

000
001 **ENTP: ENHANCING LOW-QUALITY SFT DATA**
002 **VIA NEURAL-SYMBOLIC TEXT PURGE-MIX**
003
004
005

006 **Anonymous authors**
007 Paper under double-blind review
008
009

010 **ABSTRACT**
011

012 Supervised Fine-Tuning (SFT) adapts pre-trained Large Language Models
013 (LLMs) to domain-specific instructions by training on a carefully curated
014 subset of high-quality instruction-response pairs, typically drawn from a
015 larger dataset that often contains many low-quality or noisy samples. De-
016 spite its effectiveness, this *quality-first* paradigm often suffer from two
017 caveats. On the one hand, *quality filters are inherently imperfect*, many
018 samples that pass through these filters are not truly high-quality. On the
019 other hand, discarding the vast majority of low-quality or frequently occur-
020 ring examples *may lose potentially valuable signal*. As much of the readily
021 available instruction-following data online has already been utilized, fur-
022 ther improvements now depend on leveraging, rather than discarding, the
023 examples that were previously filtered out. To address these two issues, we
024 introduce **ENTP**, which stands for **E**nhancing low-quality SFT data via
025 **N**eural-sy***mb***olic **T**ext **P**urge-Mix. Similar to the ENTP personality type
026 from MBTI, **ENTP** is creative in enhancing the low-quality data via purg-
027 ing (noisy information removal) and mixing (with extracted information
028 from all available data and model knowledge). Specifically, the symbolic
029 component identifies and isolates low-quality raw corpora using statisti-
030 cal priors, while the connectionist component extracts latent representa-
031 tions to guide the reconstruction of missing or corrupted information. This
032 synergy generates hybrid instruction-response pairs that augment informa-
033 tional value while preserving corpus diversity. Our experiments demon-
034 strate that fine-tuning LLMs on data augmented by **ENTP**, which are de-
035 rived solely from low-quality sets, consistently outperforms **13** established
036 data-selection methods across 5 standard instruction-following benchmarks.
037 Notably, it can even surpass fine-tuning on the full original dataset ($\approx 300K$
038 examples). Our findings demonstrate that ostensibly low-quality data is a
039 critical resource; leveraging it through intelligent purification and synthesis
040 is key to efficient and effective instruction alignment.

041 **1 INTRODUCTION**
042

043 LLMs have demonstrated exceptional performance in a plenty of downstream tasks, ranging
044 from natural language understanding to generative AI applications (Zhang et al., 2024b;
045 Cheng et al., 2024; Tayebi Arasteh et al., 2024; He et al., 2024; Wei et al., 2025b; Biswas &
046 Talukdar, 2024). A pivotal technique that has contributed to enhancing the effectiveness of
047 LLMs is *Supervised Fine-Tuning* (SFT), also known as *Instruction Tuning*. SFT involves fur-
048 ther training a pre-trained LLM on a curated dataset comprising instruction-response pairs,
049 aligning the model’s responses more closely with human preference or expectations (Wei
050 et al., 2025a; Gupta et al., 2025; Yu et al., 2025). This process bridges the gap between the
051 model’s inherent next-word prediction capabilities and the nuanced understanding required
052 for specific tasks.

053 However, some studies have demonstrated that, during the SFT phase, the quality of data
054 becomes more crucial than the quantity (Zhou et al., 2023). This highlights the importance
055 of high-quality data selection for SFT, which can greatly reduce training costs and improve

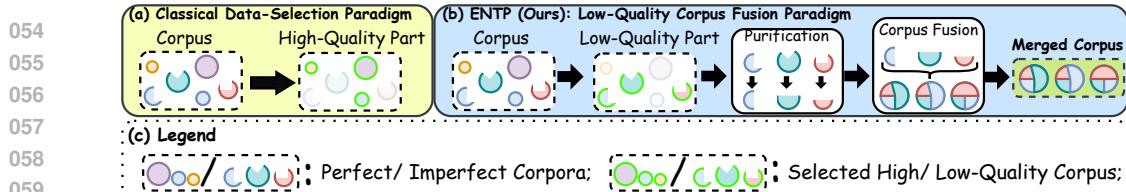


Figure 1: Traditional “quality-first” paradigm (a) v.s. our proposed paradigm (b). Part(a) represents the traditional data-selection paradigm, where only the high-quality data is selected (encircled by a green circle); Part (b) illustrates our proposed paradigm, which exploits information from neglected low-quality corpora to generate more expressive synthetic corpora. Part (c): the legend includes Non-regular circles (corpora with varying degrees of imperfections), Regular circles (larger diameters correspond to more information). Each symbol is color-coded to represent a distinct corpus.

efficiency. Earlier studies have designed rule-based systems in conjunction with empirical metrics, such as perplexity and completion length, to perform data filtering (Gao, 2021). Recently, using LLMs as data selectors has become a mainstream paradigm for high-quality data selection (Liu et al., 2024a; Wei et al., 2024; Pang et al., 2025; Zhao et al., 2023). Detailed discussion is given in Appendix A. Although significant attention has been directed toward the extraction of high-quality raw data, a persistent yet underappreciated limitation has emerged. Most publicly accessible data on the internet have already been incorporated into existing datasets, resulting in a scarcity of untapped high-quality raw data. Besides, the high-quality native data within widely used public datasets have largely been exhausted, and such data typically constitute less than 10% of the total dataset volume (Pang et al., 2025; Xia et al., 2024; Li et al., 2024b). Consequently, due to insufficient new data sources, continued reliance on this small subset of high-quality native data for SFT places inherent constraints on further scaling the capabilities of LLMs, revealing a fundamental limitation of the high-quality data selection paradigm. This observation is also supported by experiments from several other studies (Wang et al., 2024).

Purge + Mix of the Low Quality Data In Figure 1, to alleviate the shortage of the high-quality raw data, we propose a novel paradigm (part (b)) that leverages low quality raw corpora, in contrast to the typical paradigm of extracting high quality subsets from raw corpora (part (a)). Specifically, our approach builds on the traditional data selection paradigm, initially partitioning data into high- and low-quality sets via calibrated LLM scores. Subsequently, all low-quality corpora are input into the purification stage, where key representations, such as important terms or potential matching patterns from instruction-response pairs, are extracted. In the following corpora fusion stage, all input representations are integrated into a new synthetic corpus. This new synthetic corpus retains most of the key features from the sourced corpora while also providing additional complementary information, thereby significantly enhancing the expressive capability of each data instance. The final step involves combining the high-quality corpus with the synthetic corpus to form the blended dataset. Our key contributions are summarized as follows:

- **A Novel Paradigm of Corpora Fusion:** We propose **ENTP**, which first extracts predefined knowledge from the input corpus using a set of explicit symbolic rules, and subsequently leverages LLMs to enrich this knowledge with supplementary information, yielding a merged corpus that exhibits substantial informational depth and encapsulates knowledge across multiple dimensions.
- **Empirical Observations:** Extensive experiment results reveal two key findings: (1) Low-quality data makes a non-trivial contribution and should not be overlooked, aligning with the scaling-law conclusion; (2) Fine-tuning 3 representative LLMs on the synthetic dataset surpasses 13 baselines across 5 commonly used benchmarks. These baselines encompass 4 LLM-free approaches, 6 LLM-based methods, as well as native low-quality/high-quality datasets and full-data configurations.

108 **2 PRELIMINARY**
 109

110 In this section, we introduce the essential technology underpinning **ENTP**: *Score Transition*
 111 *Matrix*, which estimates the transition probabilities between observed and unseen ground
 112 true labels to correct noisy labels. Besides, **ENTP** also builds upon another well-established
 113 preliminary, *Average Silhouette Score*, evaluating clustering quality by balancing cohesion
 114 and separation. Its technical details are given in the Appendix B.1.

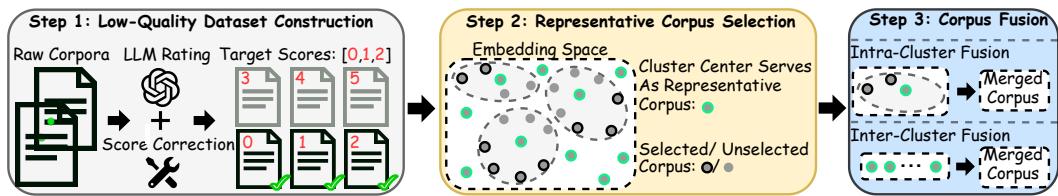
115 **Score Transition Matrix** Recent studies have demonstrated that LLM-based data-
 116 quality assessment suffers from knowledge inconsistency, whereby the identical data may
 117 receive different and occasionally vastly divergent scores depending on the LLM em-
 118 ployed (Zheng et al., 2024; Pang et al., 2025). To detect and correct potential errors in
 119 the raw LLM-generated scores, **ENTP** employs the **Score Transition Matrix** (Zhu et al.,
 120 2021), modeling misclassification probabilities under the clusterability condition. This en-
 121 ables error adjustment without ground-truth annotations.

122 Following the same setup as Pang et al. (2025), our sourced corpora set D , composed of N
 123 corpus-score pairs, is defined as $D := \{\mathbf{x}_n, \tilde{y}_n\}_{n=1}^N$, where \mathbf{x}_n stands for the embedding vector
 124 of the n^{th} corpus generated by the embedding model¹, and \tilde{y}_n represents the corresponding raw LLM-rated score.
 125 Meanwhile, y_n denotes the unseen ground-truth score. In our setting, both \tilde{y}_n and y_n are assumed to lie within the same discretized K -class classification space
 126 Y . We have $K = 6$, where all LLM-rated scores span from 0 to 5. The score transition
 127 matrix $\mathbf{T}(\mathbf{x})$ is defined as a $K \times K$ square matrix indexed by the feature-space embedding
 128 \mathbf{x} . Its entry, $\mathbf{T}_{i,j}(\mathbf{x})$, denotes the probability that an unseen ground-true label i is flipped
 129 to an observed label j . Applying this theory to our problem setting, $\mathbf{T}_{i,j}(\mathbf{x}_n)$ is defined as
 130 follows:

$$\mathbf{T}_{i,j}(\mathbf{x}_n) = \mathbb{P}(\tilde{y}_n = j | y_n = i, \mathbf{x}_n), n \in [N], i, j \in [K].$$

134 *Remark.* The sets $[N] = \{1, 2, \dots, N\}$ and $[K] = \{0, 1, \dots, K - 1\}$ are as above. In the ideal
 135 case where $\tilde{y}_n = y_n$ for all $n \in [N]$, $\mathbf{T}(\mathbf{x})$ becomes the identity matrix \mathbf{I} , signifying zero
 136 misclassification error. Consequently, the deviation of $\mathbf{T}(\mathbf{x})$ from \mathbf{I} quantifies the error rate
 137 in the raw LLM-generated scores.

138 **3 ENTP: ENHANCING LOW-QUALITY SFT DATA VIA
 139 NEURAL-SYMBOLIC TEXT PURGE-MIX**
 140



141
 142
 143 **Figure 2:** Overview of **ENTP**. **Step (1)** separates the corpora into two subsets based
 144 on corrected LLM scores: high-quality (scores 3–5) and low-quality (scores 0–2); **Step (2)**
 145 clusters the raw low-quality corpora by inter-corpus similarity and then selects the re-
 146 presentative corpora for each cluster; **Step (3)** integrates connectionist and symbolism to fuse
 147 corpora through an iterative multi-step process, offering *Intra-Cluster Fusion*, combining
 148 representative corpora within the same cluster, and *Inter-Cluster Fusion*, merging those
 149 from different clusters; yielding hybrid datasets that preserve diversity while enriching in-
 150 formational value.

151 We introduce **ENTP**, which consists of: *Low-Quality Dataset Construction*, *One-Hop*
 152 *Cluster-Based Representative Selection*, and *Neural-Symbolic Two-to-One Corpora Fusion*,
 153 a workflow is given in Figure 2.

154
 155
 156
 157
 158
 159
 160
 161 ¹Hugging Face Embedding Model Used In ENTP: BAAI/bge-large-en-v1.5

162 3.1 STEP 1: LOW-QUALITY DATASET CONSTRUCTION
163

164 We begin by prompting one of the most intelligent LLMs, gpt-4o-mini², to assign quality
165 scores to each sample tuple (Instruction, Input, Response). These scores reflect multi-
166 ple dimensions of interest, such as rarity, complexity, and informativeness. We adopt the
167 prompt template from DS² (Pang et al., 2025), where the complete prompt is included in
168 the Appendix C.1 for reference.

169 **LLM-Rating Score Correction** Because the LLM-generated ratings often suffer from
170 inaccuracy and inconsistency, we integrate a rating correction step inspired by Zhu et al.
171 (2021):

173 **Theorem 1. (*K*-NN Score Clusterability)** *Sourced Corpora D satisfies K -NN Score
174 Clusterability if $\forall n$, the embedding vector \mathbf{x}_n and its k -Nearest Neighbors $\mathbf{x}_{n_1}, \dots, \mathbf{x}_{n_k}$ belong
175 to the same ground-truth class.*

176 *Remark.* Although \mathbf{T} cannot be computed directly due to inaccessibility to the ground-truth
177 scores, an effective estimation method is provided by Zhu et al. (2021).

179 **Score Transition Matrix & Consensus Vectors** Our objective can be cast as a K -
180 class classification task, where, given the raw corpus and the corresponding LLM-generated
181 score, the goal is to determine which ground-truth score should be assigned. The probability
182 distribution of the ground truth score is defined as $\mathbf{p} := [\mathbb{P}(\tilde{y}_n), n \in [N], i \in [K]]^T$, and the
183 score transition matrix is given by $\mathbf{T}_g = \mathbf{T} \cdot \mathbf{H}_g, \forall g \in [K]$, where $\mathbf{H}_g := [\mathbf{e}_{g+1}, \dots, \mathbf{e}_K, \mathbf{e}_1, \dots, \mathbf{e}_g]$
184 is a cyclic permutation matrix. \mathbf{e}_g denotes a $K \times 1$ column vector with a 1 in the g -th position
185 and 0s elsewhere. The matrix \mathbf{H}_g cyclically shifts each column of \mathbf{T} to the left by g positions.
186 We define $(i+g)_K := [(i+g-1) \bmod K] + 1$ as the index resulting from a cyclic shift by
187 g positions within a range of size K . Therefore, the corresponding first-, second-, and the
188 third-order consensus vectors are defined as follows:

$$\begin{aligned} \mathbf{q}^{[1]} &:= [\mathbb{P}(\tilde{y}_1 = i), i \in [K]]^T = \mathbf{T}^T \mathbf{p}, \\ \mathbf{q}_z^{[2]} &:= [\mathbb{P}(\tilde{y}_1 = i, \tilde{y}_2 = (i+z)_K), i \in [K]]^T = (\mathbf{T} \odot \mathbf{T}_z)^T \mathbf{p}, \\ \mathbf{q}_{z,g}^{[2]} &:= [\mathbb{P}(\tilde{y}_1 = i, \tilde{y}_2 = (i+z)_K, \tilde{y}_3 = (i+g)_K), i \in [K]]^T = (\mathbf{T} \odot \mathbf{T}_z \odot \mathbf{T}_g)^T \mathbf{p}, \end{aligned} \quad (1)$$

193 where \tilde{y}_{1-3} denote the LLM-rated scores for three embedding vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$. \mathbf{x}_2 and
194 \mathbf{x}_3 are top-2 nearest neighbors of \mathbf{x}_1 in the embedding space. These consensus vectors
195 capture the probability that neighboring embedding features are assigned identical scores,
196 effectively embedding the score transition dynamics into the measure of score agreement.
197 More importantly, all consensus vectors can be estimated by analyzing the distribution of
198 raw LLM-rated scores. Eq. 1 provides the theoretical foundation for inferring \mathbf{T} and \mathbf{p} from
199 the estimated consensus vectors (Zhu et al., 2021). Liu et al. (2023) and Zhu et al. (2021)
200 further established that, under the third-order consensus vector setting, the problem can be
201 effectively solved to recover accurate estimates of \mathbf{T} and \mathbf{p} . With \mathbf{T} and \mathbf{p} estimated, we can
202 straightforwardly apply Bayes' theorem (Joyce, 2003) to infer the most likely ground-truth
203 score conditioned on the observed LLM-rated score and the input corpus.

204 Drawing inspiration from the LLM-based data selection (Pang et al., 2025) and heuristic
205 noisy data identification (Zhu et al., 2021), this step integrates these two paradigms, starting
206 with LLM Rating and Score Correction, to derive corrected overall scores, denoted as s^o ,
207 ranging from 0 to 5 for all raw samples. As depicted in Figure 2 (Step 1), the raw dataset
208 is partitioned into two subsets based on these scores: the low-quality set defined as $\mathbf{S}_{lq} =$
209 $\{s^o | s^o \in [0, 1, 2]\}$, and the high-quality set defined as $\mathbf{S}_{hq} = \{s^o | s^o \in [3, 4, 5]\}$.

210 3.2 STEP 2: ONE-HOP CLUSTER-BASED REPRESENTATIVE SELECTION
211

212 After isolating the low-quality subset, this step selects a representative subset of observa-
213 tions that best captures its defining characteristics. As shown in Figure 2 (Step 2), we
214 randomly select a corpus as the cluster centroid, compute cosine similarities with all other
215 corpora, and assign to the same cluster any corpus with a similarity of at least 0.9. This

²gpt-4o-mini-2024-07-18

216 forms a *One-Hop Cluster*, where each member is within one similarity-threshold “hop” of
 217 the centroid. Such clusters capture latent similarities and preserve inter-data diversity, en-
 218 hancing representation without over-homogenization.

219 Next, we apply k-means clustering (MacQueen, 1967) to partition each initial cluster into
 220 sub-clusters, determining the optimal number of sub-clusters (k) by evaluating clustering
 221 quality over a predefined range of k values using the Silhouette method (Rousseeuw, 1987),
 222 where its detailed calculation is provided in the Appendix C.2. For any initial cluster com-
 223 prising at least two sub-clusters of three or more corpora, two representative corpora are
 224 chosen from each sub-cluster. The first representative, r_0 , is selected based on the highest
 225 cosine similarity to the averaged embedding vector of the sub-cluster. To promote diversity,
 226 we adopt a *Maximal Marginal Relevance*-inspired scoring function (MMR Score) parameter-
 227 ized by α (Carbonell & Goldstein, 1998). Once r_0 is determined, we compute the MMR score
 228 for each remaining corpus within the sub-cluster. The entire procedure can be computed as
 229 follows:

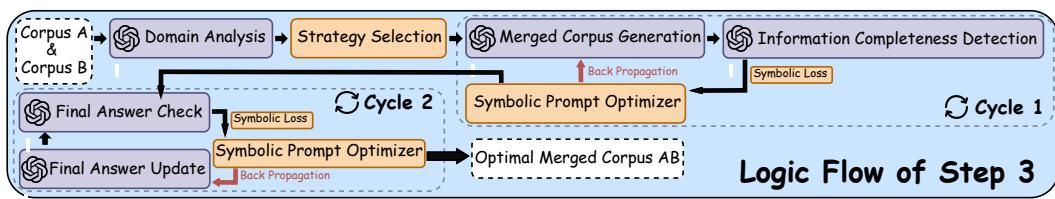
$$\text{Given: } r_{\text{avg}} = \frac{1}{N} \sum_{r_a \in \mathbf{R}} r_a(\cdot), N = |\mathbf{R}|; r_0 = \arg \max_{r_a \in \mathbf{R}} \text{Sim}(r_a, r_{\text{avg}}); \mathbf{S} = \{r_0\}$$

$$\Rightarrow \text{MMR Score}(r_i) = \arg \max_{r_i \in \mathbf{R} \setminus \mathbf{S}} \left[\alpha \text{Sim}(r_i, r_{\text{avg}}) - (1 - \alpha) \max_{r_j \in \mathbf{S}} \text{Sim}(r_i, r_j) \right],$$

230 where \mathbf{R} and \mathbf{S} denote the candidate set comprising all corpora from the same sub-cluster
 231 and the selected set of representative corpora (with first element r_0), respectively; N is
 232 the cardinality of the set \mathbf{R} (i.e., the number of its elements); and r_{avg} stands for the
 233 component-wise mean (centroid) vector computed over all vectors in the candidate set \mathbf{R} .
 234 To compute the MMR score for selecting additional representatives, $r_i \in \mathbf{R} \setminus \mathbf{S}$ signifies that
 235 r_i lies in the set-difference of \mathbf{R} and \mathbf{S} — that is, it is a member of the candidate set \mathbf{R}
 236 but has not yet been selected into \mathbf{S} . $\text{Sim}(\cdot, \cdot)$ represents the cosine-similarity operation,
 237 and $\alpha \in [0, 1]$ is the weighting parameter that controls the trade-off between relevance and
 238 diversity — smaller values of α place greater emphasis on selecting corpora that lie farther
 239 from the cluster center.

240 In the alternative scenario, when a resulting sub-cluster contains fewer than three vectors,
 241 all vectors in that sub-cluster are selected as representative vectors. We provide Algorithm 1
 242 in the Appendix C.2.

243 3.3 STEP 3: NEURAL-SYMBOLIC TWO-TO-ONE CORPUS FUSION



244 Figure 3: Logic flow of Step 3: all purple blocks represent the connectionist components,
 245 corresponding to different LLM-invoking operators, while all orange blocks stand for the
 246 symbolic components, involving the utilization of symbolic rules. Step 3 effectively
 247 combines the generalization capability of connectionism with the explicit symbolic rule, thereby
 248 achieving the purification, and fusion of the low-quality corpus.

249 As shown in Figure 3, the black arrow denotes the forward pass, where each module’s output
 250 feeds into the next in sequence. The red arrow signifies back-propagation: the prompt
 251 template modified in the later Symbolic Prompt Optimizer is propagated back to the earlier
 252 Merged Corpus Generation/ Final Answer Check operator to update the corresponding
 253 content of the merged corpus. The complete process is comprised of a preparation step and
 254 two sequential cycles. Full details are provided in the Appendix C.3.

255 **Preparation Step** We first provide the LLM with the prompt template \mathcal{P}_{DA} to perform
 256 domain analysis of the input corpus pair, after which their relationship is classified as same-,
 257 related-, or unrelated-domain. To generate the merged corpus, we provide the LLM with

270 nine relation-dependent strategies inspired by writing-studies literature (Nelson & King, 271 2023; Knobel, 2017; Bazerman, 2003), rather than letting it autonomously search for an 272 optimal fusion paradigm. Relying solely on the LLM’s internal priors greatly increases 273 reasoning time and cost, whereas supplying external, stable prior knowledge narrows the 274 search space, reduces computation, and accelerates convergence toward human-preferred 275 outcomes. For each relation category, three natural-language fusion strategies incorporating 276 prior knowledge are provided, yielding $\mathbf{S} = \{\mathcal{S}_{\text{same}}, \mathcal{S}_{\text{rel}}, \mathcal{S}_{\text{unrel}}\}$. Hence, $\mathcal{F}(\mathcal{P}_{\text{DA}}(\mathcal{C}_A, \mathcal{C}_B)) = \mathcal{S}$, $\mathcal{S} \in \mathbf{S}$, where $\mathcal{F}(\cdot)$ denotes the LLM operator, and $\mathcal{C}_A, \mathcal{C}_B$ stand for the input corpus 277 pair. 278

279 **Cycle 1** After obtaining the fusion strategies from the preparation step, we generate the 280 initial merged corpus via the Merged Corpus Generation (MCG) operator, which serves as 281 the starting point of the first cycle. This corpus is then passed to the Information Com- 282 pleteness Detection (ICD) operator, with prompt template \mathcal{P}_{ICD} , to compute the symbolic 283 loss \mathcal{L}_{Sym} . The symbolic loss, essentially a JSON object, specifies which information in the 284 current merged corpus should be removed or retained. It is subsequently provided to the 285 Symbolic Prompt Optimizer (SPO) to update the prompt template \mathcal{P}_{MCG} for the MCG 286 operator in the next iteration, marking the end point of the entire iteration. This cycle is 287 dedicated to generating the optimal “### User” session³. Thus, the complete first cycle 288 is formulated as:

$$\mathcal{F}(\mathcal{P}_{\text{MCG}}^i(\mathcal{C}_A, \mathcal{C}_B, \mathcal{S})) = \mathcal{C}_{AB}^i \Rightarrow \mathcal{F}(\mathcal{P}_{\text{ICD}}(\mathcal{C}_{AB}^i)) = \mathcal{L}_{\text{Sym}} \Rightarrow \text{SPO}(\mathcal{P}_{\text{MCG}}^i, \mathcal{L}_{\text{Sym}}) = \mathcal{P}_{\text{MCG}}^{i+1} .$$

290 \Rightarrow The $(i+1)^{\text{th}}$ iteration : Starting From $\mathcal{F}(\mathcal{P}_{\text{MCG}}^{i+1})$

292 *Remark.* \mathcal{C}_{AB}^i indicates the i^{th} generated merged corpus from the source corpora; $\mathcal{P}_{\text{MCG}}^{i+1}$ 293 represents the updated prompt template for the MCG operator used in the next iteration.

294 Consequently, the task of determining the optimal merged corpus in this cycle can be framed 295 as an optimization problem, where the objective is to identify the optimal prompt template 296 $\mathcal{P}_{\text{MCG}}^*$ that minimizes the symbolic loss of the finalized merged corpus \mathcal{C}_{AB} . This can be 297 mathematically expressed as follows:

$$\mathcal{P}_{\text{MCG}}^* = \arg \min_{\mathcal{P}_{\text{MCG}}} \mathcal{L}_{\text{Sym}} = \arg \min_{\mathcal{P}_{\text{MCG}}} \mathcal{F}(\mathcal{P}_{\text{ICD}}(\mathcal{F}(\mathcal{P}_{\text{MCG}}))) \Rightarrow \mathcal{C}_{AB} = \mathcal{F}(\mathcal{P}_{\text{MCG}}^*) .$$

298

301 **Cycle 2** Once this optimal “### User” session is determined, its corresponding “### 302 Assistant” session³ is fed into the second cycle, beginning with the evaluation of the final 303 answer driven by the Final Answer Check (FAC) operator using prompt template \mathcal{P}_{FAC} . 304 The symbolic loss corresponding to the current answer content is then produced by the 305 FAC operator and input to the SPO operator. As in Cycle 1, the prompt template for 306 the Final Answer Update (FAU) operator, \mathcal{P}_{FAU} , is updated to revise the current answer 307 content, marking the end of this iteration and preparing for the next. Therefore, the entire 308 Cycle 2 is formulated as:

$$\mathcal{F}(\mathcal{P}_{\text{FAC}}(\mathcal{C}_{c1}^i)) = \mathcal{L}_{\text{Sym}} \Rightarrow \text{SPO}(\mathcal{P}_{\text{FAU}}^{i-1}, \mathcal{L}_{\text{Sym}}) = \mathcal{P}_{\text{FAU}}^i \Rightarrow \mathcal{F}(\mathcal{P}_{\text{FAU}}^i(\mathcal{C}_{c1}^i)) = \mathcal{C}_{c1}^{i+1} .$$

309 \Rightarrow The $(i+1)^{\text{th}}$ iteration

310 *Remark.* \mathcal{C}_{c1}^i denotes the optimal merged corpus generated from the Cycle 1, equivalent 311 to \mathcal{C}_{AB} when $i = 1$. Additionally, $\mathcal{P}_{\text{FAU}}^0$ denotes the initial prompt template for the FAU 312 operator. Similar to the Cycle 1, determining the optimal answer is posed as finding the 313 prompt template $\mathcal{P}_{\text{FAU}}^*$ that minimizes the symbolic loss of the finalized answer from \mathcal{C}_{c1} , 314 expressed as:

$$\mathcal{P}_{\text{FAU}}^* = \arg \min_{\mathcal{P}_{\text{FAU}}} \mathcal{L}_{\text{Sym}} = \arg \min_{\mathcal{P}_{\text{FAU}}} \mathcal{F}(\mathcal{P}_{\text{FAC}}(\mathcal{F}(\mathcal{P}_{\text{FAU}}^{i-1}))) \Rightarrow \mathcal{C}_{c1} = \mathcal{F}(\mathcal{P}_{\text{FAU}}^*) .$$

315

316 This implies that the optimal $\mathcal{P}_{\text{FAU}}^*$ corresponds to the prompt template from the previous 317 iteration, as this cycle updates the answer for iteration $i+1$ using the loss from iteration 318

322 ³ENTP-generated merged corpus consists of paired “### User” session (containing all the 323 necessary context and the relevant question) and “### Assistant” session (containing the corre- 324 sponding answer).

324 i. Overall, \mathcal{C}_{c1} encompasses both the optimal final answer derived from the current cycle
 325 and the corresponding optimal question from the preceding cycle, collectively representing
 326 a valid merged corpus generated by **ENTP**. Full Algorithm 2 is given in Appendix C.3, and
 327 a comprehensive workflow is depicted in Figure 5 (Appendix C.3.2).

329 4 EXPERIMENTS

Table 1: Sourced Corpora Components

Datasets	Stanford Alpaca	Flan V2	Open-Assistant 1	WizardLM	Dolly	Overall
Data Size	52K	100K	33K	100K	15K	300K

333 4.1 EXPERIMENTAL SETUP

335 **Source Corpora** We select different proportions of five instruct-following datasets as the
 336 source corpora in **ENTP**, including Stanford Alpaca (Taori et al., 2023), Flan_v2 (Longpre
 337 et al., 2023), Open Assistant 1 (Köpf et al., 2023), and WizardLM (Xu et al., 2024b),
 338 Dolly (Conover et al., 2023). Complete statistics of our sourced corpora are provided in
 339 Table 1. Additional details of data pool are listed in Appendix D.1.1.

340 **Evaluation Dataset & Metrics** In order to demonstrate the validity of our merged
 341 corpora, we adopt five tasks from the OpenLLM Leaderboard as benchmarks for evaluation:
 342 MMLU (Hendrycks et al., 2020), TruthfulQA (Lin et al., 2021), GSM8K (Cobbe et al., 2021),
 343 BBH (Suzgun et al., 2022), and TyDiQA (Clark et al., 2020). For MMLU, TruthfulQA,
 344 GSM8K, and BBH, we use Exact Match (EM) as the evaluation metric. For TyDiQA, we
 345 report the 1-shot F1 score. Comprehensive details about our evaluation benchmarks are
 346 presented in Appendix D.1.2.

347 **Base Models & Rating Model** We adopt three widely recognized open-source LLMs
 348 as our base models: Qwen2.5-7B (Team, 2024), LLaMA-3.1-8B (Grattafiori et al., 2024),
 349 and Mistral-7B-v0.3 (Jiang et al., 2023). These models are fine-tuned on datasets derived
 350 from various baseline methods, with the aim of evaluating the performance of **ENTP**. In
 351 addition, we use gpt-4o-mini² as our rating model.

352 **Baselines** The full set given by **ENTP** consists of 54888 samples drawn from the LQ
 353 Set (123786 samples): 15488 samples are obtained via intra-cluster fusion, and 39400 via
 354 inter-cluster fusion. We adopt 13 representative data-selection methods for comparison,
 355 applying each to the LQ Set for fair comparison, including: ① *Vanilla Base Model*; ②
 356 *LQ Set & HQ Set* represent the low/high-quality set (samples with the curated score in
 357 range [0, 2]/[3, 5]), obtained from *Full Set*; ③ *Full Set* ($\approx 300K$ samples); ④ *Completion*
 358 *Length* utilizes the length of the whole corpus as an indicator to assess to sample quality;
 359 ⑤ *KNN_i* is defined as the Average Euclidean Distance from each raw embedding vector to
 360 its i nearest neighbors; ⑥ *Perplexity*; ⑦ *Random Selection*; ⑧ *AlpaGasus (Random)* (Chen
 361 et al., 2023) employs gpt-4o-mini² to score each sample and retains only the highest-rated
 362 samples for fine-tuning; and: ⑨ *IFD* (Li et al., 2024b); ⑩ *Superfiltering* (Li et al., 2024a);
 363 ⑪ *DEITA* (Liu et al., 2024b); ⑫ *RDS+ & RDS+ (best)* (Ivison et al., 2025); ⑬ *DS²* (Pang
 364 et al., 2025); ⑭ *LESS* (Xia et al., 2024); ⑮ *MathFusion* (Pei et al., 2025); ⑯ *Evol-*
 365 *Instruct* (Xu et al., 2024b); ⑰ *Self-Instruct* (Wang et al., 2023b); ⑱ *1-to-1 Rewriting/*
 366 *Enhancement*; ⑲ *Direct Corpora Fusion Without Step 2&3*; ⑳ *Direct Corpora Fusion*
 367 *Without Step 3*. Comprehensive details of all baselines are provided in the Appendix D.1.3.

368 **Implementation Details.** In the one-hop clustering stage, **ENTP** sets the cosine similarity
 369 threshold to 0.9. For representative corpus selection, we set $\alpha = 0.2$ to encourage
 370 diversity. The gpt-4o-mini² model is used as the API-accessed LLM in **ENTP**, with tem-
 371 perature set to 0.4 during the DA operator to encourage broader exploration, and 0.2 for
 372 all other modules to ensure consistency. In the two-to-one corpus fusion step, we propose
 373 two configurations: intra-cluster fusion, where multiple corpora from the same cluster are
 374 progressively merged until a single representative corpus is obtained; and inter-cluster fu-
 375 sion, where two corpora from different clusters are merged in a single pass. Besides, we limit
 376 regeneration attempts to 3.

378

379 Table 2: **Performance comparison on the OpenLLM leaderboard.** The default data
 380 size is 54888. The fine-tuning base model is Mistral-7B-v0.3. Best and second-best results
 381 on average are highlighted in **bold red** and **bold black**, respectively. Performance changes
 382 of **ENTP** w.r.t. the LQ Set across all benchmarks are also reported.

Dataset	MMLU (EM \uparrow)	TruthfulQA (EM \uparrow)	GSM8K (EM \uparrow)	BBH (EM \uparrow)	TydiQA (1-Shot F1 \uparrow)	Average \uparrow
Base Model: Mistral-7B-v0.3						
Vanilla Base Model	59.7	30.4	38.0	47.6	54.8	46.1
LQ Set (123786)	47.5	43.7	43.5	52.7	41.1	45.7
HQ Set (131247)	58.4	39.2	46.0	55.5	52.5	50.3
Full Set (300932)	60.0	43.5	43.5	52.5	53.4	50.6
Completion Length	25.4	43.5	43.0	55.7	45.8	42.7
KNIN ₁₀	53.7	43.7	40.0	54.4	39.5	46.3
Perplexity	53.8	41.8	34.5	54.8	41.9	45.4
Random Selection	52.8	42.0	41.5	56.7	48.4	48.3
AlpaGasus (Random)	53.8	48.5	44.5	55.6	41.5	48.8
IFD	40.3	43.8	44.0	49.5	33.6	42.2
Superfiltering	51.8	40.7	45.0	52.6	37.8	45.6
DEITA	44.5	39.9	43.5	50.2	46.1	44.8
DEITA (Our Curated Score)	52.2	36.6	44.0	54.3	51.7	47.8
RDS+	47.9	41.1	43.0	52.9	41.8	45.3
RDS+ (Best)	51.0	43.4	46.0	54.9	44.6	48.0
DS ²	48.7	44.1	47.5	55.1	46.9	48.5
LESS	54.1	46.2	44.0	53.8	50.5	49.7
MathFusion	50.8	59.6	44.5	52.8	41.4	49.8
Evol-Instruct	54.0	57.5	33.5	53.1	42.8	48.2
Self-Instruct	53.1	43.8	45.0	55.2	50.9	49.6
I-to-I Rewriting/ Enhancement	47.3	42.4	41.5	49.4	49.9	46.1
Direct Corpora Fusion Without Step2&3	40.4	41.4	37.5	48.8	50.7	43.8
Direct Corpora Fusion Without Step3	45.9	42.8	40.0	50.0	50.3	45.8
ENTP	58.6 (±11.1)	43.0 (±0.7)	44.0 (±0.5)	53.8 (±1.1)	58.3 (±17.2)	51.5 (±5.8)

400 Table 3: **Performance comparison on the OpenLLM leaderboard.** The default data
 401 size is 54888. The fine-tuning base model is Llama-3.1-8B. Best and second-best results on
 402 average are highlighted in **bold red** and **bold black**, respectively. Performance changes of
 403 **ENTP** with respect to the LQ Set across all benchmarks are also reported.

Dataset	MMLU (EM \uparrow)	TruthfulQA (EM \uparrow)	GSM8K (EM \uparrow)	BBH (EM \uparrow)	TydiQA (1-Shot F1 \uparrow)	Average \uparrow
Base Model: Llama-3.1-8B						
Vanilla Base Model	64.1	32.9	58.0	55.3	22.1	46.5
LQ Set (123786)	52.7	44.3	57.0	61.0	43.9	51.8
HQ Set (131247)	62.3	41.8	57.5	59.3	58.9	56.0
Full Set (300932)	63.5	42.0	61.0	59.1	62.8	57.7
Completion Length	59.5	45.8	60.0	58.6	61.2	57.0
KNIN ₁₀	59.3	37.6	52.0	59.5	55.7	52.8
Perplexity	60.5	37.5	51.0	57.8	55.0	52.4
Random Selection	60.2	38.0	57.0	57.7	60.4	54.7
AlpaGasus (Random)	53.0	44.1	56.0	59.4	49.0	52.3
IFD	45.9	46.7	57.0	56.6	42.8	49.8
Superfiltering	58.0	43.8	61.5	56.5	51.0	54.2
DEITA	57.6	43.3	58.5	59.0	60.8	55.8
DEITA (Our Curated Score)	60.0	46.8	58.0	58.1	61.3	56.8
RDS+	57.1	43.6	52.5	58.6	42.0	50.8
RDS+ (Best)	57.1	46.6	59.5	60.8	53.0	55.4
DS ²	59.9	44.8	55.5	58.2	60.8	55.8
LESS	59.9	40.5	56.0	61.4	66.2	56.8
Self-Instruct	52.1	18.3	56.5	57.9	57.3	48.4
I-to-I Rewriting/ Enhancement	58.3	42.5	58.5	57.9	46.1	52.7
Direct Corpora Fusion Without Step2&3	54.1	40.7	60.0	56.9	43.1	51.0
Direct Corpora Fusion Without Step3	54.5	48.8	56.0	58.3	39.6	51.4
ENTP	61.7 (±9.0)	47.8 (±3.5)	54.5 (±2.5)	60.7 (±0.3)	61.3 (±17.4)	57.2 (±5.4)

421 4.2 EMPIRICAL OBSERVATIONS

422 All observations reported in this section stem from experiments conducted with the Mis-
 423 tral-7B-v0.3 and Llama-3.1-7B models. Additional findings based on various base models
 424 are provided in the Appendix D.2.

425 **Observation 1: A structural bottleneck in the classical data-selection paradigm**
 426 **progressively emerges.** In Table 2-3, all data-selection baselines, LLM-free or LLM-based,
 427 and regardless of whether they leverage a validation split from the test set, exhibit av-
 428 erage performance that oscillates around the results obtained with the LQ Set: (1) For
 429 Mistral-7B-v0.3, average performance fluctuates near 45.7, with values spanning from 42.7
 430 (Completion Length) to 48.8 (AlpaGasus (Random)); (2) For Llama-3.1-8B, performance
 431 centers near 51.8, ranging from 49.8 (IFD) to 57.0 (Completion Length). The majority of
 432 baselines produce results that differ only marginally. Hence, our experiments pinpoint a

432 structural bottleneck in this paradigm: once the most informative subset is extracted from
 433 the source pool, further gains become unattainable.

434 **Observation 2: LQ Set does contain the valuable sample which can contribute to**
 435 **the average performance.** As shown in Table 3, two score-aware baselines, Completion
 436 Length and DEITA using our curated scores, achieve average scores of 57.0% and 56.8%
 437 respectively. Both outperform the HQ Set configuration (56%), which advocates discarding
 438 the whole LQ Set. Hence, relying solely on a small portion of native high-quality data,
 439 while discarding the majority of native low-quality data, risks losing valuable information
 440 that may enhance model performance.

441 **Observation 3: Our proposed paradigm offers a viable alternative to the clas-**
 442 **sical data-selection paradigm.** As shown in Tables 2-3, regardless of what base model
 443 equipped with, **ENTP** consistently outperform all baselines on average that follow the
 444 traditional data-selection paradigm, which extracts an optimal subset from the LQ Set.
 445 Specifically, when equipping with the Mistral-7B-v0.3 model, on average **ENTP** achieves
 446 superior performance over all baselines, including the Full Set configuration (see Table 2).
 447 When switching to the Llama-3.1-8B model, **ENTP** achieves the second-highest average
 448 performance among all baselines, trailing only the Full Set setting (see Table 3). In com-
 449 parison with the source dataset (LQ Set), the main improvements of **ENTP** are reflected
 450 on two benchmarks: on MMLU and TyDiQA. With Mistral-7B-v0.3, **ENTP** achieves gains
 451 of 11.1% on MMLU and 17.2% on TyDiQA; with Llama-3.1-7B, the improvements are
 452 9.0% (MMLU) and 17.4% (TyDiQA). In terms of overall performance, **ENTP** improves by
 453 5.8% when using Mistral-7B-v0.3, and by 5.4% when using Llama-3.1-8B; in both cases,
 454 it outperforms all optimal subsets drawn from the LQ Set. Therefore, all empirical results
 455 demonstrate that **ENTP** could overcome the bottleneck inherent in the paradigm of relying
 456 solely on native, high-quality data.

456 4.3 ABLATION STUDY

457 Table 4: **Performance comparison among the LQ Set, HQ Set, Full Set, and var-**
 458 **ious proportions of the ENTP -generated dataset.** The fine-tuning base models are
 459 Mistral-7B-v0.3 and Llama-3.1-8B. Best and second-best results on average are highlighted
 460 in **bold red** and **bold black**, respectively. The average performance changes of **ENTP**,
 461 relative to the LQ Set, are also reported.

462 Dataset	463 MMLU (EM \uparrow)	463 GSM8K (EM \uparrow)	463 BBH (EM \uparrow)	463 TydiQA (1-Shot F1 \uparrow)	463 Average \uparrow
464 Base Model: Mistral-7B-v0.3					
465 LQ Set (123786)	47.5	43.5	52.7	41.1	46.3
466 HQ Set (131247)	58.4	46.0	55.5	52.5	53.1
467 Full Set (300932)	60.0	43.5	52.5	53.4	52.4
468 ENTP-20%	59.3	41.5	54.6	55.4	52.7 (+6.4)
469 ENTP-40%	58.9	42.0	50.5	56.8	52.1 (+5.8)
470 ENTP-60%	59.1	45.5	52.3	56.2	53.3 (+7.0)
471 ENTP-80%	58.5	44.0	53.8	57.4	53.4 (+7.1)
472 ENTP-100%	58.6	44.0	53.8	58.3	53.7 (+7.4)
473 Base Model: Llama-3.1-8B					
474 LQ Set (123786)	52.7	57.0	61.0	44.7	53.9
475 HQ Set (131247)	62.3	57.5	59.3	58.9	59.5
476 Full Set (300932)	63.5	61.0	59.1	62.8	61.6
477 ENTP-20%	63.9	57.5	61.5	52.5	58.9 (+5.0)
478 ENTP-40%	62.3	56.5	58.0	56.5	58.3 (+4.4)
479 ENTP-60%	62.3	57.5	60.1	57.2	59.3 (+5.4)
480 ENTP-80%	62.0	56.0	61.5	57.8	59.3 (+5.4)
481 ENTP-100%	61.7	54.5	60.7	61.3	59.6 (+5.7)

482 **Ablation Setup** To gain a more comprehensive understanding of how **ENTP**-generated
 483 dataset affects the performance of LLMs, we employ the LQ Set, HQ Set and Full Set as
 484 control groups. For the experimental groups, we evaluate five configurations of the full
 485 **ENTP** -generated dataset, ranging from 20% to 100%, denoted as **ENTP-x%**, where x%
 486 indicates the random selection of x% of the merged corpus obtained via intra-cluster and
 487 inter-cluster fusion.

486 Empirical Scaling Law Holds For ENTP-Generated Data: Full Dataset Outper-
487 forms All Subsets We experiment with subsets of varying volumes (20%–100%) of the
488 full **ENTP** -generated dataset to systematically assess scaling behavior. As shown in Ta-
489 ble 4, regardless of the options of the base model, as the dataset size increases, average per-
490 formance also exhibits an upward trend, consistent with empirical scaling laws. Moreover,
491 across configurations ranging from 20% to 100% of our merged corpus, each **ENTP**-based
492 setting outperforms the source LQ Set, demonstrating the effectiveness of **ENTP**. More
493 ablation studies using different base model with various experimental setup are given in the
494 Appendix E.

495 5 CONCLUSION

496 We introduced **ENTP**, re-examining the long-held “quality-first” dogma in supervised
497 fine-tuning. Rather than discarding the vast pool of low-score or head-frequency instruction
498 data, **ENTP** purges the genuinely noisy elements, mixes the remaining signal with
499 model-generated knowledge, and delivers a topic-focused corpus that is both compact and
500 information-rich. Empirically, LLMs fine-tuned on **ENTP**-created corpora consistently
501 outperformed models trained on the full 300K dataset or on conventional “high-quality”
502 subsets across five instruction-following benchmarks. In addition, our empirical results
503 yield two key insights: (1) **Hidden value in low-quality data**. Even ostensibly poor
504 examples contain complementary information that, when properly distilled, improves
505 downstream performance—corroborating scaling-law observations that “more diverse data”
506 can be as valuable as “better data.” (2) **Neural-symbolic fusion is effective for**
507 **corpus construction**. Symbolic rules provide reliable noise filters, while connection-
508 ist models enrich and complete missing content, jointly producing a superior training signal.

510 REFERENCES

511 Charles Bazerman. Intertextuality: How texts rely on other texts. In *What writing does*
512 and *how it does it*, pp. 89–102. Routledge, 2003.

513 Anjanava Biswas and Wrick Talukdar. Intelligent clinical documentation: Harnessing gen-
514 erative ai for patient-centric clinical note generation. *International Journal of Innovative*
515 *Science and Research Technology (IJISRT)*, pp. 994–1008, May 2024. ISSN 2456-2165.
516 doi: 10.38124/ijisrt/ijisrt24may1483. URL <http://dx.doi.org/10.38124/ijisrt/IJISRT24MAY1483>.

517 Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for re-
518 ordering documents and producing summaries. In *Proceedings of the 21st annual inter-
519 national ACM SIGIR conference on Research and development in information retrieval*,
520 pp. 335–336, 1998.

521 Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng
522 Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better
523 alpaca with fewer data. *arXiv preprint arXiv:2307.08701*, 2023.

524 Pei Cheng, Xiayang Shi, and Yinlin Li. Enhancing translation ability of large language
525 models by leveraging task-related layers. In Nicoletta Calzolari, Min-Yen Kan, Veronique
526 Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings of the 2024*
527 *Joint International Conference on Computational Linguistics, Language Resources and*
528 *Evaluation (LREC-COLING 2024)*, pp. 6110–6121, Torino, Italia, May 2024. ELRA and
529 ICCL. URL <https://aclanthology.org/2024.lrec-main.540/>.

530 Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly
531 Nikolaev, and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking
532 question answering in typologically diverse languages. *Transactions of the Association*
533 *for Computational Linguistics*, 8:454–470, 2020.

534 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
535 Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training
536 verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

540 Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam
 541 Shah, Ali Ghodsi, Patrick Wendell, Matei Zaharia, and Reynold Xin.
 542 Free dolly: Introducing the world's first truly open instruction-tuned
 543 llm, 2023. URL <https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm>.

544
 545 Leo Gao. An empirical exploration in quality filtering of text data, 2021. URL <https://arxiv.org/abs/2109.00698>.

546
 547 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
 548 Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
 549 llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

550
 551 Sonam Gupta, Yatin Nandwani, Asaf Yehudai, Dinesh Khandelwal, Dinesh Raghu, and
 552 Sachindra Joshi. Selective self-to-supervised fine-tuning for generalization in large lan-
 553 guage models, 2025. URL <https://arxiv.org/abs/2502.08130>.

554
 555 Yuanqin He, Yan Kang, Lixin Fan, and Qiang Yang. Fedeval-llm: Federated evaluation of
 556 large language models on downstream tasks with collective wisdom, 2024. URL <https://arxiv.org/abs/2404.12273>.

557
 558 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 559 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint*
 560 *arXiv:2009.03300*, 2020.

561
 562 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
 563 Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models.
 564 *ICLR*, 1(2):3, 2022.

565
 566 Hamish Ivison, Muru Zhang, Faeze Brahman, Pang Wei Koh, and Pradeep Dasigi. Large-
 567 scale data selection for instruction tuning. *arXiv preprint arXiv:2503.01807*, 2025.

568
 569 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
 570 Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
 571 cile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
 572 Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b,
 573 2023. URL <https://arxiv.org/abs/2310.06825>.

574
 575 James Joyce. Bayes' theorem. 2003.

576
 577 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
 578 Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
 579 language models, 2020. URL <https://arxiv.org/abs/2001.08361>.

580
 581 Michele Knobel. Remix, literacy and creativity: An analytic review of the research literature.
 582 *Eesti Haridusteaduste Ajakiri. Estonian Journal of Education*, 5(2):31–53, 2017.

583
 584 Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith
 585 Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd Nagyfi, et al. Openas-
 586 sistant conversations-democratizing large language model alignment. *Advances in Neural*
 587 *Information Processing Systems*, 36:47669–47681, 2023.

588
 589 Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning Cheng,
 590 and Tianyi Zhou. Superfiltering: Weak-to-strong data filtering for fast instruction-tuning.
 591 *arXiv preprint arXiv:2402.00530*, 2024a.

592
 593 Ming Li, Yong Zhang, Zhitao Li, Jiahui Chen, Lichang Chen, Ning Cheng, Jianzong Wang,
 594 Tianyi Zhou, and Jing Xiao. From quantity to quality: Boosting LLM performance
 595 with self-guided data selection for instruction tuning. In Kevin Duh, Helena Gomez,
 596 and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American*
 597 *Chapter of the Association for Computational Linguistics: Human Language Technologies*
 598 *(Volume 1: Long Papers)*, pp. 7602–7635, Mexico City, Mexico, June 2024b. Association
 599 for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.421. URL <https://aclanthology.org/2024.naacl-long.421/>.

594 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic
 595 human falsehoods. *arXiv preprint arXiv:2109.07958*, 2021.

596

597 Minghao Liu, Zonglin Di, Jiaheng Wei, Zhongruo Wang, Hengxiang Zhang, Ruixuan Xiao,
 598 Haoyu Wang, Jinlong Pang, Hao Chen, Ankit Shah, et al. Automatic dataset construction
 599 (adc): Sample collection, data curation, and beyond. *arXiv preprint arXiv:2408.11338*,
 600 2024a.

601 Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data
 602 for alignment? a comprehensive study of automatic data selection in instruction tuning,
 603 2024b. URL <https://arxiv.org/abs/2312.15685>.

604

605 Yang Liu, Hao Cheng, and Kun Zhang. Identifiability of label noise transition matrix. In
 606 *International Conference on Machine Learning*, pp. 21475–21496. PMLR, 2023.

607

608 Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny
 609 Zhou, Quoc V Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data
 610 and methods for effective instruction tuning. In *International Conference on Machine
 Learning*, pp. 22631–22648. PMLR, 2023.

611

612 Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou,
 613 and Jingren Zhou. # instag: Instruction tagging for analyzing supervised fine-tuning of
 614 large language models. *arXiv preprint arXiv:2308.07074*, 2023.

615

616 James MacQueen. Some methods for classification and analysis of multivariate observa-
 617 tions. In *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
 Probability, Volume 1: Statistics*, volume 5, pp. 281–298. University of California press,
 618 1967.

619

620 Nancy Nelson and James R King. Discourse synthesis: Textual transformations in writing
 621 from sources. *Reading and Writing*, 36(4):769–808, 2023.

622

623 Jinlong Pang, Jiaheng Wei, Ankit Parag Shah, Zhaowei Zhu, Yaxuan Wang, Chen Qian,
 624 Yang Liu, Yujia Bao, and Wei Wei. Improving data efficiency via curating llm-driven
 625 rating systems. *International Conference on Learning Representations*, 2025.

626

627 Qizhi Pei, Lijun Wu, Zhuoshi Pan, Yu Li, Honglin Lin, Chenlin Ming, Xin Gao, Conghui
 628 He, and Rui Yan. Mathfusion: Enhancing mathematical problem-solving of llm through
 629 instruction fusion. *arXiv preprint arXiv:2503.16212*, 2025.

630

631 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 632 Language models are unsupervised multitask learners. 2019.

633

634 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
 635 cluster analysis. *Journal of computational and applied mathematics*, 20:53–65, 1987.

636

637 Anusha Sabbineni, Nikhil Anand, and Maria Minakova. Comprehensive benchmarking of
 638 entropy and margin based scoring metrics for data selection, 2023. URL <https://arxiv.org/abs/2311.16302>.

639

640 Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
 641 Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Chal-
 642 lenging big-bench tasks and whether chain-of-thought can solve them. *arXiv preprint
 643 arXiv:2210.09261*, 2022.

644

645 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
 646 Percy Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following
 647 llama model, 2023.

648

649 Soroosh Tayebi Arasteh, Tianyu Han, Mahshad Lotfinia, Christiane Kuhl, Jakob Nikolas
 650 Kather, Daniel Truhn, and Sven Nebelung. Large language models streamline auto-
 651 mated machine learning for clinical studies. *Nature Communications*, 15(1), February
 652 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-45879-8. URL <http://dx.doi.org/10.1038/s41467-024-45879-8>.

648 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

649

650

651 Jacques Wainer and Gavin Cawley. Empirical evaluation of resampling procedures for opti-
652 mising svm hyperparameters. *Journal of Machine Learning Research*, 18(15):1–35, 2017.
653 URL <http://jmlr.org/papers/v18/16-174.html>.

654 Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu. A survey on
655 data selection for llm instruction tuning. *arXiv preprint arXiv:2402.05123*, 2024.

656

657 Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu,
658 David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels
659 go? exploring the state of instruction tuning on open resources. *Advances in Neural
660 Information Processing Systems*, 36:74764–74786, 2023a.

661 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi,
662 and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated
663 instructions. In *Proceedings of the 61st annual meeting of the association for computational
664 linguistics (volume 1: long papers)*, pp. 13484–13508, 2023b.

665

666 Jiaheng Wei, Yuanshun Yao, Jean-Francois Ton, Hongyi Guo, Andrew Estornell, and Yang
667 Liu. Measuring and reducing llm hallucination without gold-standard answers. *arXiv
668 preprint arXiv:2402.10412*, 2024.

669

670 Quan Wei, Chung-Yiu Yau, Hoi-To Wai, Yang Katie Zhao, Dongyeop Kang, Youngsuk Park,
671 and Mingyi Hong. Roste: An efficient quantization-aware supervised fine-tuning approach
672 for large language models, 2025a. URL <https://arxiv.org/abs/2502.09003>.

673

674 Xiahua Wei, Naveen Kumar, and Han Zhang. Addressing bias in generative ai: Challenges
675 and research opportunities in information management. *Information & Management*, 62
676 (2):104103, March 2025b. ISSN 0378-7206. doi: 10.1016/j.im.2025.104103. URL <http://dx.doi.org/10.1016/j.im.2025.104103>.

677

678 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen.
679 Less: Selecting influential data for targeted instruction tuning. *arXiv preprint
680 arXiv:2402.04333*, 2024.

681

682 Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for
683 language models via importance resampling, 2023. URL <https://arxiv.org/abs/2302.03169>.

684

685 Bin Xu, Yiguan Lin, Yinghao Li, and Yang Gao. Sra-mcts: Self-driven reasoning augmen-
686 tation with monte carlo tree search for code generation. *arXiv preprint arXiv:2411.11053*,
687 2024a.

688

689 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao,
690 Qingwei Lin, and Dixin Jiang. Wizardlm: Empowering large pre-trained language models
691 to follow complex instructions. In *The Twelfth International Conference on Learning
692 Representations*, 2024b.

693

694 Bin Yu, Hang Yuan, Yuliang Wei, Bailing Wang, Weizhen Qi, and Kai Chen. Long-short
695 chain-of-thought mixture supervised fine-tuning eliciting efficient reasoning in large lan-
696 guage models, 2025. URL <https://arxiv.org/abs/2505.03469>.

697

698 Jiayi Zhang, Jinyu Xiang, Zhao Yang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen,
699 Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic
700 workflow generation. *arXiv preprint arXiv:2410.10762*, 2024a.

701

702 Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and Tat-
703 sunori B. Hashimoto. Benchmarking large language models for news summarization.
704 *Transactions of the Association for Computational Linguistics*, 12:39–57, 2024b. doi:
705 10.1162/tacl_a_00632. URL <https://aclanthology.org/2024.tacl-1.3/>.

702 Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, Fei Huang, Yongbin Li, and Nevin L
703 Zhang. A preliminary study of the intrinsic relationship between complexity and align-
704 ment. *arXiv preprint arXiv:2308.05696*, 2023.

705 Danna Zheng, Mirella Lapata, and Jeff Z. Pan. How reliable are llms as knowledge bases? re-
706 thinking facultality and consistency, 2024. URL <https://arxiv.org/abs/2407.13578>.

708 Longguang Zhong, Fanqi Wan, Ziyi Yang, Guosheng Liang, Tianyuan Shi, and Xiaojun
709 Quan. Fuserl: Dense preference optimization for heterogeneous model fusion, 2025. URL
710 <https://arxiv.org/abs/2504.06562>.

711 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma,
712 Avia Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural*
713 *Information Processing Systems*, 36:55006–55021, 2023.

715 Zhaowei Zhu, Yiwen Song, and Yang Liu. Clusterability as an alternative to anchor points
716 when learning with noisy labels. In *International Conference on Machine Learning*, pp.
717 12912–12923. PMLR, 2021.

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

Use of Large Language Models In our **ENTP**, the LLM is designed as an atomic capability and primarily contributes to the data quality evaluation and data fusion stages.

Data and Code Availability We will release the implementation code of **ENTP**, along with all merged corpora sets used in our experiments, including those generated via intra-cluster and inter-cluster fusion, upon acceptance of the paper.

The rest of Appendix is organized as follows:

- Section A: We give detailed discussions about related work.
- Section B: We provide comprehensive technical details of an additional preliminary component employed by **ENTP**.
- Section C: We provide comprehensive details about **ENTP**.
- Section D: We include omitted experiment details, designs, additional experiment results, and GPU Runtime & API Cost & Validation Set Requirement Analysis.
- Section E: We include a supplementary ablation study.
- Section F: We provide the curated overall score distributions for both the original low-quality corpora and the **ENTP**-generated merged corpora.
- Section G: We provide a concrete end-to-end example.
- Section H: We present several **ENTP**-generated samples.
- Section I: We provide potential future directions.

A RELATED WORK

Data selection paradigms can be broadly classified into two categories: those that rely solely on empirical metrics (without LLM involvement) and those that incorporate LLMs.

Data Selection Without LLM Sabbineni et al. (2023) introduced entropy and Error L2-Norm (EL2N) scores to evaluate the “usefulness” or “difficulty” of data examples, demonstrating that score-based selection can reduce semantic error rates and domain classification errors compared to random selection. Xie et al. (2023) extended the classic importance resampling method to high-dimensional settings, proposing the Data Selection with Importance Resampling (DSIR) framework. DSIR estimates importance weights in a reduced feature space and selects data accordingly, achieving significant improvements in downstream tasks such as GLUE. Wainer and Cawley (2017) conducted an extensive empirical evaluation of 15 resampling procedures for Support Vector Machine (SVM) hyperparameter selection, concluding that a 2-fold procedure is appropriate for datasets with 1000 or more data points, while a 3-fold procedure is suitable for smaller datasets.

LLM-based Data Selection Li et al. (2024b) introduced the Instruction-Following Difficulty (IFD) metric, enabling LLMs to autonomously identify challenging instruction-response pairs by measuring discrepancies between expected and actual responses, thereby enhancing model performance with a reduced dataset. Lu et al. (2023) developed the INSTAG framework, leveraging fine-grained tagging of instruction semantics to select diverse and complex examples, which improved instruction-following capabilities. Additionally, Liu et al. (2024b) employed a comprehensive analysis combining diversity, quality, and complexity metrics to systematically select high-performing data subsets, demonstrating significant improvements in model robustness.

As previously noted, this paradigm overlooks the potential contributions of low-quality data, leading methods that adhere to it to inevitably encounter bottlenecks due to the scarcity of high-quality raw data. In contrast, **ENTP** maximizes the potential of each low-quality corpus, transforming them into rare and expressive synthetic corpora.

810 B MORE PRELIMINARY
811812 B.1 AVERAGE SILHOUETTE SCORE
813

814 Clustering quality hinges on both how tightly points group within their own clusters (co-
815hesion) and how well they separate from other clusters (separation). The Silhouette Score
816 uniquely captures both dimensions in a single metric, enabling an immediate, interpretable
817 gauge of cluster validity (Rousseeuw, 1987). Mathematically, for each data point i assigned
818 to cluster C_I , the cohesion $a(i)$ and separation $b(i)$ are defined as follows:

$$819 \quad a(i) = \frac{1}{|C_I| - 1} \sum_{j \in C_I, j \neq i} d(i, j), \\ 820 \quad b(i) = \min_{J \neq I} \frac{1}{|C_J|} \sum_{j \in C_J} d(i, j), \\ 821 \quad 822 \quad 823$$

824 where $d(\cdot, \cdot)$ represents the Euclidean distance; $a(i)$ is computed as the average distance
825 between point i and all other members of its own cluster; $b(i)$ denotes the minimum of the
826 average distances from i to the members of any other cluster C_J . Based on these quantities,
827 the silhouette coefficient $s(i)$ for each point i is then defined as:

$$828 \quad s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}, \quad -1 \leq s(i) \leq 1, \\ 829 \quad 830$$

831 where $\max\{a(i), b(i)\}$, normalizing denominator, ensures $s(i)$ lies in the range of [-1,1].
832 When $s(i) \approx +1$, the intra-cluster distance $a(i)$ is much smaller than the nearest inter-cluster
833 distance $b(i)$, indicating that point i lies deep inside its own cluster and is well separated
834 from all others. When $s(i) \approx 0$, the cohesion and separation distances are approximately
835 equal ($a(i) \approx b(i)$), suggesting that i sits near the boundary between two clusters and could
836 plausibly belong to either. Conversely, when $s(i) \approx -1$, the intra-cluster distance exceeds
837 the nearest inter-cluster distance ($a(i) > b(i)$), which implies that i is likely misassigned and
838 would be better placed in its neighboring cluster. Finally, the overall clustering quality is
839 captured by the Average Silhouette Score \tilde{s} , defined as the mean of all individual silhouette
840 coefficients $s(i)$:

$$841 \quad \tilde{s} = \frac{1}{N} \sum_{i=1}^N s(i), \\ 842 \quad 843$$

844 where N is the total number of examples. A higher \tilde{s} (closer to +1) indicates that clusters
845 are both cohesive, whereas values near 0 or negative signal ambiguous or poor clustering
846 assignments.

847 C ENTP: ENHANCING LOW-QUALITY SFT DATA VIA
848 NEURAL-SYMBOLIC TEXT PURGE-MIX
849850 C.1 STEP 1: LOW-QUALITY DATASET CONSTRUCTION
851

852 For the initial LLM rating step, we follow the same setup as Pang et al. (2025), where
853 the LLM is prompted to rate each corpus based on four dimensions, ‘Rarity’, ‘Complexity’,
854 ‘Informativeness’, and ‘Overall Rating’, with each dimension scored on a scale from 1 to 10.
855 The corresponding detailed prompt template is shown in Figure 6. All initial scores in the
856 range of 1–4 are mapped to 4, those in 9–10 are mapped to 9, and the remaining scores
857 in between are uniformly downscaled to a 0–5 range (Pang et al., 2025). Subsequently, we
858 adopt the K-NN Score Clusterability theory (Zhu et al., 2021) to refine the overall scores
859 generated by the LLM.

860 C.2 STEP 2: ONE-HOP CLUSTER-BASED REPRESENTATIVE SELECTION
861

862 The complete implementation details are presented in Algorithm 1.

864
865
866
867
868
869
870
871
872
873
874
875

Algorithm 1 One-Hop Cluster-Based Representative Selection

876
877 **Input:** Low-Quality Corpora Set, $\mathbf{S}_{lq} = \{s^o | s^o \in [0, 2]\}$
 878 **Output:** Representative Corpora, $\mathbf{R} = \{C_r^0, \dots, C_r^m\}$, where C_r^i stands for the selected
 879 representative corpora set for the i^{th} cluster
 880 1: Prepare empty list, r_{sel} , $cluster_{one-hop} = []$; Shuffle \mathbf{S}_{lq}
 881 2: **for** each $s_i^o \in \mathbf{S}_{lq}$ **do** ▷ Step 1: One-Hop Cluster Formation
 882 3: **if** s_i^o not in r_{sel} : **then**
 883 4: $CandidateList_i \leftarrow \text{CosineSimilarityOver0.9}(s_i^o, \{s_j^o; s_i^o \in \mathbf{S}_{lq}, i \neq j\})$
 884 5: $cluster_{one-hop} \leftarrow cluster_{one-hop}.\text{append}(CandidateList_i)$
 885 6: $r_{sel} \leftarrow r_{sel}.\text{extend}(CandidateList_i)$
 886 7: **end if**
 887 8: **end for**
 888 9: Initialize $\alpha = 0.2$, $num_reps = 2$
 889 10: **for** each $cluster \in cluster_{one-hop}$ **do** ▷ Step 2: Representative Corpora Selection
 890 11: Collect Centroid Corpus, $r_0 \leftarrow cluster$ ▷ First Representative Corpus
 891 12: $cluster.\text{remove}(r_0)$
 892 13: **if** $\text{len}(cluster) \geq 3$ **then**
 893 14: $\mathbf{K} = [2, \max(10, \text{len}(cluster))]$
 894 15: $best_k \leftarrow \text{FindBestK}(\mathbf{K}, cluster)$ ▷ Finding Out k-value With The Maximum
 895 ASS
 896 16: $sub_cluster_labels \leftarrow \text{KMeans}(best_k)$
 897 17: **if** $\text{len}(sub_cluster_labels) \geq 2$ and $\text{ClusterSize}(sub_cluster_labels) \geq 3$
 898 18: **# Collect The 2nd & 3th Representative Corpus**
 899 19: Collect r_0 & $r_1 \leftarrow \text{mmr_selection}(sub_cluster_labels, num_reps, \alpha)$
 900 20: **else**
 901 21: All $c \in cluster$ Are Updated To The Representative Corpora Set
 902 22: **end if**
 903 23: **else**
 904 24: All $c \in cluster$ Are Updated To The Representative Corpora Set
 905 25: **end if**
 906 26: **end for**
 27: **return** Full Representative Corpora Set, \mathbf{R}

907
908
909
910
911
912
913
914
915
916
917

918 C.3 STEP 3: NEURAL-SYMBOLIC TWO-TO-ONE CORPORA FUSION
919920 C.3.1 STEPWISE COMPONENT ANALYSIS
921922 As illustrated in the internal logic flow in Figure 3, Step 3 primarily comprises the
923 connectionist and symbolism components. All connectionist components are essentially LLM-
924 invoking operators, each responsible for a distinct task and equipped with its own carefully
925 designed prompt template, defined as follows:926 • **Domain Analysis** (DA): Based on the prompt template defined in Figure 10, the LLM
927 extracts salient domain knowledge and the potential matching pattern from the given
928 pair of input corpora.
929 • **Merged Corpus Generation** (MCG): With the initial prompt template defined in
930 Figure 13, and given the raw corpus pair and three predefined fusion strategies, the LLM
931 produces three corpus fusion variants that fully leverage the prior knowledge embedded
932 in these strategies. Subsequently, the initial prompt template will be updated in re-
933 sponse to the corresponding symbolic loss, with all candidate prompt templates defined
934 in Figures 17-25.
935 • **Information Completeness Detection** (ICD): Utilizing the prompt template in Fig-
936 ure 14, the LLM evaluates the completeness of the merged corpus and its coverage of
937 all elements necessary for the intended use across three aspects: (1) *Key-Term Cover-*
938 *age* For each key term extracted from the raw corpora, the LLM determines whether
939 the merged corpus retains the term, either explicitly or through related information, or
940 omits it, and subsequently outputs two lists: one of retained terms and one of missing
941 terms; (2) *Question Quality* Since each source corpus primarily consists of one or more
942 question-answer pairs, we analyze the question component of the merged corpus by in-
943 structing the LLM to: ① verify the presence of a well-formed question; ② classify it as
944 open- or closed-ended; ③ determine whether external knowledge is needed to answer it;
945 ④ identify included contextual details; and ⑤ highlight any missing contextual informa-
946 tion; (3) *Answer Quality* Similarly, for the answer component of the merged corpus, we
947 engage the LLM to: ① verify the presence of a direct answer to the question; and ②
948 determine whether regeneration is necessary, providing justification if so.
949 • **Final Answer Check** (FAC): Referring to the prompt template defined in Figure 12,
950 unlike the answer quality check in **ICD**, the LLM in this operator focuses not only
951 on verifying the presence of a direct answer but also on identifying any unnecessary,
952 irrelevant or redundant information that needs to be removed.
953 • **Final Answer Update** (FAU): The prompt templates designed for this operator are re-
954 sponsible for pruning the answer section labeled “### Assistant” without modifying any
955 information in the “### User” section. They primarily address cases of omitted direct
956 answers (see Figure 15) as well as the removal of unnecessary, irrelevant, or redundant
957 information (see Figure 16).958 Furthermore, the symbolism components are defined as follows:
959960 • **Strategy Selection** (SS): As illustrated in Figure 11, we define nine fusion strategies,
961 three for each of the three relationship types (“same-domain”, “related-domain”, and
962 “unrelated-domain”), derived from the literature-writing study (Nelson & King, 2023;
963 Knobel, 2017; Bazerman, 2003), leveraging prior knowledge to guide the LLM in merging
964 two corpora on a case-by-case basis.
965 • **Symbolic Loss** (denoted as \mathcal{L}_{Sym}): As shown in Figure 26 and Figure 27, symbolic
966 loss is represented as a structured, schema-compliant JSON-like object. All root nodes
967 are explicitly defined as attribute nodes, such as “context_contain” (from **ICD**), “con-
968 text_missing” (from **ICD**), and “direct_answer” (from **FAC**); the branch nodes capture
969 the corresponding information, such as the context contained in the current corpus, the
970 necessary context that is missing, and the direct answer itself.
971 • **SPO** (Symbolic Prompt Optimizer): A logic controller that enforces the regeneration
972 budget and checks whether all root node conditions from **ICD** and **FAC** are satisfied

972 (i.e., $\mathcal{L}_{\text{Sym}} = 0$). It quantifies symbolic loss by counting unsatisfied root node conditions and updates the candidate prompt templates for the **MCG** or **FAC** operator via
 973 backpropagation to address the identified symbolic loss.
 974
 975

976 C.3.2 STEPWISE WORKFLOW

977 The completed and detailed stepwise workflow is depicted in Figure 5, structured into two
 978 sequential sub-processes: **Cycle 1**, followed by **Cycle 2**. More specifically, we first input two
 979 raw corpora into the DA operator. Once the relationship is determined (“related-domain”
 980 in our example), the corresponding strategy set is then allocated to participate in the MCG
 981 operator. With the generation of three merged corpora from distinct fusion strategies,
 982 they are then input to the ICD operator to obtain the corresponding symbolic loss. This
 983 step also serves as the entry point of the **Cycle 1**. Subsequently, all symbolic losses are
 984 input to the SPO operator, which prepares candidate prompt templates to address the
 985 corresponding losses. Thereafter, these templates are used to update the MCG operator’s
 986 prompt template via backpropagation for the next iteration. Once all checking conditions
 987 from the ICD operator are satisfied (i.e., $\mathcal{L}_{\text{Sym}} = 0$) or the maximum number of regenerations
 988 is reached, the merged corpus with the minimum symbolic loss is then selected as the
 989 optimal corpus from **Cycle 1**, denoted as \mathcal{C}_{C1} . In the next step, this optimal corpus \mathcal{C}_{C1}
 990 is provided to the FAC operator to derive the symbolic loss for its answer section labeled
 991 “### Assistant”. Similarly, this symbolic loss is then passed to the SPO operator to obtain
 992 the candidate prompt template, marking the commencement of **Cycle 2**. Immediately
 993 afterward, the candidate prompt template is back-propagated to the FAU operator to modify
 994 the corpus \mathcal{C}_{C1} in preparation for the next iteration. Immediately thereafter, upon satisfying
 995 all checking conditions specified by the FAC operator (i.e., $\mathcal{L}_{\text{Sym}} = 0$) or reaching the
 996 maximum number of regenerations, the final “### Assistant” content (containing only
 997 the answer) with the minimum symbolic loss from **Cycle 2** is combined with the retained
 998 optimal “### User” section from **Cycle 1**, yielding the optimal merged corpus, \mathcal{C}_{AB} .
 999

1000 C.3.3 DISCUSSION OF LLM INFERENCE SPACE EXPLORATION

1001 Compared to one of the prevalent paradigms for LLM inference space search (Zhang et al.,
 1002 2024a; Xu et al., 2024a), which primarily relies on Monte Carlo Tree Search (MCTS) en-
 1003 compassing four core steps, selection, expansion, simulation, and backpropagation, the back-
 1004 propagation phase in MCTS updates nodes sequentially from the simulation node back up
 1005 to the root node. This paradigm is generally applied in scenarios where no specialized
 1006 prior knowledge is available, and the process must rely solely on the LLM’s inherent prior
 1007 knowledge. However, in our case, the core question is:

1008 *What should the combination of corpus A and corpus B actually be?*

1009 Following the traditional MCTS paradigm, where the fusion process relies entirely on the
 1010 LLM’s prior knowledge, regardless of the relationship between corpus A and corpus B, the
 1011 LLM would simply concatenate the two corpora to form the merged corpus AB. From a hu-
 1012 man cognitive perspective, such a merged corpus lacks a clear theme or focus. Even worse,
 1013 the response generated from this merged corpus may be unrelated to significant thematic
 1014 content, resulting in a corpus that is entirely uninterpretable and essentially meaningless.
 1015 Therefore, instead of relying solely on the LLM’s prior knowledge, we incorporate prior
 1016 knowledge from the literature-writing domain, which not only provides clear guidelines but
 1017 also significantly narrows the LLM’s reasoning search space, thereby reducing its compu-
 1018 tational cost and enabling faster convergence to the most probable optimal solution. As
 1019 illustrated in Figure 5, our iterative procedure of Cycle 1 and Cycle 2 progressively achieves
 1020 global optimality through sequential local optimizations.

1021 C.3.4 FULL IMPLEMENTATION DETAILS CAN BE FOUND IN ALGORITHM 2.

1022
 1023
 1024
 1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

Algorithm 2 Neural-Symbolic Two-To-One Corpora Fusion

Input: Raw Corpus A and B, $\{\mathcal{C}_A, \mathcal{C}_B\}$; Carefully Designed Prompt Set, $\{\mathcal{P}_{DA}, \mathcal{P}_{MCG}, \mathcal{P}_{ICD}, \mathcal{P}_{FAC}, \mathcal{P}_{FAU}\}$
Output: Optimal Merged Corpora Generated By Different Fusion Strategies, $\{\mathcal{C}_{AB}, \dots\}$

1: **# Prompt LLM: Perform Domain Analysis (DA) Task**
2: symbolic report_{DA} $\leftarrow \mathcal{F}(\mathcal{P}_{DA}(\mathcal{C}_A, \mathcal{C}_B))$
3: Strategy Set_{AB} $\leftarrow \text{FusionStrategySelection}(\text{symbolic report}_{DA})$ ▷ Symbolic Logic Controller
4: **# Prompt LLM: Perform Merged Corpus Generation (MCG) Task**
5: Merged Corpus List $\leftarrow \mathcal{F}(\mathcal{P}_{MCG}(\mathcal{C}_A, \mathcal{C}_B, \text{Strategy Set}_{AB}))$
6: Final Optimal Merged Corpus List, $\mathbf{L}_{\text{optimal}} \leftarrow []$
7: **for** each corpus \in Merged Corpus List **do**
8: temp corpus, $\mathcal{C}_{\text{temp}} \leftarrow$ corpus
9: temp strategy, $s_{\text{temp}} \leftarrow$ corresponding strategy
10: **# Prompt LLM: Perform Information Completeness Detection (ICD) Task**
11: symbolic loss, $\mathcal{L}_{\text{Sym}} \leftarrow \mathcal{F}(\mathcal{P}_{ICD}(\mathcal{C}_{\text{temp}}))$
12: $\text{num_retry} \leftarrow 2$
13: buffer list for storing all temporary merged corpus, $\mathbf{C} \leftarrow [\mathcal{C}_{\text{temp}}]$
14: buffer list for storing all symbolic loss of the corresponding temporary merged corpus, $\mathbf{L} \leftarrow [\mathcal{L}_{\text{Sym}}]$
15: **while** $\mathcal{L}_{\text{Sym}} \neq 0$ and $\text{num_retry} < 4$ **do** ▷ Cycle 1
16: **# Update Prompt Template for MCG Task**
17: $\mathcal{P}_{MCG} \leftarrow \text{SymbolicPromptOptimizer}(\mathcal{P}_{MCG}, \mathcal{L}_{\text{Sym}})$ ▷ Back Propagation
18: **# Update Merged Corpus, $\mathcal{C}_{\text{temp}}$**
19: $\mathcal{C}_{\text{temp}} \leftarrow \mathcal{F}(\mathcal{P}_{MCG}(\mathcal{C}_A, \mathcal{C}_B, s_{\text{temp}}))$
20: **# Collect The Latest Merged Corpus**
21: $\mathbf{C}.\text{append}(\mathcal{C}_{\text{temp}})$
22: **# Update Symbolic Loss, \mathcal{L}_{Sym}**
23: $\mathcal{L}_{\text{Sym}} \leftarrow \mathcal{F}(\mathcal{P}_{ICD}(\mathcal{C}_{\text{temp}}))$
24: $\mathbf{L}.\text{append}(\mathcal{L}_{\text{Sym}})$
25: $\text{num_retry} += 1$
26: **end while**
27: **if** $\mathcal{L}_{\text{Sym}} == 0$ **then**
28: optimal merged corpus from Cycle 1, $\mathcal{C}_{c1} \leftarrow \mathcal{C}_{\text{temp}}$
29: **else if** $\mathbf{L}.\text{count}(\min(\mathbf{L})) == 1$ and $\text{num_retry} > 3$ **then**
30: optimal merged corpus from Cycle 1, $\mathcal{C}_{c1} \leftarrow \mathbf{C}[\mathbf{L}.\text{index}(\min(\mathbf{L}))]$
31: **else if** $\mathbf{L}.\text{count}(\min(\mathbf{L})) > 1$ and $\text{num_retry} > 3$ **then**
32: optimal merged corpus from Cycle 1, $\mathcal{C}_{c1} \leftarrow \mathbf{C}[\text{random.choice}([\text{i for i, v in enumerate}(\mathbf{L}) \text{ if v == min}(\mathbf{L})])]$
33: **end if**
34: symbolic loss, $\mathcal{L}_{\text{Sym}} \leftarrow \mathcal{F}(\mathcal{P}_{FAC}(\mathcal{C}_{c1}))$
35: $\text{num_retry} \leftarrow 2$
36: buffer list for storing all temporary merged corpus, $\mathbf{C} \leftarrow [\mathcal{C}_{c1}]$
37: buffer list for storing all symbolic loss of the corresponding temporary merged corpus, $\mathbf{L} \leftarrow [\mathcal{L}_{\text{Sym}}]$
38: **while** $\mathcal{L}_{\text{Sym}} \neq 0$ and $\text{num_retry} < 4$ **do** ▷ Cycle 2
39: **# Update Prompt Template for FAU Task**
40: $\mathcal{P}_{FAU} \leftarrow \text{SymbolicPromptOptimizer}(\mathcal{P}_{FAU}, \mathcal{L}_{\text{Sym}})$ ▷ Back Propagation
41: **# Update Merged Corpus, \mathcal{C}_{c1}**
42: $\mathcal{C}_{c1} \leftarrow \mathcal{F}(\mathcal{P}_{FAU}(\mathcal{C}_{c1}))$
43: **# Collect The Latest Merged Corpus**
44: $\mathbf{C}.\text{append}(\mathcal{C}_{c1})$
45: **# Update Symbolic Loss, \mathcal{L}_{Sym}**
46: $\mathcal{L}_{\text{Sym}} \leftarrow \mathcal{F}(\mathcal{P}_{FAU}(\mathcal{C}_{c1}))$
47: $\mathbf{L}.\text{append}(\mathcal{L}_{\text{Sym}})$
48: $\text{num_retry} += 1$
49: **end while**
50: **if** $\mathcal{L}_{\text{Sym}} == 0$ **then**
51: optimal merged corpus from Cycle 2, $\mathcal{C}_{AB} \leftarrow \mathcal{C}_{c1}$
52: **else if** $\mathbf{L}.\text{count}(\min(\mathbf{L})) == 1$ and $\text{num_retry} > 3$ **then**
53: optimal merged corpus from Cycle 2, $\mathcal{C}_{AB} \leftarrow \mathbf{C}[\mathbf{L}.\text{index}(\min(\mathbf{L}))]$
54: **else if** $\mathbf{L}.\text{count}(\min(\mathbf{L})) > 1$ and $\text{num_retry} > 3$ **then**
55: optimal merged corpus from Cycle 2, $\mathcal{C}_{AB} \leftarrow \mathbf{C}[\text{random.choice}([\text{i for i, v in enumerate}(\mathbf{L}) \text{ if v == min}(\mathbf{L})])]$
56: **end if**
57: **# Collect The Finalized Merged Corpus**
58: $\mathbf{L}_{\text{optimal}}.\text{append}(\mathcal{C}_{AB})$
59: **end for**
60: **return** Eligible Merged Corpus List, $\mathbf{L}_{\text{optimal}}$

1086 **D MORE EXPERIMENTS**
10871088 **D.1 EXPERIMENTAL SETUP**
10891090
1091 Table 5: Comprehensive overview of the source corpora used in this work. We report three
1092 additional descriptive dimensions, the average number of conversation turns (\bar{N}_{rounds}), the
1093 average prompt length (\bar{L}_{prompt}), and the average response length ($\bar{L}_{\text{response}}$), to provide a
1094 more nuanced understanding of the composition of our source corpora.

Datasets	Derived From	Data size	\bar{N}_{rounds}	\bar{L}_{prompt}	$\bar{L}_{\text{response}}$
Stanford Alpaca	Generated w/ Davinci-003	52K	1.0	23.5	56.4
Flan V2	Human Annotation	100K	1.0	304.1	27.7
Open-Assistant 1	Human Annotation	33K	1.6	32.3	189.1
WizardLM	ChatGPT Annotation	100K	1.0	122.3	352.5
Dolly	Human Annotation	15K	1.0	99.5	79.3

1101
1102 **D.1.1 SOURCE CORPORA**
11031104 For the source corpora used in this work, we follow the same setup as DS² (Pang et al.,
1105 2025), where the corpora consist of five instruction-following datasets originating either
1106 from human annotations or generated by powerful LLMs. A comprehensive overview of our
1107 source corpora is provide in Table 5. Notably, all of the component datasets differ across
1108 format, annotation quality, prompt length, and target task, underscoring the rich diversity
1109 of our source data pool.1110 **D.1.2 EVALUATION SETUP**
11111112 In this paper, we conduct experiments on five evaluation tasks: MMLU (Hendrycks et al.,
1113 2020), TruthfulQA (Lin et al., 2021), BBH (Suzgun et al., 2022), GSM8K (Cobbe et al.,
1114 2021), and TyDiQA (Clark et al., 2020). The hyperparameter settings primarily fol-
1115 low those used in recent work by Wang et al. (2023a). Besides, to ensure consistency
1116 with the format of our generated merged corpora, we apply our marker format (###
1117 User\n{input}\n## Assistant\n{output}) to each input-output pair, embedding
1118 it into the corresponding official prompt template in the evaluation set. For reproducibility,
1119 we provide a brief summary of the key details:1120

- **MMLU (Hendrycks et al., 2020)**: Following the original MMLU setup, all evaluations
1121 are conducted in the zero-shot setting.
- **TruthfulQA (Lin et al., 2021)**: We follow the default QA prompt template with
1123 6 in-context examples to generate answers for 818 TruthfulQA questions. In alignment
1124 with the setup in Wang et al. (2023a), we use two LLaMA-2-7B-based models to evaluate
1125 the truthfulness⁴ and informativeness⁵ of the generated responses. These judge models
1126 assess the truthful and informative rates separately. Similarly, we report the Informative-
1127 Truthful Rate as our final metric, calculated as the product of the informativeness and
1128 truthfulness rates (Lin et al., 2021).
- **BBH (Suzgun et al., 2022)**: Using the official prompts, we perform generation under
1130 a 3-shot setting without CoT reasoning. Additionally, 40 examples from each BBH sub-
1131 task are selected for evaluation.
- **GSM8K (Cobbe et al., 2021)**: We evaluate the fine-tuned models on a randomly
1133 selected subset of 200 samples from the original test set (1319 samples). Specifically,
1134 we adopt an 8-shot in-context learning setup to simulate the chain-of-thought (CoT)
1135 reasoning setting.
- **TydiQA (Clark et al., 2020)**: We use this dataset to evaluate model performance on
1137 multilingual question answering across nine languages. For each language, 100 examples

1138
1139 ⁴Hugging Face Model: allenai/truthfulqa-truth-judge-llama2-7B⁵Hugging Face Model: allenai/truthfulqa-info-judge-llama2-7B

1140 are selected. To help the models adapt to the answer format, one in-context example is
 1141 provided during evaluation. The average F1 score across all languages is reported.
 1142

1143 **D.1.3 DETAILED BASELINE METHOD DESCRIPTIONS**

1144 Our **ENTP**-generated synthetic dataset comprises 54888 samples drawn from the LQ set
 1145 (totaling 123786 samples); of these, 15488 are generated via intra-cluster fusion and 39400
 1146 via inter-cluster fusion. To assess the efficacy of **ENTP**, we compare it against 13 rep-
 1147 resentative data-selection baselines, each applied uniformly to the LQ Set to ensure a fair
 1148 comparison:
 1149

- 1150 1. *Vanilla Base Model* denotes the original base model without any fine-tuning;
- 1151 2. *LQ Set & HQ Set* represent the low-quality set (123786 samples) and high-quality set
 1152 (131247 samples), both extracted from *Full Set*. We first employ the LLM-rating step
 1153 from DS² (Pang et al., 2025) to assign overall-quality scores to every sample in the source
 1154 data pool. Subsequently, we apply the clusterability-based method (Zhu et al., 2021) to
 1155 correct the potential scoring bias. Samples with curated scores in the range [0, 2] form
 1156 the LQ Set, while those with scores in [3, 5] compose the HQ Set;
- 1157 3. *Full Set* comprises 300932 samples as our source data pool;
- 1158 4. *Completion Length* utilizes the length of the whole corpus as an indicator to assess to
 1159 sample quality. Intuitively, longer completions tend to reflect richer, higher-quality dia-
 1160 logues, providing more context, depth, and informativeness;
- 1161 5. KNN_i is defined as the Average Euclidean Distance (AED) from each raw embedding
 1162 vector to its i nearest neighbors within the embedding space. We obtain all embeddings
 1163 using the same model¹ and then rank samples by their AED in ascending order. Samples
 1164 with smaller distances are considered more centrally located and thus more representative
 1165 in the embedding space;
- 1166 6. *Perplexity*, computed using a pre-trained language model in a zero-shot fashion, is
 1167 employed as the evaluation metric. We compute perplexity for each sample using
 1168 LLaMA-3.1-8B-Instruct model. Samples are then selected in descending order of per-
 1169 perplexity. A larger perplexity score indicates greater model uncertainty, suggesting the
 1170 sample is more difficult or rare;
- 1171 7. *Random Selection*, all samples are randomly selected;
- 1172 8. *Alpago* (Random) (Chen et al., 2023) employs ChatGPT to score each sample and
 1173 retains only the highest-rated samples for fine-tuning. For a fair comparison, we use
 1174 gpt-4o-mini² as the scoring model. Since the number of samples receiving the top score
 1175 (55530) exceeds our required dataset size (54888), we randomly sample the final set from
 1176 among those highest-scoring samples;
- 1177 9. *IFD* (Li et al., 2024b), Instruction-Following Difficulty, quantifies how much an instruc-
 1178 tion aids a model’s generation by comparing the model’s loss (or perplexity) with and
 1179 without instruction context. A higher IFD score indicates that the model is less familiar
 1180 with a given sample, implying this sample is relatively rare;
- 1181 10. *Superfiltering* (Li et al., 2024a) utilizes a small and weaker model, GPT-2 (Radford et al.,
 1182 2019)⁶, for the data selection;
- 1183 11. *DEITA* (Liu et al., 2024b) jointly uses two pre-trained scoring model to rate data samples
 1184 based on complexity⁷ and quality⁸. However, all the single-turn samples are rated as 3.
 1185 In order to further demonstrate the effectiveness of this method, we also employ our
 1186 curated scores as an alternative, which is reported as *DEITA (Our Curated Score)*;
- 1187 12. *RDS+* (Ivison et al., 2025), representation-based data selection, utilizes a weighted mean
 1188 pooling of a pre-trained model’s final hidden states for computing the cosine similarity
 1189 between the raw dataset and the validation set. Accordingly, this method extracts an
 1190

1191 ⁶Hugging Face Model: openai-community/gpt2

1192 ⁷Hugging Face Model: hkust-nlp/deita-complexity-scorer

1193 ⁸Hugging Face Model: hkust-nlp/deita-quality-scorer

1194 optimal subset from the source pool for each test benchmark individually. Nevertheless,
 1195 this test-specific subset does not necessarily yield superior performance on that specific
 1196 benchmark, in fact, a subset curated using a different validation set may outperform it.
 1197 Consequently, to showcase the upper performance bound of this method, we also report
 1198 the best result achieved for each test benchmark, denoted as *RDS+ (best)*;
 1199

1200 13. *DS²* (Pang et al., 2025) leverages LLM-generated quality scores, corrected via a score
 1201 transition matrix, and further integrates cosine similarity-based long-tail scoring to select
 1202 samples that are both high-rated and rare;

1203 14. *LESS* (Xia et al., 2024) requires a validation set for each evaluation benchmark. It first
 1204 constructs a gradient datastore for the validation set and then computes the influence
 1205 score for every sample in the entire low-quality set. For a fair comparison, we collect
 1206 the top 54888 samples ranked by LESS for each validation set. Moreover, to present
 1207 the optimal performance of LESS, we report results only on the corpus subsets selected
 1208 exclusively for each corresponding task;

1209 15. *MathFusion* (Pei et al., 2025) provides three fusion strategies, including conditional fu-
 1210 sion, parallel fusion, and sequential fusion. We apply all three strategies to the low-quality
 1211 corpora via random pairing using gpt-4o-mini². We then evenly select 18296 merged cor-
 1212 pora per strategy, resulting in a total of 54888 merged corpora;

1213 16. *Evol-Instruct* (Xu et al., 2024b) offers five *In-depth Evolving* prompt templates and one
 1214 *In-breadth Evolving* prompt template. Following the official configuration, we set the
 1215 number of evolution iteration to $M = 4$. After completing all four evolution rounds, we
 1216 randomly sample 54888 evolved corpora as the final selection;

1217 17. *Self-Instruct* (Wang et al., 2023b) provides two types of prompt templates: one for clas-
 1218 sification corpora and one for non-classification corpora. For a fair comparison, we use
 1219 gpt-4o-mini² to generate the augmented corpora. Similarly, we randomly sample 54888
 1220 augmented corpora as the final selection;

1221 18. *1-to-1 Rewriting/ Enhancement* serves as a simple baseline in which we use gpt-4o-
 1222 mini² to directly rewrite or enhance for each low-quality corpus. After obtaining all the
 1223 augmented corpora, we randomly sample 54888 of them as the final selection;

1224 19. *Direct Corpora Fusion Without Step 2&3* represents the baseline in which we use gpt-4o-
 1225 mini² to directly fuse two corpora via randomly pairing samples from the low-quality set,
 1226 bypassing both our clustering step (Step 2) and neural-symbolic fusion step (Step 3);

1227 20. *Direct Corpora Fusion Without Step 3* represents the baseline in which we use gpt-4o-
 1228 mini² to directly fuse two corpora via randomly pairing samples from the representative
 1229 low-quality set, bypassing our neural-symbolic fusion step (Step 3) only.

1233 D.1.4 TRAINING SETUP

1234 In our experiments, we fine-tune three LLMs, including Mistral-7B-v0.3 (Jiang et al., 2023),
 1235 LLaMA-3.1-8B (Grattafiori et al., 2024), and Qwen2.5-7B (Team, 2024) using eight NVIDIA
 1236 H20 or A800 GPUs. Following the experimental setup of Wang et al. (2023a), we apply
 1237 LoRA (Hu et al., 2022) with a rank of 64 and a scaling factor of 16 to all experiments. The
 1238 training configuration includes a batch size of 128, a learning rate of 1e-4, 5 training epochs,
 1239 a dropout rate of 0.1, and a warm-up ratio of 0.03. The maximum input length is set to
 1240 2048 tokens for all models by default.

1241 D.2 MORE EMPIRICAL OBSERVATIONS

1242 1243 **Further evidence supporting the effectiveness of ENTP.** As shown in Table 6, even
 1244 when paired with the Qwen2.5-7B model, our **ENTP** consistently outperforms all 13 base-
 1245 lines, including the Full Set setting, on average, further demonstrating its ability to overcome
 1246 the limitations of relying solely on raw high-quality data.

1248
1249 Table 6: **Performance comparison on the OpenLLM leaderboard.** The default data
1250 size is 54888. The fine-tuning base model is Qwen2.5-7B. Best and second-best results on
1251 average are highlighted in **bold red** and **bold black**, respectively. Performance changes of
1252 **ENTP** with respect to the LQ Set across all benchmarks are also reported.

Dataset	MMLU (EM \uparrow)	GSM8K (EM \uparrow)	BBH (EM \uparrow)	TydiQA (1-Shot F1 \uparrow)	Average \uparrow
Base Model: Qwen2.5-7B					
Vanilla Base Model	71.8	83.5	58.1	25.3	59.7
LQ Set (123786)	69.3	77.5	58.6	55.4	65.2
HQ Set (131247)	72.2	79.0	60.4	60.2	68.0
Full Set (300932)	72.0	78.0	59.8	65.2	68.8
Completion Length	67.2	75.5	57.9	62.7	65.8
KNN ₁₀	70.4	77.5	57.7	63.2	67.2
Perplexity	70.1	76.0	52.9	63.7	65.7
Random Selection	69.3	75.5	57.3	65.4	66.9
AlpagoGesus (Random)	65.8	74.0	58.1	57.6	63.9
IFD	63.9	68.5	53.2	52.1	59.4
Superfiltering	68.3	76.0	55.0	59.4	64.7
DEITA	68.6	76.0	59.4	59.5	65.9
DEITA (Our Curated Score)	68.0	73.0	57.6	62.6	65.3
RDS+	69.1	78.5	55.4	55.1	64.5
RDS+ (Best)	69.1	78.5	57.9	55.1	65.2
DS ²	67.2	79.5	58.1	61.6	66.6
ENTP	69.2 (-0.1)	79.5 (+2.0)	59.1 (+0.5)	69.3 (+13.9)	69.3 (+4.1)

1273 D.2.1 GPU RUNTIME & API COST & VALIDATION SET REQUIREMENT COMPARISON

1274 Regarding the cost analysis, Table 7 presents a comparison of GPU runtime, API cost, and
1275 validation set requirements across several baselines. In addition, we report the average API
1276 cost per resultant corpus.

1279 Table 7: Comparison of GPU Runtime, API Cost, and Validation Set Requirement Across
1280 Baselines

	LESS (2024)	MathFusion (2025)	Evol-Instruct (2024b)	ENTP
Average API Cost (in USD)	0	0.004	0.003	0.005
GPU Runtime (in GPU-hours)	152.5	17	17	17
Validation Set	Required	Not Required	Not Required	Not Required

1286 E MORE ABLATION STUDY

1288 E.1 SUPPLEMENTARY ABLATION SETUP

1289 We introduce the Vanilla Base Model, LQ Set, HQ Set and Full Set as control groups. More
1290 experimental-group configuration for different research objectives are provided as follows:

1291

- 1292 To gain deeper insight into the effects of **ENTP**’s two fusion mechanisms, Intra-Cluster and Inter-Cluster fusion, on LLM performance across four downstream tasks (MMLU (Hendrycks et al., 2020), BBH (Suzgun et al., 2022), GSM8K (Cobbe et al., 2021), and TyDiQA (Clark et al., 2020)), we independently sample varying proportions from each fusion-generated merged corpora to create experimental groups. These settings are denoted as “Intra-x%” and “Inter-x%”, where x% indicates the proportion of data selected from the corresponding fusion-produced dataset;
- 1293 To further investigate the impact of theses two fusion mechanisms on the HQ Set, we
1294 configured three experimental groups: (1) *HQ+Intra-x%* (adding x% samples from Intra-Cluster Fusion), (2) *HQ+Inter-x%* (adding x% from Inter-Cluster Fusion), and (3)

1302 HQ+**ENTP**-x% (adding x% of both fusion types). In all three cases, the entire HQ
 1303 Set is included. We then evaluate these configurations across five downstream tasks:
 1304 MMLU (Hendrycks et al., 2020), Truthfulqa (Lin et al., 2021), BBH (Suzgun et al.,
 1305 2022), GSM8K (Cobbe et al., 2021), and TyDiQA (Clark et al., 2020)

1306
 1307 **E.2 MORE EMPIRICAL OBSERVATIONS**
 1308

1309 **Additional Observation 1: Empirical scaling laws consistently hold across all**
 1310 **ENTP** -generated datasets. As shown in Table 8-13, across all configurations, whether
 1311 using only the Intra-Cluster Fusion, only the Inter-Cluster Fusion, both fusion types, and
 1312 irrespective of combining with the full HQ Set, increasing the volume of **ENTP** -generated
 1313 data consistently improves average model performance, aligning with established empirical
 1314 neural scaling laws.

1315 **Additional Observation 2: Low-Quality does contribute to the average perfor-**
 1316 **mance.** According to the results from Table 13, across all three testing-model settings,
 1317 the Full Set, which comprises the entire HQ Set and the LQ set, yields higher average per-
 1318 formance than the HQ Set alone: 50.6 (+0.3), 57.7 (+1.7), and 63.3 (+1.3), respectively.
 1319 These experimental results also align with the predictions of the scaling laws (Kaplan et al.,
 1320 2020), indicating that the prevailing data-selection paradigm’s claim, that a small subset
 1321 of data can outperform the full dataset, has significant limitations. Similarly, Pang et al.
 1322 (2025) demonstrated that fine-tuning LLMs on a curated subset can outperform using the
 1323 full dataset. However, their curated subset does not entirely consist of the highest-scoring
 1324 data points. This indicates that: (1) so-called low-quality data still contains substantial in-
 1325 formational value; and (2) relying solely on native high-quality data may be insufficient for
 1326 significantly enhancing LLM performance on downstream tasks. Therefore, it is inadvisable
 1327 to discard low-quality data outright.

1328 **Additional Observation 3: Using just portions of the ENTP -generated data,**
 1329 **whether from Intra-Cluster or Inter-Cluster Fusion, consistently outperforms**
 1330 **the HQ Set alone, and in some cases, even surpasses the Full Set configuration**
 1331 **on average.** As shown in Table 8, when Qwen2.5-7B or Mistral-7B-v0.3 serves as the base
 1332 model, using just 60% of Intra-Cluster Fusion-generated samples consistently surpasses all
 1333 baselines from the control group. In the case of LLaMA-3.1-8B, the same subset achieves the
 1334 second-best average performance, nearly matching the full-set result, and still outperforming
 1335 the HQ Set. Similarly, according to the Table 9, when using the Mistral-7B-v0.3 model, even
 1336 a dataset comprised of only 60% Inter-Cluster Fusion-generated samples achieves an aver-
 1337 age performance of 53.1, on par with the best-performing baseline from the control group.
 1338 Moreover, increasing this proportion to 100% raises average performance to 54.6, thereby
 1339 attaining state-of-the-art results across both the experimental and control groups. There-
 1340 fore, all of our experimental results demonstrate that our proposed paradigm consistently
 1341 exceeds the performance ceiling of the traditional paradigm trained solely on high-quality
 1342 data, effectively serving as a viable alternative.

1343 **Additional Observation 4: Advanced LLM benefits more from fusion data built**
 1344 **on heterogeneous corpora.** As shown in Table 11-12, the more advanced LLM, Qwen2.5-
 1345 7B, benefits the most from the HQ+Inter setup, in comparison with the HQ+Intra config-
 1346 uration. This is because Inter-Cluster Fusion involves merging corpus pairs with lower
 1347 similarity, which likely introduces rarer and more diverse information into the merged cor-
 1348 pus, thereby enhancing the expressiveness of individual samples. Additionally, advanced
 1349 LLMs are pre-trained on larger, more diverse, and more up-to-date corpora, leading to a
 1350 more balanced data distribution. This enables them to better interpret and utilize the rare
 1351 or novel information produced by heterogeneous corpus fusion, a conclusion also supported
 1352 by the FuseRL framework (Zhong et al., 2025).

1353 **F CURATED OVERALL SCORE DISTRIBUTION COMPARISON**
 1354

1355 To visually highlight the quality gap between the original low-quality corpora set and the
 1356 **ENTP**-generated merged corpora set, we reuse the curated overall score (higher-is-better)
 1357 employed in Step 1 to distinguish high- from low-quality samples; the resulting distributions
 1358 for both set are shown in Figure 4.

1356
 1357 **Table 8: Performance comparison among the Vanilla Base Model, LQ Set, HQ**
 1358 **Set, Full Set, and various proportions of the ENTP -generated dataset from**
 1359 **Intra-Cluster Fusion.** The fine-tuning base models are Qwen2.5-7B, Mistral-7B-v0.3,
 1360 and Llama-3.1-8B. Best and second-best results on average are highlighted in **bold red** and
 1361 **bold black**, respectively. The average performance changes of **ENTP**, relative to the LQ
 1362 Set, are also reported.

Dataset	MMLU (EM \uparrow)	GSM8K (EM \uparrow)	BBH (EM \uparrow)	TydiQA (1-Shot F1 \uparrow)	Average \uparrow
Base Model: Qwen2.5-7B					
Vanilla Base Model	71.8	83.5	58.1	25.3	59.7
LQ Set (123786)	69.3	77.5	58.6	55.4	65.2
HQ Set (131247)	72.2	79.0	60.4	60.2	68.0
Full Set (300932)	72.0	78.0	59.8	65.2	68.8
Intra-20%	71.2	86.5	58.1	67.8	70.9 (+5.7)
Intra-40%	71.0	84.5	59.4	62.4	69.3 (+4.1)
Intra-60%	70.6	81.5	61.4	69.9	70.9 (+5.7)
Base Model: Mistral-7B-v0.3					
Vanilla Base Model	59.7	38.0	47.6	54.8	50.0
LQ Set (123786)	47.5	43.5	52.7	41.1	46.3
HQ Set (131247)	58.4	46.0	55.5	52.5	53.1
Full Set (300932)	60.0	43.5	52.5	53.4	52.4
Intra-20%	59.6	40.0	52.9	56.1	52.2 (+5.9)
Intra-40%	59.9	39.5	54.5	55.1	52.3 (+6.0)
Intra-60%	60.1	43.5	53.5	57.3	53.6 (+7.3)
Base Model: Llama-3.1-8B					
Vanilla Base Model	64.1	58.0	55.3	22.1	49.9
LQ Set (123786)	52.7	57.0	61.0	44.7	53.9
HQ Set (131247)	62.3	57.5	59.3	58.9	59.5
Full Set (300932)	63.5	61.0	59.1	62.8	61.6
Intra-20%	63.9	54.5	57.5	52.0	57.0 (+3.1)
Intra-40%	64.0	59.5	60.6	53.9	59.5 (+5.6)
Intra-60%	63.6	56.5	59.6	60.1	60.0 (+6.1)

1387
 1388 For each corpora set, we report the frequency of each score level (from 0 to 5) and compute
 1389 the corresponding average. As illustrated in the Figure 4, the average score of the merged
 1390 corpora obtained after applying our Step 2 and Step 3 (3.13) is two times larger than the
 1391 average score of the corpora (1.51) without applying these steps.

1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409

Table 9: **Performance comparison among the Vanilla Base Model, LQ Set, HQ Set, Full Set, and various proportions of the ENTP -generated dataset from Inter-Cluster Fusion.** The fine-tuning base models are Mistral-7B-v0.3 and Llama-3.1-8B. Best and second-best results on average are highlighted in **bold red** and **bold black**, respectively. The average performance changes of ENTP, relative to the LQ Set, are also reported.

Dataset	MMLU (EM \uparrow)	GSM8K (EM \uparrow)	BBH (EM \uparrow)	TydiQA (1-Shot F1 \uparrow)	Average \uparrow
Base Model: Mistral-7B-v0.3					
Vanilla Base Model	59.7	38.0	47.6	54.8	50.0
LQ Set (123786)	47.5	43.5	52.7	41.1	46.3
HQ Set (131247)	58.4	46.0	55.5	52.5	53.1
Full Set (300932)	60.0	43.5	52.5	53.4	52.4
Inter-20%	59.4	37.0	54.3	57.5	52.1 (+5.8)
Inter-40%	59.1	42.5	51.8	57.1	52.6 (+6.3)
Inter-60%	58.9	45.0	52.1	56.3	53.1 (+6.8)
Inter-80%	58.9	47.0	52.2	56.7	53.7 (+7.4)
Inter-100%	58.0	49.0	53.1	58.1	54.6 (+8.3)
Base Model: Llama-3.1-8B					
Vanilla Base Model	64.1	58.0	55.3	22.1	49.9
LQ Set (123786)	52.7	57.0	61.0	44.7	53.9
HQ Set (131247)	62.3	57.5	59.3	58.9	59.5
Full Set (300932)	63.5	61.0	59.1	62.8	61.6
Inter-20%	63.6	55.0	57.7	53.2	57.4 (+3.5)
Inter-40%	62.1	58.5	58.6	53.4	58.2 (+4.3)
Inter-60%	62.3	55.5	57.8	55.9	57.9 (+4.0)
Inter-80%	62.3	55.5	58.4	55.8	58.0 (+4.1)
Inter-100%	61.9	60.5	59.9	54.0	59.1 (+5.2)

Table 10: **Performance comparison among the Vanilla Base Model, LQ Set, HQ Set, Full Set, and datasets mixing the entire HQ Set with various proportions of the ENTP -generated Inter-Cluster Fusion samples.** The fine-tuning base model is Llama-3.1-8B. Best and second-best results on average are highlighted in **bold red** and **bold black**, respectively. The average performance changes of ENTP, relative to the HQ Set, are also reported.

Dataset	MMLU (EM \uparrow)	TruthfulQA (EM \uparrow)	GSM8K (EM \uparrow)	BBH (EM \uparrow)	TydiQA (1-Shot F1 \uparrow)	Average \uparrow
Base Model: Llama-3.1-8B						
Vanilla Base Model	64.1	32.9	58.0	55.3	22.1	46.5
LQ Set (123786)	52.7	44.3	57.0	61.0	43.9	51.8
HQ Set (131247)	62.3	41.8	57.5	59.3	58.9	56.0
Full Set (300932)	63.5	42.0	61.0	59.1	62.8	57.7
HQ+Inter-40%	62.0	45.3	58.0	59.9	55.0	56.0 (+0.0)
HQ+Inter-60%	63.3	44.6	61.0	62.4	57.5	57.8 (+1.8)
HQ+Inter-100%	62.5	44.6	65.0	60.6	57.8	58.1 (+2.1)

1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471 **Table 11: Performance comparison among the Vanilla Base Model, LQ Set, HQ**
 1472 **Set, Full Set, and datasets mixing the entire HQ Set with various proportions**
 1473 **of the ENTP -generated Intra-Cluster Fusion samples.** The fine-tuning base model
 1474 is Qwen2.5-7B. Best and second-best results on average are highlighted in **bold red** and
 1475 **bold black**, respectively.

Dataset	MMLU (EM ↑)	TruthfulQA (EM ↑)	GSM8K (EM ↑)	BBH (EM ↑)	TydiQA (1-Shot F1 ↑)	Average ↑
Base Model: Qwen2.5-7B						
Vanilla Base Model	71.8	11.1	83.5	58.1	25.3	50.0
LQ Set (123786)	69.3	43.5	77.5	58.6	55.4	60.9
HQ Set (131247)	72.2	38.2	79.0	60.4	60.2	62.0
Full Set (300932)	72.0	41.4	78.0	59.8	65.2	63.3
HQ+Intra-40%	72.0	36.3	72.5	58.7	63.6	60.6
HQ+Intra-60%	72.0	36.5	80.0	58.1	64.1	62.1
HQ+Intra-100%	71.0	45.8	76.5	59.4	64.7	63.5

1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498 **Table 12: Performance comparison among the Vanilla Base Model, LQ Set, HQ**
 1499 **Set, Full Set, and datasets mixing the entire HQ Set with various proportions**
 1500 **of the ENTP -generated Inter-Cluster Fusion samples.** The fine-tuning base model
 1501 is Qwen2.5-7B. Best and second-best results on average are highlighted in **bold red** and
 1502 **bold black**, respectively.

Dataset	MMLU (EM ↑)	TruthfulQA (EM ↑)	GSM8K (EM ↑)	BBH (EM ↑)	TydiQA (1-Shot F1 ↑)	Average ↑
Base Model: Qwen2.5-7B						
Vanilla Base Model	71.8	11.1	83.5	58.1	25.3	50.0
LQ Set (123786)	69.3	43.5	77.5	58.6	55.4	60.9
HQ Set (131247)	72.2	38.2	79.0	60.4	60.2	62.0
Full Set (300932)	72.0	41.4	78.0	59.8	65.2	63.3
HQ+Inter-20%	71.6	37.3	73.0	59.5	64.0	61.1
HQ+Inter-40%	71.7	42.0	75.0	57.0	61.7	61.5
HQ+Inter-60%	71.6	44.8	74.0	57.1	63.1	62.1
HQ+Inter-80%	71.4	41.9	81.5	59.7	64.5	63.8

1513
 1514
 1515
 1516
 1517

1518

1519 Table 13: **Performance comparison among the Vanilla Base Model, LQ Set, HQ**
 1520 **Set, Full Set, and datasets mixing the entire HQ Set with various proportions of**
 1521 **the ENTP-generated samples from both Inter-Cluster and Intra-Cluster Fusion.**
 1522 The fine-tuning base models are Mistral-7B-v0.3, Llama-3.1-8B, and Qwen2.5-7B. Best and
 1523 second-best results on average are highlighted in **bold red** and **bold black**, respectively.

Dataset	MMLU (EM \uparrow)	TruthfulQA (EM \uparrow)	GSM8K (EM \uparrow)	BBH (EM \uparrow)	TydiQA (1-Shot F1 \uparrow)	Average \uparrow
Base Model: Mistral-7B-v0.3						
Vanilla Base Model	59.7	30.4	38.0	47.6	54.8	46.1
LQ Set (123786)	47.5	43.7	43.5	52.7	41.1	45.7
HQ Set (131247)	58.4	39.2	46.0	55.5	52.5	50.3
Full Set (300932)	60.0	43.5	43.5	52.5	53.4	50.6
HQ+ENTP-40%	57.8	42.4	45.0	54.4	55.2	51.0
HQ+ENTP-60%	58.2	45.8	45.0	52.4	54.5	51.2
HQ+ENTP-100%	57.2	47.2	46.0	52.2	53.4	51.2
Base Model: Llama-3.1-8B						
Vanilla Base Model	64.1	32.9	58.0	55.3	22.1	46.5
LQ Set (123786)	52.7	44.3	57.0	61.0	43.9	51.8
HQ Set (131247)	62.3	41.8	57.5	59.3	58.9	56.0
Full Set (300932)	63.5	42.0	61.0	59.1	62.8	57.7
HQ+ENTP-40%	62.5	44.6	59.0	58.7	57.4	56.4
HQ+ENTP-60%	62.7	43.0	59.5	61.3	61.5	57.6
HQ+ENTP-100%	62.7	47.2	61.5	61.1	56.1	57.7
Base Model: Qwen2.5-7B						
Vanilla Base Model	71.8	11.1	83.5	58.1	25.3	50.0
LQ Set (123786)	69.3	43.5	77.5	58.6	55.4	60.9
HQ Set (131247)	72.2	38.2	79.0	60.4	60.2	62.0
Full Set (300932)	72.0	41.4	78.0	59.8	65.2	63.3
HQ+ENTP-40%	72.1	44.3	75.5	59.4	60.7	62.4
HQ+ENTP-60%	72.2	43.0	74.0	60.9	59.6	61.9
HQ+ENTP-100%	71.7	45.1	76.0	59.0	63.4	63.1

1548

1549

1550

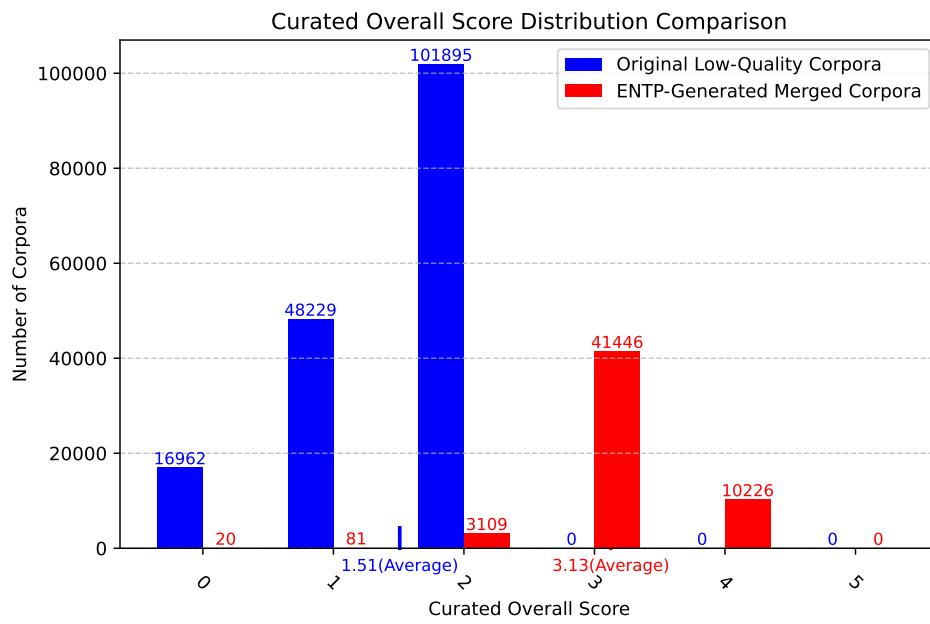


Figure 4: Curated overall score distributions for the low-quality corpora set (obtained from Step 1) and for ENTP-generated merged corpora set (obtained from Step 3)

1572 G CONCRETE END-TO-END EXAMPLE
15731574 We present a concrete end-to-end example that systematically demonstrates the operational
1575 mechanism of the neural-symbolic fusion step (Step 3). The example is described step-by-
1576 step and includes all intermediate outputs to facilitate reproducibility and interpretability.
15771578 We begin by randomly selecting two corpora from the representative low-quality set which
1579 is obtained from the clustering step (Step 2), as the input:
1580

```

1580 Raw Corpus A:
1581 ### User
1582 input question: Write a sentence not in English.
1583 output answer: от того, что появляется белая лилия, которая цветет с
1584 → июня по сентябрь, который распространяется на соленый воздух
1585 → нежный аромат.
1586 input question: Write a sentence not in English.
1587 output answer: При других заболеваниях лечение может идти до 1 года
1588 → и далее. Биокоррекция Васильева может осуществляться как в
1589 → клинических условиях, так и амбулаторно.
1590 input question: Write a sentence not in English.
1591 output answer: Насколько существенно ее воздействие на важные
1592 → бизнес-процессы?
1593 input question: Write a sentence not in English.
1594 output answer:
1595 ### Assistant
1596 Ваш входной идентификационный код будет также Вашим кодовым именем
1597 → при участии в конкурсе. Информация про введение данных будет
1598 → отослана Вам по электронной почте FTP с адресом и паролем.
1599
1600 Raw Corpus B:
1601 ### User
1602 input question: Write a sentence not in English.
1603 output answer: Отель Fayal Resort Hotel будет показан на карте, если
1604 → Вы включите JavaScript.
1605
1606 Q: Translate "How to eat: Just drink it." to Russian?
1607 Yes: Как употреблять: просто выпейте!
1608
1609 [Q]: За 72 года своего существования "Башнефть" сформировалась как
1610 → мощный многопрофильный нефтегазодобывающий комплекс.
1611 Translate this to English?
1612 [A]: Within 72 years of its existence, Bashneft has become powerful
1613 → multi-structural oil and gas extracting enterprise.
1614
1615 Question:
1616 Для Профессионального комплекта существуют корпоративные решения с
1617 → возможностью определять состав дополнительных специализированных
1618 → словарей.
1619 Could you please translate this to English?
1620 Answer:
1621 For the Professional package there exist enterprise solutions with
1622 → the possibility to determine the composition of special
1623 → dictionaries.
1624
1625

```

```

1626 test: Балахтинский район
1627 English?
1628
1629 translation: Balakhtinsky District
1630
1631
1632 input question: Write a sentence not in English.
1633 output answer:
1634 ### Assistant
1635 Лангоун, Майкл
1636

```

1637 Step 1: Domain Analysis (Prompt template is shown in Figure 10)

```

1638 LLM Response:
1639 {
1640     "corpus_A_domain": "Language Translation",
1641     "corpus_B_domain": "Language Translation",
1642     "corpus_A_key_terms_list": [
1643         "sentence construction",
1644         "foreign language",
1645         "biocorrection",
1646         "business processes"
1647     ],
1648     "corpus_B_key_terms_list": [
1649         "translation",
1650         "enterprise solutions",
1651         "specialized dictionaries",
1652         "multilingual"
1653     ],
1654     "matching_rules_derived_from_corpus_A": "Questions from the '###"
1655     ↪ User' section often ask for non-English sentences or
1656     ↪ contexts, and answers in the '### Assistant' section provide
1657     ↪ translations or related foreign phrases.",
1658     "matching_rules_derived_from_corpus_B": "The '### User'
1659     ↪ questions request either translations or sentences in
1660     ↪ non-English, while the '### Assistant' responses deliver
1661     ↪ translations or contextual explanations in both English and
1662     ↪ Russian.",
1663     "relationship": "related-domain"
1664 }

```

1664 Once the relationship is identified, the corresponding fusion strategy is selected (all strategies
1665 are provided in Figure 11). The MCG template (Figure 13) is then applied to generate the
1666 initial merged corpus.

1667 Step 2 & 3: Strategy Selection & Merged Corpus Generation

```

1668 LLM Response:
1669 {
1670     "overall_response": [
1671         {
1672             "domain_type": "related-domain",
1673             "applied_strategy": "conceptual_analogy",
1674
1675
1676
1677
1678
1679

```

```

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
"corpus_fusion_variant": "### User\nIn the realm of
    ↵ Language Translation, both corpora emphasize the
    ↵ importance of constructing sentences in foreign
    ↵ languages. For instance, corpus A provides examples
    ↵ of non-English sentences, while corpus B focuses on
    ↵ translating these sentences into English. This
    ↵ highlights the interconnectedness of language
    ↵ processing and multilingual communication. How can
    ↵ we further enhance the understanding of cultural
    ↵ linguistics in translation?\n\n### Assistant\nWe can
    ↵ enhance the understanding of cultural linguistics in
    ↵ translation by incorporating cultural context into
    ↵ the translation process, ensuring that idiomatic
    ↵ expressions and cultural references are accurately
    ↵ conveyed."
},
{
    "domain_type": "related-domain",
    "applied_strategy": "process_mapping",
    "corpus_fusion_variant": "### User\nWhen considering
    ↵ enterprise solutions for Language Translation,
    ↵ corpus B discusses specialized dictionaries that can
    ↵ aid in translation tasks. Meanwhile, corpus A
    ↵ mentions biocorrection and its relevance to business
    ↵ processes. This suggests a need for a structured
    ↵ approach to integrating these specialized tools into
    ↵ translation workflows. What are the best practices
    ↵ for implementing such solutions in a multilingual
    ↵ environment?\n\n### Assistant\nBest practices for
    ↵ implementing specialized tools in a multilingual
    ↵ environment include conducting thorough needs
    ↵ assessments, training staff on the use of these
    ↵ tools, and continuously evaluating the effectiveness
    ↵ of the solutions in improving translation accuracy."
},
{
    "domain_type": "related-domain",
    "applied_strategy": "term_bridging",
    "corpus_fusion_variant": "### User\nBoth corpora
    ↵ highlight key terms such as 'sentence construction'
    ↵ from corpus A and 'translation' from corpus B. This
    ↵ overlap indicates a shared focus on the mechanics of
    ↵ language. Additionally, terms like 'foreign
    ↵ language' and 'multilingual' suggest a broader
    ↵ context of language processing. How can we leverage
    ↵ these shared terms to create a more cohesive
    ↵ language translation framework?\n\n### Assistant\nWe
    ↵ can leverage these shared terms by developing a
    ↵ unified glossary that defines each term in the
    ↵ context of both corpora, facilitating better
    ↵ communication and understanding among language
    ↵ professionals."
}
]
}

```

Since we provide three fusion strategies for each relationship, three different merged corpora will be generated. However, for clarity of presentation, we illustrate the process using only

1734 the initial merged corpus produced by the ‘term_bridge’ strategy. The following step is to
 1735 obtain the **Symbolic Loss** for this merged corpus.
 1736

1737 Step 4: Information Completeness Detection (Prompt template is shown in Figure 14.)

1738 **LLM Response:**
 1739 {
 1740 "technical_report": {
 1741 "term_coverage": {
 1742 "included": {
 1743 "corpus_A_key_terms_list": [
 1744 "sentence construction",
 1745 "foreign language",
 1746 "biocorrection",
 1747 "business processes"
 1748],
 1749 "corpus_B_key_terms_list": [
 1750 "translation",
 1751 "enterprise solutions",
 1752 "specialized dictionaries",
 1753 "multilingual"
 1754]
 1755 },
 1756 "missing": {
 1757 "corpus_A_key_terms_list": [],
 1758 "corpus_B_key_terms_list": []
 1759 }
 1760 },
 1761 "question_analysis": {
 1762 "question_exists": {
 1763 "question_type": "open-ended",
 1764 "needs_extra_knowledge_or_background_supplementation": {
 1765 "context_contain": "The '### User' section discusses
 1766 ↳ the overlap of key terms and asks how to
 1767 ↳ leverage them for a cohesive framework.",
 1768 "context_missing": "The '### User' section lacks
 1769 ↳ specific examples or details on what aspects of
 1770 ↳ the shared terms should be leveraged, which
 1771 ↳ could help in formulating a more precise
 1772 ↳ answer."
 1773 }
 1774 },
 1775 "answer_quality": {
 1776 "if_needs_to_re_answer": {
 1777 "explanation": "The answer provided in the '###
 1778 ↳ Assistant' section does not directly address the
 1779 ↳ last question from the '### User' section, which
 1780 ↳ asks how to leverage shared terms to create a
 1781 ↳ cohesive language translation framework. The
 1782 ↳ response is more about developing a glossary rather
 1783 ↳ than providing a cohesive framework."
 1784 }
 1785 }
 1786 }
 1787 }
 1788 }

1785 According to the resultant symbolic loss, the current merged corpus has **missing necessary**
 1786 **context in the ‘### User’ section**, and the **‘### Assistant’ section does not**
 1787 **provide a direct and clear answer** to the question from ‘### User’ section. Thus,

1788 the initial prompt template for Merged Corpus Generation (Figure 13) is updated to the
 1789 version shown in Figure 24 to generate the enhanced merged corpus.
 1790

1791 Step 5: Enhanced Corpus Generation (Prompt template is shown in Figure 24.)

1792 **LLM Response:**

1793 {

1794 "enhanced_corpus": "### User\nBoth corpora highlight key terms
 1795 ↪ such as 'sentence construction' from corpus A and
 1796 ↪ 'translation' from corpus B. This overlap indicates a shared
 1797 ↪ focus on the mechanics of language. Additionally, terms like
 1798 ↪ 'foreign language' and 'multilingual' suggest a broader
 1799 ↪ context of language processing. How can we leverage these
 1800 ↪ shared terms, particularly 'sentence construction' and
 1801 ↪ 'translation', to create a more cohesive language
 1802 ↪ translation framework? For instance, what specific
 1803 ↪ strategies can we implement that utilize 'business
 1804 ↪ processes' and 'specialized dictionaries' to enhance our
 1805 ↪ approach to multilingual translation?\n\n### Assistant\nWe
 1806 ↪ can leverage these shared terms by developing a unified
 1807 ↪ glossary that defines each term in the context of both
 1808 ↪ corpora, facilitating better communication and understanding
 1809 ↪ among language professionals. In addition, we should
 1810 ↪ consider implementing strategies that integrate 'business
 1811 ↪ processes' with 'sentence construction' techniques to
 1812 ↪ streamline translation workflows. Utilizing 'specialized
 1813 ↪ dictionaries' can also enhance accuracy in translations,
 1814 ↪ particularly in a multilingual context. By aligning these
 1815 ↪ elements, we can create a cohesive language translation
 1816 ↪ framework that not only addresses the mechanics of language
 1817 ↪ but also improves the overall efficiency and effectiveness
 1818 ↪ of translation practices."
 1819 }

1820 Again, the following step is to obtain the **Symbolic Loss** for the resultant enhanced merged
 1821 corpus from the last step.

1822 Step 4: Information Completeness Detection (ICD) For Enhanced Corpus (Prompt template
 1823 has been shown in Figure 14.)

1824 **LLM Response:**

1825 {

1826 "technical_report": {
 1827 "term_coverage": {
 1828 "included": {
 1829 "corpus_A_key_terms_list": [
 1830 "biocorrection",
 1831 "business processes",
 1832 "foreign language"
 1833],
 1834 "corpus_B_key_terms_list": [
 1835 "translation",
 1836 "enterprise solutions",
 1837 "specialized dictionaries",
 1838 "multilingual"
 1839]
 1840 },
 1841 "missing": {
 1842 "corpus_A_key_terms_list": [
 1843 "sentence construction"]

```

1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
    ],
    "corpus_B_key_terms_list": []
}
},
"question_analysis": {
    "question_exists": {
        "question_type": "open-ended",
        "needs_extra_knowledge_or_background_supplementation": "nope"
    }
},
"answer_quality": {
    "if_needs_to_re_answer": "nope"
}
}
}

```

Compared to the symbolic loss of the initial merged corpus, the current symbolic loss only reflects missing key terms from source corpus A. This indicates that the enhanced merged corpus contains clear questions and answers and provides sufficient background knowledge to address the questions. The only remaining issue is that the coverage of key terms is slightly insufficient. Nonetheless, compared to the initial merged corpus, the current version represents a significant improvement. Therefore, to address the issue of missing key terms, we update the current template to the version shown in Figure 17 to generate a better merged corpus covering a broader range of domains.

Step 5: Enhanced Corpus Generation (Prompt template is shown in Figure 17.)

LLM Response:

```

{
    "enhanced_corpus": "### User\nBoth corpora highlight key terms such
    → as 'sentence construction' from corpus A and 'translation' from
    → corpus B. This overlap indicates a shared focus on the mechanics
    → of language. Additionally, terms like 'foreign language' and
    → 'multilingual' suggest a broader context of language processing.
    → How can we leverage these shared terms, particularly 'sentence
    → construction' and 'translation', to create a more cohesive
    → language translation framework? For instance, what specific
    → strategies can we implement that utilize 'business processes'
    → and 'specialized dictionaries' to enhance our approach to
    → multilingual translation?\n\n### Assistant\nWe can leverage
    → these shared terms by developing a unified glossary that defines
    → each term in the context of both corpora, facilitating better
    → communication and understanding among language professionals. In
    → particular, the concept of 'sentence construction' is crucial as
    → it involves the mechanisms of structuring sentences effectively
    → in various languages. Additionally, we should consider
    → implementing strategies that integrate 'business processes' with
    → 'sentence construction' techniques to streamline translation
    → workflows. For example, application scenarios such as utilizing
    → 'specialized dictionaries' can enhance accuracy in translations,
    → particularly in a multilingual context. By aligning these
    → elements, we can create a cohesive language translation
    → framework that not only addresses the mechanics of language but
    → also improves the overall efficiency and effectiveness of
    → translation practices."
}

```

1896 Again, the following step is to obtain the **Symbolic Loss** for the resultant enhanced merged
 1897 corpus from the last step.
 1898

1899 Step 4: Information Completeness Detection (ICD) For Enhanced Corpus

1900 **LLM Response:**
 1901 {
 1902 "technical_report": {
 1903 "term_coverage": {
 1904 "included": {
 1905 "corpus_A_key_terms_list": [
 1906 "biocorrection",
 1907 "business processes",
 1908 "foreign language",
 1909 "sentence construction"
 1910],
 1911 "corpus_B_key_terms_list": [
 1912 "enterprise solutions",
 1913 "multilingual",
 1914 "specialized dictionaries",
 1915 "translation"
 1916]
 1917 },
 1918 "missing": {
 1919 "corpus_A_key_terms_list": [],
 1920 "corpus_B_key_terms_list": []
 1921 }
 1922 },
 1923 "question_analysis": {
 1924 "question_exists": {
 1925 "question_type": "open-ended",
 1926 "needs_extra_knowledge_or_background_supplementation":
 1927 "nope"
 1928 }
 1929 },
 1930 "answer_quality": {
 1931 "if_needs_to_re_answer": "nope"
 1932 }
 1933 }
 1934 }

1935 According to the current symbolic loss, all conditions have been satisfied: no key terms
 1936 are missing, the ‘### User’ section provides a clear question along with the necessary
 1937 background knowledge to answer it, and the ‘### Assistant’ section provides a precise
 1938 answer to the question. Thus, the **resultant merged corpus successfully completes**
 1939 **the entire Cycle 1 process**. The next step is to double-check the quality of the answer
 1940 in the ‘### Assistant’ section of the current resultant merged corpus (obtaining the
 1941 **symbolic loss** from the FAC operator).

1942 Step 6: Final Answer Check (Prompt template has been shown in Figure 12.)

1943 **LLM Response:**
 1944 {
 1945 "if_containing_direct_answer": {
 1946
 1947
 1948
 1949 }

```

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
    "direct_answer": "We can leverage these shared terms by
    → developing a unified glossary that defines each term in
    → the context of both corpora, facilitating better
    → communication and understanding among language
    → professionals. Additionally, we should consider
    → implementing strategies that integrate 'business
    → processes' with 'sentence construction' techniques to
    → streamline translation workflows. For example, utilizing
    → 'specialized dictionaries' can enhance accuracy in
    → translations, particularly in a multilingual context."
  },
  "if_containing_information_needed_to_delete": "nope"
}

```

According to the symbolic loss from the FAC operator, the current ‘### Assistant’ section contains a direct answer to the question from ‘### User’ and includes no irrelevant or redundant information, indicating that **the current merged corpus has successfully passed the entire Cycle 2 process**.

Final Merged Corpus We present the input corpora pair and their resultant merged corpus (**‘enhanced_corpus’**) below:

```

{
  "raw_corpus_A": "### User\n\ninput question: Write a sentence not
  → in English.\n\noutput answer: от того, что появляется белая
  → лилия, которая цветет с июня по сентябрь, который
  → распространяется на соленый воздух нежный аромат.\n\ninput
  → question: Write a sentence not in English.\n\noutput answer:
  → При других заболеваниях лечение может идти до 1 года и
  → далее. Биокоррекция Васильева может осуществляться как в
  → клинических условиях, так и амбулаторно.\n\ninput question:
  → Write a sentence not in English.\n\noutput answer: Насколько
  → существенно ее воздействие на важные бизнес-процессы?\n\ninput
  → question: Write a sentence not in English.\n\noutput
  → answer: \n### Assistant\n\nВаш входной идентификационный код
  → будет также Вашим кодовым именем при участии в конкурсе.
  → Информация про введение данных будет отослана Вам по
  → электронной почте FTP с адресом и паролем.",
  "raw_corpus_B": "### User\n\ninput question: Write a sentence not
  → in English.\n\noutput answer: Отель Fayal Resort Hotel будет
  → показан на карте, если Вы включите JavaScript.\n\n\n\nQ:
  → Translate \"How to eat: Just drink it.\" to Russian?\n\nYes:
  → Как употреблять: просто выпейте!\n\n\n\nQ: За 72 года своего
  → существования \"Башнефть\" сформировалась как мощный
  → многопрофильный нефтегазодобывающий комплекс.\n\n\n\nTranslate
  → this to English?\n\n[A]: Within 72 years of its existence,
  → Bashneft has become powerful multi-structural oil and gas
  → extracting enterprise.\n\n\n\nQuestion:\n\nДля Профессионального
  → комплекса существуют корпоративные решения с возможностью
  → определять состав дополнительных специализированных
  → словарей.\n\n\n\nCould you please translate this to
  → English?\n\nAnswer:\n\nFor the Professional package there exist
  → enterprise solutions with the possibility to determine the
  → composition of special dictionaries.\n\n\n\n\n\nQ: Балахтинский
  → район\n\nEnglish?\n\n\n\ntranslation: Balakhtinsky
  → District\n\n\n\ninput question: Write a sentence not in
  → English.\n\noutput answer: \n### Assistant\n\nЛангоун, Майкл",
}

```

```

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057

    "enhanced_corpus": "### User\nBoth corpora highlight key terms
    ↪ such as 'sentence construction' from corpus A and
    ↪ 'translation' from corpus B. This overlap indicates a shared
    ↪ focus on the mechanics of language. Additionally, terms like
    ↪ 'foreign language' and 'multilingual' suggest a broader
    ↪ context of language processing. How can we leverage these
    ↪ shared terms, particularly 'sentence construction' and
    ↪ 'translation', to create a more cohesive language
    ↪ translation framework? For instance, what specific
    ↪ strategies can we implement that utilize 'business
    ↪ processes' and 'specialized dictionaries' to enhance our
    ↪ approach to multilingual translation?\n\n### Assistant\nWe
    ↪ can leverage these shared terms by developing a unified
    ↪ glossary that defines each term in the context of both
    ↪ corpora, facilitating better communication and understanding
    ↪ among language professionals. In particular, the concept of
    ↪ 'sentence construction' is crucial as it involves the
    ↪ mechanisms of structuring sentences effectively in various
    ↪ languages. Additionally, we should consider implementing
    ↪ strategies that integrate 'business processes' with
    ↪ 'sentence construction' techniques to streamline translation
    ↪ workflows. For example, application scenarios such as
    ↪ utilizing 'specialized dictionaries' can enhance accuracy in
    ↪ translations, particularly in a multilingual context. By
    ↪ aligning these elements, we can create a cohesive language
    ↪ translation framework that not only addresses the mechanics
    ↪ of language but also improves the overall efficiency and
    ↪ effectiveness of translation practices."
  }

```

H MERGED CORPUS EXAMPLE

For illustrative purposes, we randomly select three merged corpora in this section: two derived from Intra-Cluster Fusion and one from Inter-Cluster Fusion.

H.1 MERGED CORPUS FROM INTRA-CLUSTER FUSION

As illustrated in Figure 7, the two raw corpora originate from the same cluster and contain a large amount of overlapping surface-level information. One focuses on locating positions with alphabetical elements in the input list, while the other counts the total number of such elements. However, both fail to explicitly convey the underlying conceptual principles. This indicates that these raw corpora have very limited capacity to guide the LLM in developing a deeper, principle-based understanding. In contrast, our merged corpus not only makes full use of the background knowledge provided by the raw corpora, but also includes concrete procedural steps in the answer section. Moreover, it explicitly references relevant technical domains and concepts, such as data structures, list traversal, and element evaluation. As a result, our merged corpus is clearly better positioned to guide the LLM toward deeper reasoning and generate outputs that are closer to ground-truth inferences.

Similarly, in another five-to-one corpora fusion example (see Figure 9), all five raw corpora focus on the same task, “Generate a 5-star review for a given software.” However, none of them provide any background information about the software itself. While the last two raw corpora contain multiple Q-A pairs, there is little to no semantic connection between the pairs, and in some cases, the answers appear unrelated to the corresponding questions. Such fragmented and context-deficient corpora may negatively impact the LLM’s reasoning capabilities. By contrast, our merged corpus not only retains key features from the original raw corpora in the question formulation but also provides substantial contextual background.

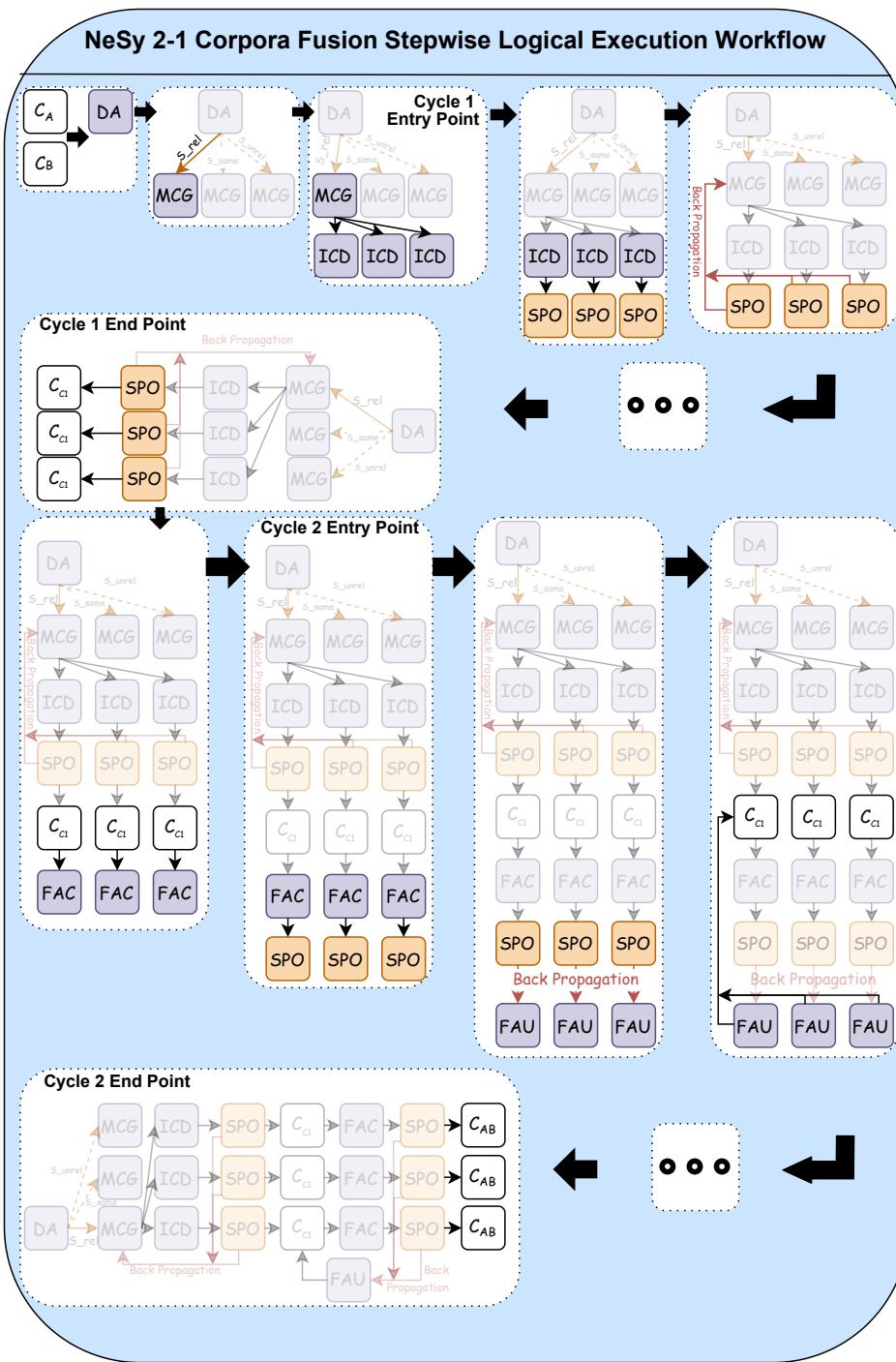
2058 Furthermore, the answer section offers clear directions and actionable steps tailored to the
 2059 question, significantly enhancing the expressive power and utility of each individual merged
 2060 corpus.
 2061

2062 H.2 MERGED CORPUS FROM INTER-CLUSTER FUSION

2063
 2064 Furthermore, as shown in Figure 8, the two raw corpora come from entirely unrelated do-
 2065 mains, one focuses on official languages and industries, while the other discusses leeks and
 2066 grass. In contrast, our merged corpus introduces a hypothetical scenario that not only incor-
 2067 porates elements from both raw corpora, such as Spanish, leeks, and grass, but also raises a
 2068 more profound question: How do cultural values and language influence agrotourism? The
 2069 answer section goes further by outlining a concrete strategic plan in response. This further
 2070 validates the capacity of our merged corpora to guide the LLM in exploring a broader range
 2071 of reasoning possibilities.
 2072

2073 I FUTURE WORK

2074 Looking ahead, we plan to address the boundary cases where fusion consistently fails, par-
 2075 ticularly for highly structured inputs such as tables, code snippets, and mathematical ex-
 2076 pressions. Our current approach sidesteps this challenge by filtering out mathematics- and
 2077 coding-related corpora, but a more general solution is needed. A promising direction is to
 2078 develop a unified fusion paradigm that can seamlessly handle both structured-structured
 2079 and structured-unstructured data pairs, enabling robust corpus integration across diverse
 2080 domains. [Additionally, we intend to adopt more up-to-date benchmarks covering a wider](#)
 2081 [range of domains and tasks as evaluation sets, in order to more thoroughly assess LLM](#)
 2082 [performance across different fields.](#)
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111



Legend

Input/ Output:
 C_A & C_B : Input Raw Corpora Pair
 C_{ci} : Resultant Corpus from Cycle 1
 C_{AB} : Optimal Merged Corpus

Connectionist Component:
DA : Domain Analysis
MCG: Merged Corpus Generation
ICD: Information Completeness Detection
FAC: Final Answer Check
FAU: Final Answer Update

Symbolism Component:
SPO: Symbolic Prompt Optimizer
S_rel: Fusion Strategy for "related-domain"
S_same: Fusion Strategy for "same-domain"
S_unrel: Fusion Strategy for "unrelated-domain"

Figure 5: Neural-Symbolic Two-To-One Corpora Fusion Stepwise Logical Execution Workflow

LLM Rating Prompt Template From DS²

<System Prompt>: As a data quality estimator, your task is to assess the quality of the data sample based on the criteria: Rarity, Complexity, and Informativeness. Please rate the sample on a scale from 1 to 10 for each criterion, and return an overall rating on a scale from 1 to 10, where a higher score indicates a higher level of quality. Ensure that the ratings are not overly concentrated around a specific score. If multiple samples have similar qualities, consider spreading the scores more evenly to reflect subtle differences.

<User Prompt>: Now, please carefully evaluate the following data sample and return the integral evaluation scores using the JSON format:

```
{"Rarity": <number, 1-10>,
 "Complexity": <number, 1-10>,
 "Informativeness": <number, 1-10>,
 "Overall rating": <number, 1-10>}
```

Instruction: [Instruction]

Input: [Input]

Response: [Response]

Figure 6: LLM-rating Prompt Template From DS² (Pang et al., 2025)

2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291

Two-to-One Corpora Fusion Example

Two Raw Corpora:

"#### User\nYou will be given a definition of a task first, then some input of the task.\nIn this task, you are given an input list. A list contains several comma-separated items written within brackets. You need to return the position of all the alphabetical elements in the given list in order. Assume the position of the 1st element to be 1. Return -1 if no alphabetical element is in the list.\n\n['2385', 'i', 'Y', 'T', '4011', 'f', 'Q']\nOutput:\n#### Assistant\n2, 3, 4, 6, 7",

"#### User\nQ: In this task, you are given an input list. A list contains several comma-separated items written within brackets. You need to return the count of all the alphabetical elements in the given list. Return 0 if no alphabetical element in the list\n['1029', '9675', '5911', '2311', '781', '1357', 'T', 'p', '2795', 'H', 'G', 'a', 'd', 'u', '6253', 'c', '2287', 'g', 'c', '2881', 'D', '3405', '7357', '7193', 'y', '6545']\nA:\n#### Assistant\n12"

Merged Corpus:

User\nIn the context of Data Structures and Algorithms, we often analyze lists to extract specific information. For instance, when given an input list like ['2385', 'i', 'Y', 'T', '4011', 'f', 'Q'], we can identify the positions of alphabetical elements. This process is similar to counting how many alphabetical elements are present in another list, such as ['1029', '9675', '5911', '2311', '781', '1357', 'T', 'p', '2795', 'H', 'G', 'a', 'd', 'u', '6253', 'c', '2287', 'g', 'c', '2881', 'D', '3405', '7357', '7193', 'y', '6545']. How do these two tasks relate in terms of their underlying principles, particularly regarding the concepts of identifying the position of alphabetical elements and counting them in a list? What are the fundamental similarities in their methodologies, and how do they utilize the input list to derive meaningful output?\n\n#### Assistant\nBoth tasks involve processing a list to extract information based on specific criteria, highlighting the importance of character analysis and element identification in list processing. Specifically, identifying the positions of alphabetical elements requires traversing the input list and checking each element against the criteria of being alphabetical, which results in a list of indices where these elements are found. In contrast, counting the alphabetical elements involves a similar traversal but focuses on tallying the total number of elements that meet the alphabetical criteria, ultimately yielding a single numerical output. Thus, both tasks share the underlying principle of list traversal and element evaluation, emphasizing the significance of systematic analysis in data structures.

Figure 7: Merged Corpus Example from Two-To-One Intra-Cluster Fusion

2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351

Two-to-One Corpora Fusion Example

Two Raw Corpora:

User
Using available sources, can you provide the current population, official language, and top 3 industries of the city that serves as the administrative and political center of Bolivia?
Assistant
The city that serves as the administrative and political center of Bolivia is La Paz.
According to the World Population Review, as of 2021, the population of La Paz is approximately 2.8 million people.
The official languages of Bolivia are Spanish, Quechua, and Aymara. However, Spanish is the most widely spoken language in La Paz.
The top three industries in La Paz are finance and banking, tourism, and manufacturing.",

User
For this chain-of-thought reasoning and answer, what was the question?
Chives grow upwards in thin green cylindrical shoots. Grass grows upwards in thin green flat shoots.
A: yes
Assistant
Q: Could chives be mistaken for grass?"

Merged Corpus:

User
Imagine a scenario where La Paz, with its 2.8 million residents, is hosting an international conference on botany. The discussions revolve around the similarities between local plants like chives and grass, which both grow upwards but in different forms—cylindrical and flat shoots, respectively. As the conference unfolds, participants explore how the official languages of Bolivia, primarily Spanish, Quechua, and Aymara, influence the understanding of these plants in cultural contexts. What would be the key takeaways from such a conference regarding the relationship between local flora and the economic sectors in La Paz, particularly in terms of how cultural perceptions and language might affect industries such as agriculture and tourism?
Assistant
Key takeaways would likely include the importance of local flora in promoting tourism, particularly through eco-tourism initiatives that highlight unique plant species. Additionally, the role of agriculture in economic stability would be emphasized, showcasing how crops like chives can be marketed both locally and internationally. Furthermore, the conference would reveal how cultural identity, shaped by the official languages of Bolivia, influences the perception and utilization of these plants in various industries, suggesting that a deeper understanding of these relationships could enhance economic opportunities in La Paz."

Figure 8: Merged Corpus Example from Two-To-One Inter-Cluster Fusion

2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411

Five-to-One Corpora Fusion Example

Five Raw Corpora:

User
Question: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.google.android.gms.
Answer:
Assistant
faster,

User
Question: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.google.android.gms.
Answer:
Assistant
Its very great,

User
Answer the following question: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package org.telegram.messenger.
Answer:
Assistant
welldone,

User
Question: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.google.android.gms.
Answer: i love it
Question:
Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.google.android.gms.
Answer: I can't think about it all the best thing to happen to you and your not going out with a smile and laugh at me for the first place in my life \"\"...
Question: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.google.android.gms.
Answer:
Assistant
NAGABABU VASANTHABA 333",

User
input: Please answer the following: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.numix.icons_circle.
output: Wow Really like it.
input: Please answer the following: Generate a 4-star review (1 being lowest and 5 being highest) about an app with package org.telegram.messenger.
output: Good
input: Please answer the following: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.google.android.gms.
output: salidos
input: Please answer the following: Generate a 5-star review (1 being lowest and 5 being highest) about an app with package com.mgaetan89.showsrage.
output:
Assistant
Nice redesign! This app works great! And the new icon is beautiful!"

Merged Corpus:

User
In the realm of mobile applications, user feedback acts as a compass guiding developers toward user satisfaction. Just as a well-crafted itinerary enhances a journey, a '5-star review' serves as a beacon of success for an app like com.mgaetan89.showsrage. Users often express their delight, saying things like, "Nice redesign! This app works great!" This feedback is crucial for potential users navigating the digital landscape. How can we further explore the metaphor of apps as companions in this journey, and what other terms can we bridge to deepen our understanding of user experiences?
Assistant
We can explore the metaphor of apps as companions by identifying additional terms like 'user-friendly experience' and 'companion apps' that enhance user satisfaction. By analyzing how these terms relate to user feedback, we can gain insights into the emotional connections users form with their apps.

Figure 9: Merged Corpus Example from Five-To-One Intra-Cluster Fusion

Domain Analysis (DA)

Role

You are a domain relationship analyzer

Task

Analyze two QA corpora and output domain relationship analysis in JSON format

Input

- corpus_A: Full QA block including #### User and #### Assistant
- corpus_B: Full QA block including #### User and #### Assistant

Output Requirements

1. Identify primary domains for both corpora using professional terminology
2. Extract as many key technical terms as possible from both corpora
3. Identify and extract the potential matching rules or patterns that align questions from the '#### User' section with corresponding answers in the '#### Assistant' section for both corpora
4. Calculate semantic similarity between corpora based on conceptual overlap (0-1 scale)
5. Propose candidate ****bridging_concepts**** that enable cross-domain integration
 - Specifically, generate potential bridging concepts that incorporate and unify the key terms from both the ****corpus_A_key_terms_list**** and the ****corpus_B_key_terms_list****
6. Refer to the **## Example Output** section below, and make sure all the key must have a valid value
7. Please ensure that ****none of your responses**** contain any information related to ****sexual explicitness, violence, drug use, threats to social order, or racial prejudice****.

Example Output

```
{  
  "corpus_A_domain": "Network Security",  
  "corpus_B_domain": "Medical Device Regulation",  
  "corpus_A_key_terms_list": ["encryption", "firewall", "VPN", ...],  
  "corpus_B_key_terms_list": ["sterilization", "FDA", "compliance", ...],  
  "matching_rules_derived_from_corpus_A":  
    "Provide a detailed description of the potential matching rules or patterns that align questions from the '#### User' section with corresponding answers in the '#### Assistant' section within **corpus_A**",  
  "matching_rules_derived_from_corpus_B":  
    "Provide a detailed description of the potential matching rules or patterns that align questions from the '#### User' section with corresponding answers in the '#### Assistant' section within **corpus_B**",  
  "relationship": "same-domain" / "related-domain" / "unrelated-domain"  
}
```

Input

- corpus_A: {corpus_A from user input}
- corpus_B: {corpus_B from user input}

Figure 10: Prompt template for the LLM-invoking Domain Analysis (DA) Operator

Symbolic Fusion Strategy Selection (SS)

```
2472
2473
2474
2475
2476 "same-domain": {{
2477     "knowledge_merging": {
2478         "Combine complementary knowledge points from corpora within the same
2479         domain to create comprehensive expertise integration",
2480
2481     "procedure_extension": {
2482         "Enhance operational workflows by integrating detailed steps from
2483         multiple sources within the same field",
2484
2485     "case_integration": {
2486         "Develop composite scenarios that unify specialized cases from different
2487         sub-domains"
2488
2489     }},
2490
2491     "related-domains": {{
2492         "conceptual_analogy": {
2493             "Establish cross-domain connections through abstract principle
2494             similarities",
2495
2496         "process_mapping": {
2497             "Adapt standard processes from one domain to another's framework
2498             while preserving core logic",
2499
2500         "term_bridging": {
2501             "Create conceptual links through shared terminology with domain-specific
2502             interpretations"
2503
2504         }},
2505
2506     }},
2507
2508     "unrelated-domains": {{
2509         "creative_metaphor": {
2510             "Construct innovative connections using figurative language and symbolic
2511             representations",
2512
2513         "hypothetical_scenario": {
2514             "Design artificial situations that force meaningful interaction between
2515             disparate domains",
2516
2517         "structural_parallelism": {
2518             "Identify and leverage formal pattern similarities in knowledge
2519             organization"
2520
2521         }},
2522
2523     }},
2524
2525
2526
2527
2528
2529
2530
2531 }}
```

Figure 11: Symbolic fusion strategy definition for Strategy Selection (SS) Operator

Final Answer Check (FAC)

Role

You are a cross-corpus fusion quality auditor.

Task

Given the merged corpus containing '#### User' and '#### Assistant' sections, assess the quality of **the last '#### Assistant' section only** (if the merged corpus contains multiple '#### Assistant' sections) following the '#### Evaluation Criteria':

Evaluation Criteria For the '#### Assistant' section:

1. **Direct Response**:

- Does the '#### Assistant' section offer a clear answer to the unanswered question from the '#### User' section?

2. **Content Relevance**:

- Does the '#### Assistant' section contain unnecessary, redundant, or unrelated information?

Input Merged Corpus:

```
<begin>
{merged_corpus}
<end>
```

Expected Output Structure:

```
 {{
  "if_containing_direct_answer":
    "nope" (indicating that the last '#### Assistant' section **does not provide an answer** to the final question posed in the last '#### User' section)
  /
  "if_containing_direct_answer": {{
    "direct_answer":
      "Extracting only the direct, complete answer from the last '#### Assistant' section, ensuring that the extracted information is both clear and coherent."
  }},
  "if_containing_information_needed_to_delete":
    "nope" (indicating that the last '#### Assistant' section provides **a perfect answer** to the final question from the last '#### User' section, **with no redundant or irrelevant information**)
  /
  "if_containing_information_needed_to_delete": {{
    "information_needs_to_remove":
      "Extracting all redundant, irrelevant, or unnecessary information from the last '#### Assistant' section that does not contribute to answering the final question in the last '#### User' section"
  }}
}}
```

Figure 12: Prompt template for the Final Answer Check (FAC) Operator

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651

Merged Corpus Generation (MCG)

Role
You are a strategy architect specializing in cross-corpus fusion, skilled in leveraging domain analysis to design effective merging strategies.

Task
Utilize the provided domain analysis and selected strategies to generate three unique corpus fusion variants. Each variant must employ a distinct strategy to merge `corpus_A` and `corpus_B`, ensuring that no strategy is repeated. The fusion for each variant should not only integrate the two corpora but also reflect the specific domain characteristics identified in the analysis.

Input
{{
 "raw_corpus_A": {raw_corpus_A},
 "raw_corpus_B": {raw_corpus_B}
}}

Domain Analysis
{{
 "corpus_A_domain": {corpus_A_domain},
 "...": {relationship_label}
}}

Selected Strategy
{strategy_dict_str}

Output Requirements
- For all three corpus fusion variants generation:
 1. For the '### User' section:
 a. The '### User' section must conclude with an unanswered question
 - This section should integrate **essential context** with **one or more related, logically connected questions**.
 - If there are multiple questions in the newly generated '### User' section, **do make sure to provide the corresponding direct answer to each question except the final one**.
 b. In the '### User' section, ensure that the background information is logically structured and coherently presented. The question posed should be directly related to the provided background, with a natural and seamless transition between the background information and the question, resulting in an overall smooth and readable flow.
 2. '### Assistant' section must provide a direct answer exclusively to the unanswered question posed in the '### User' section
 3. Preserve all key terms from both `corpus_A_key_terms_list` and `corpus_B_key_terms_list` in all three corpus fusion variants
 4. Adhere to the matching rules or patterns from both raw corpora (**matching_rules_A** and **matching_rules_B**), ensuring that the resulting matching rules or patterns explicitly encompass those from both original corpora
 5. Ensure logical coherence and semantic fluency throughout the content
 6. Utilize the **Selected Strategies** for the corpus fusion variants generation
 7. Strictly maintain:
 - The '### User' and '### Assistant' markers.
 - The formatting identical to that of the original corpora.
 8. Each corpus fusion variant **must** include at least one '### User' section and one '### Assistant' section
 - Which means the resultant corpus fusion variant may contain multiple '### User' and '### Assistant' section pairs if deemed indeed necessary.
 9. Please ensure that **none of your responses** contain any information related to **sexual explicitness, violence, drug use, threats to social order, or racial prejudice**.

Example Output Structure
{{
 "overall_response": [
 {
 "domain_type": "same-domain" / "related-domain" / "unrelated-domain"
 "applied_strategy": "creative_metaphor" / ...
 "corpus_fusion_variant":
 "..."
 "### User"
 <The content in the '### User' section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 "### Instruction"
 <This section is optional. Sometimes the raw corpora include an Instruction section. For the newly generated corpus fusion variant, you may choose whether or not to include it.>
 "### Input"
 <This section is optional. Sometimes the raw corpora include an Input section. For the newly generated corpus fusion variant, you may choose whether or not to include it.>
 "### Assistant"
 <The content in the '### Assistant' section must provide the answer to the latest question presented in the '### User' section.>
 or you can also include multiple '### User' and '### Assistant' section pairs derived from some raw corpus if you deem it indeed necessary
 "corpus_fusion_variant":
 "..."
 "### User"
 <The content in the '### User' section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 "### Assistant"
 <The content in the '### Assistant' section must provide the answer to the latest question presented in the '### User' section.>
 ...
 "### User"
 <The content in the '### User' section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 "### Assistant"
 <The content in the '### Assistant' section must provide the answer to the latest question presented in the '### User' section.>
 }
 {
 "..."
 "..."
 "..."
 "..."
 }
]
}}

Figure 13: Prompt design for the Merged Corpus Generation (MCG) Operator.

2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711

Information Completeness Detection (ICD)

Role
You are a cross-corpus fusion quality auditor.

Task
Evaluate the completeness of merged corpus content against strict quality criteria and generate a detailed supplementation report.

Evaluation Criteria:

1. **Key Term Coverage**:
 - Verify inclusion of ALL key technical terms from:
 - Corpus A Key Technical Terms List: {corpus_A_key_terms_list}
 - Corpus B Key Technical Terms List: {corpus_B_key_terms_list}
 - Categorize terms as included/missing
2. **'User' Section Quality Check**:
 - a. Unanswered Questions Presence Check:
 - Does the 'User' section end with an unanswered question?
 - b. Unanswered Question Type Analysis:
 - Open-ended: This type of question normally does not have an unique golden answer. So, it requires **no additional context** (such as: why do you like Spring?).
 - Closed-ended: This type of question normally does have an unique golden answer. So, it **requires specific context** (such as: what is the first sentence of the input paragraph? The 'input' paragraph is the specific context in this case).
 - c. Background Provision:
 - For open-ended unanswered question: Verify self-contained background
 - For closed-ended unanswered question: Does the 'User' section provide sufficient background to address the unanswered question?
 - d. Multiple Questions Handling:
 - If multiple questions are present, does 'User' section answer all except the final one explicitly?
3. **'Assistant' Section Evaluation**:
 - a. **Direct Response**:
 - Does the 'Assistant' section offer a clear answer to the unanswered question from the 'User' section?
 - b. **Content Relevance**:
 - Does the 'Assistant' section contain unnecessary, redundant, or unrelated information?
4. **Matching Rules Or Patterns Verification**:
 - Confirm that the merged corpus's mapping from the question (from 'User' section) to the answer (from 'Assistant' section) preserves the implicit patterns observed in both original corpora:
 - Matching Rules or Patterns derived from Corpus A: {matching_rules_derived_from_corpus_A}
 - Matching Rules or Patterns derived from Corpus B: {matching_rules_derived_from_corpus_B}

Input Data:

- Source Corpus A:
{begin}
{corpus_A}
{end}
- Source Corpus B:
{begin}
{corpus_B}
{end}
- Merged Corpus:
{begin}
{merged_corpus}
{end}

Output Requirements:

- Strict JSON format
- Detailed technical breakdown
- Missing elements must be explicitly listed

Evaluation Process:

1. **Phase 1: Term Inventory Audit**:
 - a. Cross-reference terms from both corpora
 - b. Generate inclusion/missing lists
2. **Phase 2: Question Analysis**:
 - a. Question existence verification
 - b. Question type classification
 - c. Background context assessment
3. **Phase 3: Answer Validation**:
 - a. Directness of answer to question
 - b. Completeness for question type

Example Output:

```
{
  "technical_report": {
    "term_coverage": {
      "included": {
        "corpus_A_key_terms_list": ["term_1", "term_3", ...],
        "corpus_B_key_terms_list": ["term_2", "term_3", ...]
      },
      "missing": {
        "corpus_A_key_terms_list": ["term_2", ...],
        "corpus_B_key_terms_list": ["term_1", ...]
      }
    },
    "question_analysis": {
      "question_exists": {
        "no_questions_found": (indicating that the 'User' section does not provide any unanswered questions)
      },
      "question_exists": {
        "question_type": "open-ended" / "close-ended",
        "needs_extra_knowledge_or_background_supplementation": [
          {
            "context_content": {
              "Provide a detailed description about what context information had been provided by the 'User' section of the current merged corpus."
            },
            "context_missing": {
              "Provide a detailed explanation of the necessary context information that is still absent from the 'User' section, which is required to answer this question."
            }
          }
        ],
        "needs_extra_knowledge_or_background_supplementation": {
          "none": (indicating that the context provided in the 'User' section is sufficient to answer the question without any additional background information)
        }
      }
    },
    "answer_quality": {
      "if_needs_to_re_answer": {
        "none": (indicating that the current answer provided in the 'Assistant' section had directly addressed the last question from the 'User' section)
      },
      "if_needs_to_re_answer": {
        "explanation": "Offer a comprehensive rationale explaining why the answer provided in the 'Assistant' section does not adequately address the question posed in the 'User' section. This explanation should detail whether the response is incomplete, only partially addresses the question, or is entirely irrelevant."
      }
    }
  }
}
```

Figure 14: Prompt design for the Information Completeness Detection (ICD) Operator.

2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771

Candidate FAU Prompt Template

Symbolic Loss:

Omission of Directed Answer -----

Role

You are an expert assistant.

Task

Below is a conversation that may contain one or more pairs of "#### User" and "#### Assistant" sections. The final "#### User" section ends with an unanswered question. Please review the conversation and provide a concise, direct answer to that unanswered question without any unnecessary filler. Your answer should be concise and directly address that unanswered question.

Input Conversation

{conversation}

Expected Output Structure

```
{}  
  "answer": "providing a direct answer to the unanswered question from the  
  '#### User' section only"  
}
```

Figure 15: Candidate FAU Prompt Template for The Case of Omission of Directed Answer

2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831

Candidate FAU Prompt Template

Symbolic Loss:

Existing Irrelevant or Redundant Information -----

Role

You are an expert assistant.

Task

You are provided with a conversation that contains one or more pairs of "#### User" and "#### Assistant" sections. The final "#### Assistant" section includes an answer that not only addresses the question from the last "#### User" section but also contains redundant or irrelevant information. Additionally, you are given feedback specifying the ****direct_answer**** (the essential part to keep) and the ****information_needs_to_remove**** (the parts to discard).

Your task is to review the conversation and the feedback, then provide a revised answer that is concise and contains only the direct answer to the question from the last "#### User" section, with all extraneous content removed.

Input Conversation

{conversation}

Feedback For The Answer From The Final '#### Assistant' Section

```
{}  
  "direct_answer": {direc_ans},  
  "information_needs_to_remove": {removed_infor}  
}
```

Expected Output Structure

```
{}  
  "answer": "provide a revised answer that is concise and contains only the direct  
  answer to the question from the last \"#### User\" section, with all  
  extraneous content removed."  
}
```

Figure 16: Candidate FAU Prompt Template for The Case of Existing Irrelevant or Redundant Information

Candidate MCG Prompt Template

Symbolic Loss:

Omission of Key Technical Terms

Role

You are a Corpus Enhancement Specialist.

Task

Intelligently expand existing merged corpus based on term coverage reports while strictly adhering to the following rules:

Input Data

1. Current Merged Corpus:

<begin>

{merged_corpus}

<end>

2. Term Coverage Report:

{

 "included_terms_list": {included_terms_list},
 "missing_terms_list": {missing_terms_list}

}

Processing Rules

1. **Content Preservation Principle**

- Preserve all unanswered questions from the '#### User' section and their corresponding answers in the '#### Assistant' section without alteration.
- Ensure that any modifications to the existing content do not exceed 20% of the original content.

2. **Term Integration Guidelines**

- **Insertion of Missing Terms**: Insert each missing term from **missing_terms_list** using one of the following methods:
 - Integrate the term naturally within an explanatory statement (e.g., "...which involves {{term}} mechanisms...").
 - Incorporate the term into practical examples (e.g., "Application scenarios such as {{term}}...").
- **Handling of Already Included Terms**: For every term listed in **included_terms_list** that is present in the current merged corpus, choose one of the following approaches:
 - Retain the original content from the **Current Merged Corpus** if it is relevant to the term—meaning the content contains either an explicit mention or an implicit reference to the concept represented by the term.
 - Rephrase the original content from the **Current Merged Corpus** that pertains to the term, ensuring that the revised version explicitly includes the term while also integrating all the missing terms.
- **Prohibition**: Do not simply list terms without integrating them into the context.

3. **Coherence Assurance**

- Ensure that all newly inserted or rephrased content is seamlessly integrated using explicit transitional phrases (e.g., "Considering", "In light of", "Particular attention should be paid to", etc.).
- Preserve the original paragraph structure to maintain the logical flow and organization of the content.

Expected Output Structure

{

 "enhanced_corpus": "#### User\n...\n#### Assistant\n...",

}

Figure 17: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms

2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951

Candidate MCG Prompt Template

Symbolic Loss:
Omission of Key Technical Terms & Directed Answer

Role
You are a Corpus Enhancement Specialist.

Task
Intelligently expand existing merged corpus based on targeted supplementation while preserving original structure

Input Data

1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

2. Supplementation Requirements:
{
 "terms_coverage": {
 "included_terms_list": {included_terms_list},
 "missing_terms_list": {missing_terms_list}
 },
 "answer_quality_feedback": {assistant_feedback}
}

Processing Rules

1. **Content Preservation Principle**
- Preserve all unanswered questions from the '#### User' section.
- Ensure that any modifications to the existing content do not exceed 20% of the original content.

2. **Term Integration Guidelines**
- **Insertion of Missing Terms**: Insert each missing term from **missing_terms_list** using one of the following methods:
a. Integrate the term naturally within an explanatory statement (e.g., "...which involves {{term}} mechanisms...").
b. Incorporate the term into practical examples (e.g., "Application scenarios such as {{term}}...").

- **Handling of Already Included Terms**: For every term listed in **included_terms_list** that is present in the current merged corpus, choose one of the following approaches:
a. Retain the original content from the **Current Merged Corpus** if it is relevant to the term—meaning the content contains either an explicit mention or an implicit reference to the concept represented by the term.
b. Rephrase the original content from the **Current Merged Corpus** that pertains to the term, ensuring that the revised version explicitly includes the term while also integrating all the missing terms.

- **Prohibition**: Do not simply list terms without integrating them into the context.

3. **Answer Regeneration Guidelines**
- Regenerate only the responses in the '#### Assistant' section.
- Ensure that the regenerated answer explicitly addresses the unanswered questions from the '#### User' section.
- Utilize the insights from "answer_quality_feedback" to inform the regeneration process, ensuring that the newly regenerated answers do not repeat the issues identified in the feedback.
- Maintain logical coherence and consistent terminology throughout the regenerated response.

4. **Coherence Assurance**
- Ensure that all newly inserted or rephrased content is seamlessly integrated using explicit transitional phrases (e.g., "Considering", "In light of", "Particular attention should be paid to", etc.).
- Preserve the original paragraph structure to maintain the logical flow and organization of the content.

Expected Output Structure

{
 "enhanced_corpus": "#### User\n...\n#### Assistant\n...",
}

Figure 18: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Directed Answer

2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011

Candidate MCG Prompt Template

Symbolic Loss:
Omission of Key Technical Terms & Essential Knowledge

Role
You are a Corpus Enhancement Specialist.

Task
Intelligently expand existing merged corpus based on targeted supplementation while preserving original structure

Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

4. Supplementation Requirements:
{
 "terms_coverage": {
 "included_terms_list": {included_terms_list},
 "missing_terms_list": {missing_terms_list}
 },
 "question-answer_matching_rules": {
 "matching_rules_derived_from_corpus_A": {matching_rules_derived_from_corpus_A},
 "matching_rules_derived_from_corpus_B": {matching_rules_derived_from_corpus_B}
 },
 "question_feedback": {
 "question_type": {question_type},
 "context_contain": {context_contain},
 "context_missing": {context_missing}
 }
}

Processing Rules

1. **Content Preservation Principle**
- Avoid regenerating the entire content of both the '#### User' and '#### Assistant' sections:
- Instead, only regenerate the unanswered questions from the '#### User' section (expanding necessary background details as needed) and update the corresponding answers in the '#### Assistant' section based on the newly generated questions.
- Ensure that the total modifications do not exceed 20% of the original content.

2. **Term Integration Guidelines**
- **Insertion of Missing Terms**: Insert each missing term from **missing_terms_list** using one of the following methods:
a. Integrate the term naturally within an explanatory statement (e.g., "...which involves {{term}} mechanisms...").
b. Incorporate the term into practical examples (e.g., "Application scenarios such as {{term}}...").
- **Handling of Already Included Terms**: For every term listed in **included_terms_list** that is present in the current merged corpus, choose one of the following approaches:
a. Retain the original content from the **Current Merged Corpus** if it is relevant to the term—meaning the content contains either an explicit mention or an implicit reference to the concept represented by the term.
b. Rephrase the original content from the **Current Merged Corpus** that pertains to the term, ensuring that the revised version explicitly includes the term while also integrating all the missing terms.
- **Prohibition**: Do not simply list terms without integrating them into the context.

3. **Unanswered Question From '#### User' Section Regeneration Guidelines**
- Enhance the original unanswered question by incorporating additional background knowledge:
- Specifically, based on the provided **context_missing**, the regenerated question must integrate both the existing context (**context_contain**) and the additional required context (**context_missing**).
- Ensure that the regenerated unanswered question retains the same question type as specified by the provided **question_type**.
- Fuse the matching rules or patterns from source corpus A (**matching_rules_derived_from_corpus_A**) and source corpus B (**matching_rules_derived_from_corpus_B**) into the regenerated unanswered question and its corresponding answer from the '#### Assistant' section.

4. **Answer Regeneration Guidelines**
- Regenerate only the responses in the '#### Assistant' section.
- Ensure that the regenerated answer explicitly addresses the unanswered questions from the '#### User' section.
- Maintain logical coherence and consistent terminology throughout the regenerated response.

5. **Coherence Assurance**
- Ensure that all newly inserted or rephrased content is seamlessly integrated using explicit transitional phrases (e.g., "Considering", "In light of", "Particular attention should be paid to", etc.).
- Preserve the original paragraph structure to maintain the logical flow and organization of the content.

Expected Output Structure
{
 "enhanced_corpus": "#### User\n...\n#### Assistant\n...",
}

Figure 19: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Essential Knowledge

Candidate MCG Prompt Template

3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071

Symbolic Loss:
Omission of Key Technical Terms &
Essential Knowledge &
Directed Answer

Role
You are a Corpus Enhancement Specialist.

Task
Intelligently expand existing merged corpus based on targeted supplementation while preserving original structure

Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

4. Supplementation Requirements:
{
 "terms_coverage": {
 "included_terms_list": {included_terms_list},
 "missing_terms_list": {missing_terms_list}
 },
 "question-answer_matching_rules": {
 "matching_rules_derived_from_corpus_A":
 {matching_rules_derived_from_corpus_A},
 "matching_rules_derived_from_corpus_B":
 {matching_rules_derived_from_corpus_B}
 },
 "question_feedback": {
 "question_type": {question_type},
 "context_contain": {context_contain},
 "context_missing": {context_missing}
 },
 "answer_quality_feedback": {assistant_feedback}
}

Processing Rules

1. **Content Preservation Principle**
 - Avoid regenerating the entire content of both the '#### User' and '#### Assistant' sections:
 - Instead, only regenerate the unanswered questions from the '#### User' section (expanding necessary background details as needed) and update the corresponding answers in the '#### Assistant' section based on the newly generated questions.
 - Ensure that the total modifications do not exceed 20% of the original content.
2. **Term Integration Guidelines**
 - **Insertion of Missing Terms**: Insert each missing term from **missing_terms_list** using one of the following methods:
 - a. Integrate the term naturally within an explanatory statement (e.g., "...which involves {{term}} mechanisms...").
 - b. Incorporate the term into practical examples (e.g., "Application scenarios such as {{term}}...").
 - **Handling of Already Included Terms**: For every term listed in **included_terms_list** that is present in the current merged corpus, choose one of the following approaches:
 - a. Retain the original content from the **Current Merged Corpus** if it is relevant to the term—meaning the content contains either an explicit mention or an implicit reference to the concept represented by the term.
 - b. Rephrase the original content from the **Current Merged Corpus** that pertains to the term, ensuring that the revised version explicitly includes the term while also integrating all the missing terms.
 - **Prohibition**: Do not simply list terms without integrating them into the context.
3. **Unanswered Question From '#### User' Section Regeneration Guidelines**
 - Enhance the original unanswered question by incorporating additional background knowledge:
 - Specifically, based on the provided **context_missing**, the regenerated question must integrate both the existing context (**context_contain**) and the additional required context (**context_missing**).
 - Ensure that the regenerated unanswered question retains the same question type as specified by the provided **question_type**.
 - Fuse the matching rules or patterns from source corpus A (**matching_rules_derived_from_corpus_A**) and source corpus B (**matching_rules_derived_from_corpus_B**) into the regenerated unanswered question and its corresponding answer from the '#### Assistant' section.
4. **Answer Regeneration Guidelines**
 - Regenerate only the responses in the '#### Assistant' section.
 - Ensure that the regenerated answer explicitly addresses the unanswered questions from the '#### User' section.
 - Utilize the insights from "answer_quality_feedback" to inform the regeneration process, ensuring that the newly regenerated answers do not repeat the issues identified in the feedback.
 - Maintain logical coherence and consistent terminology throughout the regenerated response.
5. **Coherence Assurance**
 - Ensure that all newly inserted or rephrased content is seamlessly integrated using explicit transitional phrases (e.g., "Considering", "In light of", "Particular attention should be paid to", etc.).
 - Preserve the original paragraph structure to maintain the logical flow and organization of the content.

Expected Output Structure
{
 "enhanced_corpus": "#### User\n...\n#### Assistant\n...",
}

Figure 20: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Essential Knowledge & Directed Answer

3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131

Candidate MCG Prompt Template

Symbolic Loss:
Omission of Key Technical Terms & Question Feedback

Role
 You are a strategy architect specializing in cross-corpus fusion, skilled in leveraging domain analysis to design effective merging strategies.

Task
 Utilize the provided **Domain Analysis** and **Selected Strategy** to generate one corpus fusion variant. This variant must employ the given **Selected Strategy** to merge corpus_A and corpus_B. The fusion for this variant should not only integrate the two corpora but also reflect the specific domain characteristics identified in the analysis.

Input
 {{
 "raw_corpus_A": {raw_corpus_A},
 "raw_corpus_B": {raw_corpus_B}
 }}
 }}
 ## Domain Analysis
 {{
 "corpus_A_domain": {corpus_A_domain},
 "corpus_B_domain": {corpus_B_domain},
 "corpus_A_key_terms_list": {corpus_A_key_terms_list},
 "corpus_B_key_terms_list": {corpus_B_key_terms_list},
 "matching_rules_derived_from_corpus_A":
 (matching_rules_derived_from_corpus_A),
 "matching_rules_derived_from_corpus_B":
 (matching_rules_derived_from_corpus_B),
 "relationship": {relationship}
 }}
 }}
 ## Selected Strategy
 {{
 "Domain-Specific Relationship Between Raw Corpus A and Raw Corpus B":
 (domain_type),
 "Applied Strategy":
 (applied_strategy),
 "Strategy Definition":
 (strategy_definition)
 }}
 }}
 ## Output Requirements
 - For the corpus fusion variant (enhanced_corpus) generation:
 1. For the '#### User' section:
 a. The '#### User' section must conclude with an unanswered question
 - This section should integrate **essential context** with **one or more related, logically connected questions**.
 - If there are multiple questions in the newly generated '#### User' section, **do make sure to provide the corresponding direct answer to each question except the final one**.
 b. In the '#### User' section, ensure that the background information is logically structured and coherently presented. The question posed should be directly related to the provided background, with a natural and seamless transition between the background information and the question, resulting in an overall smooth and readable flow.
 2. '#### Assistant' section must provide a **direct answer exclusively** to the unanswered question posed in the '#### User' section
 3. Preserve all key terms from both **corpus_A_key_terms_list** and **corpus_B_key_terms_list** in this corpus fusion variant
 4. Adhere to the matching rules or patterns from both raw corpora (**matching_rules_A** and **matching_rules_B**), ensuring that the resulting matching rules or patterns explicitly encompass those from both original corpora
 5. Ensure logical coherence and semantic fluency throughout the content
 6. Utilize **bridging_concepts** and the **Selected Strategy** for the corpus fusion variants generation
 7. Strictly maintain:
 - The '#### User' and '#### Assistant' markers.
 - The formatting identical to that of the original corpora.
 8. Each corpus fusion variant **must** include at least one '#### User' section and one '#### Assistant' section
 - Which means the resultant corpus fusion variant may contain multiple '#### User' and '#### Assistant' section pairs if deemed indeed necessary.

Example Output Structure
 {{
 "enhanced_corpus": "#### User
 <The content in the #### User section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 #### Instruction
 <This section is optional. Sometimes the raw corpora include an Instruction section. For the newly generated corpus fusion variant, you may choose whether or not to include it.>
 #### Input
 <This section is optional. Sometimes the raw corpora include an Input section. For the newly generated corpus fusion variant, you may choose whether or not to include it.>
 #### Assistant
 <The content in the #### Assistant section must provide the answer to the latest question presented in the #### User section.>
 or you can also include multiple '#### User' and '#### Assistant' section pairs derived from some raw corpus if you deem it indeed necessary
 "enhanced_corpus": "#### User
 <The content in the #### User section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 #### Assistant
 <The content in the #### Assistant section must provide the answer to the latest question presented in the #### User section.
 ...
 #### User
 <The content in the #### User section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 #### Assistant
 <The content in the #### Assistant section must provide the answer to the latest question presented in the #### User section.>
 }}}}

Figure 21: Candidate MCG Prompt Template for The Case of Omission of Key Technical Terms & Question Feedback

3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191

Candidate MCG Prompt Template

Symbolic Loss:
Omission of Question Feedback -----

Role
 You are a strategy architect specializing in cross-corpus fusion, skilled in leveraging domain analysis to design effective merging strategies.

Task
 Utilize the provided **Domain Analysis** and **Selected Strategy** to generate one corpus fusion variant. This variant must employ the given **Selected Strategy** to merge `corpus_A` and `corpus_B`. The fusion for this variant should not only integrate the two corpora but also reflect the specific domain characteristics identified in the analysis.

Input
 {{
 "raw_corpus_A": {raw_corpus_A},
 "raw_corpus_B": {raw_corpus_B}
 }}
 {{
 "corpus_A_domain": {corpus_A_domain},
 "corpus_B_domain": {corpus_B_domain},
 "corpus_A_key_terms_list": {corpus_A_key_terms_list},
 "corpus_B_key_terms_list": {corpus_B_key_terms_list},
 "matching_rules_derived_from_corpus_A":
 {matching_rules_derived_from_corpus_A},
 "matching_rules_derived_from_corpus_B":
 {matching_rules_derived_from_corpus_B},
 "relationship": {relationship}
 }}
 {{
 "Domain-Specific Relationship Between Raw Corpus A and Raw Corpus B":
 {domain_type},
 "Applied Strategy":
 {applied_strategy},
 "Strategy Definition":
 {strategy_definition}
 }}
 {{
 "## Output Requirements":
 "- For the corpus fusion variant (enhanced_corpus) generation:
 1. For the '## User' section:
 a. The '## User' section must conclude with an unanswered question
 - This section should integrate **essential context** with **one or more related, logically connected questions**.
 - If there are multiple questions in the newly generated '## User' section,
 do make sure to provide the corresponding direct answer to each question except the final one.
 b. In the '## User' section, ensure that the background information is logically structured and coherently presented. The question posed should be directly related to the provided background, with a natural and seamless transition between the background information and the question, resulting in an overall smooth and readable flow.
 2. '## Assistant' section must provide a **direct answer exclusively** to the unanswered question posed in the '## User' section
 3. Preserve all key terms from both **corpus_A_key_terms_list** and **corpus_B_key_terms_list** in this corpus fusion variant
 4. Adhere to the matching rules or patterns from both raw corpora (**matching_rules_A** and **matching_rules_B**), ensuring that the resulting matching rules or patterns explicitly encompass those from both original corpora
 5. Ensure logical coherence and semantic fluency throughout the content
 6. Utilize **bridging_concepts** and the **Selected Strategy** for the corpus fusion variants generation
 7. Strictly maintain:
 - The '## User' and '## Assistant' markers.
 - The formatting identical to that of the original corpora.
 8. Each corpus fusion variant **must include at least** one '## User' section and one '## Assistant' section
 - Which means the resultant corpus fusion variant may contain multiple '## User' and '## Assistant' section pairs if deemed indeed necessary.
 ## Example Output Structure
 {{
 "enhanced_corpus": "## User
 <The content in the ## User section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 ## Instruction
 <This section is optional. Sometimes the raw corpora include an Instruction section. For the newly generated corpus fusion variant, you may choose whether or not to include it.>
 ## Input
 <This section is optional. Sometimes the raw corpora include an Input section. For the newly generated corpus fusion variant, you may choose whether or not to include it.>
 ## Assistant
 <The content in the ## Assistant section must provide the answer to the latest question presented in the ## User section.**
 or you can also include multiple '## User' and '## Assistant' section pairs derived from some raw corpus if you deem it indeed necessary
 "enhanced_corpus": "## User
 <The content in the ## User section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 ## Assistant
 <The content in the ## Assistant section must provide the answer to the latest question presented in the ## User section.>
 ...
 ## User
 <The content in the ## User section may be a single question (with or without context) or a series of question-answer pairs that culminate in a final question, in accordance with the original corpora.>
 ## Assistant
 <The content in the ## Assistant section must provide the answer to the latest question presented in the ## User section.**
 }}
 }}
 }}

Figure 22: Candidate MCG Prompt Template for The Case of Omission of Question Feedback

3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251

Candidate MCG Prompt Template

Symbolic Loss:
Omission of Essential Knowledge

Role
You are a Corpus Enhancement Specialist.

Task
Intelligently expand existing merged corpus based on targeted supplementation while preserving original structure

Input Data
1. Current Merged Corpus:
<begin>
{merged_corpus}
<end>

4. Supplementation Requirements:
{
 "terms_coverage": {
 "included_terms_list": {included_terms_list}
 },
 "question-answer_matching_rules": {
 "matching_rules_derived_from_corpus_A":
 {matching_rules_derived_from_corpus_A},
 "matching_rules_derived_from_corpus_B":
 {matching_rules_derived_from_corpus_B}
 },
 "question_feedback": {
 "question_type": {question_type},
 "context_contain": {context_contain},
 "context_missing": {context_missing}
 }
}

Processing Rules

1. **Content Preservation Principle**
- Avoid regenerating the entire content of both the '#### User' and '#### Assistant' sections:
- Instead, only regenerate the unanswered questions from the '#### User' section (expanding necessary background details as needed) and update the corresponding answers in the '#### Assistant' section based on the newly generated questions.
- Ensure that the total modifications do not exceed 20% of the original content.

2. **Term Preservation Guidelines**
- **Retention of Included Terms**: Although the current merged corpus already contains all the terms listed in **included_terms_list**, the expansion of the unanswered questions in the '#### User' section must be conducted in a way that preserves these terms. For any content related to these terms, choose one of the following approaches:
a. Retain the original content if it explicitly or implicitly references the term.
b. Rephrase and expand the original content, ensuring that the final version explicitly includes the term while incorporating any additional necessary context.
- **Prohibition**: Avoid merely listing the terms; they must be seamlessly integrated within the expanded content.

3. **Unanswered Question From '#### User' Section Regeneration Guidelines**
- Enhance the original unanswered question by incorporating additional background knowledge:
- Specifically, based on the provided **context_missing**, the regenerated question must integrate both the existing context (**context_contain**) and the additional required context (**context_missing**).
- Ensure that the regenerated unanswered question retains the same question type as specified by the provided **question_type**.
- Use the matching rules or patterns from source corpus A (**matching_rules_derived_from_corpus_A**) and source corpus B (**matching_rules_derived_from_corpus_B**) into the regenerated unanswered question and its corresponding answer from the '#### Assistant' section.

4. **Answer Regeneration Guidelines**
- Regenerate only the responses in the '#### Assistant' section.
- Ensure that the regenerated answer explicitly addresses the unanswered questions from the '#### User' section.
- Maintain logical coherence and consistent terminology throughout the regenerated response.

5. **Coherence Assurance**
- Ensure that all newly inserted or rephrased content is seamlessly integrated using explicit transitional phrases (e.g., "Considering", "In light of", "Particular attention should be paid to", etc.).
- Preserve the original paragraph structure to maintain the logical flow and organization of the content.

Expected Output Structure
{
 "enhanced_corpus": "#### User\n...\n#### Assistant\n...",
}

Figure 23: Candidate MCG Prompt Template for The Case of Omission of Essential Knowledge

```

3252
3253 Candidate MCG Prompt Template
3254 Symbolic Loss:
3255 Omission of Essential Knowledge & Directed Answer
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311

    ## Role
    You are a Corpus Enhancement Specialist.

    ## Task
    Intelligently expand existing merged corpus based on targeted supplementation
    while preserving original structure

    ### Input Data
    1. Current Merged Corpus:
    <begin>
    {merged_corpus}
    <end>

    4. Supplementation Requirements:
    {
        "terms_coverage": {
            "included_terms_list": {included_terms_list}
        },
        "question-answer_matching_rules": {
            "matching_rules_derived_from_corpus_A": {
                {matching_rules_derived_from_corpus_A},
                "matching_rules_derived_from_corpus_B": {
                    {matching_rules_derived_from_corpus_B}
                }
            },
            "question_feedback": {
                "question_type": {question_type},
                "context_contain": {context_contain},
                "context_missing": {context_missing}
            },
            "answer_quality_feedback": {assistant_feedback}
        }
    }

    ### Processing Rules
    1. **Content Preservation Principle**
        - Avoid regenerating the entire content of both the '### User' and
        '### Assistant' sections:
        - Instead, only regenerate the unanswered questions from the '### User'
        section (expanding necessary background details as needed) and update the
        corresponding answers in the '### Assistant' section based on the newly
        generated questions.
        - Ensure that the total modifications do not exceed 20% of the original content.

    2. **Term Preservation Guidelines**
        - **Retention of Included Terms**: Although the current merged corpus already
        contains all the terms listed in **included_terms_list**, the expansion of the
        unanswered questions in the '### User' section must be conducted in a way
        that preserves these terms. For any content related to these terms, choose one
        of the following approaches:
        a. Retain the original content if it explicitly or implicitly references the term.
        b. Rephrase and expand the original content, ensuring that the final version
        explicitly includes the term while incorporating any additional necessary
        context.
        - **Prohibition**: Avoid merely listing the terms; they must be seamlessly
        integrated within the expanded content.

    3. **Unanswered Question From '### User' Section Regeneration Guidelines**
        - Enhance the original unanswered question by incorporating additional background
        knowledge:
        - Specifically, based on the provided **context_missing**, the regenerated
        question must integrate both the existing context (**context_contain**) and
        the additional required context (**context_missing**).
        - Ensure that the regenerated unanswered question retains the same question
        type as specified by the provided **question_type**.
        - Fuse the matching rules or patterns from source corpus A
        (**matching_rules_derived_from_corpus_A**) and source corpus B
        (**matching_rules_derived_from_corpus_B**) into the regenerated
        unanswered question and its corresponding answer from the
        '### Assistant' section.

    4. **Answer Regeneration Guidelines**
        - Regenerate only the responses in the '### Assistant' section.
        - Ensure that the regenerated answer explicitly addresses the unanswered
        questions from the '### User' section.
        - Utilize the insights from "answer_quality_feedback" to inform the regeneration
        process, ensuring that the newly regenerated answers do not repeat the issues
        identified in the feedback.
        - Maintain logical coherence and consistent terminology throughout the
        regenerated response.

    5. **Coherence Assurance**
        - Ensure that all newly inserted or rephrased content is seamlessly integrated
        using explicit transitional phrases (e.g., "Considering", "In light of", "Particular
        attention should be paid to", etc.).
        - Preserve the original paragraph structure to maintain the logical flow and
        organization of the content.

### Expected Output Structure
{
    "enhanced_corpus": "### User\n...\n### Assistant\n...",
}

```

Figure 24: Candidate MCG Prompt Template for The Case of Omission of Essential Knowledge & Directed Answer

Candidate MCG Prompt Template

Symbolic Loss:

Omission of Directed Answer

Role

You are a Corpus Enhancement Specialist.

Task

Intelligently expand existing merged corpus based on targeted supplementation while preserving original structure

Input Data

1. Current Merged Corpus:

```
<begin>
{merged_corpus}
<end>
```

2. Supplementation Requirements:

```
 {{
  "answer_quality_feedback": {assistant_feedback}
}}
```

Processing Rules

1. **Content Preservation Principle**

- Avoid regenerating the entire content of both the '#### User' and '#### Assistant' sections.
- Preserve the whole '#### User' section.
- Modify the content from the '#### Assistant' section only.
- Ensure that any modifications to the existing content do not exceed 20% of the original content.

2. **Answer Regeneration Guidelines**

- Regenerate only the responses in the '#### Assistant' section.
- Ensure that the regenerated answer explicitly addresses the unanswered questions from the '#### User' section.
- Utilize the insights from "answer_quality_feedback" to inform the regeneration process, ensuring that the newly regenerated answers do not repeat the issues identified in the feedback.
- Maintain logical coherence and consistent terminology throughout the regenerated response.

3. **Coherence Assurance**

- Ensure that all newly inserted or rephrased content is seamlessly integrated using explicit transitional phrases (e.g., "Considering", "In light of", "Particular attention should be paid to", etc.).
- Preserve the original paragraph structure to maintain the logical flow and organization of the content.

Expected Output Structure

```
 {{
  "enhanced_corpus": "#### User\n...\n#### Assistant\n...",
```

Figure 25: Candidate MCG Prompt Template for The Case of Omission of Directed Answer

Symbolic Loss Example From ICD Operator

```
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
{
  "technical_report": {
    "term_coverage": {
      "included": {
        "corpus_A_key_terms_list": [
          "emotional reaction",
          "satisfaction",
          "Head-Tail events",
          "classification"
        ],
        "corpus_B_key_terms_list": [
          "intention",
          "desire",
          "Head-Tail events",
          "classification"
        ]
      },
      "missing": {
        "corpus_A_key_terms_list": [],
        "corpus_B_key_terms_list": []
      }
    },
    "question_analysis": {
      "question_exists": {
        "question_type": "open-ended",
        "needs_extra_knowledge_or_background_supplementation": {
          "context_contain": "The '### User' section provides a context discussing emotional reactions and intentions in social interactions, including examples of how these concepts manifest.",
          "context_missing": "The '### User' section lacks specific examples or scenarios that illustrate the interplay of emotional reactions and intentions, which would help clarify the question."
        }
      }
    }
  },
  "answer_quality": {
    "if_needs_to_re_answer": {
      "explanation": "The answer provided in the '### Assistant' section does not directly address the last question from the '### User' section. The question asks how emotional reactions and intentions interplay in social interactions, while the assistant's response focuses more on the general relationship between emotional reactions and intentions without specifically addressing the interplay aspect."
    }
  }
}
```

Figure 26: Symbolic Loss Example From ICD Operator

Symbolic Loss Example From FAC Operator

```
{  
  "if_containing_direct_answer": {  
    "direct_answer":  
      "We can identify processes such as recognition of motivations,  
      emotional triggers, and the development of interpersonal  
      relationships that shape social interactions and their emotional  
      outcomes."  
  },  
  "if_containing_information_needed_to_delete": {  
    "information_needs_to_remove":  
      "In particular, The interplay of empathy and gratitude can  
      significantly enhance the understanding of social dynamics.  
      Furthermore, the psychological principle of generosity often  
      serves as a catalyst for positive emotional reactions, fostering  
      deeper connections among individuals. Considering the  
      interconnectedness of these elements, exploring the interplay  
      of empathy and gratitude provides valuable insights into how  
      emotional responses are influenced by social contexts. By  
      examining these aspects, we can gain insights into the  
      interconnectedness of emotional responses and social  
      contexts."  
  }  
}
```

Figure 27: Symbolic Loss Example From FAC Operator