assistant' section.

4. **Answer Regeneration Guidelines**
    - Regenerate only the responses in the '### Assistant' section.
    - Ensure that the regenerated answer explicitly addresses the unanswered 
       questions from the '### User' section.
    - Maintain logical coherence and consistent terminology throughout the 
       regenerated response.
               
5. **Coherence Assurance**
    - Ensure that all newly inserted or rephrased content is seamlessly integrated 
       using explicit transitional phrases (e.g., "Considering", "In light of", "Particular 
       attention should be paid to", etc.).
    - Preserve the original paragraph structure to maintain the logical flow and 
       organization of the content.

### Expected Output Sturcture
{{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Key Technical Terms & Essential Knowledge

Figure 19: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Essential Knowledge
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## Role
You are a Corpus Enhancement Specialist.

## Task
Intelligently expand existing merged corpus based on targeted supplementation 
while preserving original structure

### Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

4. Supplementation Requirements:
{{
    "terms_coverage": {{
        "included_terms_list": {included_terms_list},
        "missing_terms_list": {missing_terms_list}
    }},
    "question-answer_matching_rules": {{
        "matching_rules_derived_from_corpus_A": 

{matching_rules_derived_from_corpus_A},
        "matching_rules_derived_from_corpus_B": 

{matching_rules_derived_from_corpus_B}  
    }},
    "question_feedback": {{
        "question_type": {question_type},
        "context_contain": {context_contain},
        "context_missing": {context_missing}
    }},
    "answer_quality_feedback": {assistant_feedback}
}}

### Processing Rules
1. **Content Preservation Principle**
    - Avoid regenerating the entire content of both the '### User' and 
      '### Assistant' sections:
        - Instead, only regenerate the unanswered questions from the '### User' 
          section (expanding necessary background details as needed) and update the 
          corresponding answers in the '### Assistant' section based on the newly 
          generated questions.
    - Ensure that the total modifications do not exceed 20%% of the original content.

2. **Term Integration Guidelines**
    - **Insertion of Missing Terms**: Insert each missing term from 
      **missing_terms_list** using one of the following methods:
        a. Integrate the term naturally within an explanatory statement (e.g., "...which 
            involves {{term}} mechanisms...").
        b. Incorporate the term into practical examples (e.g., "Application scenarios 
            such as {{term}}...").
   
    - **Handling of Already Included Terms**: For every term listed in 
      **included_terms_list** that is present in the current merged corpus, choose 
      one of the following approaches:
        a. Retain the original content from the **Current Merged Corpus** if it is 
            relevant to the term—meaning the content contains either an explicit 
            mention or an implicit reference to the concept represented by the term.
        b. Rephrase the original content from the **Current Merged Corpus** that 
            pertains to the term, ensuring that the revised version explicitly includes the 
            term while also integrating all the missing terms.
   
    - **Prohibition**: 

Do not simply list terms without integrating them into the context.

3. **Unanswered Question From '### User' Section Regeneration Guidelines**
    - Enhance the original unanswered question by incorporating additional background 
       knowledge:
        - Specifically, based on the provided **context_missing**, the regenerated 
           question must integrate both the existing context (**context_contain**) and 
           the additional required context (**context_missing**).
    - Ensure that the regenerated unanswered question retains the same question 
       type as specified by the provided **question_type**.
    - Fuse the matching rules or patterns from source corpus A 
       (**matching_rules_derived_from_corpus_A**) and source corpus B 
       (**matching_rules_derived_from_corpus_B**) into the regenerated 
       unanswered question and its corresponding answer from the '### Assistant' 
       section.

4. **Answer Regeneration Guidelines**
    - Regenerate only the responses in the '### Assistant' section.
    - Ensure that the regenerated answer explicitly addresses the unanswered 
       questions from the '### User' section.
    - Utilize the insights from "answer_quality_feedback" to inform the regeneration 
       process, ensuring that the newly regenerated answers do not repeat the issues 
       identified in the feedback.
    - Maintain logical coherence and consistent terminology throughout the 
       regenerated response.
               
5. **Coherence Assurance**
    - Ensure that all newly inserted or rephrased content is seamlessly integrated 
       using explicit transitional phrases (e.g., "Considering", "In light of", 
       "Particular attention should be paid to", etc.).
    - Preserve the original paragraph structure to maintain the logical flow and 
       organization of the content.

### Expected Output Sturcture
{{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Key Technical Terms & 
Essential Knowledge & 
Directed Answer

Figure 20: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Essential Knowledge &
Directed Answer
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## Role
You are a strategy architect specializing in cross-corpus fusion, skilled in leveraging 
domain analysis to design effective merging strategies.

## Task
Utilize the provided **Domain Analysis** and **Selected Strategy** to generate 
one corpus fusion variant. This variant must employ the given **Selected Strategy** 
to merge corpus_A and corpus_B. The fusion for this variant should not only 
integrate the two corpora but also reflect the specific domain characteristics 
identified in the analysis.

## Input
{{
    "raw_corpus_A": {raw_corpus_A},
    "raw_corpus_B": {raw_corpus_B}
}}

## Domain Analysis
{{
    "corpus_A_domain": {corpus_A_domain},
    "corpus_B_domain": {corpus_B_domain},
    "corpus_A_key_terms_list": {corpus_A_key_terms_list},
    "corpus_B_key_terms_list": {corpus_B_key_terms_list},
    "matching_rules_derived_from_corpus_A": 

{matching_rules_derived_from_corpus_A},
    "matching_rules_derived_from_corpus_B": 

{matching_rules_derived_from_corpus_B},
    "relationship": {relationship}
}}

## Selected Strategy
{{
    "Domain-Specific Relationship Between Raw Corpus A and Raw Corpus B": 

{domain_type},
    "Applied Strategy": 

{applied_strategy},
    "Strategy Definition": 

{strategy_definition}
}}

## Output Requirements
- For the corpus fusion variant (enhanced_corpus) generation:
    1. For the '### User' section:
        a. The '### User' section must conclude with an unanswered question
            - This section should integrate **essential context** with **one or more 

related, logically connected questions**.
            - If there are multiple questions in the newly generated '### User' section, 

**do make sure to provide the corresponding direct answer to each 
question except the final one**

        b. In the '### User' section, ensure that the background information is 
     logically structured and coherently presented. The question posed should be 
    directly related to the provided background, with a natural and seamless 
    transition between the background information and the question, resulting in 
    an overall smooth and readable flow.

    2. '### Assistant' section must provide a **direct answer exclusively** to the 
unanswered question posed in the '### User' section

    3. Preserve all key terms from both **corpus_A_key_terms_list** and 
**corpus_B_key_terms_list** in this corpus fusion variant

    4. Adhere to the matching rules or patterns from both raw corpora 
(**matching_rules_A** and **matching_rules_B**), ensuring that the resulting 
matching rules or patterns explicitly encompass those from both original 
corpora

    5. Ensure logical coherence and semantic fluency throughout the content
    6. Utilize **bridging_concepts** and the **Selected Strategy** for the corpus 

fusion variants generation
    7. Strictly maintain:
        - The '### User' and '### Assistant' markers.
        - The formatting identical to that of the original corpora.
    8. Each corpus fusion variant **must include at leaset** one '### User' section 

and one '### Assistant' section
        - Which means the resultant corpus fusion variant may contain multiple 

'### User' and '### Assistant' section pairs if deemed indeed necessary.

## Example Output Structure
{{
    "enhanced_corpus": "### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Instruction
<This section is optional. Sometimes the raw corpora include an Instruction section. 
For the newly generated corpus fusion variant, you may choose whether or not to 
include it.>

### Input
<This section is optional. Sometimes the raw corpora include an Input section. For 
the newly generated corpus fusion variant, you may choose whether or not to 
include it.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>"

    or you can also include multiple '### User' and '### Assistant' section pairs 
derived from some raw corpus if you deem it indeed necessary
    
    "enhanced_corpus": "### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>

...

### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>"
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Key Technical Terms & Question Feedback

Figure 21: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Question Feedback
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## Role
You are a strategy architect specializing in cross-corpus fusion, skilled in leveraging 
domain analysis to design effective merging strategies.

## Task
Utilize the provided **Domain Analysis** and **Selected Strategy** to generate 
one corpus fusion variant. This variant must employ the given **Selected Strategy** 
to merge corpus_A and corpus_B. The fusion for this variant should not only 
integrate the two corpora but also reflect the specific domain characteristics 
identified in the analysis.

## Input
{{
    "raw_corpus_A": {raw_corpus_A},
    "raw_corpus_B": {raw_corpus_B}
}}

## Domain Analysis
{{
    "corpus_A_domain": {corpus_A_domain},
    "corpus_B_domain": {corpus_B_domain},
    "corpus_A_key_terms_list": {corpus_A_key_terms_list},
    "corpus_B_key_terms_list": {corpus_B_key_terms_list},
    "matching_rules_derived_from_corpus_A": 

{matching_rules_derived_from_corpus_A},
    "matching_rules_derived_from_corpus_B": 

{matching_rules_derived_from_corpus_B},
    "relationship": {relationship}
}}

## Selected Strategy
{{
    "Domain-Specific Relationship Between Raw Corpus A and Raw Corpus B": 

{domain_type},
    "Applied Strategy": 

{applied_strategy},
    "Strategy Definition": 

{strategy_definition}
}}

## Output Requirements
- For the corpus fusion variant (enhanced_corpus) generation:
    1. For the '### User' section:
        a. The '### User' section must conclude with an unanswered question
            - This section should integrate **essential context** with **one or more 

related, logically connected questions**.
            - If there are multiple questions in the newly generated '### User' section, 

**do make sure to provide the corresponding direct answer to each 
question except the final one**

        b. In the '### User' section, ensure that the background information is 
logically structured and coherently presented. The question posed should 
be directly related to the provided background, with a natural and 
seamless transition between the background information and the question, 
resulting in an overall smooth and readable flow.

    2. '### Assistant' section must provide a **direct answer exclusively** to the 
unanswered question posed in the '### User' section

    3. Preserve all key terms from both **corpus_A_key_terms_list** and 
**corpus_B_key_terms_list** in this corpus fusion variant

    4. Adhere to the matching rules or patterns from both raw corpora 
(**matching_rules_A** and **matching_rules_B**), ensuring that the resulting 
matching rules or patterns explicitly encompass those from both original corpora

    5. Ensure logical coherence and semantic fluency throughout the content
    6. Utilize **bridging_concepts** and the **Selected Strategy** for the corpus 

fusion variants generation
    7. Strictly maintain:
        - The '### User' and '### Assistant' markers.
        - The formatting identical to that of the original corpora.
    8. Each corpus fusion variant **must include at leaset** one '### User' section 

and one '### Assistant' section
        - Which means the resultant corpus fusion variant may contain multiple 

'### User' and '### Assistant' section pairs if deemed indeed necessary.

## Example Output Structure
{{
    "enhanced_corpus": "### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Instruction
<This section is optional. Sometimes the raw corpora include an Instruction section. 
For the newly generated corpus fusion variant, you may choose whether or not to 
include it.>

### Input
<This section is optional. Sometimes the raw corpora include an Input section. For 
the newly generated corpus fusion variant, you may choose whether or not to include 
it.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>"

    or you can also include multiple '### User' and '### Assistant' section pairs 
    derived from some raw corpus if you deem it indeed necessary
    
    "enhanced_corpus": "### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>

...

### User
<The content in the ### User section may be a single question (with or without 
context) or a series of question-answer pairs that culminate in a final question, in 
accordance with the original corpora.>

### Assistant
<The content in the ### Assistant section must provide the answer to the latest 
question presented in the ### User section.>"
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Question Feedback

Figure 22: Candidate MCG Prompt Template for The Case of Omission of Question Feedback
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## Role
You are a Corpus Enhancement Specialist.

## Task
Intelligently expand existing merged corpus based on targeted supplementation 
while preserving original structure

### Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

4. Supplementation Requirements:
{{
    "terms_coverage": {{
        "included_terms_list": {included_terms_list}
    }},
    "question-answer_matching_rules": {{
        "matching_rules_derived_from_corpus_A": 

{matching_rules_derived_from_corpus_A},
        "matching_rules_derived_from_corpus_B": 

{matching_rules_derived_from_corpus_B}  
    }},
    "question_feedback": {{
        "question_type": {question_type},
        "context_contain": {context_contain},
        "context_missing": {context_missing}
    }}    
}}

### Processing Rules
1. **Content Preservation Principle**
    - Avoid regenerating the entire content of both the '### User' and 
       '### Assistant' sections:
        - Instead, only regenerate the unanswered questions from the '### User' 
   section (expanding necessary background details as needed) and update the 

  corresponding answers in the '### Assistant' section based on the newly 
  generated questions.

    - Ensure that the total modifications do not exceed 20%% of the original content.
    
2. **Term Preservation Guidelines**
    - **Retention of Included Terms**: Although the current merged corpus already 

contains all the terms listed in **included_terms_list**, the expansion of the 
unanswered questions in the '### User' section must be conducted in a way 
that preserves these terms. For any content related to these terms, choose 
one of the following approaches:

        a. Retain the original content if it explicitly or implicitly references the term.
        b. Rephrase and expand the original content, ensuring that the final version 

    explicitly includes the term while incorporating any additional necessary 
    context.

    
    - **Prohibition**: Avoid merely listing the terms; they must be seamlessly 

  integrated within the expanded content.
    
3. **Unanswered Question From '### User' Section Regeneration Guidelines**
    - Enhance the original unanswered question by incorporating additional background 
       knowledge:
        - Specifically, based on the provided **context_missing**, the regenerated 

   question must integrate both the existing context (**context_contain**) and 
   the additional required context (**context_missing**).

    - Ensure that the regenerated unanswered question retains the same question 
       type as specified by the provided **question_type**.
    - Fuse the matching rules or patterns from source corpus A (
       **matching_rules_derived_from_corpus_A**) and source corpus B 
      (**matching_rules_derived_from_corpus_B**) into the regenerated unanswered 
      question and its corresponding answer from the '### Assistant' section.

4. **Answer Regeneration Guidelines**
    - Regenerate only the responses in the '### Assistant' section.
    - Ensure that the regenerated answer explicitly addresses the unanswered 

questions from the '### User' section.
    - Maintain logical coherence and consistent terminology throughout the 

regenerated response.
               
5. **Coherence Assurance**
    - Ensure that all newly inserted or rephrased content is seamlessly integrated 

using explicit transitional phrases (e.g., "Considering", "In light of", 
"Particular attention should be paid to", etc.).

    - Preserve the original paragraph structure to maintain the logical flow and 
organization of the content.

### Expected Output Sturcture
{{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Essential Knowledge

Figure 23: Candidate MCG Prompt Template for The Case of Omission of Essential Knowledge
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## Role
You are a Corpus Enhancement Specialist.

## Task
Intelligently expand existing merged corpus based on targeted supplementation 
while preserving original structure

### Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

4. Supplementation Requirements:
{{
    "terms_coverage": {{
        "included_terms_list": {included_terms_list}
    }},
    "question-answer_matching_rules": {{
        "matching_rules_derived_from_corpus_A": 

{matching_rules_derived_from_corpus_A},
        "matching_rules_derived_from_corpus_B": 

{matching_rules_derived_from_corpus_B}  
    }},
    "question_feedback": {{
        "question_type": {question_type},
        "context_contain": {context_contain},
        "context_missing": {context_missing}
    }},
    "answer_quality_feedback": {assistant_feedback}
}}

### Processing Rules
1. **Content Preservation Principle**
    - Avoid regenerating the entire content of both the '### User' and 
       '### Assistant' sections:
        - Instead, only regenerate the unanswered questions from the '### User' 

   section (expanding necessary background details as needed) and update the 
   corresponding answers in the '### Assistant' section based on the newly 
   generated questions.

    - Ensure that the total modifications do not exceed 20%% of the original content.

2. **Term Preservation Guidelines**
    - **Retention of Included Terms**: Although the current merged corpus already 
       contains all the terms listed in **included_terms_list**, the expansion of the 
       unanswered questions in the '### User' section must be conducted in a way 
       that preserves these terms. For any content related to these terms, choose one 
       of the following approaches:
        a. Retain the original content if it explicitly or implicitly references the term.
        b. Rephrase and expand the original content, ensuring that the final version 
            explicitly includes the term while incorporating any additional necessary 

    context.
    
    - **Prohibition**: Avoid merely listing the terms; they must be seamlessly 
                                  integrated within the expanded content.

3. **Unanswered Question From '### User' Section Regeneration Guidelines**
    - Enhance the original unanswered question by incorporating additional background 
      knowledge:
        - Specifically, based on the provided **context_missing**, the regenerated 

   question must integrate both the existing context (**context_contain**) and 
   the additional required context (**context_missing**).

    - Ensure that the regenerated unanswered question retains the same question 
       type as specified by the provided **question_type**.
    - Fuse the matching rules or patterns from source corpus A 
       (**matching_rules_derived_from_corpus_A**) and source corpus B 
       (**matching_rules_derived_from_corpus_B**) into the regenerated 
       unanswered question and its corresponding answer from the 
       '### Assistant' section.

4. **Answer Regeneration Guidelines**
    - Regenerate only the responses in the '### Assistant' section.
    - Ensure that the regenerated answer explicitly addresses the unanswered 
       questions from the '### User' section.
    - Utilize the insights from "answer_quality_feedback" to inform the regeneration 
       process, ensuring that the newly regenerated answers do not repeat the issues 
       identified in the feedback.
    - Maintain logical coherence and consistent terminology throughout the 
       regenerated response.
               
5. **Coherence Assurance**
    - Ensure that all newly inserted or rephrased content is seamlessly integrated 

using explicit transitional phrases (e.g., "Considering", "In light of", "Particular 
attention should be paid to", etc.).

    - Preserve the original paragraph structure to maintain the logical flow and 
organization of the content.

### Expected Output Sturcture
{{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Essential Knowledge & Directed Answer

Figure 24: Candidate MCG Prompt Template for The Case of Omission of Essential Knowledge & Directed Answer
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## Role
You are a Corpus Enhancement Specialist.

## Task
Intelligently expand existing merged corpus based on targeted supplementation 
while preserving original structure

### Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

2. Supplementation Requirements:
{{
    "answer_quality_feedback": {assistant_feedback}
}}

### Processing Rules
1. **Content Preservation Principle**
    - Avoid regenerating the entire content of both the '### User' and 

'### Assistant' sections.
    - Preserve the whole '### User' section.
    - Modify the content from the '### Assistant' section only.
    - Ensure that any modifications to the existing content do not exceed 20%% of 

the original content.
        
2. **Answer Regeneration Guidelines**
    - Regenerate only the responses in the '### Assistant' section.
    - Ensure that the regenerated answer explicitly addresses the unanswered 

questions from the '### User' section.
    - Utilize the insights from "answer_quality_feedback" to inform the regeneration 

process, ensuring that the newly regenerated answers do not repeat the issues 
identified in the feedback.

    - Maintain logical coherence and consistent terminology throughout the 
regenerated response.

               
3. **Coherence Assurance**
    - Ensure that all newly inserted or rephrased content is seamlessly integrated 

using explicit transitional phrases (e.g., "Considering", "In light of", "Particular 
attention should be paid to", etc.).

    - Preserve the original paragraph structure to maintain the logical flow and 
organization of the content.

### Expected Output Sturcture
{{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}}

Candidate MCG Prompt Template
Symbolic Loss: 
Omission of Directed Answer

Figure 25: Candidate MCG Prompt Template for The Case of Omission of Directed Answer
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{
    "technical_report": {
        "term_coverage": {
            "included": {
                "corpus_A_key_terms_list": [
                    "emotional reaction",
                    "satisfaction",
                    "Head-Tail events",
                    "classification"
                ],
                "corpus_B_key_terms_list": [
                    "intention",
                    "desire",
                    "Head-Tail events",
                    "classification"
                ]
            },
            "missing": {
                "corpus_A_key_terms_list": [],
                "corpus_B_key_terms_list": []
            }
        },
        "question_analysis": {
            "question_exists": {
                "question_type": "open-ended",
                "needs_extra_knowledge_or_background_supplementation": {
                    "context_contain": 

"The '### User' section provides a context 
discussing emotional reactions and intentions in 
social interactions, including examples of how these 
concepts manifest.",

                    "context_missing": 
"The '### User' section lacks specific examples or 
scenarios that illustrate the interplay of emotional 
reactions and intentions, which would help clarify 
the question."

                }
            }
        },
        "answer_quality": {
            "if_needs_to_re_answer": {
                "explanation": 

"The answer provided in the '### Assistant' section 
does not directly address the last question from the 
'### User' section. The question asks how emotional 
reactions and intentions interplay in social interactions, 
while the assistant's response focuses more on the 
general relationship between emotional reactions and 
intentions without specifically addressing the interplay 
aspect."

            }
        }
    }
}

Symbolic Loss Example From ICD Operator

Figure 26: Symbolic Loss Example From ICD Operator
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Under review as a conference paper at ICLR 2026

{
    "if_containing_direct_answer": {
        "direct_answer": 

"We can identify processes such as recognition of motivations, 
emotional triggers, and the development of interpersonal 
relationships that shape social interactions and their emotional 
outcomes."

    },
    "if_containing_information_needed_to_delete": {
        "information_needs_to_remove": 

"In particular, the interplay of empathy and gratitude can 
significantly enhance the understanding of social dynamics. 
Furthermore, the psychological principle of generosity often 
serves as a catalyst for positive emotional reactions, fostering 
deeper connections among individuals. Considering the 
interconnectedness of these elements, exploring the interplay 
of empathy and gratitude provides valuable insights into how 
emotional responses are influenced by social contexts. By 
examining these aspects, we can gain insights into the 
interconnectedness of emotional responses and social 
contexts."

    }
}

Symbolic Loss Example From FAC Operator

Figure 27: Symbolic Loss Example From FAC Operator
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