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ABSTRACT

Large-scale pre-trained visual-language models have achieved significant success
in various video tasks. However, most existing methods follow an ‘adapt then align’
paradigm, where pre-trained image encoders are adapted to model video-level
representations, which are then aligned to the semantics or one-hot labels of target
actions. This paradigm overlooks the challenge of mapping from static images to
complicated activity concepts. In this paper, we propose a novel and efficient ‘align
before adapt’ paradigm. We introduce a token-merging strategy to the pre-trained
image model, generating region-aware embeddings in a hierarchical manner. This
enhances the visual-semantic alignment at a fine-grained level. Additionally, we
align the region-aware embeddings with the text corpus of action-related entities,
such as objects, body parts, primitive motions, and scenes. The embeddings of the
aligned text entities serve as queries for the transformer-based video adapter, better
aligning with the activity concepts in a video sequence. Our proposed framework
achieves competitive performance and superior generalizability while significantly
reducing computational costs. In fully-supervised scenarios, our method achieves
87.9% top-1 accuracy on Kinetics-400, using only 4947 GFLOPs. Furthermore, in
2-shot experiments, our method outperforms the previous state-of-the-art by 13.0%
and 12.0% on HMDB-51 and UCF-101, respectively.

1 INTRODUCTION

Video action recognition is a fundamental task in the pursuit of intelligent video understanding. The
recent trend of utilizing the visual-language pre-trained (VLP) models (Radford et al., 2021; Jia
et al., 2021; Yu et al., 2022; Li et al., 2022a) have significantly advanced the research of action
recognition (Wang et al., 2021; Ju et al., 2022; Pan et al., 2022; Ni et al., 2022; Lin et al., 2022;
Yang et al., 2023). By lightly fine-tuning the model, VLP-based methods outperform the previous
end-to-end network architectures, including two-stream networks (Simonyan & Zisserman, 2014;
Wang et al., 2016; Zhou et al., 2018), 3D convolutional neural networks (Carreira & Zisserman, 2017;
Feichtenhofer, 2020; Feichtenhofer et al., 2019; Hara et al., 2017; Qiu et al., 2017; Tran et al., 2015;
2018; Xie et al., 2018), and vision-transformer-based (ViT) networks (Bertasius et al., 2021; Fan et al.,
2021; Liu et al., 2022; Patrick et al., 2021; Yan et al., 2022). Employing a pre-trained VLP model for
action recognition can better encode the semantic meaning of items in images, even if they have very
different visual appearances. This is very helpful in understanding human action and also explains
why VLP models have achieved superior performance. As shown in Fig 1, the current VLP-based
action recognition methods follow an “adapt then align” paradigm. They either introduces temporal
interaction upon image representations or inserts temporal modules into pre-trained image encoders.
However, the “adapt then align” paradigm potentially destruct the visual-semantic correspondences
provided by VLP models, which will weaken the generalization ability of the action recognition
for the following reasons: (1) Actions are complex concepts that involve multiple fine-grained
atomic components, such as body parts, scenes, and objects. VLP models, with their inherent visual-
semantic correspondences, enable capturing the semantic information of these components from
various visual appearances. This facilitates accurate determination of action labels with improved
interpretability (Fang et al., 2018). (2) Human-centric activities often share common components,
implying that visual-semantic correspondences can be reused across different actions, even for those
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Figure 1: Left: Paradigm comparison between traditional adaptation approaches and our “Align
before Adapt” method. Right: Zero-shot and few-shot performance comparison on HMDB-51
dataset. With the model trained on Kinetics-400, our method surpasses the previous state of the arts.

that were not included in the training set. This high level of reusability allows the model to quickly
recognize new action categories.

In this paper, we propose an “align before adapt” paradigm. The paradigm first enhances the
fine-grained visual-semantics alignment by adopting a token-merging strategy (Bolya et al., 2022),
which hierarchically aggregates visual patches in a region-aware manner using a bipartite matching
mechanism. Then, we align the region-aware visual features with a text corpus that incorporates
action-related atomic entities, including objects, body parts, primitive motions, and scenes. The
corpus is generated by an automatic entity extraction procedure and can be reused for different action
recognition datasets. Each visual feature is matched with the text embeddings of entities in the corpus
using vector similarity, and the entity with the highest similarity is regarded as aligned with the visual
embedding. We leverage the aligned entities to guide the video representation adaption. Specifically,
the text embeddings of the aligned entities serve as queries for the transformer-based video adapter,
improving the alignment between the frame-level visual embedding and video-level activity concepts.

In the “align before adapt” paradigm, both region-aware visual-semantic alignment and aligned-entity-
guided video adaptation benefit the video action recognition. The embeddings of the token-merging
patches form “one-to-one” relationships between local visual patterns and the text corpus, resembling
the measures of visual grounding (Ghiasi et al., 2022; Li et al., 2022c). The text embeddings of the
aligned entities serve as regularization for adaptation, preserving the visual-semantic correspondences
from VLP. The overall paradigm with the token merging strategy helps us achieve better generalization
ability with low computational complexity. It improves our framework by 6.3% top-1 accuracy on
the HMDB-51 dataset under the 2-shot configuration but requires 23% less computational cost with
ViT-base backbone. In summary, our contributions are threefold:

• We propose an “align before adapt” paradigm that leverages the region-aware visual-semantic align-
ment and the aligned-entity guided video adaptation. The paradigm preserves the visual-semantic
alignment of VLP during the video representation adaption, achieving better interpretability and
generalization ability.

• We apply a token merging strategy on pre-trained image models. The embeddings generated from
merged patches form “one-to-one” relationships between local visual patterns and the text corpus.
It can also reduce the computational complexity of the transformer-based image encoder.

• Extensive experiments under various learning configurations are conducted. Besides demonstrating
competitive performance with low computational complexity (surpasses the current leading ap-
proach with the same VLP backbone by 0.4% top-1 accuracy while requiring 55% fewer GFLOPs),
our method reveals superior generalizability due to the reusable text entities (surpasses the previous
state-of-the-art by more than 10%).

2 RELATED WORK

Large Scale Visual-Language pretraining. In the past few years, the surge of large-scale visual-
language pre-trained (VLP) models (Su et al., 2020; Li et al., 2020a; Radford et al., 2021; Jia et al.,
2021; Li et al., 2022a; Zeng et al., 2022) have revolutionized multiple fields of computer vision,
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including image classification, captioning (Yu et al., 2022), grounding (Li et al., 2022c), image-text
retrieval, and so on. With the availability of massive amounts of web-scale visual-text paired data,
these models learn cross-modal representations through masked language modeling and/or contrastive
learning. Specifically, one of the most representative works, CLIP (Radford et al., 2021) , is trained
on 400M data following a contrastive manner, and shows remarkable performance on zero-shot image
classification. The success of VLP models inspires the “fine-tuning” trend on multiple downstream
tasks, such as open-vocabulary detection (Gu et al., 2022), segmentation (Wang et al., 2022; Xu et al.,
2023; Ghiasi et al., 2022), caption (Mokady et al., 2021), summarization (Narasimhan et al., 2021),
generation (Ramesh et al., 2022), etc. Our method adopts CLIP as the backbone for video action
recognition tasks under fully-supervised, few-shot, and zero-shot scenarios.

Video Action Recognition. The prosperity of deep learning has sparked various works for effective
video action recognition. Initially, there were two directions of methods: two-stream 2D CNNs (Zhou
et al., 2018; Wang et al., 2016; Simonyan & Zisserman, 2014) that process and spatial and tem-
poral context parallelly, and 3D CNNs (Tran et al., 2015; 2018; Qiu et al., 2017; Xie et al., 2018;
Feichtenhofer et al., 2019; Feichtenhofer, 2020) that factorize the convolution across spatial and
temporal dimensions simultaneously. Later transformer-based approaches, including ViViT (Arnab
et al., 2021), Timesformer (Bertasius et al., 2021), and VideoSwin (Liu et al., 2022) outperformed the
convolutional methods, by better capturing long-term dependencies through scalable self-attention
mechanisms. More Recently, leveraging available VLP models such as CLIP (Radford et al., 2021)
and Florence (Yuan et al., 2021), has become a data-friendly trend. EVL (Lin et al., 2022), ST-
Adapter (Pan et al., 2022), and AIM (Yang et al., 2023) add lightweight modules to the fixed CLIP
backbone for close-set recognition tasks, while ActionCLIP (Wang et al., 2021) and X-CLIP (Ni
et al., 2022) propose frameworks that enable adaptation to new scenarios. While all of the above
methods focus on adapting the visual branch of VLP models to the video directly, our approach
introduces early, grounded visual-semantic alignments before the adaptation step. This effectively
bridges the gap of mapping with complicated activity semantics during video representation learning.

Region-Aware Perception for Vision Transformer. In recent research on ViT architectures, it
has been well-studied that capturing fine-grained patterns in visual signals improves representation
learning. Various approaches, such as Swin Transformer (Liu et al., 2022), Region ViT (Chen et al.,
2022a), and GCViT (Hatamizadeh et al., 2023), propose incorporating multi-scale attention into
the ViT to achieve better performance in various downstream tasks including recognition, detection,
and segmentation. With the rise of visual-language pretraining, GLIP (Li et al., 2022c) suggests
learning better instance-level language-aware representations through grounded image-text data,
while FILIP (Yao et al., 2022) and Dense CLIP (Rao et al., 2022) focus on introducing patch-
level contrastive losses. These works have shown impressive progress in open-world scenarios. In
contrast to methods that require additional structures, data, or supervision, we adopt ToMe in our
image encoder. ToMe is computationally efficient and does not require any additional parameters. It
incorporates a soft bipartite matching strategy and a proportional attention mechanism to hierarchically
merge visual tokens in a region-aware manner. We utilize the merged tokens to achieve fine-grained
visual-semantic alignments for video action recognition.

3 METHODOLOGY

Our method aims to learn discriminative and transferable video representations for action recognition.
An overview of our proposed method is illustrated in Fig 2. We begin by constructing text corpus
based on action label sets offline (Sec. 3.1). Our “align before adapt” framework is introduced
in the following two sections: exploring fine-grained visual-semantic alignments in Sec. 3.2; And
leveraging aligned semantic embeddings for the subsequent adaptation of the video representation
learning (Sec. 3.3) The training details are introduced in Sec 3.4.

3.1 ACTION-RELATED TEXT CORPUS CONSTRUCTION

Drawing inspiration from cognitive science and recent research (Kurby & Zacks, 2008; Zacks et al.,
2001; Fang et al., 2018; Li et al., 2020b), we believe that perceiving and leveraging intermediate
spatiotemporal-variated patterns, such as bodies, objects, and scenes, can greatly mitigate the difficulty
of understanding activity concepts. Thanks to the VLP models, these patterns can be linguistically
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Figure 2: An overview of our framework: we input a video clip and offline embedded text corpus to
generate a video representation (in pink). This video representation is supervised with the goal of
maximizing the similarity score with the text representation of the correct action label.

expressed and perceived based on their similarities with visual representations in the embedding
space. We construct a knowledge base for these patterns, referred to as “text corpus”.

Empowered by large-scale language models, we design an automated process to construct the action-
related text corpus. To generate a reusable text corpus, we first collect a set of action labels from
several recognition datasets such as Carreira et al. (2018); Kuehne et al. (2011); Soomro et al.
(2012). The action-related text corpus is then generated according to the following steps: We employ
NLTK (Bird et al., 2009) to remove stop words and split single words or phrases from the descriptions
as basic units. As a supplement, we utilize the API of ChatGPT (OpenAI, 2022) with handcraft
prompts to uncover implicit units behind action names. (2) Then we utilize WordNet (Miller, 1995)
and prompt ChatGPT to automatically generate a series of descriptions as candidates for each unit.
(3) To filter out the appropriate descriptions, we employ word sense disambiguation techniques,
including the Lesk algorithm (Basile et al., 2014) and the T5 language model (Wahle et al., 2021).
These filtered descriptions are paired with correlated basic units and added to the text corpus in the
form of text entity={unit, description}. In addition, the body parts, such as head,
hands, and feet are added to the corpus by default. They are involved in most human activities.
The details and an illustration of the process are provided in Appendix A.

The produced text corpus is denoted by S = {si}Ki=1, where K is the number of the text entities.
We employ the text encoder of CLIP to encode every text entity in the text corpus to a d-dimension
embedding offline. The embeddings of all the text entities can be formulated as S ∈ RK×d.

3.2 VISUAL-SEMANTIC ALIGNMENT

Region-aware image encoding. To fully explore the fine-grained visual-semantic alignments, we
first aim to adaptively perceive and encode specific instances in video frames. In Fig 3a, we introduce
a region-aware image encoder, which consists of two parts: a ViT initialized by CLIP is used to
encode the frames; Token merging modules (Bolya et al., 2022) are incorporated into each transformer
encoder block of ViT to merge intermediate patch-wise tokens hierarchically.

Given a frame I ∈ RH×W×C , the ViT splits the frame into N non-overlapping patches and projects
them into d-dimension embeddings, forming a sequence {ei}Ni=1. The sequence is prepended with a
learnable [class] embedding ecls and added with position embeddings Epos, resulting in E0:

E0 = [e⊤cls, e⊤1 , e⊤2 , ..., e⊤N ] + Epos ∈ R(N+1)×d. (1)

E0 serves as the input for the sequence of encoder blocks. Each encoder block is composed of a
multi-head self-attention (MSA) and an MLP layer, along with a token merging (ToMe) module
and Layernorms (LN). Particularly, during the token merging process, a soft bipartite matching
algorithm (Bolya et al., 2022) is employed to find the most similar r pairs of embeddings based on
cosine similarities. The embeddings of each pair are merged into one, resulting in the total reduction
of r. The weights w of embeddings (how many embeddings have the current embedding incorporated)
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Figure 3: Detailed network components: (a) The region-aware image encoder includes a ViT with
plug-in token merging modules. (b) The semantic alignment module obtains the aligned query in a
softmax-weight-sum manner. and (c) shows the multi-modal video decoder, with its decoding block
containing a stack of hybrid modules composed of attention layers and 1D temporal convolution.

are tracked and utilized for merging operation and MSA. The procedure can be formulated as:

E′
i = Ei−1 +MSA(LN(Ei−1), wi), E′′

i = ToMe(E′
i, wi),

Ei = E′′
i +MLP(LN(E′′

i )), Ei ∈ R(N+1−i×r)×d,
(2)

where i denotes the index of transformer layers, and wi is the embedding weights in the current
block. Notably, the MSA layer adds an extra log wi term in the softmax calculation. The ToMe
module merges the tokes (excludes the [class] embedding) by averaging them with the weights wi.
We denote the final output of the L-block image encoder as X, which contains the frame-level [class]
embeddings and region-aware (remaining merged ones) embeddings:

X = EL = [x⊤
cls,x

⊤
1 ,x

⊤
2 , ...] ∈ R(N+1−L×r)×d. (3)

The right side of Fig. 3a visualizes the merging procedure along the transformer blocks. The visual
patches with the same color and border are merged into one and form region-aware embeddings.

Fine-grained visual-semantic alignments. We explore frame-level and grounded visual-semantic
correlations based on the text corpus and obtained visual embeddings. Specifically, the text entities
from the corpus are adaptively aligned with each input frame according to the similarities in the
embedding space. As depicted in Fig 3b, we start by calculating the similarity matrix A between
the embeddings of text entities S and the visual embeddings of the frame X. This is achieved by
applying Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017) operation over S:

wi,j =
⟨xi, sj⟩

∥ xi ∥ · ∥ sj ∥
, Ai,j =

exp(wi,j/τ + γj)∑K
k=1 exp(wi,k/τ + γk)

, (4)

where xi ∈ Rd and sj ∈ Rd are ith and jth embeddings of X and S, respectively. wi,j is cosine
similarity between xi and sj . Ai,j is gumbel-softmax calculation of wi,j over K-class S with the
temperature term τ and i.i.d random samples γi drawn from the Gumbel(0, 1) distribution. We then
align each visual embedding with a text entity in a hard-assignment (one-to-one) manner, which is
targeted at alleviating ambiguity of semantics and achieved by taking one-hot operations of Aargmax

over the all the text entities. Since the one-hot operation is not differentiable, we utilize the trick of
van den Oord et al. (2017); Xu et al. (2022):

Â = one-hot(Aargmax) +A− sg(A), (5)

where sg is the stop gradient operator. Â ∈ R(N+1−L×r)×K assign the most correlated text entity for
each frame-level or region-aware embedding with dominating weights while keeping differentiable.
It is noteworthy that, to validate the precision and interpretability of visual-semantic alignments, in
Fig. 4 left, we visualize the correspondence between region-aware embeddings and text entities. The
aligned semantic embedding Q for frame I is calculated by weighted summing Â and S, followed by
an MLP layer to reduce the dimensions from R(N+1−L×r)×d to R1×d:

Q = MLP(AS). (6)
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3.3 VIDEO REPRESENTATION ADAPTATION

Providing factorized text knowledge behind actions, the aligned semantic embeddings are leveraged
as “queries” for the adaptation of learning video representation. Given a video with T frames
[I1, I2, ..., IT ], we can obtain the frame-level embeddings X̂ ∈ RT×d and corresponding aligned
semantic embeddings Q̂ ∈ RT×d according to Eq. 3 and Eq. 6, respectively:

X̂=[x⊤
cls,1, ...,x

⊤
cls,i, ...,x

⊤
cls,T ], Q̂=[Q1, ...,Qi, ...,QT ], (7)

where xcls,i represents the frame-level embedding of the ith frame. We propose a multi-modal video
decoder, as shown in Fig 3c. This decoder includes a sequence decoding block that consists of a 1D-
convolution module, a self-attention (SA) module, and a cross-attention (CA) module. The attention
modules function in the same way as the ones in the transformer (Vaswani et al., 2017). The SA
module and the 1D-convolution module serve for temporal interactions among the aligned semantic
embeddings Q̂ and visual embeddings X̂, respectively. The CA module utilizes semantic embeddings
as queries to attend to the visual embeddings across the frames, thus facilitating communication
between the two modalities. The procedure of the video decoder can be formulated as:

X̂′
i = X̂+ 1D-Convi(X̂), Q̂′

i = SAi(Q̂i−1), Q̂i = CAi(Q̂′
i, X̂

′
i), i = 1, ...,M, (8)

where i indicates the block index of the video decoder. The initialized query Q̂0 = Q̂, and the output
query after M blocks is Q̂M . We obtain the final video representation z by applying Average Pooling
and MLP layer over the Q̂M sequentially along the temporal dimension and the feature channel:

z = MLP(AvgPool(Q̂M )). (9)

3.4 TRAINING DETAILS

Loss function. Our proposed network aims to maximize the similarity between video representations
and textual representations of corresponding action labels. Specifically, we utilize the frozen text
encoder of CLIP to perform prompt ensembling for action labels with a bunch of handcraft tem-
plates (Ni et al., 2022). Given the representations of the ith action ci and nth video zn (as described
in Eq. 9), the loss function can be implemented by the cross-entropy loss:

L = − 1

N

N∑
n=1

I∑
i=1

yi,n log

(
exp(c⊤i zn)∑I
j=1 exp(c

⊤
j zn)

)
. (10)

The training set has N videos belonging to the I actions. If the nth video belongs to the ith action,
yi,n equals 1; otherwise, yi,n equals 0.

Network training. The ViT backbone in the region-aware image encoder is initialized by CLIP, while
the token merging module is parameter-free with the reduction number r to be 8. The number of
blocks in the multi-modal video decoder is set to 4 and 6 for ViT-B and ViT-L backbones, respectively.
We adopt an AdamW optimizer for network parameter training with initial learning rates of 8×10−6

for the ViT backbone and 8×10−5 for the remaining parts. The networks are trained with 30 epochs
(including a five-epoch warmup) and a weight decay of 0.001 w.r.t. a cosine schedule. The input
video follows the main sparse sampling method (Wang et al., 2016) and augmentation strategy (Ni
et al., 2022) with a frame resolution 224×224. Experiments are conducted with 8 32GB-V100-GPUs.

4 EXPERIMENTS

Datasets. Our proposed method is evaluated on four widely used video action recognition datasets:
Kinetics-400 (Kay et al., 2017), Kinetics-600 (Carreira et al., 2018), UCF-101 (Soomro et al., 2012),
and HMDB-51 (Kuehne et al., 2011). Kinetics-400 consists of approximately 240k training and 20k
validation videos, covering 400 classes, with each clip spanning around 10 seconds. Kinetics-600
is an extension of Kinetics-400, including around 410k training and 29k validation videos for 600
classes. UCF-101 contains 13,320 video clips with 101 classes, and HMDB-51 consists of 7,000
videos with 51 classes. We conduct fully-supervised experiments on Kinetics-400 and Kinetics-600,
and for Kinetics-600, UCF-101, and HMDB-51, we perform few-shot and zero-shot experiments
using a pre-trained model from Kinetics-400.

6



Under review as a conference paper at ICLR 2024

Table 1: Comparison to state-of-the-art on Kinetics-400. Views are denoted with “input frames ×
spatial crops × temporal clips.” For image-language approaches, parameters in the text branch are
not counted. * indicates pretraining with a video-text collection.

Method Pretrain Top-1 Top-5 GFLOPs Views #Param.(M)

Methods with ImageNet or web-scale image pretraining
MViTv1-B (Fan et al., 2021) - 81.2 95.1 4095 64×3×3 36.6
Uniformer-B (Li et al., 2022b) IN-1k 83.0 95.4 3108 32×4×3 50.0
TimeSformer-L (Bertasius et al., 2021) IN-21k 80.7 94.7 7140 64×1×3 121.4
VideoSwin-L (Liu et al., 2022) IN-21k 83.1 95.9 7248 32×4×3 200.0
ViViT-H/16 (Arnab et al., 2021) JFT-300M 84.9 95.8 48916 32×4×3 647.5

Methods with web-scale language-image pretraining
MTV-H/16 (Yan et al., 2022) WTS-17B* 89.1 98.2 45537 32×4×3 -
PromptingCLIP-B/16 (Ju et al., 2022) CLIP-400M 76.9 93.5 - 16×5×1 95.5
ActionCLIP-B/16 (Wang et al., 2021) CLIP-400M 83.8 97.1 16890 32×10×3 105.2
ST-Adapter-L/14 (Pan et al., 2022) CLIP-400M 87.2 97.6 8248 32×3×1 -
EVL-L/14 (Lin et al., 2022) CLIP-400M 87.3 97.6 8088 32×3×1 357.9
AIM-L/14 (Yang et al., 2023) CLIP-400M 87.5 97.7 11208 32×3×1 341
X-CLIP-L/14 (Ni et al., 2022) CLIP-400M 87.1 97.6 7896 8×4×3 451.2

Our method
ALT-B/16 CLIP-400M 83.6 96.2 330 8×1×3 124.6
ALT-B/16 CLIP-400M 84.6 96.7 657 16×1×3 124.6
ALT-B/16 CLIP-400M 85.4 96.7 1308 32×1×3 124.6
ALT-L/14 CLIP-400M 86.7 97.4 1245 8×1×3 427.1
ALT-L/14 CLIP-400M 87.6 97.6 2478 16×1×3 427.1
ALT-L/14 CLIP-400M 87.9 97.7 4947 32×1×3 427.1
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Figure 4: Left: Visualization of visual-semantic correspondences with the tool (Chen et al., 2022b). For each
row: Column (2) visualizes the visual correspondence to text entities generated by the action label; Column
(3) visualizes region-aware embeddings under ToMe; Column (4) and (5) show the two of the fine-grained
corresponding visual patterns to specific text entities, which are geometrically consistent with Column (3).
Right: Visualization of Accuracy v.s. FLOPs performance.

4.1 FULLY SUPERVISED COMPARISON

Settings. We conduct fully-supervised experiments on Kinetics-400. Each video clip is sampled with
8, 16, or 32 frames. Two variants of the network, namely ALT-B/16 and ALT-L/14, employ ViT-B/16
and ViT-L/14, respectively. The results on Kinetics-600 are exhibited in the supplementary materials.

Results. In Tab. 1, we compare with the state-the-of-art methods on Kinetics-400 with the input
resolution 224×224. Taking eight sampled frames of each video as input, our method (ALT-B/16)
achieves 83.6% top-1 accuracy with only 330 GFLOPs. When the input frames increase to 32,
ALT-B/16 surpasses the performance of ViViT-H/16 (Arnab et al., 2021), which takes more than
30× computation cost (1308 vs. 48916 GFLOPs). By employing the larger backbone, ALT-L/14
achieves superior performance with 87.9% top-1 accuracy among CLIP-400M pretraining works
and significant computational advantage ( 0.4% higher than AIM (Yang et al., 2023) but 55% fewer
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Table 2: Few-shot comparisson on HMDB-51 and UCF-101.
Method Frames HMDB-51 UCF-101

K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16

TSM (Lin et al., 2019) 32 17.5 20.9 18.4 31.0 25.3 47.0 64.4 61.0
TimeSformer (Bertasius et al., 2021) 32 19.6 40.6 49.4 55.4 48.5 75.6 83.7 89.4
VideoSwin-B (Liu et al., 2022) 32 20.9 41.3 47.9 56.1 53.3 74.1 85.8 88.7

ActionCLIP (Wang et al., 2021) 8 55.0 56.0 58.0 - 80.0 85.0 89.0 -
X-CLIP-B/16 (Ni et al., 2022) 32 53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4
X-Florence (Ni et al., 2022) 32 51.6 57.8 64.1 64.2 84.0 88.5 92.5 94.8
ALT-B/16 32 64.0 66.1 70.0 74.1 93.2 95.3 96.3 97.1
ALT-L/14 32 68.0 69.4 73.0 78.9 96.0 97.3 98.0 98.1

Table 3: Zero-shot on HMDB-51 & UCF-101.
Method HMDB-51 UCF-101

MTE (Xu et al., 2016) 19.7±1.6 15.8±1.3
ASR (Wang & Chen, 2017) 21.8±0.9 24.4±1.0
ZSECOC (Qin et al., 2017) 22.6±1.2 15.1±1.7
UR (Zhu et al., 2018) 24.4±1.6 17.5±1.6
TS-GCN (Gao et al., 2019) 23.2±3.0 34.2±3.1
ER-ZSAR (Chen & Huang, 2021) 35.3±4.6 51.8±2.9

ActionCLIP (Wang et al., 2021) 40.8±5.4 58.3±3.4
X-CLIP-B/16 (Ni et al., 2022) 44.6±5.2 72.0±2.3
ALT-B/16 48.6±1.2 76.7±0.9
ALT-L/14 54.6±1.1 83.0±1.1

Table 4: Zero-shot on Kinetics-600.
Method Top-1 Top-5

DEVISE (Frome et al., 2013) 23.8±0.3 51.0±0.6
ALE (Akata et al., 2016) 23.4±0.8 50.3±1.4
SJE (Akata et al., 2015) 22.3±0.6 48.2±0.4
ESZSL (Romera-Paredes & Torr, 2015) 22.9±1.2 48.3±0.8
DEM (Zhang et al., 2017) 23.6±0.7 49.5±0.4
GCN (Ghosh et al., 2020) 22.3±0.6 49.7±0.6
ER-ZSAR (Chen & Huang, 2021) 42.1±1.4 73.1±0.3

X-CLIP-B/16 (Ni et al., 2022) 65.2±0.4 86.1±0.8
ALT-B/16 68.1±0.6 88.1±0.4
ALT-L/14 72.7±0.4 90.7±0.3

GFLOPs). It is noteworthy that the leading method MTV-H (Yan et al., 2022) adopts larger-scale
pretraining data (70M video-text pairs with about 17B images) and consumes 9× GFLOPs. As shown
in Fig 4 right, we visualize the performance of some representative works. Our approach achieves
higher accuracy while using fewer inference GFLOPs, setting new Pareto frontiers.

4.2 FEW-SHOT COMPARISONS

Settings. We evaluate our few-shot experiments on the HMDB-51 and UCF-101 datasets. To
construct the training set, we randomly sample 2, 4, 8, and 16 videos from each class, and we set the
frame number in each video to either 8 or 32. Following the protocols of X-CLIP (Ni et al., 2022), we
use the first split of the test set for evaluation and report the results based on single-view inference.

Results. Tab. 2 shows the performance comparison on K-shot learning. Our method significantly
outperforms methods based on image pretraining. For instance, when K=2, ALT-B/16 surpasses
VideoSwin-B (Liu et al., 2022) by 43.1% on HMDB-51 and 39.9% on UCF-101. Among the image-
language pertaining models. When K=4, the ALT-L/14 surpasses the previous state of arts by 11.6%
and 8.8% on HMDB-51 and UCF-101, respectively. The lead is consistent along to K=16 and
continues to expand when switching to ALT-L/14, highlighting the effectiveness of our paradigm.

4.3 ZERO-SHOT COMPARISONS

Settings. For zero-shot performance evaluation, we pretrain our ALTs on Kinetics-400 with 32
frames and utilized the same protocol as (Ni et al., 2022): For HMDB-51 and UCF-101, we conducted
experiments using the three provided splits. Regarding Kinetics-600, the test set is constructed by
randomly selecting 160 categories from the 220 categories that are distinct from those in Kinetics-400
three times. We report single-view results in the format of “average accuracy ± standard deviations.”

Results. We present the zero-shot results in Tab. 3 and Tab. 4. ALT-B/16 outperforms X-CLIP-B/16
by 4.0%, 4.7%, and 2.9% in terms of top-1 accuracy on HMDB-51, UCF-101, and Kinetics-600,
respectively. We attribute the superiority to the utilization of the text corpus, whose factorized and
reusable semantics mitigate the difficulty of adapting our model to a new scenario.

4.4 ABLATION STUDY

We employ ALT-B/16 to conduct detailed ablation experiments. By default, with 8 frames per sample,
the fully-supervised experiments are evaluated on Kinetics-400. Taking 32 frames as input, the
few-shot experiments are conducted on the first split of HMDB-51, and the zero-shot evaluation is on
the first split of the validation set of UCF-101. Results are obtained under single-view inference.
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Table 5: Effect of proposed components. Align: Se-
mantic alignment. ToMe: Token Merging. Region:
Utilize merged region-aware visual tokens for Align.

Align. ToMe. Region. Fully. 2-shot 0-shot

- - - 81.7 53.0 72.0
✓ - - 82.6 57.7 75.0
✓ ✓ - 82.0 54.1 73.3
✓ ✓ ✓ 82.4 64.0 76.7

Table 6: Linear evaluation, Top-1 Acc.(%) reported
in a single view of 32 frames, with ALT-B pre-trained
on Kinetics-400. Splits are provided by datasets.

Dataset Split 1 Split 2 Split 3 Average

UCF-101 95.6 95.8 96.1 95.83
HMDB-51 73.8 73.5 74.0 73.77

Table 7: Effect of different training strategies. S: spatial,
M: MLP, T: temporal, Param.: # parameters.

Method Top-1
Acc.(%) GFLOPs Param.(M) Tunable

Param.(M)

Frozen 81.1 110 125 38
S-adapter 81.4 116 129 42
SM-adapter 81.5 123 132 45
STM-adapter 82.0 163 136 49
Fine-tune 82.4 110 125 125

Table 8: Trade-off between single-view effi-
ciency & accuracy. r: the number of tokens
to reduce in each transformer block

r GFLOPs Top-1 Acc.(%)

0 141 82.6
4 129 82.4
8 110 82.4
13 86 81.9

Component analysis. To investigate the effectiveness of the proposed components, (1) we treat the
X-CLIP-B/16 (w/o text prompts) as the baseline, which introduces a cross-frame module inside the
CLIP image encoder and achieves 81.7% top-1 accuracy on Kinetics-400. Results are presented in the
first row of Tab. 5. (2) By replacing the cross-frame module with our video decoder and introducing
semantic alignments, we improve the baseline to 82.6%, demonstrating the effectiveness of our
“align before adapt” paradigm. (3) We leverage ToMe (Bolya et al., 2022) in the image encoder,
resulting in fewer computations but nonnegligible accuracy drops. (4) By further utilizing the merged
region-aware visual embeddings for fine-grained semantic alignments, the losses from token merging
are alleviated in fully-supervised experiments and even over-compensated in few/zero-shot scenarios.

Linear evaluation on learned representations. To investigate the quality of our learned video
representations, we conduct linear probe experiments on UCF101 and HMDB-51 with a frozen
ALT-B/16 pre-trained on Kinetics-400. The video representations extracted by the ALT-B/16 are
fixed and fed into a tunable linear classification layer. Under the supervision of one-hot labels, we
adopt the same AdamW schedule with Sec 3.4) and a learning rate 4× 104. The top-1 accuracies are
reported in Tab. 6, demonstrating the discrimination and generalization capabilities of our framework.

Training strategy of image encoder. Our method requires fine-tuning the pre-trained image encoder.
By contrast, as shown in Tab. 7, (1) when locking the image encoder during training, fewer parameters
demand tuning while the accuracy decreases to 81.1%. (2)-(4) Based on the “frozen” setting, we
leverage approaches provided by AIM (Yang et al., 2023), which introduces adapters into the image
encoder. The performances are improved by stacking spatial, temporal, and MLP adapters in the
transformer blocks. It is noteworthy that the STM method computes the attention layers twice,
therefore significantly increasing the computational complexity.

Efficiency and accuracy trade-off. By default, we set the number of token reductions per block in
the image encoder r to 8. Here we further investigate the performance of varying r. As shown in
Tab. 8, our method achieves the highest accuracy in fully-supervised experiments without the token
merging strategy (also no region-aware semantic alignment.) As r increases, the consumption of
computing decreases gradually, but so does the accuracy. On balance, r=8 is a cost-effective choice.

5 CONCLUSION

In this paper, we propose a novel paradigm for video action recognition called “align before adapt”
based on the Visual-Language-Pretrained (VLP) model. Our approach achieves fine-grained visual-
semantic alignment by incorporating a token merging strategy in VLP image encoders, enabling the
perception of region-aware visual appearance. The embeddings of these regions are then matched
with the text corpus of action-related entities using embedding similarity. The aligned entities are
further leveraged in video representation adaptation, preserving the visual-semantic correspondences
from VLP. Our paradigm demonstrates superior generalizability and competitive performance with
low computational costs. Additionally, our framework is compatible with more powerful current and
future visual-language foundation models.
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Figure A1: Snapshot of text corpus construction

A TEXT CORPUS CONSTRUCTION

In Fig. A1, we present a snapshot of the process of generating a text corpus from external video
descriptions. For each description, (1) we extract the relevant action-related units via NLTK stop
word removing and ChatGPT, where we design a prompt template “What are identifying object/body
parts/scenes/roles of an action {label}? List them concisely.” (2) We then use the WordNet tool to
generate a sequence of explanatory descriptions for each extracted single-word unit. For the extracted
phrase unit, we prompt ChatGPT to generate explanatory descriptions with the following templates:

“Concisely describe what an action {phrase unit} looks like”, “Concisely list potential explanations
for {phrase unit}”, and “Concisely explain {phrase unit} in one sentence”. (3) To determine the
most appropriate description for each unit, we employ the Lesk algorithm and T5-based word sense
disambiguation model according to the action labels. All of these procedures are automated through
code that utilizes the sources mentioned in the manuscripts.

B TRAINING CONFIGURATION

In fully-supervised training, we set the batch size to 256 and adopt the AdamW optimizer with
β1 = 0.9 and β2 = 0.98. The learning rate is 8×10−6 for the ViT module in the region-aware image
encoder and 8×10−5 for the remaining learnable parts. The temperature τ of the softmax in Eq. 4 is
set to 1. In few-shot experiments, the learning rate of the multi-modal video decoder is scaled up by
ten times, and the batch size is reduced to 64. Regarding the text corpora, we initially constructed
a text corpus based on Kinetics-400. When adapting to new scenarios, i.e. few-shot/zero-shot
experiments, we reuse the collected entities and expand the text corpus with new action labels. All
the text entities are embedded offline and fixed throughout experiments. For data augmentation, we
utilize the technique including RandomFlip, MultiScaleCrop, Mixup, and Label smoothing, following
the manner of X-CLIP (Ni et al., 2022).

C ADDITIONAL EXPERIMENTS

C.1 FULLY-SUPERVISED EXPERIMENT ON KINETICS-600

Tab. C1 presents the results on Kinetics-600. Our ALT-B/16 outperforms MTV-L (Fan et al., 2021)
by 0.5% by using 32 frames per video with three views. Equipping with a larger backbone, ALT-L/14
achieves 88.5% top-1 accuracy with computation consumption of only 4947 GFLOPs, which takes
the lead among the methods that adopt similar-level pre-trained models and data.
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Table C1: Comparison on Kinetics-600.
Method Pretrain Top-1 GFLOPs Views

MViT-B-24 (Fan et al., 2021) - 83.8 1180 32×5×1
VideoSwin-L(384↑) (Liu et al., 2022) IN-21k 85.9 25284 32×4×3
ViViT-H/16x2 320 (Arnab et al., 2021) JFT-300M 83.0 - 32×4×3
ViViT-H/16x2 (Arnab et al., 2021) JFT-300M 85.8 48916 32×4×3
TokenLearner-L/10 (Ryoo et al., 2021) JFT-300M 86.3 48912 32×4×3
Florence(384↑) (Yuan et al., 2021) FLD-900M 87.8 - 32×4×3
CoVeR (Zhang et al., 2021) JFT-3B 87.9 - 96×1×3
MTV-L (Yan et al., 2022) JFT-3B 85.4 18483 32×4×3
MTV-H (Yan et al., 2022) WTS-17B 89.6 45537 32×4×3
X-CLIP-L/14 (Ni et al., 2022) CLIP-400M 88.3 7896 8×4×3

ALT-B/16 CLIP-400M 85.9 1308 32×1×3
ALT-L/14 CLIP-400M 88.5 4947 32×1×3

Table C2: Comparison on Something Something V2.

Method Pretrain Top-1 GFLOPs Views

MViT-B-24 (Fan et al., 2021) K-600 69.7 708 32×1×3
ViViT-L (Arnab et al., 2021) IN-21K+K-400 65.4 11892 32×1×3
MTV-B(384↑) (Yan et al., 2022) IN-21K+K-400 68.5 11160 32×3×4
EVL-B/16 (Lin et al., 2022) CLIP-400M 62.4 2047 32×1×3
ST-Adapter-B/16 (Pan et al., 2022) CLIP-400M 69.5 1955 32×1×3
ALT-B/16 CLIP-400M 66.8 1308 32×1×3

C.2 FULLY-SUPERVISED EXPERIMENT ON SOMETHING-SOMETHING V2

The Something-Something V2 dataset collects more than 220000 video clips that belong to 174
action categories, covering basic human actions with everyday objects. Compared to Kinetics-400, it
requires more temporal reasoning. We evaluate our approach on Something-Something V2 under
full supervision. The accuracies are reported in Tab. C2. Among the CLIP-based works, our method
outperforms EVL (Lin et al., 2022), but it is inferior to ST-adapter (Pan et al., 2022), which utilizes
interleaved heavier 3D Convolution modules. We attribute the key to handling such kind of motion-
heavy datasets to elaborately designed temporal communication mechanisms, which inspire future
directions of our work.

Table C3: Effect of subcollections of the text corpus.

Text corpus Fully. 2-shot 0-shot
∅ 81.6 56.1 66.3
Sbody 81.9 60.4 73.1
Sobject 82.2 62.7 74.8
Sscene 82.2 61.9 74.1
Smotion 81.8 59.7 72.4
Sall 82.3 64.0 76.7

Table C4: Effect 1D-Conv and SA modules in the
video decoder.

SA 1D-Conv Fully. 2-shot 0-shot

- - 81.8 62.4 75.6
✓ - 82.2 63.2 76.3
- ✓ 82.1 62.7 76.1
✓ ✓ 82.3 64.0 76.7

C.3 INVESTIGATION OF TYPES TEXT CORPUS

To further validate the effect of text corpus, we set a baseline model by replacing aligned semantic
embeddings in Eq. 6 with random learnable queries. The result is reported in the first row of Tab. C3
(2-shot and 0-shot experiments take 32 frames per video as input). Moreover, we evaluate the
effectiveness of each sub-collection of text corpus by categorizing the text entities into four groups:
object, body parts, scenes, and primitive motion. We find that each category is helpful, and the models
with all text entities further outperformed the baseline, especially in the 2-shot (+8.9%) and 0-shot
(+10.3%) experiments. The results reveal that our categorized text entities are complementary to each
other, and semantic alignments promise more robust visual representations when facing a severe lack
of data.
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C.4 VIDEO DECODER COMPONENT ANALYSIS

In addition to facilitating cross-modal information exchange, another important role of the video
decoder is enabling spatiotemporal signal communication. We further investigate the effects of
1D-convolution (1D-Conv) and self-attention (SA) modules in the video decoder, and the ablation
results are shown in Tab. C4. We find that both of them are beneficial to the performance.
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