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ABSTRACT

Existing NAS methods suffer from either an excessive amount of time for repet-
itive sampling and training of many task-irrelevant architectures. To tackle such
limitations of existing NAS methods, we propose a paradigm shift from NAS
to a novel conditional Neural Architecture Generation (NAG) framework based
on diffusion models, dubbed DiffusionNAG. Specifically, we consider the neural
architectures as directed graphs and propose a graph diffusion model for generating
them. Moreover, with the guidance of parameterized predictors, DiffusionNAG
can flexibly generate task-optimal architectures with the desired properties for
diverse tasks, by sampling from a region that is more likely to satisfy the proper-
ties. This conditional NAG scheme is significantly more efficient than previous
NAS schemes which sample the architectures and filter them using the property
predictors. We validate the effectiveness of DiffusionNAG through extensive ex-
periments in two predictor-based NAS scenarios: Transferable NAS and Bayesian
Optimization (BO)-based NAS. DiffusionNAG achieves superior performance with
speedups of up to 35× when compared to the baselines on Transferable NAS
benchmarks. Furthermore, when integrated into a BO-based algorithm, Diffusion-
NAG outperforms existing BO-based NAS approaches, particularly in the large
MobileNetV3 search space on the ImageNet 1K dataset. Code is available at
https://github.com/CownowAn/DiffusionNAG.

1 INTRODUCTION

While Neural Architecture Search (NAS) approaches automate neural architecture design, eliminating
the need for manual design process with trial-and-error (Zoph & Le, 2017; Liu et al., 2019; Cai
et al., 2019; Luo et al., 2018; Real et al., 2019; White et al., 2020), they mostly suffer from the high
search cost, which often includes the full training with the searched architectures. To address this
issue, many previous works have proposed to utilize parameterized property predictors (Luo et al.,
2018; White et al., 2021a;b; 2023; Ning et al., 2020; 2021; Dudziak et al., 2020; Lee et al., 2021a;b;
2023a) that can predict the performance of an architecture without training. However, existing NAS
approaches still result in large waste of time as they need to explore an extensive search space and the
property predictors mostly play a passive role such as the evaluators that rank architecture candidates
provided by a search strategy to simply filter them out during the search process.

To overcome such limitations, we propose a paradigm shift from NAS (Neural Architecture Search)
to a novel conditional NAG (Neural Architecture Generation) framework that enables the generation
of desired neural architectures. Specifically, we introduce a novel predictor-guided Diffusion-based
Neural Architecture Generative framework called DiffusionNAG, which explicitly incorporates the
predictors into generating architectures that satisfy the objectives (e.g., high accuracy or robustness
against attack). To achieve this goal, we employ the diffusion generative models (Ho et al., 2020; Song
et al., 2021), which generate data by gradually injecting noise into the data and learning to reverse this
process. They have demonstrated remarkable generative performance across a wide range of domains.
Especially, we are inspired by their parameterized model-guidance mechanism (Sohl-Dickstein
et al., 2015; Vignac et al., 2022) that allows the diffusion generative models to excel in conditional
generation over diverse domains such as generating images that match specific labels (Ramesh et al.,
2021) or discovering new drugs meeting particular property criteria (Lee et al., 2023b).

∗These authors contributed equally to this work.
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In this framework, we begin by training the base diffusion generative model to generate architectures
that follow the distribution of a search space without requiring expensive label information, e.g.,
accuracy. Then, to achieve our primary goal of generating architectures that meet the specified target
condition, we deploy the trained diffusion model to diverse downstream tasks, while controlling the
generation process with property predictors. Specifically, we leverage the gradients of parameterized
predictors to guide the generative model toward the space of the architectures with desired properties.
The proposed conditional NAG framework offers the key advantages compared with the conventional
NAS methods as follows: Firstly, our approach facilitates efficient search by generating architectures
that follow the specific distribution of interest within the search space, minimizing the time wasted
exploring architectures that are less likely to have the desired properties. Secondly, DiffusionNAG,
which utilizes the predictor for both NAG and evaluation purposes, shows superior performance
compared to the traditional approach, where the same predictor is solely limited to the evaluation
role. Lastly, DiffusionNAG is easily applicable to various types of NAS tasks (e.g., latency or
robustness-constrained NAS) as we can swap out the predictors in a plug-and-play manner without
retraining the base generative model, making it practical for diverse NAS scenarios.

Additionally, to ensure the generation of valid architectures, we design a novel score network for
neural architectures. In previous works on NAS, neural architectures have been typically represented
as directed acyclic graphs (Zhang et al., 2019) to model their computational flow where the input data
sequentially passes through the multiple layers of the network to produce an output. However, existing
graph diffusion models (Niu et al., 2020a; Jo et al., 2022) have primarily focused on undirected
graphs, which represent structure information of graphs while completely ignoring the directional
relationships between nodes, and thus cannot capture the computational flow in architectures. To
address this issue, we introduce a score network that encodes the positional information of nodes to
capture their order connected by directed edges.

We demonstrate the effectiveness of DiffusionNAG with extensive experiments under two key
predictor-based NAS scenarios: 1) Transferable NAS and 2) Bayesian Optimization (BO)-based NAS.
For Transferable NAS using transferable dataset-aware predictors, DiffusionNAG achieves superior
or comparable performance with the speedup of up to 35× on four datasets from Transferable NAS
benchmarks, including the large MobileNetV3 (MBv3) search space and NAS-Bench-201. Notably,
DiffusionNAG demonstrates superior generation quality compared to MetaD2A (Lee et al., 2021a),
a closely related unconditional generation-based method. For BO-based NAS with task-specific
predictors, DiffusionNAG outperforms existing BO-based NAS approaches that rely on heuristic
acquisition optimization strategies, such as random architecture sampling or architecture mutation,
across four acquisition functions. This is because DiffusionNAG overcomes the limitation of existing
BO-based NAS, which samples low-quality architectures during the initial phase, by sampling from
the space of the architectures that satisfy the given properties. DiffusionNAG obtains especially
large performance gains on the large MBv3 search space on the ImageNet 1K dataset, demonstrating
its effectiveness in restricting the solution space when the search space is large. Furthermore, we
verify that our score network generates 100% valid architectures by successfully capturing their
computational flow, whereas the diffusion model for undirected graphs (Jo et al., 2022) almost fails.

Our contributions can be summarized as follows:

• We propose a paradigm shift from conventional NAS approaches to a novel conditional Neural
Architecture Generation (NAG) scheme, by proposing a framework called DiffusionNAG. With
the guidance of the property predictors, DiffusionNAG can generate task-optimal architectures for
diverse tasks.

• DiffusionNAG offers several advantages compared with conventional NAS methods, including
efficient and effective search, superior utilization of predictors for both NAG and evaluation
purposes, and easy adaptability across diverse tasks.

• Furthermore, to ensure the generation of valid architectures by accurately capturing the compu-
tational flow, we introduce a novel score network for neural architectures that encodes positional
information in directed acyclic graphs representing architectures.

• We have demonstrated the effectiveness of DiffusionNAG in Transferable NAS and BO-NAS scenar-
ios, achieving significant acceleration and improved search performance in extensive experimental
settings. DiffusionNAG significantly outperforms existing NAS methods in such experiments.
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Figure 1: Illustration of DiffusionNAG in Transferable NAS Scenarios. DiffusionNAG generates desired
neural architectures for a given unseen task by guiding the generation process with the transferable dataset-aware
performance predictor fϕ∗(yτ |Dτ ,At).

2 METHOD

In Section 2.1, we first formulate the diffusion process for the generation of the architectures that
follow the distribution of the search space. In Section 2.2, we propose a conditional diffusion
framework for NAG that leverages a predictor for guiding the generation process. Finally, we extend
the architecture generation framework for Transferable NAS in Section 2.3.

Representation of Neural Architectures A neural architecture A in the search spaceA is typically
considered as a directed acyclic graph (DAG) (Dong & Yang, 2020b). Specifically, the architecture A
withN nodes is defined by its operator type matrix V ∈ RN×F and upper triangular adjacency matrix
E ∈ RN×N , as A = (V ,E) ∈ RN×F × RN×N , where F is the number of predefined operator sets.
In the MobileNetV3 search space (Cai et al., 2020), N represents the maximum possible number of
layers, and the operation sets denote a set of combinations of the kernel size and width.

2.1 NEURAL ARCHITECTURE DIFFUSION PROCESS

As a first step, we formulate an unconditional neural architecture diffusion process. Following Song
et al. (2021), we define a forward diffusion process that describes the perturbation of neural archi-
tecture distribution (search space) to a known prior distribution (e.g., Gaussian normal distribution)
modeled by a stochastic differential equation (SDE), and then learn to reverse the perturbation process
to sample the architectures from the search space starting from noise.

Forward process We define the forward diffusion process that maps the neural architecture distri-
bution p(A0) to the known prior distribution p(AT ) as the following Itô SDE:

dAt = ft(At)dt+ gtdw, (1)

where t-subscript represents a function of time (Ft(·) := F (·,t)), ft(·) : A → A is the linear drift
coefficient, gt : A → R is the scalar diffusion coefficient, and w is the standard Wiener process.
Following Jo et al. (2022), we adopt a similar approach where architectures are regarded as entities
embedded in a continuous space. Subsequently, during the forward diffusion process, the architecture
is perturbed with Gaussian noise at each step.

Reverse process The reverse-time diffusion process corresponding to the forward process is
modeled by the following SDE (Anderson, 1982; Song et al., 2021):

dAt =
[
ft(At)− g2t∇At

log pt(At)
]
dt+ gtdw̄, (2)

where pt denotes the marginal distribution under the forward diffusion process, dt represents an
infinitesimal negative time step and w̄ is the reverse-time standard Wiener process.

In order to use the reverse process as a generative model, the score network sθ is trained to approxi-
mate the score function ∇At log pt(At) with the following score matching (Hyvärinen, 2005; Song
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et al., 2021) objective, where λ(t) is a given positive weighting function:
θ∗ = argmin

θ
Et
{
λ(t)EA0EAt|A0

∥sθ(At, t)−∇At log pt(At)∥22
}
. (3)

Once the score network has been trained, we can generate neural architectures that follow the original
distribution p(A0) using the reverse process of Equation (2). To be specific, we start from noise
sampled from the known prior distribution and simulate the reverse process, where the score function
is approximated by the score network sθ∗(At, t). Following various continuous graph diffusion
models (Niu et al., 2020a; Jo et al., 2022), we discretize the entries of the architecture matrices using
the operator 1>0.5 to obtain discrete 0-1 matrices after generating samples by simulating the reverse
diffusion process. Empirically, we observed that the entries of the generated samples after simulating
the diffusion process do not significantly deviate from integer values of 0 and 1.

Score Network for Neural Architectures To generate valid neural architectures, the score network
should capture 1) the dependency between nodes, reflecting the computational flow (Dong & Yang,
2020a; Zhang et al., 2019), and 2) the accurate position of each layer within the overall architecture
to comply with the rules of a specific search space. Inspired by Yan et al. (2021a) on architecture
encoding, we use L transformer blocks (T) with an attention mask M ∈ RN×N that indicates the
dependency between nodes, i.e., an upper triangular matrix of DAG representation (Dong & Yang,
2020a; Zhang et al., 2019), to parameterize the score network. (See Appendix B for more detailed
descriptions) Furthermore, we introduce positional embedding Embpos(vi) to more accurately
capture the topological ordering of layers in architectures, which leads to the generation of valid
architectures adhering to specific rules within the given search space as follows:

Embi = Embops (vi) +Embpos (vi) +Embtime (t) , where vi : i-th row of V for i ∈ [N ], (4)

sθ (At, t) = MLP (HL) , where H0
i = Embi,H

l = T
(
H l−1,M

)
and H l = [H l

1 · · ·H l
N ], (5)

where Embops(vi) and Embtime(t) are embeddings of each node vi and time t, respectively.

While simulating Equation (2) backward in time can generate random architectures within the entire
search space, random generation is insufficient for the main goal of DiffusionNAG. Therefore, we
introduce a conditional NAG framework to achieve this goal in the following section.

2.2 CONDITIONAL NEURAL ARCHITECTURE GENERATION

Inspired by the parameterized model-guidance scheme (Sohl-Dickstein et al., 2015; Vignac et al.,
2022; Dhariwal & Nichol, 2021), we incorporate a parameterized predictor in our framework to
actively guide the generation toward architectures that satisfy specific objectives. Let y be the desired
property (e.g., high accuracy or robustness against attacks) we want the neural architectures to
satisfy. Then, we include the information of y into the score function. To be specific, we generate
neural architectures from the conditional distribution pt(At|y) by solving the following conditional
reverse-time SDE (Song et al., 2021):

dAt =
[
ft(At)− g2t∇At log pt(At|y)

]
dt+ gtdw̄. (6)

Here, we can decompose the conditional score function∇At log pt(At|y) in Equation (6) as the sum
of two gradients that is derived from the Bayes’ theorem p(At|y) ∝ p(At) p(y|At):

∇At log pt(At|y) = ∇At log pt(At) +∇At log pt(y|At). (7)

By approximating the score function ∇At
log pt(At) with the score network sθ∗ , the conditional

generative process of Equation (6) can be simulated if the term∇At log pt(y|At) could be estimated.
Since log pt(y|At) represents the log-likelihood that the neural architecture At satisfies the target
property y, we propose to model log pt(y|At) using a pre-trained predictor fϕ(y|At) parameterized
by ϕ, which predicts the desired property y given a perturbed neural architecture At:

∇At log pt(y|At) ≈ ∇At log fϕ(y|At). (8)
As a result, we construct the guidance scheme with the predictor as follows, where kt is a constant
that determines the scale of the guidance of the predictor:

dAt =
{
ft(At)− g2t

[
sθ∗(At, t) + kt∇At log fϕ(y|At)

]}
dt+ gtdw̄. (9)

Intuitively, the predictor guides the generative process by modifying the unconditional score function
which is estimated by sθ∗ at each sampling step. The key advantage of this framework is that we only
need to train the score network once and can generate architectures with various target properties
by simply changing the predictor. Our approach can reduce significant computational overhead for
the conditional NAG compared to the classifier-free guidance scheme (Hoogeboom et al., 2022) that
requires retraining the diffusion model every time the conditioning properties change.
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Table 1: Comparison with Transferable NAS on MBv3 Search Space. The accuracies are reported with 95%
confidence intervals over 3 runs. The p-value represents the result of a t-test conducted on the accuracies of 30
architecture samples obtained by our method and each baseline method.

Transferable NAS

Stats. MetaD2A TNAS DiffusionNAG(Lee et al., 2021a) (Shala et al., 2023)

CIFAR-10

Max 97.45±0.07 97.48±0.14 97.52±0.07
Mean 97.28±0.01 97.22±0.00 97.39±0.01
Min 97.09±0.13 95.62±0.09 97.23±0.06

p-value 0.00000191 0.0024 -

CIFAR-100

Max 86.00±0.19 85.95±0.29 86.07±0.16
Mean 85.56±0.02 85.30±0.04 85.74±0.04
Min 84.74±0.13 81.30±0.18 85.42±0.08

p-value 0.0037 0.0037 -

Aircraft

Max 82.18±0.70 82.31±0.31 82.28±0.29
Mean 81.19±0.11 80.86±0.15 81.47±0.05
Min 79.71±0.54 74.99±0.65 80.88±0.54

p-value 0.0169 0.0052 -

Oxford-IIIT Pets

Max 95.28±0.50 95.04±0.44 95.34±0.29
Mean 94.55±0.03 94.47±0.10 94.75±0.10
Min 93.68±0.16 92.39±0.04 94.28±0.17

p-value 0.0025 0.0031 -

2.3 TRANSFERABLE CONDITIONAL NEURAL ARCHITECTURE GENERATION

Transferable NAS (Lee et al., 2021a; Shala et al., 2023) offers practical NAS capabilities for diverse
real-world tasks, by simulating human learning. They acquire a knowledge from past NAS tasks to
improve search performance on new tasks. In this section, to achieve highly efficient Transferable
NAS, we extend the conditional NAG framework discussed earlier into a diffusion-based transferable
NAG method by combining our framework with the transferable dataset-aware predictors from Trans-
ferable NAS methods (Lee et al., 2021a; Shala et al., 2023). A dataset-aware predictor fϕ(D,At) is
conditioned on a dataset D. In other words, even for the same architecture, if datasets are different,
the predictor can predict accuracy differently. The predictor is meta-learned with Equation (21) over
the task distribution p(T ) utilizing a meta-dataset S := {(A(i), yi,Di)}Ki=1 with K tasks consisting
of (dataset, architecture, accuracy) triplets for each task. We use the meta-dataset collected by Lee
et al. (2021a). The key advantage is that by exploiting the knowledge learned from the task distribu-
tion, we can conduct fast and accurate predictions for unseen datasets without additional predictor
training. We integrate the meta-learned dataset-aware predictor fϕ(D,At) into the conditional neural
architecture generative process (Equation (9)) for an unseen dataset D̃ as follows:

dAt =
{
ft(At)− g2t

[
sθ∗(At, t) + kt∇At log fϕ(y|D̃,At)

]}
dt+ gtdw̄. (10)

3 EXPERIMENT

We validate the effectiveness of DiffusionNAG on two predictor-based NAS scenarios: Transferable
NAS (Section 3.1) and BO-based NAS (Section 3.2). In Section 3.3, we demonstrate the effectiveness
of the proposed score network.

Search Space We validate our framework on two Transferable NAS benchmark search spaces (Lee
et al., 2021a): MobileNetV3 (MBv3) (Cai et al., 2020) and NAS-Bench-201 (NB201) (Dong & Yang,
2020b). Especially, MBv3 is a large search space, with approximately 1019 architectures. (Please
see Appendix C.1 for detailed explanations.)
Training Score Network The score network is trained only once for all experiments conducted
within each search space. Note that training the score network only requires architectures (graph)
without the need for accuracy which is expensive information. The training process required 21.33
GPU hours (MBv3) and 3.43 GPU hours (NB201) on Tesla V100-SXM2, respectively.

3.1 COMPARISON WITH TRANSFERABLE NAS METHODS

Experimental Setup Transferable NAS methods (Shala et al., 2023; Lee et al., 2021a) are designed
to leverage prior knowledge learned from previous NAS tasks, making NAS more practical on an
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Table 2: Comparison with Transferable NAS on NB201 Serach Space. We present the accuracy achieved
on four unseen datasets. Additionally, we provide the number of neural architectures (Trained Archs) that are
actually trained to achieve accuracy. The accuracies are reported with 95% confidence intervals over 3 runs.

Type Method
CIFAR-10 CIFAR-100 Aircraft Oxford-IIIT Pets

Accuracy Trained Accuracy Trained Accuracy Trained Accuracy Trained
(%) Archs (%) Archs (%) Archs (%) Archs

ResNet (He et al., 2016) 93.97±0.00 N/A 70.86±0.00 N/A 47.01±1.16 N/A 25.58±3.43 N/A
RS (Bergstra & Bengio, 2012) 93.70±0.36 > 500 71.04±1.07 > 500 - - - -
REA (Real et al., 2019) 93.92±0.30 > 500 71.84±0.99 > 500 - - - -
REINFORCE (Williams, 1992) 93.85±0.37 > 500 71.71±1.09 > 500 - - - -

One-shot NAS∗

RSPS (Li & Talwalkar, 2019) 84.07±3.61 N/A 52.31±5.77 N/A 42.19±3.88 N/A 22.91±1.65 N/A
SETN (Dong & Yang, 2019a) 87.64±0.00 N/A 59.09±0.24 N/A 44.84±3.96 N/A 25.17±1.68 N/A
GDAS (Dong & Yang, 2019b) 93.61±0.09 N/A 70.70±0.30 N/A 53.52±0.48 N/A 24.02±2.75 N/A
PC-DARTS (Xu et al., 2020) 93.66±0.17 N/A 66.64±2.34 N/A 26.33±3.40 N/A 25.31±1.38 N/A
DrNAS (Chen et al., 2021) 94.36±0.00 N/A 73.51±0.00 N/A 46.08±7.00 N/A 26.73±2.61 N/A

BO-based NAS

BOHB (Falkner et al., 2018) 93.61±0.52 > 500 70.85±1.28 > 500 - - - -
GP-UCB 94.37±0.00 58 73.14±0.00 100 41.72±0.00 40 40.60±1.10 11
BANANAS (White et al., 2021a) 94.37±0.00 46 73.51±0.00 88 41.72±0.00 40 40.15±1.59 17
NASBOWL (Ru et al., 2021) 94.34±0.00 100 73.51±0.00 87 53.73±0.83 40 41.29±1.10 17
HEBO (Cowen-Rivers et al., 2022) 94.34±0.00 100 72.62±0.20 100 49.32±6.10 40 40.55±1.15 18

TNAS (Shala et al., 2023) 94.37±0.00 29 73.51±0.00 59 59.15±0.58 26 40.00±0.00 6
Transferable NAS MetaD2A (Lee et al., 2021a) 94.37±0.00 100 73.34±0.04 100 57.71±0.20 40 39.04±0.20 40

DiffusionNAG (Ours) 94.37±0.00 1 73.51±0.00 2 58.83±3.75 3 41.80±3.82 2
∗ We report the search time of one-shot NAS methods in Appendix C.3.

Table 3: Statistics of the generated architec-
tures. Each method generates 1,000 architectures.

Target Stats. Oracle Random MetaD2A Uncond. Cond.
Dataset Top-1,000 + Sorting (Ours)

CIFAR10
Max 94.37 94.37 94.37 94.37 94.37
Mean 93.50 87.12 91.52 90.77 93.13
Min 93.18 10.00 10.00 10.00 86.44

CIFAR100
Max 73.51 72.74 73.51 73.16 73.51
Mean 70.62 61.59 67.14 66.37 70.34
Min 69.91 1.00 1.00 1.00 58.09

Figure 2: The distribution of generated architectures.

unseen task. To achieve this, all Transferable NAS methods, including our DiffusionNAG, utilize
a transferable dataset-aware accuracy predictor, as described in Section 2.3. The dataset-aware
predictor is meta-trained on the meta-dataset provided by Lee et al. (2021a), which consists of
153,408/4,230 meta-training tasks for MBv3/NB201, respectively. For more details, please refer
to Lee et al. (2021a). MetaD2A (Lee et al., 2021a), which is the most closely related to our work,
includes an unconditional architecture generative model that explicitly excludes the dataset-aware
predictor during the generation process. Instead, MetaD2A needs to search for optimal architectures
across multiple tasks, train these architectures to obtain their accuracy data, and use this costly
accuracy collection to train its generative model. Besides, it uses the dataset-aware predictor only
during the subsequent evaluation stage to rank the generated architectures. During the test phase,
it first objective-unconditionally generates architectures and then evaluates the top architectures
using its predictor. TNAS (Shala et al., 2023) enhances the meta-learned dataset-aware predictor’s
adaptability to unseen datasets by utilizing BO with the deep-kernel GP strategy without involving
any generation process (Please see Appendix C.2 for details of the baselines.). DiffusionNAG
conditionally generates architectures with the diffusion model guided by the dataset-aware predictor.
Our generation process, with a sampling batch size of 256, takes up to 2.02 GPU minutes on Tesla
V100-SXM2 to sample one batch. Finally, we select the top architectures sorted by the predictor
among the generated candidates. We conduct experiments on Transferable NAS benchmarks (Lee
et al., 2021a) such as four unseen datasets - CIFAR-10, CIFAR-100, Aircraft (Maji et al., 2013), and
Oxford IIT Pets (Parkhi et al., 2012) from large search space MBv3 (Table 1) and, NB201 (Table 2).

Results on MBv3 Search Space In Table 1, MetaD2A, TNAS, and DiffusionNAG obtain the top
30 neural architectures for each datasets. Subsequently, we train these architectures on the datasets
following the training pipeline described in Appendix C.5. Once the architectures are trained, we
analyze the accuracy statistics for each method’s group of architectures. Additionally, we calculate
p-value to assess the statistical significance of performance differences between the architecture
groups obtained via DiffusionNAG and each method. A p-value of 0.05 or lower denotes that a
statistically meaningful difference exists in the performances of the generated architectures between
the two groups.

The results demonstrate that, except for the Aircraft dataset, DiffusionNAG consistently provides
architectures with superior maximum accuracy (max) compared to other methods across three
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Figure 3: Comparison Results on Existing AO Strategies. Guided Gen (Ours) strategy provides a pool of
candidate architectures, guiding them toward a high-performance distribution using the current population with
DiffusionNAG. We report the results of multiple experiments with 10 different random seeds.

(a) EI (b) ITS (c) UCB

Figure 4: Experimental Results on Various Acquisition Functions. Ours consistently outperforms the
heuristic approaches on various acquisition functions. We run experiments with 10 different random seeds.

datasets. Additionally, the mean accuracy and minimum accuracy (min) of architectures within
the DiffusionNAG group are higher across all datasets. In particular, the p-values obtained from
comparing the groups of architectures suggested by DiffusionNAG and those from other baselines are
consistently below the 0.05 threshold across all datasets. This indicates that the architectures generated
by DiffusionNAG have shown statistically significant performance improvements compared to those
provided by the baseline methods when using transferable dataset-aware predictors. Furthermore,
the results clearly support the superiority of the proposed predictor-guided conditional architecture
generation method compared with either excluding predictors during generation (MetaD2A) or
relying solely on predictors without generating architectures (TNAS).

Results on NB201 Search Space We highlight two key aspects from the results of Table 2. Firstly,
the architectures generated by DiffusionNAG attain oracle accuracies of 94.37% and 73.51% on
CIFAR-10 and CIFAR-100 datasets, respectively, and outperform architectures obtained by the
baseline methods on Aircraft and Oxford-IIIT Pets datasets. While MetaD2A and TNAS achieve
accuracies of 59.15%/57.71% and 40.00%/39.04% on Aircraft and Oxford-IIIT Pets datasets,
respectively, DiffusionNAG achieves comparable or better accuracies of 58.83% and 41.80%,
demonstrating its superiority. Secondly, DiffusionNAG significantly improves the search efficiency
by minimizing the number of architectures that require full training (Trained Archs) to obtain a
final accuracy (For CIFAR-10 and CIFAR-100, an accuracy is retrieved from NB201 benchmarks)
compared to all baselines. Specifically, when considering the Aircraft and Oxford-IIIT Pets datasets,
DiffusionNAG only needs to train 3/2 architectures for each dataset to complete the search process
while MetaD2A and TNAS require 40/40 and 26/6 architectures, respectively. This results in a
remarkable speedup of at least 15× and up to 35× on average.

Further Anaylsis We further analyze the accuracy statistics of the distribution of architectures
generated by each method within the NB201 search space. Specifically, we conduct an in-depth study
by generating 1,000 architectures using each method and analyzing their distribution, as presented
in Table 3 and Figure 2. We compare DiffusionNAG with two other methods: random architecture
sampling (Random) and MetaD2A. Additionally, to assess the advantage of using a predictor in both
the NAG and evaluation phases compared to an approach where the predictor is solely used in the
evaluation phase, we unconditionally generate 10,000 architectures and then employ the predictor
to select the top 1,000 architectures (Uncond. + Sorting). DiffusionNAG (Cond.) leverages the
dataset-aware predictor fϕ(D,At) to guide the generation process following Equation (10).
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The results from Table 3 and Figure 2 highlight three key advantages of our model over the baselines.
Firstly, our model generates a higher proportion of high-performing architectures for each target
dataset, closely following the Oracle Top-1000 distribution within the search space. Secondly, our
model avoids generating extremely low-accuracy architectures, unlike the baseline methods, which
generate architectures with only 10% accuracy. This suggests that our model is capable of focusing
on a target architecture distribution by excluding underperforming architectures. Lastly, as shown in
Figure 2, DiffusionNAG (Cond.) outperforms sorting after the unconditional NAG process (Uncond.
+ Sorting). These results highlight the value of involving the predictor not only in the evaluation
phase but also in the NAG process, emphasizing the necessity of our conditional NAG framework.

3.2 IMPROVING EXISTING BAYESIAN OPTIMIZATION-BASED NAS

In this section, we have demonstrated that DiffusionNAG significantly outperforms existing heuristic
architecture sampling techniques used in Bayesian Optimization (BO)-based NAS approaches, leading
to improved search performance in BO-based NAS.

BO-based NAS The typical BO algorithm for NAS (White et al., 2023) is as follows: 1) Start
with an initial population containing neural architecture-accuracy pairs by uniformly sampling n0
architectures and obtaining their accuracy. 2) Train a predictor using architecture-accuracy pairs in
the population, and 3) Sample c candidate architectures by the Acquisition Optimization strategy
(AO strategy) (White et al., 2021a) and choose the one maximizing an acquisition function based on
the predictions of the predictor. 4) Evaluate the accuracy of the selected architecture after training it
and add the pair of the chosen architecture and its obtained accuracy to the population. 5) Repeat
steps 2) to 4) during N iterations, and finally, select the architecture with the highest accuracy from
the population as the search result. (For more details, refer to Algorithm 1 in the Appendix.)

Our primary focus is on replacing the existing AO strategy in step 3) with DiffusionNAG to improve
the search efficiency of BO-based NAS approaches. Baseline AO Strategy: The simplest AO strategy
is randomly sampling architecture candidates (Random). Another representative AO strategy is
Mutation, where we randomly modify one operation in the architecture with the highest accuracy
in the population. Mutation + Random combines two aforementioned approaches. Guided Gen
(Ours): Instead of relying on these heuristic strategies, we utilize DiffusionNAG to generate the
candidate architectures. Specifically, we train a predictor fϕ(y|At), as described in Equation (8),
using architecture-accuracy pairs in the population. The trained predictor guides the generation
process of our diffusion model to generate architectures. We then provide these generated architecture
candidates to the acquisition function in step 3) (See Algorithm 2 in the Appendix.)

Comparison Results with Existing AO Strategies The left and middle sides in Figure 3 illustrates
our comparison results with existing AO strategies. These results clearly highlight the effectiveness
of DiffusionNAG (Guided Gen (Ours)), as it significantly outperforms existing AO strategies such
as Random, Mutation, and Mutation + Random on the CIFAR100 dataset from NB201 and the
large-scale ImageNet 1K (Deng et al., 2009) dataset within the extensive MBv3 search space. In
particular, BO-based NAS methods employing Random or Mutation strategies often suffer from
the issue of wasting time on sampling low-quality architectures during the initial phase (White et al.,
2020; Zela et al., 2022). In contrast, DiffusionNAG effectively addresses this issue by offering
relatively high-performing architectures right from the start, resulting in a significant reduction in
search times. As a result, as shown in the right side of Figure 3, our approach outperforms existing
BO-based NAS methods, by effectively addressing the search cost challenge of them.

Experimental Results on Various Acquisition Functions In addition to the Probability of Improve-
ment (PI) used in Figure 3, we investigate the benefits of DiffusionNAG across various acquisition
functions, such as Expected Improvement (EI), Independent Thompson sampling (ITS), and Upper
Confidence Bound (UCB) as shown in Figure 4. (Please see Appendix D.2 for more details on
acquisition functions.). The experimental results verify that DiffusionNAG (Ours) consistently out-
performs heuristic approaches, including Mutation, Random, and Mutation + Random approaches,
on four acquisition functions: PI, EI, ITS, and UCB, in the large MBv3 search space.

3.3 THE EFFECTIVENESS OF SCORE NETWORK FOR NEURAL ARCHITECTURES

In this section, we validate the ability of the proposed score network to generate architectures that
follow the distribution of NB201 and MBv3 search spaces. For NB201, we construct the training set
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Table 4: Generation Quality. We generate 1,000 samples with each method for 3 runs of different seeds.

NAS-Bench-201 MobileNetV3

Method Validity (%) ↑ Uniq. (%) ↑ Novelty (%) ↑ Validity (%) ↑ Uniq. (%) ↑ Novelty (%) ↑
GDSS Jo et al. (2022) 4.56±1.44 - - 0.00±0.00 - -
Ours (w/o Pos. Emb.) 100.00±0.00 98.96±0.49 49.08±2.05 42.17±1.80 100.00±0.00 100.00±0.00

Ours (w/ Pos. Emb.) 100.00±0.00 98.70±0.66 49.20±1.96 100.00±0.00 100.00±0.00 100.00±0.00

by randomly selecting 50% of the architectures from the search space, while for MBv3, we randomly
sample 500,000 architectures. We evaluate generated architectures using three metrics (Zhang et al.,
2019): Validity, Uniqueness, and Novelty. Validity measures the proportion of valid architectures
generated by the model, Uniqueness quantifies the proportion of unique architectures among the valid
ones, and Novelty indicates the proportion of valid architectures that are not present in the training
set. As shown in Table 4, our score network generates valid architectures with 100% Validity,
whereas GDSS (Jo et al., 2022), a state-of-the-art graph diffusion model designed for undirected
graphs, fails to generate valid architectures, with the validity of only 4.56% and 0.00% for NB201
and MBv3, respectively. Furthermore, our positional embedding yields significant improvements,
indicating that it successfully captures the topological ordering of nodes within the architectures.
Notably, in the MBv3, Validity improves from 42.17% to 100.00%, highlighting the necessity of
positional embedding for generating architectures with a large number of nodes (a.k.a. "long-range").
Additionally, our framework generates 49.20%/100.00% novel architectures that are not found in the
training set, as well as unique architectures 98.70%/100.00% for NB201 and MBv3, respectively.

4 RELATED WORK

Neural Architecture Search NAS is an automated architecture search process (Ning et al., 2021;
Zoph & Le, 2017) and roughly can be categorized into reinforcement learning-based (Zoph & Le,
2017; Zoph et al., 2018; Pham et al., 2018), evolutionary algorithm-based (Real et al., 2019; Lu et al.,
2020), and gradient-based methods (Luo et al., 2018; Liu et al., 2019; Dong & Yang, 2019b; Xu et al.,
2020; Chen et al., 2021). Recently, Shala et al. (2023); Lee et al. (2021a) have proposed Transferable
NAS to rapidly adapt to unseen tasks by leveraging prior knowledge. However, they still suffer from
the high search cost. DiffusionNAG addresses these limitations by generating architectures satisfying
the objective with a guidance scheme of a meta-learned dataset-aware predictor.

Diffusion Models Diffusion models, as demonstrated in prior work (Song & Ermon, 2019; Ho
et al., 2020; Song et al., 2021), are designed to reverse the data perturbation process, enabling them
to generate samples from noisy data. They have achieved success in a variety of domains, including
images (Nichol et al., 2022; Rombach et al., 2022), audio (Jeong et al., 2021; Kong et al., 2021), and
graphs (Niu et al., 2020b; Jo et al., 2022). However, existing diffusion models are not well-suited for
Neural Architecture Generation (NAG) because their primary focus is on unconditionally generating
undirected graphs. To overcome this limitation, this study introduces a conditional diffusion-based
generative framework tailored for generating architectures represented as directed acyclic graphs that
meet specified conditions, such as accuracy requirements.

5 CONCLUSION

This study introduced a novel conditional Neural Architecture Generation (NAG) framework called
DiffusionNAG, which is the paradigm shift from existing NAS methods by leveraging diffusion
models. With the guidance of a property predictor for a given task, DiffusionNAG can efficiently
generate task-optimal architectures. Additionally, the introduction of a score network ensures the
generation of valid neural architectures. Extensive experiments under two key predictor-based
NAS scenarios demonstrated that DiffusionNAG outperforms existing NAS methods, especially
effective in the large search space. We believe that our success underscores the potential for further
advancements in NAS methodologies, promising accelerated progress in the development of optimal
neural architectures.
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Organization This supplementary file contains detailed explanations of the materials that are not covered in
the main paper, along with additional experimental results. The supplementary file is organized as follows:

• Appendix A - We cover the points in the NAS Best Practices Checklist (Lindauer & Hutter, 2020).

• Appendix B - We elaborate on the details of our approach, DiffusionNAG.

• Appendix C - We elaborate on the detailed experiment setups, such as search space, baselines, datasets,
architecture training pipeline, and implementation details.

• Appendix D - We provide the results of additional experiments.

A NAS BEST PRACTICE CHECKLIST

In this section, we provide a description of how we cover each point in the NAS Best Practice Checklist (Lindauer
& Hutter, 2020).

1. Best Practices for Releasing Code For all experiments you report:

(a) Did you release the code for the training pipeline used to evaluate the final architectures? We
released the code for the training pipeline.

(b) Did you release the code for the search space? In our main experiments, we utilized the NAS-
Bench-201 and MobileNetV3 search space, which is publicly available along with its description
and code.

(c) Did you release the hyperparameters used for the final evaluation pipeline, as well as random
seeds? Yes, it can be found in the code we provide.

(d) Did you release code for your NAS method? The code for our work is available on GitHub:
https://github.com/CownowAn/DiffusionNAG.

(e) Did you release hyperparameters for your NAS method, as well as random seeds? Yes, it can be
found in the code we provide.

2. Best practices for comparing NAS methods

(a) For all NAS methods you compare, did you use exactly the same NAS benchmark, including
the same dataset (with the same training-test split), search space and code for training the
architectures and hyperparameters for that code? Yes, for a fair comparison, we used the same
evaluation pipeline for all NAS methods we compare.

(b) Did you control for confounding factors (different hardware, versions of DL libraries, different
runtimes for the different methods)? To control for confounding factors, we ensured that all
methods were executed on the same hardware and environment.

(c) Did you run ablation studies? Yes.
(d) Did you use the same evaluation protocol for the methods being compared? Yes.
(e) Did you compare performance over time? Yes.
(f) Did you compare to random search? Performance comparison to random search and other

baselines can be found in Table 2 of the main paper.
(g) Did you perform multiple runs of your experiments and report seeds? For each of the experiments

we performed three runs with different seeds (777,888,999).
(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? We used NAS-Bench-

201 (Dong & Yang, 2020b) as a tabular benchmark.

3. Best practices for reporting important details

(a) Did you report how you tuned hyperparameters, and what time and resources this required? Yes.
(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only for the

search phase)? Yes.
(c) Did you report all the details of your experimental setup? The details of our experimental setup

can be found in Appendix C.

B DETAILS OF DIFFUSIONNAG

B.1 OVERVIEW

In this section, we first describe the forward diffusion process that perturbs neural architectures towards random
graphs in Appendix B.2. Subsequently, we illustrate our specialized score network for estimating neural
architecture scores in Appendix B.3. Finally, we elaborate the components of the dataset-aware predictor in
DiffusionNAG in Appendix B.4.
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B.2 DIFFUSION PROCESS

Our approach aims to apply continuous-time generative diffusion processes to neural architectures. Specifically,
we utilize the Variance Exploding (VE) SDE (Song et al., 2021) to model the forward diffusion process for our
neural architecture generation framework. The following SDE describes the process of the VE SDE (Jo et al.,
2022):

dA = σmin

(
σmax

σmin

)t√
2 log

σmax

σmin
dw, (11)

where σmin, σmax, and t ∈ (0,1] are hyperparameters. The transition distribution of the process is Gaussian,
given that Equation (11) has a linear drift coefficient. We can obtain the mean and covariance using the result of
Equation (5.50) and (5.51) of Särkkä & Solin (2019) as follows:

pt|0(At|A0) = N

(
At; A0 , σ

2
min

(
σmax

σmin

)2t

I

)
. (12)

During the forward diffusion process, Gaussian noise is applied to perturb the architecture, following the noise
scheduling modeled by the prescribed SDE. In order to employ the reverse process, which corresponds to
the forward process, as a generative model, the score network sθ is trained to approximate the score function
∇At log pt(At).

B.3 SCORE NETWORK FOR NEURAL ARCHITECTURES

As proposed in Section 2.1 of the main paper, we introduce a score network specifically designed for neural
architectures. The distinctive aspect of our score network is the incorporation of positional embedding for
nodes within directed acyclic graphs (DAGs), which allows for capturing the topological ordering of neural
architectures. The input embedding and computation of this score network are as follows:

Embi = Embops (vi) +Embpos (vi) +Embtime (t) , where vi : i-th row of V for i ∈ [N ], (13)

sθ (At, t) = MLP (HL) , where H0
i = Embi,H

l = T
(
H l−1,M

)
and H l = [H l

1 · · ·H l
N ]⊤. (14)

Here, we denote Embops (vi) as the embedding of each node (operation) vi, and Embtime (vi) as the
embedding of time t. Additionally, we introduce the positional embedding Embpos (vi) to incorporate
positional information of the node into the input embeddings. Inspired by the previous work (Yan et al., 2021a),
we employ L transformer blocks (T) (Vaswani et al., 2017) to parameterize the score network. These blocks
utilize an attention mask M ∈ RN×N , where N represents the number of nodes in the architecture. In our
approach, a pair of nodes (operations) in the architecture is considered dependent if a directed edge is connected.
The attention mask M in the transformer block is determined by the value of the adjacency matrix E of a neural
architecture A following the equation:

Mi,j =

{
0, if Ei,j = 1

−109, if Ei,j = 0
(15)

Each Transformer block (T) consists of nhead attention heads. The computation of the l-th Transformer block is
described as follows:

Qp =H l−1W l
qp,Kp = H l−1W l

kp,Vp = H l−1W l
vp (16)

Ĥ l
p = softmax

(
QpK

⊤
p√

dh
+M

)
Vp (17)

Ĥ l = concatenate
(
Ĥ l

1, Ĥ
l
2, . . . , Ĥ

l
nhead

)
(18)

H l = ReLU
(
Ĥ lW l

1 + bl1

)
W l

2 + bl2 (19)

where the size of H l and Ĥ l
p is N × dh and N × (dh/nhead), respectively. Additionally, in the attention

operation of the p-th head, we denote Qp, Kp, and Vp as the “Query”, “Key”, and “Value” matrices, respectively.
Moreover, we utilize W l

1 and W l
2 to represent the weights in the feed-forward layer.

B.4 DATASET-AWARE PREDICTOR IN DIFFUSIONNAG

To ensure that the predictor is dataset-aware, we extend its design by incorporating not only the architecture
encoder but also a dataset encoder. In this section, we provide a detailed explanation of this dataset-aware
predictor configuration utilized in Section 3.1 of the main paper.
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Neural Architecture Encoding For encoding neural architectures, we employ the DiGCN layer (Wen
et al., 2020), which is a modified version of Graph Convolutional Networks (GCNs) specifically designed for
directed graphs. This layer is specifically designed to effectively capture structural information and dependencies
within the architecture. To encode the architecture A, represented as (V,E) ∈ RN×F × RN×N , we first obtain
the normalized adjacency matrix Ê by adding an identity matrix (representing the self-cycles) to the original
matrix E and normalizing it. Subsequently, to enable bidirectional information flow, we utilize two GCN layers.
One GCN layer utilizes the normalized adjacency matrix Ê to propagate information in the "forward" direction,
while the other GCN layer uses Ê⊤

to propagate information in the "reverse" direction. The outputs from these
two GCN layers are then averaged. In the l-th layer of the architecture encoding module, the computation is
performed as follows:

H l =
1

2
ReLU

(
ÊH l−1W l−1

+

)
+

1

2
ReLU

(
Ê⊤

H l−1W l−1
−

)
, (20)

where H0 = V and W l−1
+ and W l−1

− are trainable weight matrices. By stacking multiple layers, we
can effectively learn high-quality representations of directed graphs. After applying the graph convolutional
layers, we utilize average pooling on the architecture representations obtained from the final layer to aggregate
information across the graph. Finally, one or more fully connected layers can be attached to obtain the latent
vector zA of the neural architecture A.

Dataset Encoding Following Lee et al. (2021a), we employ a dataset encoder based on Set Transformer (Lee
et al., 2019) to accurately capture the characteristics of the target dataset. This dataset encoder is specifically
designed to process input sets of varying sizes and output a fixed size latent code, denoted as zD , that effectively
encapsulates the information within the dataset. The dataset encoder consists of two stacked modules that are
permutation-invariant, meaning output of the dataset encoder is always the same regardless order of elements
in the input set. Additionally, these modules leverage attention-based learnable parameters. The lower-level
module, known as the “intra-class” encoder, captures class prototypes that represent each class information
present in the dataset. On the other hand, the higher-level module, referred to as the “inter-class” encoder,
considers the relationships between these class prototypes and aggregates them into a latent vector zD . The
utilization of this hierarchical dataset encoder enables us to effectively model high-order interactions among the
instances within the dataset, thereby allowing us to capture and summarize crucial information about the dataset.

Ultimately, the encoded representation of the dataset zD is combined with the encoded architecture representation
zA through MLP layers. This integration enables the predictor to make conditional predictions by considering
both the architecture and the dataset information.

B.5 TRANSFERABLE TASK-GUIDED NEURAL ARCHITECTURE GENERATION

We aim to design a diffusion-based transferable NAG method that can generate optimal neural architectures for
unseen datasets. In order to achieve this, the surrogate model needs to be conditioned on a dataset D (a.k.a.
"dataset-aware") (Lee et al., 2021a; Shala et al., 2023). For the surrogate model to be dataset-aware, we train it
over the task distribution p(T ) utilizing a meta-dataset S consisting of (dataset, architecture, accuracy) triplets.
To be precise, we define the meta-dataset as S := {(A(i), yi,Di)}Ki=1 consisting of K tasks, where each task is
created by randomly sampling architecture A(i) along with their corresponding accuracy yi on the dataset Di.
We train the dataset-aware accuracy surrogate model using S by minimizing the following MSE loss function,
L:

ϕ∗ ∈ argmin
ϕ

K∑
i=1

L(yi, fϕ(Di,A
(i))). (21)

An important aspect is that this surrogate model only requires a one-time training phase since it is trained over
the task distribution. Thereby, the surrogate model can make accurate predictions even for unseen datasets.
After one-time training, we utilize this meta-learned dataset-aware accuracy surrogate model fϕ∗(D,At) as
a guiding surrogate. To be precise, we integrate the dataset-aware surrogate model fϕ∗(D,At) trained with
the objective function (Equation (21)) into the conditional generative process (Equation (9)), which enables
us to control the neural architecture generation process for an unseen task, including unseen datasets with the
following generation process:

dAt =
{
ft(At)− g2t

[
sθ∗(At, t) + kt∇At log fϕ∗(y|D,At)

]}
dt+ gtdw̄. (22)
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Table 5: Statistics of NAS-Bench-201 and MobileNetV3 Search Spaces used in the experiments.

Search Space Number of Training Architectures Number of nodes Number of operation types

NAS-Bench-201 15,625 8 7
MobileNetV3 500,000 20 9

C EXPERIMENTAL DETAILS

C.1 SEARCH SPACE

As explained in Section 2 of the main paper, the architecture A consisting of N nodes is defined by its operator
type matrix V ∈ RN×F and upper triangular adjacency matrix E ∈ RN×N . Thus, A can be represented
as (V,E) ∈ RN×F × RN×N , where F denotes the number of predefined operator sets. Detailed statistics,
including the number of nodes (N ) and the number of operation types (F ) for each search space utilized in our
experiments (excluding Appendix D.3), are provided in Table 5. In Appendix D.3, the only difference is that
we train the score network using a subset of 7,812 architectures randomly selected from the NAS-Bench-201
search space. This subset is selected due to utilizing the Novelty metric as part of our evaluation process. Further
elaboration on the search space is presented below.

NAS-Bench-201 search space consists of cell-based neural architectures represented by directed acyclic graphs
(DAGs). Each cell in this search space originally consists of 4 nodes and 6 edges. The edges offer 5 operation can-
didates, including zeroize, skip connection, 1-by-1 convolution, 3-by-3 convolution,
and 3-by-3 average pooling. Consequently, there are a total of 15,626 possible architectures within
this search space. To utilize the NAS-Bench-201 search space, we convert the original cell representation into a
new graph representation. In the new graph, each node represents an operation (layer), and the edges represent
layer connections. After the conversion, each cell contains eight nodes and seven operation types for each node.
An additional input and output operation are added to the existing set of 5 operations. To represent the
neural architectures in the NAS-Bench-201 search space, we adopt an 8×7 operator type matrix (V) and an
8×8 upper triangle adjacency matrix (E). Furthermore, the macro skeleton is constructed by stacking various
components, including one stem cell, three stages consisting of 5 repeated cells each, residual blocks (He et al.,
2016) positioned between the stages, and a final classification layer. The final classification layer consists of
an average pooling layer and a fully connected layer with a softmax function. The stem cell, which serves
as the initial building block, comprises a 3-by-3 convolution with 16 output channels, followed by a
batch normalization layer. Each cell within the three stages has a varying number of output channels: 16, 32,
and 64, respectively. The intermediate residual blocks feature convolution layers with a stride of 2, enabling
down-sampling.

MobileNetV3 search space is designed as a layer-wise space, where each building block incorporates MBConvs,
squeeze and excitationHu et al. (2018), and modified swish nonlinearity to create a more
efficient neural network. The search space consists of 5 stages, and within each stage, the number of building
blocks varies from 2 to 4. As a result, the maximum number of layers possible in MobileNetV3 is calculated as
5× 4 = 20. For each building block, the kernel size can be chosen from the set {3, 5, 7}, and the expansion
ratio can be chosen from {3, 4, 6}. This implies that there are a total of 3 × 3 = 9 possible operation types
available for each layer. To represent the neural architectures in the MobileNetV3 search space, we utilize a
20×9 operator type matrix (V) and a 20×20 upper triangle adjacency matrix (E). Furthermore, the search space
contains approximately 1019 architectures, reflecting the extensive range of choices available.

C.2 BASELINES

In this section, we provide the description of various Neural Architecture Search (NAS) baselines in Section 3.1
and of the main paper.

Basic approach We begin by discussing the basic NAS baseline approaches. ResNet (He et al., 2016) is
a popular deep learning architecture commonly used in computer vision tasks. Following Lee et al. (2021a),
we report results obtained from ResNet56. Random Search (RS, Bergstra & Bengio (2012)) is a basic NAS
approach that involves randomly sampling architectures from the search space and selecting the top-performing
one. Another basic NAS method we consider is REA (Real et al., 2019). REA utilizes evolutionary aging with
tournament selection as its search strategy. REINFORCE (Williams, 1992) is a reinforcement learning based
NAS method. In this approach, the validation accuracy obtained after 12 training epochs is used as the reward
signal.

One-shot NAS We also compare our method with various one-shot methods, which have shown strong
empirical performance for NAS. SETN (Dong & Yang, 2019a) focuses on selectively sampling competitive
child candidates by training a model to evaluate the quality of these candidates based on their validation loss.
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Table 6: Search Time of One-shot NAS.

Method
CIFAR-10 CIFAR-100 Aircraft Oxford-IIIT Pets

Accuracy GPU Accuracy GPU Accuracy GPU Accuracy GPU
(%) Time (s) (%) Time (s) (%) Time (s) (%) Time (s)

RSPS (Li & Talwalkar, 2019) 84.07±3.61 10200 52.31±5.77 18841 42.19±3.88 18697 22.91±1.65 3360
SETN (Dong & Yang, 2019a) 87.64±0.00 30200 59.09±0.24 58808 44.84±3.96 18564 25.17±1.68 8625
GDAS (Dong & Yang, 2019b) 93.61±0.09 25077 70.70±0.30 51580 53.52±0.48 18508 24.02±2.75 6965
PC-DARTS (Xu et al., 2020) 93.66±0.17 10395 66.64±2.34 19951 26.33±3.40 3524 25.31±1.38 2844
DrNAS (Chen et al., 2021) 94.36±0.00 21760 73.51±0.00 34529 46.08±7.00 34529 26.73±2.61 6019

GDAS (Dong & Yang, 2019b) is a differentiable neural architecture sampler that utilizes the Gumbel-Softmax
relaxation technique. GDAS sampler is designed to be trainable and optimized based on the validation loss
after training the sampled architecture. This allows the sampler to be trained in an end-to-end fashion using
gradient descent. PC-DARTS (Xu et al., 2020) is a gradient-based NAS method that improves efficiency by
partially sampling channels. By reducing redundancy and incorporating edge normalization, PC-DARTS enables
more efficient architecture search. DrNAS (Chen et al., 2021) is a differentiable architecture search method that
formulates the search as a distribution learning problem, using Dirichlet distribution to model the architecture
mixing weight. By optimizing the Dirichlet parameters with gradient-based optimization and introducing a
progressive learning scheme to reduce memory consumption, DrNAS achieves improved generalization ability.

Bayesian Optimization based NAS A variety of Bayesian Optimization (BO) methods have been proposed
for NAS, and in our study, we conduct a comprehensive comparison of these methods. One approach involves
using a vanilla Gaussian Process (GP) surrogate (Snoek et al., 2012), where the Upper Confidence Bound (UCB)
acquisition function is employed (GP-UCB). Additionally, we evaluate our method against other approaches such
as HEBO (Cowen-Rivers et al., 2022), which is a black-box Hyperparameter Optimization (HPO) method that
addresses challenges like heteroscedasticity and non-stationarity through non-linear input and output warping and
robust acquisition maximizers. Another BO-based NAS method, BANANAS (White et al., 2021a), utilizes an
ensemble of fully-connected neural networks as a surrogate and employs path encoding for neural architectures.
BANANAS initiates a new architecture search for each task. On the other hand, NASBOWL (Ru et al., 2021)
combines the Weisfeiler-Lehman graph kernel with a Gaussian process surrogate, allowing efficient exploration
of high-dimensional search spaces.

TransferNAS and TransferNAG The key distinction between TransferNAS(NAG) methods and conven-
tional NAS methods lies in their ability to leverage prior knowledge for rapid adaptation to unseen datasets.
Unlike conventional NAS methods that start the architecture search from scratch for each new dataset, Transfer-
NAS(NAG) methods utilize prior knowledge gained from previous tasks to accelerate the search process on new
datasets. By leveraging this prior knowledge, these methods can expedite the search process and potentially
yield better performance on unseen datasets.

One of the TransferNAG methods called MetaD2A (Lee et al., 2021a), employs an amortized meta-learning
approach to stochastically generate architectures from a given dataset within a cross-modal latent space. When
applied to a test task, MetaD2A generates 500 candidate architectures by conditioning on the target dataset
and then selects the top architectures based on its dataset-aware predictor. TNAS (Shala et al., 2023), another
TransferNAS method, is a subsequent work of MetaD2A that aims at enhancing the dataset-aware predictor’s
adaptability to unseen test datasets utilizing BO with the deep-kernel GP. TNAS achieves this by making the
deep kernel’s output representation be conditioned on both the neural architecture and the characteristics of
a dataset. The deep kernel is meta-trained on the same training dataset used in MetaD2A and DiffusionNAG
(Ours). In the test phase, TNAS adapts to the test dataset using BO with the deep-kernel GP strategy. As
described in Shala et al. (2023), TNAS starts the BO loop by selecting the top-5 architectures with the highest
performance on the meta-training set. However, this starting point can be detrimental when searching for an
optimal architecture on the unseen target dataset since it may start the BO loop from architectures that perform
poorly on the target dataset. As a result, it can lead to a long search time and high computational cost to obtain
the target performance on the target dataset.

C.3 SEARCH TIME OF ONE-SHOT NAS

As described in Table 2 of the main paper, we provide the search time for each dataset of the one-shot NAS
methods in Table 6.

C.4 DATASETS

We evaluate our approach on four datasets following Lee et al. (2021a): CIFAR-10 (Krizhevsky, 2009), CIFAR-
100 (Krizhevsky, 2009), Aircraft (Maji et al., 2013), and Oxford IIT Pets (Parkhi et al., 2012), as described
in Section 3.2 of the main paper. In this section, we present a detailed description of each dataset used in our
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study. 1) CIFAR-10 consists of 32×32 color images from 10 general object classes. The training set has 50,000
images (5,000 per class), and the test set has 10,000 images (1,000 per class). 2) CIFAR-100 contains colored
images from 100 fine-grained general object classes. Each class has 500 training images and 100 test images.
3) Aircraft is a fine-grained classification benchmark dataset with 10,000 images from 30 aircraft classes. All
images are resized to 32×32. 4) Oxford-IIIT Pets is a dataset for fine-grained classification, including 37
breeds of pets with approximately 200 instances per class. The dataset is divided into 85% for training and 15%
for testing. All images are resized to 32×32. For CIFAR-10 and CIFAR-100, we use the predefined splits from
the NAS-Bench-201 benchmark. For Aircraft and Oxford-IIIT Pets, we create random validation and test splits
by dividing the test set into two equal-sized subsets.

C.5 TRAINING PIPELINE FOR NEURAL ARCHITECTURES

In this section, we provide the architecture training pipeline for both the NAS-Bench-201 and MobileNetV3
search spaces.

NAS-Bench-201 Following the training pipeline presented in Dong & Yang (2020b), we train each architec-
ture using SGD with Nesterov momentum and employ the cross-entropy loss for 200 epochs. For regularization,
we set the weight decay to 0.0005 and decay the learning rate from 0.1 to 0 using a cosine annealing sched-
ule (Loshchilov & Hutter, 2016). We maintain consistency by utilizing the same set of hyperparameters across
different datasets. Data augmentation techniques such as random flip with a probability of 0.5, random cropping
of a 32×32 patch with 4 pixels padding on each border, and normalization over RGB channels are applied to
each dataset.

MobileNetV3 In our training pipeline, we fine-tuned a subnet of a pretrained supernet from the MobileNetV3
search space on the ImageNet 1K dataset for CIFAR-10, CIFAR-100, Aircraft, and Oxford-IIIT Pets datasets,
following the experimental setup by Cai et al. (2020). The process involved several steps. Firstly, we activated
the subnet and its parameters pretrained on ImageNet 1K for each neural architecture. Then, we randomly
initilized the fully-connected layers for the classifier, where the output size of the classifier is matched with
the number of classes in the target dataset. Next, we conducted fine-tuning on the target dataset for 20 epochs.
We follow the training settings of MetaD2A Lee et al. (2021a) and NSGANetV2 Lu et al. (2020). Specifically,
we utilized SGD optimization with cross-entropy loss, setting the weight decay to 0.0005. The learning rate
decayed from 0.1 to 0 using a cosine annealing schedule (Loshchilov & Hutter, 2016). We resized images as
224×224 pixels and applied dataset augmentations, including random horizontal flip, cutout DeVries & Taylor
(2017) with a length of 16, AutoAugment Cubuk et al. (2018), and droppath Huang et al. (2016) with a rate
of 0.2. To ensure a fair comparison, we applied the same training pipeline to all architectures obtained by our
TransferNAG and the baseline NAS methods.

In Section 3.2 of the main paper, we leveraged a surrogate strategy to report the performance of architectures,
which is inspired by the existing surrogate NAS benchmarks Li et al. (2021); Zela et al. (2022); Yan et al.
(2021b) that utilize predictors to estimate the performance of architectures within a search space. This approach
eliminates the need for exhaustively evaluating all architectures in the large search spaces. For evaluating the
performance of each neural architecture, we utilized an accuracy predictor provided by Cai et al. (2020). They
randomly sampled 16K subnets from the MobileNetV3 search space with diverse architectures. The accuracy of
these subnets was measured on a validation set comprising 10K images randomly selected from the original
training set of ImageNet 1K. By training an accuracy predictor using these [architecture, accuracy] pairs, Cai
et al. (2020) obtained a model capable of predicting the accuracy of a given architecture. Notably, Cai et al.
(2020) demonstrated that the root-mean-square error (RMSE) between the predicted and estimated accuracy
on the test set is as low as 0.21%. To ensure a fair comparison, we applied an identical training pipeline to all
architectures obtained by our method and the baseline NAS methods.

C.6 ACQUISITION FUNCTION OPTIMIZATION STRATEGY IN BAYESIAN OPTIMIZATION BASED
NAS

In Section 3.2 of the main paper, we address the limitation of existing Bayesian Optimization (BO) based NAS
methods by incorporating our conditional architecture generative framework into them. Specifically, we replace
the conventional acquisition optimization strategy with our conditional generative framework, guided by the
predictor. To facilitate understanding, we present an algorithm for General Bayesian Optimization NAS that
utilizes an ensemble of neural predictors. Additionally, we demonstrate an algorithm for Bayesian Optimization
NAS with DiffusionNAG, where our conditional generative framework replaces the conventional acquisition
optimization strategy.
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Algorithm 1: General Bayesian Optimization NAS

Input: Search space A, dataset D, parameters n0, N , c, acquisition function φ, function
h : A → R returning validation accuracy of an architecture A ∈ A.

Draw n0 architectures A(1), . . . ,A(n0) uniformly from the search space A and train them on D
to construct Bn0

= {(A(1), h(A(1))), . . . , (A(n0), h(A(n0)))}.
for n = n0, . . . , N − 1 do

Train an ensemble of M surrogate model {ĥψm}Mm=1 based on the current population Bn:

ψ∗
m ∈ argminψm

∑n
i=1

(
h(A(i))− ĥψm(A(i))

)2

for m = 1, . . . ,M .
Generate a set of c candidate architectures from A using an acquisition optimization strategy.
For each candidate architecture A, evaluate the acquisition function φ(A) with {ĥψm}Mm=1.
Select architecture A(n+1) which maximizes φ(A) .
Train architecture A(n+1) to get the accuracy h(A(n+1)) and add it to the population Bn:
Bn+1 = Bn ∪ {(A(n+1), h(A(n+1)))}.

Output: A∗ = argmaxn=1,...,N h(A
(n))

Algorithm 2: Bayesian Optimization with DiffusionNAG

Input: Pre-trained score network sθ∗ , search space A, dataset D, parameters n0, N , c,
acquisition function φ, function h : A → R returning validation accuracy of an
architecture A ∈ A.

Draw n0 architectures A(1), . . . ,A(n0) uniformly from the search space A and train them on D
to construct Bn0 = {(A(1), h(A(1))), . . . , (A(n0), h(A(n0)))}.

for n = n0, . . . , N − 1 do
Train an ensemble of M surrogate model {ĥψm}Mm=1 based on the current population Bn:

ψ∗
m ∈ argminψm

∑n
i=1

(
h(A(i))− ĥψm(A(i))

)2

for m = 1, . . . ,M .

µ̂(A(i)) := 1
M

∑M
m=1 ĥψ∗

m
(A(i))

σ̂i(A
(i)) :=

√∑M
m=1((ĥψ∗

m
(A(i))−µ(A(i)))2

M−1

p(y|A(i);D) := N (y; µ̂((A(i))), σ̂(A(i))2).
/* Generate c candidate architecture with the score network sθ∗. */
S ← ∅
Minimize

∑n
i=1− log pξ(yi|A(i)) w.r.t ξ, where yi = h(A(i)).

for i = 1, . . . , c do
Draw a random noise A

(n+i)
T from the prior distribution.

Generate architecture A(n+i) with sθ∗ by the reverse process:
dA

(n+i)
t ={
ft(A

(n+i)
t )− g2t

[
sθ∗(A

(n+i)
t , t) + kt∇A

(n+i)
t

log pξ(y|A(n+i)
t )

]}
dt+ gtdw̄

S ← S ∪ {A(n+i)
0 }

For each candidate architecture A ∈ S, evaluate φ(A) with p(y|A(i);D).
Select architecture A(n+1) which maximizes φ(A).
Train architecture A(n+1) to get the accuracy h(A(n+1)) and add it to the population Bn:
Bn+1 = Bn ∪ {(A(n+1), h(A(n+1)))}.

Output: A∗ = argmaxn=1,...,N h(A
(n))

C.7 IMPLEMETATION DETAILS

In this section, we provide a detailed description of the DiffusionNAG implementation and the hyperparameters
used in our experiments.

Diffusion Process In Equation (11), which describes the diffusion process in DiffusionNAG, we set the
minimum diffusion variance, denoted as σmin, to 0.1 and the maximum diffusion variance, denoted as σmax, to
5.0. These values determine the range of diffusion variances used during the diffusion process. Additionally, we
utilize 1000 diffusion steps. This means that during the diffusion process, we iterate 1000 times to progressively
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Table 7: Hyperparameter Setting of the Score Network in DiffusionNAG on NAS-Bench-201 Search
Space.

Hyperparameter Value

The number of transformer blocks 12
The number of heads nhead 8

Hidden Dimension of feed-forward layers 128
Hidden Dimension of transformer blocks 64

Non-linearity function Swish
Dropout rate 0.1
Learning rate 2× 10−5

Batch size 256
Optimizer Adam

β1 in Adam optimizer 0.9
β2 in Adam optimizer 0.999

Warmup period 1000
Gradient clipping 1.0

Table 8: Hyperparameter Setting of the Dataset-aware Surrogate Model in DiffusionNAG on NAS-Bench-
201 Search Space.

Hyperparameter Value

The number of DiGCN layers 4
Hidden Dimension of DiGCN layers 144
Hidden Dimension of dataset encoder 56
The number of instances in each class 20

Hidden Dimension of MLP layer 32
Non-linearity function Swish

Dropout rate 0.1
Learning rate 1× 10−3

Batch size 256
Optimizer Adam

β1 in Adam optimizer 0.9
β2 in Adam optimizer 0.999

Warmup period 1000
Gradient clipping 1.0

generate and update the architectures. Furthermore, we set the sampling epsilon ϵ to 1× 10−5. This value is
used in the sampling step to ensure numerical stability (Song et al., 2021).

Score Network To train the score network sθ in DiffusionNAG, we employ the set of hyperparameters
in Table 7. We conduct a grid search to tune the hyperparameters. Specifically, we tune the number of transformer
blocks from the set {4, 8, 12}, the number of heads from the set {4, 8, 12}, and the learning rate from the set
{2× 10−2, 2× 10−3, 2× 10−4, 2× 10−5}. Additionally, we apply Exponential Moving Average (EMA) to
the model parameters, which helps stabilize the training process and improve generalization.

Dataset-aware predictor To train the dataset-aware predictor fϕ in DiffusionNAG, we employ the set
of hyperparameters in Table 8. We conduct a grid search to tune the hyperparameters. Specifically, we tune
the number of DiGCN layers from the set {1, 2, 3, 4}, the hidden dimension of DiGCN layers from the set
{36, 72, 144, 288}, the hidden dimension of dataset encoder from the set {32, 64, 128, 256, 512}, and the
learning rate from the set {1× 10−1, 1× 10−2, 1× 10−3}.
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(a) EI (b) ITS (c) UCB

Figure 6: Experimental Results on Various Acquisition Functions (NB201). Ours consistently shows
superior or comparable performance compared with the heuristic approaches on various acquisition functions.
We run experiments with 10 different random seeds.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 DISTRIBUTION OF GENERATED NEURAL ARCHITECTURES

Figure 5: The Distribution of Generated Architectures
for CIFAR10.

In Section 3.1 of the main paper, we evaluate
the effectiveness of DiffusionNAG in generat-
ing high-performing architectures. We generate
1,000 architectures using each method and an-
alyze their distribution. The target datasets (D)
are CIFAR10/CIFAR100 (Krizhevsky, 2009),
for which we have access to the Oracle dis-
tribution through the NAS-Bench-201 bench-
mark (Dong & Yang, 2020b). Alongside the
architecture distribution for CIFAR100 depicted
in Figure 2 of the main paper, we present the
architecture distribution for CIFAR10 in Fig-
ure 5. Similar to CIFAR100, DiffusionNAG
produces a greater number of high-performing
architectures compared to other baselines for
the CIFAR10 dataset as well. This observation confirms that the three advantages discussed in Section 3.1 of
the main paper also extend to CIFAR10.

D.2 IMPROVING EXISTING BAYESIAN OPTIMIZATION NAS ACROSS VARIOUS ACQUISITION
FUNCTIONS

Let the actual validation accuracy of an architecture A in the search space A be denoted as h(A), and let
Bn represent the set of trained models accumulated during the previous Bayesian Optimization (BO) loops,
given by Bn := {(A(1), h(A(1))), . . . , (A(n), h(A(n)))}. Moreover, we define the mean of predictions as
µ̂(A) := 1

M

∑M
m=1 ĥψ∗

m
(A), where ĥψ∗

m
(A) represents the prediction made by the m-th predictor from

an ensemble of M predictors. Additionally, we define the standard deviation of predictions as σ̂(A) :=√∑M
m=1((ĥψ∗

m
(A)−µ̂(A))2

M−1
. By utilizing an ensemble of predictors {ĥψm}Mm=1, we can estimate the mean and

standard deviation of predictions for each architecture in the search space (Please refer to Algorithms 1 and 2
in Appendix C.6).

Following Neiswanger et al. (2019) and White et al. (2021a), we utilize the following estimates of acquisition
functions for an input architecture A from the search space A:

φPI(A) = E [1 [µ̂(A) > ymax]] =

∫ ∞

ymax

N
(
µ̂(A), σ̂2(A)

)
dy (23)

φEI(A) = E [1 [µ̂(A) > ymax] (µ̂(A)− ymax)] =

∫ ∞

ymax

(µ̂(A)− ymax)N
(
µ̂(A), σ̂2(A)

)
dy (24)

φITS(A) = h̃(A), h̃(A) ∼ N
(
µ̂(A), σ̂2(A)

)
(25)

φUCB(A) = µ̂(A) + βσ̂(A), (26)

where ymax = h(Ai∗) , i∗ = argmaxi∈[n] h(A
(i)).

We conduct the same experiment as Figure 4 of the main paper in Figure 6 on the different search space, NB201.
The experimental results of different acquisition function optimization strategies across various acquisition
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functions in NB201 search space are presented in Figure 6. The results demonstrate that our proposed
acquisition optimization strategy with the conditional generative framework (Guided Gen (Ours)) consistently
shows superior or comparable performance compared to conventional acquisition optimization strategies. This
improvement is observed across various acquisition functions, including Probability of Improvement (PI), which
is used in Section 3.2 of the main paper, as well as Expected Improvement (EI), Independent Thompson
sampling (ITS), and Upper Confidence Bound (UCB) in the NB201 search space.

D.3 ADAPTATION ACROSS DIFFERENT OBJECTIVES

Table 9: Adaptation ability across differ-
ent objectives.

Stats. Guidance
fϕClean fϕAPGD fϕBlur

Te
st

A
cc

ur
ac

y Clean Max 93.90 80.40 86.60
Mean 93.17 69.24 74.23

APGD Max 2.60 26.60 22.50
Mean 1.51 17.66 14.02

Blur Max 37.10 53.50 56.90
Mean 33.28 40.46 47.88

In Table 9, we demonstrate that DiffusionNAG easily adapts
to new tasks by swapping the task-specific predictor in a plug-
and-play manner without retraining the score network. We train
three predictors with different objectives: Clean accuracy, robust
accuracy against an adversarial attack such as APGD (Croce &
Hein, 2020) with a perturbation magnitude of ϵ = 2, and robust
accuracy against glass Blur corruption. For each objective, we
randomly select 50 neural architectures from the NB201 and
collect their corresponding test accuracy data on CIFAR10 as
training data (i.e., (architecture, corresponding test accuracy)
pairs). Subsequently, we train each predictor using their respec-
tive training data, denoted as fϕClean , fϕAPGD , and fϕBlur . With the guidance of these predictors, we generate a
pool of 20 architectures for each. For each generated architecture pool, we provide statistics of all objectives
(i.e., test accuracies), including robust accuracies under the APGD attack and glass Blur corruption and clean
accuracy from the NB201-based robustness benchmark (Jung et al., 2023).

The maximum (max) and mean accuracies of the pool of architectures generated by using the predictor trained on
the target objective are higher than those obtained by using predictors trained with other objectives. For example,
architectures generated with the guidance of fϕClean have poor robust performance on the APGD attack and Blur
corruption, with a max accuracy of 2.6% and 37.10% for each. In contrast, the guidance of fϕAPGD and fϕBlur

yield better architectures with a max accuracy of 26.60% and 56.90% on the APGD attack and Blur corruption,
respectively, demonstrating the superior adaptation ability of DiffusionNAG across various objectives.

D.4 ANALYSIS OF GENERATED NEURAL ARCHITECTURES ACROSS DIFFERENT OBJECTIVES

In the Adaptation Across Different Objectives part of Appendix D.3, we demonstrate the capability of our
conditional generative framework to easily adapt to new tasks. This adaptability is achieved by seamlessly
swapping the predictor, trained with the specific target objective, without the need to retrain the score network.

By leveraging predictors trained with different objectives, such as clean accuracy, robust accuracy against
adversarial attacks (e.g., APGD with perturbation magnitude ϵ = 2), and robust accuracy against glass blur
corruption (Blur), we generate a pool of 20 neural architectures in the section. In this section, we analyze the
architecture pool generated for each objective. Specifically, we examine the occurrence of each operation type
for each node in the architecture pool guided by each objective.

Interestingly, each generated architecture pool exhibits distinct characteristics, as illustrated in Figure 7. In
Figure 7(a), we observe that the architecture pool guided by the Clean Accuracy objective has a higher pro-
portion of 3-by-3 convolution operation types compared to the other architecture pools. Furthermore,
in Figure 7(b), we can observe that the architecture pool guided by the Robust Accuracy against APGD
Attack objective exhibits distinct characteristics. Specifically, nodes 1, 2, and 3 are dominated by the zeroize,
3-by-3 average pooling, and skip connection operation types, while nodes 4, 5, and 6 are pre-
dominantly occupied by the 3-by-3 average pooling operation type. Lastly, in Figure 7(c), depicting
the architecture pool guided by the Robust Accuracy against Glass Blur Corruption objective, we observe
that nodes 1, 2, and 3 are predominantly occupied by the zeroize operation type. Based on our analysis, it is
intriguing to observe that the characteristics of the generated architectures vary depending on the objective that
guides the architecture generation process.

D.5 ADAPTATION ACROSS DIFFERENT OBJECTIVES: CORRUPTIONS

In Table 9, we evaluate the adaptation abilities of DiffusionNAG to new tasks by swapping the task-specific
predictor in a plug-and-play manner without retraining the score network. In the Section, we conduct further
experiments to explore a broader range of corruptions introduced not only in glass blur but also in various
corruptions in the NB201-based robustness benchmark (Jung et al., 2023). We conduct experiments to find
robust neural architectures for 15 diverse corruptions at severity level 2 in CIFAR-10-C. Similar to Table 9,
we demonstrated the capabilities of DiffusionNAG to easily adapt to new tasks without retraining the score
network. We achieved this by replacing task-specific predictors in a plug-and-play manner. Specifically, we train
a clean predictor, fϕclean ), to predict the clean accuracy of neural architectures using randomly sampled pairs of
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(a) Clean Accuracy

(b) Robust Accuracy against APGD Attack

(c) Robust Accuracy against Glass Blur Corruption

Figure 7: Analysis of Generated Architectures across Different Objectives. We analyze the distribution of
operation types for each node across the pool of 20 generated architectures. The architectures are generated by
DiffusionNAG, guided by surrogate models trained with different objectives such as Clean Accuracy, Robust
Accuracy against APGD Attack, and Robust Accuracy against Glass Blur Corruption.

architectures and their corresponding CIFAR-10 clean accuracy from the NB201-based robustness benchmark.
Afterward, we train the target corruption predictor, fϕcorruption , to predict the robust accuracy of neural architectures
under specific corruption types. We create the training dataset by including pairs of architectures and their
respective robust accuracy for each corruption scenario from the NB201-based robustness benchmark. With the
guidance of the trained fϕclean , we generated a pool of 20 architectures (Sclean. Similarly, with the guidance of
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Table 10: Adaptation Across Different Objectives: Corruptions.

Predictor Corruption Type
Brightness Contrast Defocus Elastic Fog Frost Gaussian

fϕclean
89.3 58.9 64.6 61.0 74.7 60.2 30.5

fϕcorruption
89.4 59.6 64.9 61.4 74.4 58.9 49.6

Impluse Jpeg Motion Pixelate Shot Snow Zoom Average

fϕclean
55.2 61.6 43.7 71.7 39.7 70.4 44.9 59.0

fϕcorruption
57.7 64.6 49.2 72.1 51.0 71.2 52.9 62.6

the task-specific predictors (fϕcorruption ), we generate another pool of 20 architectures for each target corruption
(Scorruption). Subsequently, we retrieve the robust accuracy on both fϕclean -guided and fϕcorruption -guided architecture
pools (Sclean and Scorruption) from the NB201-based robustness benchmark for each corruption scenario.

The maximum accuracies of the architecture pool generated using the predictor fϕcorruption trained for the target
corruption surpass those obtained using the accuracy predictor fϕclean trained for clean accuracy. For 13 out of
the 15 corruptions, excluding fog and frost corruption, the maximum accuracy of the architecture pool guided by
the fϕcorruption predictor exceeds that of the pool guided by fϕclean . The average maximum accuracy increased by
3.6%, reaching 59.0% and 62.6%, respectively.
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