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ABSTRACT

Despite their remarkable capabilities, Large Language Models (LLMs) struggle
to effectively leverage historical interaction information in dynamic and complex
environments. Memory systems enable LLMs to move beyond stateless inter-
actions by introducing persistent information storage, retrieval, and utilization
mechanisms. However, existing memory systems often introduce substantial time
and computational overhead. To this end, we introduce a new memory system
called LightMem, which strikes a balance between the performance and effi-
ciency of memory systems. Inspired by the Atkinson–Shiffrin model of human
memory, LightMem organizes memory into three complementary stages. First,
cognition-inspired sensory memory rapidly filters irrelevant information through
lightweight compression and groups information according to their topics. Next,
topic-aware short-term memory consolidates these topic-based groups, organizing
and summarizing content for more structured access. Finally, long-term memory
with sleep-time update employs an offline procedure that decouples consolida-
tion from online inference. On LONGMEMEVAL and LOCOMO, using GPT and
Qwen backbones, LightMem consistently surpasses strong baselines, improving
QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38× /
20.9× and API calls by up to 30× / 55.5×, while purely online test-time costs are
even lower, achieving up to 106× / 117× token reduction and 159× / 310× fewer
API calls. We will release the LightMem codebase in the near future.

1 INTRODUCTION

Memory is fundamental to intelligent agent, enabling the assimilation of prior experiences, contex-
tual cues, and task-specific knowledge that underpin robust reasoning and decision-making (Wang
et al., 2024; Behrouz et al., 2024; Du et al., 2025; Zhang et al., 2024). While Large Language Models
(LLMs) (DeepSeek-AI et al., 2025; Achiam et al., 2023) demonstrate remarkable capabilities across
a wide range of tasks, they exhibit significant limitations when engaged in long-context or multi-
turn interaction scenarios due to fixed context windows and the “lost in the middle” problem (Liu
et al., 2024). Memory systems are pivotal for overcoming these limitations, as they allow LLMs to
maintain a persistent state across extended interactions. Recent works (Li et al., 2025b; Yang et al.,
2024; Chhikara et al., 2025; Kang et al., 2025) address this challenge by building explicit external
memory through sequential summarization and long term storage, enabling models to retain and
retrieve relevant information over long horizons.

Note that a typical LLM memory system processes raw interaction data into manageable chunks,
such as turn- or session-level in dialogue scenarios (Xu et al., 2025; Li et al., 2025a), organizes
them into long-term memory (e.g., databases or knowledge graphs) by indexing them into memory
units, and continuously updates by adding new information and discarding outdated or conflicting
content (Zhong et al., 2024). This enables retrieval of relevant memories, improving coherence, and
personalization in long-context, multi-turn scenarios.

Challenges. Despite these advances, as shown in Figure 1, contemporary memory systems still
suffer from significant inefficiencies and consistency issues. First, in long interactions (e.g., dia-
logue scenarios), both user inputs and model responses often contain substantial redundant infor-
mation (Maharana et al., 2024; Wu et al., 2025). Such information is typically irrelevant to down-
stream tasks or subsequent memory construction, and in some cases, may even negatively affect the
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model’s in-context learning capability (Liu et al., 2023; Pan et al., 2025). However, current main-
stream memory-related studies generally process the raw information directly without any filtering
or refinement, leading to high overhead from noisy or irrelevant data. This inflates token consump-
tion without proportional gains in reasoning quality or coherence. Second, memory construction
typically treats each turn in isolation or relies on rigid context-window boundaries, failing to
model semantic connections across different turns (Tan et al., 2025). As a result, during subse-
quent memory item construction, the backbone LLM may generate inaccurate or incomplete item
representations due to overly entangled topics or semantics, leading to the loss of crucial contex-
tual details. Third, memory updates and forgetting are usually performed directly during inference
and task execution. This tight coupling introduces long test-time latency in long-horizon tasks and
prevents deeper, reflective processing of past experiences.

In contrast, human memory efficiently processes information through a hierarchical system: sensory
memory pre-filters stimuli, short-term memory actively integrates and reasons over relevant content,
and long-term memory selectively consolidates salient information in sleep time.

Figure 1: Comparison of previous works and LightMem.

Building Lightweight Memory. In-
spired by the efficiency and struc-
ture of human memory, we introduce
LightMem, a lightweight memory
architecture designed to minimize re-
dundancy while preserving perfor-
mance. In particular, LightMem
emulates human memory through
three key components: (1) A pre-
compression sensory memory module
that filters redundant or low-value to-
kens from raw input and buffers the
distilled content for downstream pro-
cessing. This initial filtering step re-
duces noise before information en-
ters the memory pipeline. (2) A
topic-aware short-term memory that
leverages semantic and topical sim-
ilarity to dynamically group related
utterances into coherent segments.
By adaptively determining segment
boundaries based on content instead of fixed window sizes, this module produces more concen-
trated and meaningful memory units. This not only reduces the frequency of memory construction
but also enables more precise and efficient retrieval during inference. (3) A sleep-time update mech-
anism for long-term memory maintenance. New memory entries are initially stored with timestamps
to support immediate (“soft”) updates for real-time responsiveness. Later, during designated offline
periods (i.e., “sleep”), the system reorganizes, de-duplicates, and abstracts these entries, resolving
inconsistencies and strengthening cross-knowledge connections. Crucially, this decouples expensive
memory maintenance from real-time inference, enabling reflective, high-fidelity updates without in-
troducing latency. By systematically filtering, organizing, and consolidating relevant information,
LightMem substantially reduces computational overhead and API costs while sustaining accurate,
coherent reasoning over extended interactions. We detail each component in §3.

Results and Evaluation.

On LongMemEval (Wu et al., 2025), LightMem consistently outperforms the strongest baseline,
improving accuracy by 2.09%–6.40% with GPT and up to 7.67% with Qwen. In terms of overall
efficiency (online + offline), LightMem reduces total token usage by up to 38× for GPT and 21.8×
for Qwen, lowers API calls by up to 30× and 17.1×, and accelerates runtime by up to 12.4×
and 6.3×, respectively. If considering only online test-time costs, the gains become even larger:
LightMem cuts token usage by up to 105.9× (GPT) and 117.1× (Qwen), and reduces API calls
by up to 159.4× and 309.9×. On the LoCoMo benchmark (Maharana et al., 2024), LightMem
maintains strong advantages, achieving 6.10%–29.29% higher accuracy and substantial efficiency
improvements—boosting token efficiency by up to 20.92×, reducing API calls by up to 55.48×, and
speeding up runtime by up to 8.21× across GPT and Qwen backbones. Furthermore, case studies
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in §5.6 show that the offline “sleep-time” consolidation enhances long-term memory reliability,
mitigating information loss.

2 PRELIMINARY

2.1 CONVENTIONAL MEMORY SYSTEMS FOR LLMS

We describe mainstream memory architectures pipeline in terms of two major stages. (I) Memory
Bank Construction. This stage can be further decomposed into three sub-stages: (a) Raw data D
are first processed at a chosen level of granularity, D(g) = fseg(D; g), g ∈ {turn, session, topic} in
dialog scenario; (b) The segmented data D(g) are then summarized or extracted to generate mem-
ory entries, E = fsum(D

(g)), which are stored and organized within structural backends such as
vector databases or knowledge graphs to enable long-term retention; (c) Many systems incorpo-
rate an updating mechanism to mitigate issues such as context conflicts or outdated information,
M ′ = fupdate(M,R;U), where M denotes the existing memory bank, R represents newly generated
memory entries, and U specifies the update or forgetting policy. (II) Retrieval and Usage. When a
new user query arrives, the system retrieves relevant entries from the memory bank, integrates them
with the query to construct the final prompt, and then invokes the model to produce a response.

2.2 ATKINSON–SHIFFRIN HUMAN MEMORY MODEL

Following the Atkinson–Shiffrin human memory model (Atkinson & Shiffrin, 1968), raw environ-
mental information in human brain is first briefly retained in sensory memory, which enables rapid
pre-attentive feature extraction and filtering, effectively serving as a form of pre-compression. The
processed input can then enter short-term memory (STM), where information and interaction se-
quences are preserved for tens of seconds to minutes, supporting secondary filtering and more de-
liberate processing. In contrast, long-term memory (LTM) provides durable storage and undergoes
continuous reorganization through updating, abstraction, and forgetting. Importantly, Rasch & Born
(2013) highlight that sleep plays a critical role in this reorganization, as oscillatory activity during
sleep facilitates the integration and consolidation of memory systems.

2.3 LIMITATIONS OF EXISTING LLM MEMORY SYSTEMS

Compared to human memory, current LLM memory systems are burdened by high maintenance
costs, mainly due to three limitations: 1) Redundant Sensory Memory. In current systems, fsum()
and fgran(; g = topic) are typically executed by calling stronger LLMs. Feeding raw data D directly
wastes resources and even weakens in-context learning due to redundancy. A key challenge is to
design lightweight mechanisms that pre-compress inputs and apply pre-attention strategies to cap-
ture semantic units at different granularities efficiently. 2) Balancing Effectiveness and Efficiency
in STM. As shown in Figure 1, when input granularity is fixed, D(g) must pass through the entire
pipeline. Excessively fine granularity increases latency and underutilizes STM capacity, whereas
overly coarse granularity without semantic constraints or grouping may cause mixed or entangled
semantics and topics, leading to inaccurate memory construction and loss of fine-grained details
in subsequent processes. This calls for strategies that better balance effectiveness and efficiency
in STM. 3) Inefficient LTM Updating. Current fupdate() mechanisms face two main issues: (i)
enforcing strict real-time updates at test time incurs significant latency, whereas STM can provide
short-term context without immediate LTM updates; (ii) memory banks are updated sequentially due
to ordering constraints (read-after-write/write-after-read), rather than being triggered dynamically.
These limitations raise a research question: Can we design LLM memory that is both efficient and
lightweight, inspired by human memory mechanisms?

3 LIGHTMEM ARCHITECTURE

Analogous to the human memory, we design LightMem as shown in Figure 2, which consists of three
light modules: Light1 implements an efficient Sensory Memory Module that selectively preserves
salient information from raw input (§3.1), Light2 realizes a topic-aware STM Module for transient
information processing (§3.2), and Light3 provides an LTM module designed to minimize test time
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Figure 2: The LightMem architecture. LightMem consists of three modules: a) An efficient Sen-
sory Memory Module, b) a topic aware STM Module, and c) an LTM module updated in sleep time.

update latency (§3.3) with a sleep time update mechanism. The overall pipeline framework of
LightMem, its specific models, and comparisons with other memory frameworks are presented in
Appendix A.1. The complexity analysis for LightMem’s efficiency gains is in Section 4.

3.1 LIGHT1: COGNITIVE-INSPIRED SENSORY MEMORY

In long horizon interaction scenarios, such as user–assistant dialogues, a large portion of the infor-
mation is redundant. Therefore, we design a Pre-Compressing Submodule to eliminate redundant
tokens, followed by the Topic Segmentation Submodule that forms semantic topic-based segments
for following faster and more accurate memory construction.

Pre-Compressing Submodule. This module leverages a compression model θ to eliminate redun-
dant tokens, tailored for compatibility with the downstream memory construction phase:

x̂ = {xi ∈ x | P (retain xi | x; θ) > τ} , τ = Percentile ({xj}, r) ,

Following Xia et al. (2025), we use LLMLingua-2 (Pan et al., 2024b) as our compression model θ.
Let x be the raw input tokens, θ the model, and r the compression ratio. The threshold τ is set to
the r-th percentile of retention scores, keeping only tokens above τ . For P (retain xi | x), we treat
the compression process as a binary token classification task (“retain” or “discard”). For each token
xi in a sequence x, the model θ outputs a logit vector ℓi, and the retention probability is given by:

P (retain xi | x; θ) = softmax(ℓi)1,

where the subscript 1 denotes the “retain” class. Tokens with probabilities above a dynamic thresh-
old are included in the compressed sequence. In addition, LightMem can also employ more general
generative LLM as the pre-compression model. We further implement a token filtering mechanism
based on the cross-entropy between the model’s predicted distribution and the true token labels:

P (retain xi | x; θ) = −
∑
xi∈V

q(xi) logP (xi | x; θ)

where q(xi) denotes the true token label distribution. Tokens with higher conditional entropy under
a given context are more uncertain and less predictable, indicating greater informational uniqueness
and a more critical role in semantic expression, such distinctive tokens are essential for subsequent
memory construction and are therefore retained.
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Topic Segmentation Submodule. Existing works indicate that topic-granular input facilitates im-
proved performance in memory systems (Pan et al., 2025; Tan et al., 2025). As shown in Fig-
ure 2, LightMem maintains a sensory memory buffer to temporarily store information after pre-
compression. When the accumulated information reaches the buffer’s maximum capacity, a hybrid
topic segmentation operation based on attention and similarity is triggered. We use the compression
model θ and an embedding model to compute attention matrices and semantic similarities, respec-
tively. We define the final segmentation boundaries as the intersection of attention-based boundaries
B1 and similarity-based boundaries B2:

B1 = {k | Mk,k−1 > Mk−1,k−2, Mk,k−1 > Mk+1,k, 1 < k < n} ,

B2 =
{
k
∣∣ sim(sk−1, sk) < τ, 1 ≤ k < n

}
, B = B1 ∩ B2.

Specifically, dialogue scenarios possess natural semantic units, namely the conversational turn. We
construct a turn-level attention matrix M ∈ Rn×n. B1 are identified as local maxima in the sequence
{Mk,k−1}, i.e., the sub-diagonal elements of M corresponding to attention between consecutive sen-
tences. The detailed process of B1 and illustrative cases are provided in Appendix C.1. To mitigate
attention sinks and dilution in attention-based methods, we compute semantic similarity between
adjacent turns near each candidate boundary in B1. Boundaries with similarity below threshold τ
form set B2, which helps determine the final topic boundaries B.

3.2 LIGHT2: TOPIC-AWARE SHORT-TERM MEMORY

After obtaining individual topic segments, forming an index structure of {topic, message turns},
where message turns = {useri, modeli}. These are first placed into the STM buffer. When the token
count in the buffer reaches a preset threshold, we invoke LLM fsum to generate concise summaries
of every structure. The final index structure stored in LTM is {topic, {sumi, useri, modeli}}.

sumi = fsum(Si) , Si ⊆ {useri,modeli }, Si ̸= ∅,

Entryi = { topic, ei := embedding(sumi), useri, modeli } ,
where Entryi denotes the memory entry to be stored in LTM. Compared with inputting at the granu-
larity of a single turn or session, directly feeding multiple sessions can reduce subsequent API calls
but often introduces inaccurate memory entries due to excessive topic mixing, leading to perfor-
mance degradation. In contrast, topic-constrained input granularity minimizes API calls to the great-
est extent while preserving summarization accuracy and maintaining stable system performance.

3.3 LIGHT3: LONG-TERM MEMORY WITH SLEEP-TIME UPDATE

Soft Updating at Test Time. At test time, when memory entries arrive, LightMem directly inserts
them into LTM with soft updates, thereby decoupling the update process from online inference. Due
to real-time updates being converted to direct insertions, interaction latency is significantly reduced.
After all entries are inserted or when an update trigger arrives, we compute an update queue for
every entry in LTM.

Q(ei) = Topk

{
(ej , sim(vi, vj)) | tj ≥ ti, j ̸= i

}
:n
,

where ei denotes the i-th memory entry with embedding vi and timestamp ti, sim(·, ·) is the simi-
larity function, and Topk{·}:n indicates selecting the top-k most similar candidates, with the update
queue Q(ei) length fixed at n. Consistent with existing work, we select the top-k existing memory
entries with the highest semantic similarity as potential update sources. On this basis, we further
impose the constraint that only entries with later timestamps are allowed to update earlier ones
(tj ≥ ti), which is consistent with realistic temporal dynamics. Here, Q(ei) denotes the queue of
other entries that may update ei. Since this process involves only similarity retrieval, it is fast and
lightweight, and can be executed offline in parallel with online inference.

Offline Parallel Update. LightMem does not simply transfer online update latency to offline phases,
it substantially reduces the overall update latency. The online update mechanism in existing memory
frameworks enforces sequential updates, leading to a total latency that accumulates with each up-
date. As shown in Figure 2, in LightMem, each memory entry maintains a global update queue, with
each queue corresponding to a distinct fupdate operation. Since the update targets are independent
across queues, updates can be executed in parallel, thereby greatly reducing the total latency.
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4 COMPLEXITY ANALYSIS ABOUT LIGHTMEM

Method Summary Tokens Update Tokens API Calls Runtime
Baselines N(Lsum-in + T + Lsum-out) NM1R1(Lup-in + Lup-out) N O(N)

LightMem NrxT
th (Lsum-in + th+ Lsum-out)

NrxT
th M2R2(Lup-in + Lup-out)

NrxT
th O

(
NrxT
th

)
Table 1: Complexity comparison between LightMem and other memory systems. The specific
definitions of each symbol are provided in the Appendix A.2.

As shown in Table 4, we consider a dialogue with N turns, each containing on average T tokens.
In conventional memory systems, each turn triggers a summarization call, consuming Lsum-in +T +
Lsum-out tokens and totaling N(Lsum-in +T +Lsum-out) tokens with N API calls. Each summarization
produces M1 memory entries, a fraction R1 of which retrieve at least one relevant neighbor and
trigger an update, resulting in an update-token cost of NM1R1(Lup-in + Lup-out).

In LightMem, each turn is first passed through iterative pre-compression submodule, retaining only
rxT tokens after x iterations, and appended to a short-term memory (STM) buffer of capacity th.
Summarization is triggered only when the buffer reaches capacity, yielding NrxT

th summarization
calls, each consuming Lsum-in + th + Lsum-out tokens. Each summarization produces M2 memory
entries, but stricter retrieval constraints, including semantic similarity and timestamp filtering, re-
duce the fraction R2 that trigger updates. Hence, the update phase involves NrxT

th M2R2 calls, with
a total token cost of NrxT

th M2R2(Lup-in + Lup-out).

Overall, LightMem requires only NrxT
th API calls for both summarization operations, substantially

reducing token usage and call frequency compared to other systems. Correspondingly, the runtime
complexity of other memory systems is O(N), while LightMem achieves a reduced runtime of
O
(

NrxT
th

)
, reflecting the efficiency gain from compressed summarization and selective updates.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Experimental Details. (1) Our experiments adopt a realistic Incremental Dialogue Turn Feeding
setting, where the entire dialogue history is fed and processed at the turn level, one turn at a
time. This reflects practical scenarios where interactions between user and model is incrementally
formed turn by turn. (Hu et al., 2025). (2) For considerations of both efficiency and effectiveness,
we employ LLMLingua-2 as our pre-compressor throughout all subsequent experiments. (3) The
attention scores for topic segmentation are also obtained using LLMLingua-2, the size of the sensory
memory buffer is 512 tokens. All specific models used in this paper, can be found in Table 5.

Datasets & Baseline Methods. We use two well-known datasets, LONGMEMEVAL (Wu et al.,
2025) (specifically the LongMemEval-S split) and LOCOMO (Maharana et al., 2024) to evaluate
memory ability. We compare LightMem against several representative baselines of conversational
memory modeling. ① Full Text, ② Naive RAG, ③ LangMem (LangChain, 2025), ④ A-MEM (Xu
et al., 2025), ⑤ MemoryOS (Kang et al., 2025), ⑥ Mem0 (Chhikara et al., 2025). In addition, all
methods use GPT-4o-mini and Qwen3-30B-A3B-Instruct-2507 as the LLM backbones. Details on
dataset, baselines, and experimental settings are provided in the Appendix D.

Metrics. We evaluate these methods using both effectiveness and efficiency metrics. For effective-
ness, we report Accuracy (ACC), defined as the proportion of correctly answered questions. The
evaluation is conducted with GPT-4o-mini as an LLM judge, guided by a detailed evaluation prompt
(see Appendix E.1). For efficiency, we focus on tracking the computational costs of the LLM invo-
cations in memory bank construction stage (see Section 2.1), all averaged across the entire dataset,
as it is the one tied to the design and implementation differences of memory systems. The retrieval
and usage stage is not our focus, because for fair comparison, The fretrieve(), fchat() and number of
retrieved entries are same among all methods. As a result, their costs exhibit only minor differences,
and this stage is largely orthogonal to the design of memory systems, as shown in the table. Within
the memory bank construction stage, only the two sub-processes Summary and Update involve the
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Table 2: Effectiveness and efficiency comparison on LONGMEMEVAL-S. The token usage is in
thousands. – indicates no value for the metric. Bold denotes the best result, underline the second-
best. r denotes the compression rate. th denotes the capacity threshold of the STM buffer, measured
in tokens. Each pair of r and th corresponds to two rows: one for online soft update and one for
offline update. OP-update denotes the offline parallel update process of LightMem.

Method ACC (%) Summary Tokens (k) Update Tokens (k) Total (k) Calls Runtime (s)
In Out In Out

GPT-4o-mini

FullText 56.80 – – – – 105.07 – –
NaiveRAG 61.00 – – – – – – 867.38
LangMem 37.20 – – 982.68 119.48 1,102.16 520.62 2,293.70
A-MEM 62.60 214.66 42.82 1,157.52 190.81 1,605.81 986.55 5,132.06
MemoryOS 44.80 2,302.35 304.18 350.02 35.19 2,991.75 2,938.41 8,030.04
Mem0 53.61 424.13 17.76 560.17 150.56 1,152.62 811.57 4,248.49
LightMem
r=0.5, th=256 64.29 20.80 10.01 – – 30.81 25.67 302.69
(OP-update) 64.69 – – 44.46 2.56 47.02 70.23 342.63
r=0.6, th=256 67.78 24.58 10.53 – – 35.11 30.47 329.61
(OP-update) 65.39 – – 53.98 3.18 57.16 85.07 411.56
r=0.7, th=512 68.64 18.88 9.37 – – 28.25 18.43 283.76
(OP-update) 67.07 – – 79.38 4.06 83.44 125.47 496.03

Qwen3-30B-A3B-Instruct-2507

FullText 54.80 – – – – 105.07 – –
NaiveRAG 60.80 – – – – – – 659.09
LangMem 50.80 – – 1,311.96 118.06 1,430.02 495.12 3,237.16
A-MEM 65.20 219.21 66.98 1,260.54 318.20 1,864.93 989.30 5,367.51
MemoryOS 49.60 2,101.54 510.88 305.12 27.43 2,944.97 2,922.28 8,721.78
Mem0 39.51 424.20 15.34 411.50 111.35 1001.90 722.76 2,239.94
LightMem
r=0.4, th=768 61.95 9.01 16.14 – – 25.15 16.54 357.13
(OP-update) 62.34 – – 111.13 7.88 119.01 176.02 1036.47
r=0.6, th=768 70.20 13.19 19.21 – – 32.40 19.97 417.13
(OP-update) 65.14 – – 97.11 5.92 103.03 152.93 1023.56
r=0.8, th=1024 68.69 14.82 18.49 – – 33.31 9.43 355.71
(OP-update) 67.34 – – 106.91 6.20 113.11 168.37 1026.90

use of LLMs, fsum/extract() and fupdate(). So for both processes, we report the token consumption
from LLM calls, including input tokens, output tokens, and total token usage (in thousands). Addi-
tionally, we track API Calls counting the total number of LLM invocations, and Runtime recording
the overall execution time for memory bank construction stage.

5.2 MAIN RESULTS

As shown in Table 2 and Table 3, LightMem demonstrates superior effectiveness and efficiency on
both datasets across both GPT and Qwen backbones. For a fair comparison, all efficiency metrics
for LightMem in the following analysis refer to the combined online and offline costs.

LongMemEval. On the LongMemEval benchmark, LightMem consistently outperforms the
strongest baseline, A-Mem, in the ACC metric, improving accuracy by 2.09%–6.40% with GPT and
up to 7.67% with Qwen. In terms of efficiency, for GPT, LightMem reduces total token consump-
tion by 10×–38× and API calls by 3.6×–30×; for Qwen, it reduces total tokens by 6.9×–21.8×
and API calls by 3.3×–17.1×. Regarding runtime, LightMem achieves 2.9×–12.4× for GPT and
1.6×–6.3× for Qwen speedup over other memory baselines.

1MemoryOS(locomo) is the LoCoMo reproduction script in the MemoryOS library, simplifying the standard
version, shown as MemoryOS(regular).
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Table 3: Effectiveness and efficiency comparison on LOCOMO. Due to space limitations and for
ease of comparison, we merge the results before and after LightMem’s offline update into a single
row. The ACC reported corresponds to the performance after the offline update.

Method ACC (%) Summary Tokens (k) Update Tokens (k) Total (k) Calls Runtime (s)
In Out In Out

GPT-4o-mini

FullText 71.83 – – – – – – –
NaiveRAG 63.64 – – – – – – –
LangMem 57.20 – – 898.27 111.95 1010.22 920.62 2229.37
A-MEM 64.16 182.74 49.29 729.89 187.52 1149.43 1175.47 6060.73
MemoryOS(locomo)1 58.25 110.98 33.40 78.08 64.54 287.00 553.45 2422.05
MemoryOS(regular) 54.87 226.86 46.61 177.66 75.34 526.48 1016.06 3332.59
Mem0 61.69 851.32 20.53 632.12 189.42 1693.39 1602.20 4432.87
LightMem(0.7,512) 71.95 73.19 20.13 6.05 0.40 99.76 41.65 848.49
LightMem(0.7,768) 70.26 57.54 18.92 3.79 0.23 80.48 29.55 737.80
LightMem(0.8,768) 72.99 62.82 17.95 4.14 0.28 85.19 29.83 815.32

Qwen3-30B-A3B-Instruct-2507

FullText 74.87 – – – – – – –
NaiveRAG 66.95 – – – – – – –
LangMem 60.53 – – 1004.35 138.02 1142.37 1005.37 2268.57
A-MEM 56.10 158.29 60.85 924.19 483.51 1626.80 1175.40 5543.90
MemoryOS(locomo) 61.04 122.21 53.12 104.43 81.75 361.51 414.70 1269.70
MemoryOS(regular) 51.30 228.85 51.60 242.27 143.63 666.35 1004.60 1982.20
Mem0 43.31 827.09 18.64 763.88 189.80 1799.40 1614.50 4540.70
LightMem(0.6,768) 71.36 56.68 34.14 8.31 0.74 99.87 29.10 815.70
LightMem(0.8,1024) 72.60 61.38 36.33 9.86 0.88 108.45 32.00 1079.40

If considering only online test-time cost, LightMem shows an even larger efficiency advantage.
For GPT, LightMem reduces total token consumption by 31.4×–105.9× and API calls by 17.1×–
159.4×; for Qwen, it reduces total tokens by 30.1×–117.1× and API calls by 24.8×–309.9×.

LoCoMo. On the LoCoMo dataset, LightMem also demonstrates superior performance over other
memory baselines. For the GPT backbone, it improves ACC by 6.10%–18.12%, achieves a 2.87×–
20.92× improvement in total token efficiency, reduces API calls by 13.29×–39.78×, and accelerates
runtime by 2.63×–8.21×. On the Qwen backbone, LightMem maintains its advantage in both ef-
fectiveness and efficiency, with 4.41%–29.29% higher ACC, 3.33×–18.02× reduction in total token
consumption, 12.96×–55.48× fewer API calls, and 1.18×–5.57× faster runtime.

LightMem achieves superior performance on nearly all metrics and both LLM backbones,
while demonstrating robust performance and efficiency on both LongMemEval and LoCoMo,
highlighting its generalizability across different models and scenarios.

5.3 ANALYSIS OF PRE-COMPRESSING SUBMODULE

Performance and Overhead. LightMem uses an additional model (Pan et al., 2024b; Xia et al.,
2025) for pre-compression. We evaluate its performance by randomly sampling 1/5 of LONG-
MEMEVAL and compressing it at ratios shown in Figure 3(a), then prompting LLMs for in-context
QA. When compression ratio r ranges from 50%–80%, compressed and uncompressed performance
are comparable, demonstrating LLMs can effectively understand compressed content and validating
LightMem’s approach. The submodule is highly efficient, consuming under 2GB of GPU memory
with negligible impact on overall runtime.

Impact of r on Performance. As shown in Tables 8 and 9, The optimal r for ACC is dependent
on the STM buffer threshold th. For smaller thresholds (th ∈ {0, 256}), an r of 0.6 achieves the
highest ACC. In contrast, for larger thresholds (th ∈ {512, 1024}), a higher retention rate of r = 0.7
performs best. This suggests greater buffer capacity enables effective use of richer, less-compressed
information, leveraging LLMs’ advanced long-context processing to mitigate the “lost in the middle”

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GPT-4o-mini qwen3-30b-a3b-instruct-25070.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(%
)

(a) Accuracy Comparison of Different Compression Ratios

0%
40%

50%
60%

70%
80%

0.63 0.62

0.55

0.49

0.58 0.580.60 0.580.58 0.57
0.62

0.64

0% 40% 50% 60% 70% 80%
45

60

75

90

Ac
cu

ra
cy

 (
%

)

r
(b) Segmentation Methods Comparison

Attention Only Semantic Similarity Attention-Similarity

45.1

54.3
58.5 58.2 56.4 56.2

80.2
75.0 75.0 76.2 76.4 79.481.7

86.9 85.9 86.1 87.0 84.5

acc(%) input(k) output(k) total(k) calls0
20
40
60
80

100

Va
lu

e

(c1) GPT Ablation Study

With Topic Segmentation
Without Topic Segmentation

68.6% 64.3%

-6.3%

18.9 18.1
-4.4%

9.4 9.3
-0.5% 28.2 27.4

-3.1%

18.4 17.3
-6.0%

acc(%) input(k) output(k) total(k) calls0
20
40
60
80

100

Va
lu

e

(c2) Qwen Ablation Study
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Figure 3: Analysis and Ablation Study of Key Modules. Fig.(a) depicts the QA accuracy when
using prompts compressed at different ratios (r) as in-contexts to query the LLM directly. Fig.(b)
compares the accuracy of different topic segmentation methods under these varying compression
ratios. Fig.(c1) and Fig.(c2) present the ablation study for the topic segmentation module, evaluating
its impact on both performance and efficiency for the GPT and Qwen models.

phenomenon. On average, the optimal r for ACC is 0.6, reflecting a trade-off between information
compression rate and the quantity of information in the STM buffer. In terms of efficiency, a lower r
generally leads to higher efficiency, as it triggers the buffer threshold less frequently under the same
th, resulting in fewer API calls and lower token consumption.

5.4 ANALYSIS OF TOPIC SEGMENTATION SUBMODULE

Segmentation Accuracy. To validate the accuracy of our proposed hybrid topic segmentation
method, we compare it with segmentation using only a single granularity: attention-only-based
and similarity-only-based segmentation. Since the construction process of the LONGMEMEVAL
indicates that different sessions naturally serve as topic boundaries, we directly use them as ground-
truth labels. The final accuracy is calculated as the number of correctly identified segmentation
points divided by the total number of labels. The results in Figure 3(b) validate the effectiveness
of our method: it achieves higher accuracy than both individual segmentation methods across all
compression ratios, with an absolute accuracy exceeding 80%.

Ablation Study. As shown in Figure 3(c), removing the topic segmentation submodule slightly
improves efficiency but significantly harms accuracy, causing a 6.3% drop for GPT and 5.4% for
Qwen. This indicates that the submodule effectively enables models to perceive semantic units in
the input, facilitating subsequent memory unit generation.

5.5 ANALYSIS OF THE STM THRESHOLD’S IMPACT

As illustrated in the Figure 4, the STM buffer threshold (th) has a distinct but significant impact on
both efficiency and performance metrics. A consistent trend is: as th increases, there is a marked
improvement in efficiency. In contrast, the effect on QA accuracy is non-monotonic. The optimal
threshold for accuracy varies depending on the model and the compression ratio (r), indicating that
a larger buffer does not always yield better performance. This highlights a crucial trade-off: while
a larger STM threshold is consistently better for reducing computational cost, the ideal setting for
maximizing task accuracy requires careful tuning.

5.6 ANALYSIS OF SLEEP-TIME UPDATE

Why Soft Updates Work. A primary challenge in designing memory systems is handling updates.
While powerful, LLMs can be unreliable when tasked with complex real-time update operations.
For instance, when presented with two related but not contradictory pieces of information, an LLM
might incorrectly interpret them as a conflict and delete the older memory entry, leading to irre-
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versible information loss. Instead, the optimal operations might be to merge the information or
simply add the new entry. In contrast, LightMem performs only incremental additions through soft
updates during test time, which preserves global information and complete semantics.

Case Study: Memory Update Mechanism Comparison

History1: {’Monday, 2 PM’: User is planning a trip to Tokyo.}
History2: {’Monday, 4 PM’: User asks about trains to Kyoto.}
Hard Update: Overwrites memory
-> "User plans Kyoto trip"
. Tokyo context lost

LightMem Soft Update: Appends info
-> "Tokyo trip + Kyoto inquiry"
¥ Full context preserved

6 RELATED WORK

Hard Prompt Compression for LLMs. Hard prompt compression improves LLM efficiency by
removing redundant content from prompts (Li et al., 2025c). Methods recently have evolved from
using smaller language models (Jiang et al., 2023; Li et al., 2023; Chuang et al., 2024) to query-
aware approaches that preserve task-relevant information (Weston & Sukhbaatar, 2023; Creswell
et al., 2023; Jiang et al., 2024). Additionally, lightweight bidirectional encoders have demonstrated
strong effectiveness and efficiency (Pan et al., 2024a; Liskavets et al., 2025).

Chunking Strategies in RAG Systems. Retrieval-Augmented Generation (RAG) systems rely on
chunking extrernal documents into smaller units for retrieval (Lewis et al., 2020; Gao et al., 2023).
Existing chunking strategies include rule-based methods creating fixed-size segments (Lewis et al.,
2020; Sarthi et al., 2024; Edge et al., 2024; Gutierrez et al., 2024), semantic-based methods group-
ing content by topic (Qu et al., 2025), and LLM-driven methods leveraging model knowledge for
splitting (Pan et al., 2025; Duarte et al., 2024; Zhao et al., 2024; Liu et al., 2025b). However, all of
these chunking strategies for RAG systems are tailored to static scenarios, not applicable to dynamic
and open-ended environments.

Memory Systems for LLM Agents. Memory systems help LLM agents move beyond stateless
interactions to support flexible reasoning and adaptation in complex and changing environments (Liu
et al., 2025a; Mei et al., 2025). The earliest and most straightforward approaches store experiences
as linear or sequential streams, sometimes enhanced with hierarchical structures (Liang et al., 2023;
Park et al., 2023; Packer et al., 2023; Zhong et al., 2024; Salama et al., 2025; Fang et al., 2025).
A more structured class of methods represents memories as nodes and their relationships as edges,
using trees, graphs, or temporal knowledge structures to support retrieval and update (Rezazadeh
et al., 2025; Chhikara et al., 2025; Rasmussen et al., 2025; Xu et al., 2025; Zhang et al., 2025).
The latest trend integrates various types of memory, allowing them to interact and synergistically
improve overall performance (Kang et al., 2025; Li et al., 2025b; Wang & Chen, 2025; Nan et al.,
2025). Overall, existing memory systems for LLM agents have become increasingly complex and
capable, leveraging hierarchical, structured, and multi-type memories. However, most focus on
maximizing effectiveness, with limited consideration of efficiency. While some recent works (Guo
et al., 2024; Zhao et al., 2025; Dong et al., 2025) share a similar motivation with our work, they
focus on lightweight adaptations of GraphRAG where the corpus is predefined and static.

7 CONCLUSION

In this work, we introduced LightMem, a lightweight and efficient memory framework designed to
address the significant overhead of memory systems for LLM agents. Inspired by the multi-stage
Atkinson-Shiffrin human memory model, LightMem’s architecture effectively filters, organizes, and
consolidates information. Our empirical evaluation demonstrates that this approach maintains strong
task performance while sharply reducing computational costs. In the near future, we plan to accel-
erate LightMem’s update phase via offline pre-computed KV caches, reducing runtime overhead.
We aim to integrate a lightweight knowledge graph memory for explicit multi-hop reasoning and
structured retrieval. A multimodal memory extension will enable adaptation to visual, auditory, and
textual inputs in embodied and real-world scenarios.
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ETHICS STATEMENT

LightMem enhances LLM agents by creating an external memory of user interactions. While this
improves agent coherence, it introduces critical ethical challenges. Storing dialogue histories poses
inherent risks to user privacy, as conversations may contain sensitive data. The memory can also
absorb and perpetuate biases or misinformation from user input, potentially leading to bad agent
behavior. Therefore, any deployment of this technology must prioritize robust safeguards. We
strongly advocate for strict privacy protocols, such as data anonymization and user consent, as well
as mechanisms to mitigate the effects of biased or false memories. Responsible development is
essential to ensure these memory-augmented systems are used in a safe and trustworthy manner.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, we introduce the detailed implementations for LightMem
are provided in in Section 3, Appendix C. Additionally, we plan to release our source code in the
future to further support reproducibility. These measures are intended to facilitate the verification
and replication of our results by other researchers in the field.
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A BACKGROUND DETAILS

A.1 BACKGROUND ABOUT CURRENT MEMORY SYSTEMS

We describe both the mainstream memory architectures and the LightMem pipeline in terms of two
major stages. The first is the memory bank construction stage, which can be further decomposed
into the three sub-stages (I), (II), and (III) described in the Section 2.1. The second major stage
concerns the usage of the memory system, which consists of retrieval and question answering (QA).

Memory Bank Construction As shown in Table 4, we detail the workflows of the three sub-stages
(I), (II), and (III) for naive RAG, prevailing memory systems, and our LightMem. It can be observed
that baseline memory systems typically perform their update stage during user–model interaction,
which introduces substantial test-time latency. In contrast, LightMem decouples this update process
from online interaction, thereby significantly reducing test-time latency. All models involved in
these processes are listed in Table 5. As shown, LightMem introduces only one additional model,
LLMlingua-2,beyond those used by baseline methods. This model follows a lightweight BERT
architecture and requires less than 2GB of GPU memory during inference, rendering its overhead
negligible. Moreover, for fairness, the latency introduced by this component is fully accounted for
in our reported Runtime metric.

Table 4: The mainstream memory architectures and the LightMem pipeline of memory bank con-
struction stage. Black-font processes denote those executed during online test-time interactions,
whereas red-font processes denote those executed offline.

Method (I) Segment (II) Summary/Extrct (III) Update

NaiveRAG Raw dialog → fseg()
→ {segi}

→ findex() → {embi} \

Other
Memory
Systems

Raw dialog → fseg()
→ {segi}

→ fsum/extract() → {memory entryi}
→ findex() → {embi}

→ fretrieve() → {related entryi}
→ fupdate()

→ {add, delete, update, merge...}

LightMem

Raw dialog → fseg()
→ {segi}

→ fpre compress()
→ {comp segi}

→ sensory buffer full →
ftopic() →

{topic-wise comp segi}

→ STM buffer full → fsum/extract()
→ {topici, {memory entryj}}
→ findex() → {topici, {embj}}

Offline update trigger
{every entryi} → fretrieve()

→ {related entryj} → {update queue}
All update queues established

→ parallel fupdate()
→ {add, delete, update, merge...}

Function Model / Strategy Implementation in This Paper
fseg() Segmentation strategy Turn-level granularity input
findex() Embedding model all-MiniLM-L6-v2
fsum/extract() System backbone model GPT-4o-mini; Qwen3-30B-A3B-Instruct-2507
fretrieve() Retrieval strategy Cosine similarity vector retrieval
fupdate() System backbone model GPT-4o-mini; Qwen3-30B-A3B-Instruct-2507
fpre compress() Token compression model LLMlingua-2
ftopic() Topic segmentation model LLMlingua-2
fchat() Chat model GPT-4o-mini; Qwen3-30B-A3B-Instruct-2507

Table 5: Mapping between functions, their roles, and the concrete models used in this paper. Black-
font entries denote models shared by both LightMem and baseline methods, whereas red-font entries
denote models unique to LightMem.

Retrieval and Usage After the memory bank construction stage, we obtain an up-to-date memory
bank. When a new user query arrives, the memory system use fretrieve() to retrieve relevant entries
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from this repository, appends them to the query, and then prompts the chat model fchat() to produce
a response.

A.2 NOTATION AND COMPLEXITY DETAILS

Table 6: Notation used in complexity analysis (§Section 4).
Symbol Definition
N Total number of turns in a dialogue history.

T Average number of tokens per turn.

r Token compression rate (as defined in the main paper). After one compression step,
only a fraction r of tokens is retained.

x Number of compression iterations. In LightMem, the pre-compress module may be
invoked multiple times for the same message to remove redundancy until the message
is sufficiently compact. This occurs frequently in datasets such as LongMemEval.
All time costs are included in runtime metrics.

th Capacity of the Short-Term Memory (STM) buffer, as defined in the paper.

Lsum-in / Lsum-out

Number of tokens in the input prompt template and output of a single backbone
LLM call for summarization. These are similar across memory frameworks.

M1 / M2 Number of memory entries produced from a single summarization operation under
Other Memory Systems (M1) and LightMem (M2).

Lup-in / Lup-out Number of tokens in the input prompt template and output of a single backbone
LLM call for memory update. Similar across frameworks.

R1 / R2 Proportion of summary entries that successfully retrieve at least one relevant memory
entry (triggering an update) for Other Memory Systems (R1) and LightMem (R2).
Some entries do not retrieve any relevant counterparts and thus do not trigger updates.

B USAGE OF LLMS

Throughout the preparation of this manuscript, we used LLMs to assist with improving grammar,
clarity, and wording in parts of this work. The use of LLMs was limited to language refinement,
with all ideas, analyses, and conclusions solely developed by the authors.

C METHODOLOGY DETAILS

C.1 TOPIC SEGMENTATION

In this part, we present the construction of the attention matrix, the underlying rationale for topic
segmentation, and representative illustrative cases.

We extract only the user sentences from multi-turn dialogues, as they are generally more concise
and the assistant’s responses necessarily remain consistent with the user’s theme within the same
turn. Moreover, since the maximum input length of the LLMLingua-2 Pan et al. (2024b) model is
512 tokens, the assistant’s often lengthy sentences cannot be effectively accommodated. Therefore,
we sequentially store the user sentences into a buffer and segment them, ensuring that as many
sentences as possible are preserved while staying within the token limit. As a practical trick, if
a sentence becomes empty after compression, we retain its original uncompressed version; if the
token length of a sentence still exceeds the maximum limit, we continue to compress it using the
LLMLingua-2 model at a 0.5 compression rate until the token length falls below the threshold. To
reduce the effect of attention sinks, we mask out the contributions of the first and last three tokens
in each sequence and subsequently normalize the remaining attention values. Attention is derived
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Figure 4: Impact of the STM buffer threshold (th) on performance and efficiency across different
compression ratios (r). Each radar chart represents a specific configuration of a model (GPT-4o-
mini or Qwen3) and a fixed compression ratio. The axes measure six key metrics: Accuracy (ACC),
token consumption (Input, Output, Total), API Calls, and Runtime. To facilitate comparison, all
values are normalized for visualization on the chart.

from the higher layers of LLMLingua-2 (layers 8, 9, 10, and 11). For any two sentences, we first
compute token-level pairwise attention and average across tokens to obtain the overall attention of
one sentence to the target sentence; we then average across the selected layers to obtain a more robust
inter-sentence attention score. For each current sentence, the attention scores directed toward all
preceding sentences are normalized within the sentence, yielding the final attention matrix. Residual
fragments that remain after segmentation are carried over to the beginning of the next buffer for
further processing, and this procedure continues iteratively until the dialogue ends.

Based on the attention pattern, we focus on the sequence formed by each sentence’s attention scores
relative to its immediately preceding sentence, which directly reflects the continuity of local seman-
tics. Therefore, we take the attention scores from the outermost layer of the attention map. When the
attention score at a given position is higher than both its preceding and following positions, it is re-
garded as a local peak. If a sentence is identified as a peak, we set a segmentation point immediately
before this sentence, making the peak sentence the beginning of a new segment. The rationale is
that the peak sentence exhibits consistently low attention to all earlier sentences overall and reflects
a clear transition from an old topic to a new one, indicating that the identified sentence marks the
initiation of a new topic.

Figure 5: Example of Topic Segment Attention Matrix.
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Figure 5 illustrates three representative examples of reliable segmentation under 50% compression
rate. In the first attention map, local peaks in the adjacent-sentence attention sequence appear at po-
sitions 5, 8, and 11, where the actual segmentation boundaries lie between sentences 4–5 and 11–12.
In the second attention map, peaks occur at positions 3, 8, 12, and 14, and the actual boundaries are
located between sentences 7–8, 11–12, and 13–14. Overall, our method achieves close alignment
with the majority of true boundaries while providing finer-grained segmentation. These examples
demonstrate that our segmentation approach enables both fine-grained and reliable detection of topic
boundaries, thereby validating its effectiveness.

C.2 CATEGORY-WISE ACCURACY

As summarized in Table 7, retrieval-augmented and memory-centric methods (e.g., A-MEM, Mem0,
MemoryOS) generally outperform Full Text on categories that demand information integration or
belief revision, such as Temporal, Multi-Session, and Knowledge-Update. In contrast, categories
such as Single-User and Single-Assistant, lightweight retrieval like Naive RAG is often competitive
and can be the most reliable option, while Single-Preference shows higher variance due to its smaller
sample size.

Table 7: Category-wise Accuracy. Accuracy (%) by method across question types. Parentheses
indicate category proportion and sample size. For GPT, LightMem is configured with parameters
r = 0.7 and th = 512; for Qwen, LightMem is configured with r = 0.4 and th = 768.

Method Temporal
( n=133)

Multi-Session
(n=133)

Knowledge-Update
(n=78)

Single-User
(n=70)

Single-Assistant
(n=56)

Single-Preference
(n=30)

GPT-4o-mini

Full Text 31.58 45.45 76.92 87.14 89.29 36.67
Naive RAG 39.85 48.48 67.95 90.00 98.21 53.33
LangMem 15.79 20.30 66.67 60.00 46.43 60.00
A-MEM 47.36 48.87 64.11 92.86 96.43 46.67
MemoryOS 32.33 31.06 48.72 80.00 64.29 30.00
Mem0 40.15 46.21 70.12 81.43 41.07 60.00
LightMem 67.18 71.74 83.12 87.14 32.14 68.18

Qwen3-30B-A3B-Instruct-2507

Full Text 33.08 35.61 76.92 82.86 87.50 50.00
Naive RAG 36.84 47.73 65.38 91.43 98.21 70.00
LangMem 37.60 38.35 67.95 78.57 42.86 70.00
A-MEM 51.88 51.12 76.93 90.00 96.43 40.00
MemoryOS 28.57 36.84 61.54 72.86 92.86 33.33
Mem0 41.94 28.13 28.57 55.32 26.09 81.82
LightMem 54.20 51.91 66.67 80.00 31.25 80.00

C.3 DETAILED PARAMETER ANALYSIS

As Table 9 shows, we report the numerical results of the effects of LightMem parameters (compres-
sion ratio r and STM threshold th).

D EXPERIMENT DETAILS

D.1 DATASETS AND BASELINES

Datasets The LongMemEval dataset (Wu et al., 2025) is designed to benchmark long-term inter-
active memory in conversational agents. It comprises 500 evaluation questions built upon extended
user-assistant dialogues. It has two different versions with different lengths: the LONGMEMEVAL-
S setting contains approximately 115k tokens per problem, while the LONGMEMEVAL-M setting
extends up to 1.5 million tokens across 500 sessions. In our work, we adopt the LONGMEMEVAL-
S version due to its balance between dialogue length and computational feasibility. The questions
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Table 8: The impact of LightMem compression ratio r and STM buffer threshold th is reported
here. Due to space limitations, we only present a subset of representative results of the online soft
update results, with more results provided in the Figure 9.

Model th r ACC Input (k) Output (k) Total (k) Calls Time
G

PT
256 0.5 64.29 20.80 10.01 30.81 25.67 302.69
256 0.6 67.68 24.58 10.53 35.11 30.47 329.61
256 0.7 65.68 27.66 9.97 37.63 34.26 403.59
512 0.6 63.74 16.23 9.45 25.68 15.63 266.98
512 0.7 68.64 18.88 9.37 28.25 18.43 283.76
512 0.8 66.67 21.55 8.59 30.14 21.11 268.97

1024 0.6 59.68 10.34 7.68 18.20 7.69 177.45
1024 0.7 64.68 12.93 6.90 19.83 8.25 209.12
1024 0.8 64.35 14.86 6.28 21.14 9.43 216.08

Q
w

en

512 0.4 58.57 11.03 17.00 28.03 10.11 421.74
512 0.6 66.57 16.22 19.50 35.72 15.40 471.09
512 0.8 67.37 21.35 19.36 40.71 20.98 461.02
768 0.4 61.95 9.01 16.14 25.15 6.54 357.13
768 0.6 73.20 13.19 19.21 32.40 9.97 417.13
768 0.8 64.95 16.94 19.06 36.00 13.09 420.14

1024 0.4 53.91 8.02 15.44 23.46 4.83 300.56
1024 0.6 65.67 11.50 18.21 29.71 7.18 396.35
1024 0.8 68.69 14.82 18.49 33.31 9.43 355.71

are categorized into multiple types: information extraction, multi-session reasoning, knowledge up-
dates, temporal reasoning, and abstention. Overall, the dataset is characterized by extremely long
histories, wide temporal spans, and diverse question types, making it a comprehensive benchmark
for evaluating conversational agents’ memory capabilities. During the experiments, five samples
from this dataset contained corrupted characters, which caused LightMem’s compression model to
fail to run properly. Consequently, LightMem directly discarded these five samples when processing
the dataset. However, their accuracy results were uniformly treated as false. The indices of these
five samples in the dataset are 74, 183, 278, 351, and 380.

The LOCOMO benchmark targets the evaluation of long-range conversational memory. It features
extremely long dialogues, with each conversation spanning roughly 300 turns and around 9K tokens
on average. The accompanying questions fall into four categories—Single-hop, Multi-hop, Tempo-
ral, and Open-domain—providing a comprehensive assessment of different dimensions of memory
in LLMs.

Baselines We compare our approach against several representative baselines of conversational
memory modeling. ① LANGMEM (LangChain, 2025): The Langchain’s long-term memory mod-
ule. ② A-MEM (Xu et al., 2025): Constructs a memory-centric knowledge graph, encoding each
interaction as a structured memory note and linking these notes via LLM-driven reasoning. ③ MEM-
ORYOS (Kang et al., 2025): Organizes conversational memory in an OS-inspired hierarchy, structur-
ing interactions into short-term, mid-term, and long-term layers via paging and heat-based updating.
④ MEM0 (Chhikara et al., 2025): Extracts memories from dialogue turns through a combination of
global summaries and recent context, maintaining them via LLM-guided operations.

D.2 IMPLEMENTATION DETAILS

All the experiments are conducted on hardware equipped with 4×NVIDIA RTX 3090 GPUs, dual
Intel Xeon Gold 6133 CPUs (40 cores, 80 threads), and 256 GB of RAM.
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Table 9: The impact of LightMem’s compression ratio (r) and STM buffer threshold (th).

Model th r ACC Input (k) Output (k) Total (k) Calls Time

G
PT

-4
o-

m
in

i

0 0.4 58.04 27.70 8.90 36.60 39.91 500.69
256 0.4 57.78 16.64 8.40 25.04 20.25 254.93
512 0.4 55.56 11.05 7.66 18.71 10.13 230.59
768 0.4 49.29 9.05 6.55 15.60 6.57 157.13

1024 0.4 46.87 7.75 5.25 13.00 4.82 118.11
0 0.5 62.89 30.84 9.75 40.59 43.56 550.36

256 0.5 64.29 20.80 10.01 30.81 25.67 302.69
512 0.5 62.44 13.49 8.89 22.38 12.70 250.36
768 0.5 56.12 10.93 7.57 18.50 8.12 203.13

1024 0.5 50.36 8.34 6.97 15.31 6.32 160.35
0 0.6 70.35 33.17 10.20 43.37 45.86 553.07

256 0.6 67.68 24.58 10.53 35.11 30.47 329.61
512 0.6 63.74 16.23 9.45 25.68 15.63 266.98
768 0.6 64.44 13.04 8.10 21.14 9.90 210.05

1024 0.6 59.68 10.34 7.68 18.20 7.69 177.45
0 0.7 62.35 35.36 9.76 45.12 48.08 573.42

256 0.7 65.68 27.66 9.97 37.63 34.26 403.59
512 0.7 68.64 18.88 9.37 28.25 18.43 283.76

1024 0.7 64.68 12.93 6.90 19.83 8.25 209.12
0 0.8 61.52 39.32 9.89 49.21 52.97 622.90

256 0.8 66.37 30.67 9.70 40.37 41.66 489.61
512 0.8 66.67 21.55 8.59 30.14 21.11 268.97

1024 0.8 64.35 14.86 6.28 21.14 9.43 216.08

Q
w

en
3

0 0.4 56.89 28.44 18.30 46.74 41.08 594.94
256 0.4 52.37 16.82 17.63 34.45 20.48 450.98
512 0.4 58.57 11.03 17.00 28.03 10.11 421.74
768 0.4 61.95 9.01 16.14 25.15 6.54 357.13

1024 0.4 53.91 8.02 15.44 23.46 4.83 300.56
0 0.6 69.56 34.90 20.26 55.16 48.63 642.10

256 0.6 65.37 24.78 19.59 44.37 30.66 520.37
512 0.6 66.57 16.22 19.50 35.72 15.40 471.09
768 0.6 73.20 13.19 19.21 32.40 9.97 417.13

1024 0.6 65.67 11.50 18.21 29.71 7.18 396.35
0 0.8 67.68 37.97 20.18 58.15 50.81 759.15

256 0.8 64.52 30.54 19.77 50.31 37.35 550.98
512 0.8 67.37 21.35 19.36 40.71 20.98 461.02
768 0.8 64.95 16.94 19.06 36.00 13.09 420.14

1024 0.8 68.69 14.82 18.49 33.31 9.43 355.71
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E PROMPTS

E.1 LLM-AS-JUDGE

Standard Tasks (Single-session-user/assistant Multi-session)

I will give you a question, a correct answer, and a response from a model. Please answer
yes if the response contains the correct answer. Otherwise, answer no. If the response
is equivalent to the correct answer or contains all the intermediate steps to get the correct
answer, you should also answer yes. If the response only contains a subset of the information
required by the answer, answer no.
Question: {question}
Correct Answer: {answer}
Model Response: {response}
Is the model response correct? Answer yes or no only.

Temporal Reasoning Tasks

I will give you a question, a correct answer, and a response from a model. Please answer
yes if the response contains the correct answer. Otherwise, answer no. If the response
is equivalent to the correct answer or contains all the intermediate steps to get the correct
answer, you should also answer yes. If the response only contains a subset of the information
required by the answer, answer no. In addition, do not penalize off-by-one errors for the
number of days. If the question asks for the number of days/weeks/months, etc., and the
model makes off-by-one errors (e.g., predicting 19 days when the answer is 18), the model’s
response is still correct.
Question: {question}
Correct Answer: {answer}
Model Response: {response}
Is the model response correct? Answer yes or no only.

Knowledge Update Tasks

I will give you a question, a correct answer, and a response from a model. Please answer yes
if the response contains the correct answer. Otherwise, answer no. If the response contains
some previous information along with an updated answer, the response should be considered
as correct as long as the updated answer is the required answer.
Question: {question}
Correct Answer: {answer}
Model Response: {response}
Is the model response correct? Answer yes or no only.

Single-session Preference Tasks

I will give you a question, a rubric for desired personalized response, and a response from a
model. Please answer yes if the response satisfies the desired response. Otherwise, answer
no. The model does not need to reflect all the points in the rubric. The response is correct as
long as it recalls and utilizes the user’s personal information correctly.
Question: {question}
Rubric: {answer}
Model Response: {response}
Is the model response correct? Answer yes or no only.
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Abstention Tasks

I will give you an unanswerable question, an explanation, and a response from a model.
Please answer yes if the model correctly identifies the question as unanswerable. The model
could say that the information is incomplete, or some other information is given but the
asked information is not.
Question: {question}
Explanation: {answer}
Model Response: {response}
Does the model correctly identify the question as unanswerable? Answer yes or no only.
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