

000 001 002 003 004 005 LIGHTMEM: LIGHTWEIGHT AND EFFICIENT 006 MEMORY-AUGMENTED GENERATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030
031 Despite their remarkable capabilities, Large Language Models (LLMs) struggle
032 to effectively leverage historical interaction information in dynamic and complex
033 environments. Memory systems enable LLMs to move beyond stateless inter-
034 actions by introducing persistent information storage, retrieval, and utilization
035 mechanisms. However, existing memory systems often introduce substantial time
036 and computational overhead. To this end, we introduce a new memory system
037 called **LightMem**, which strikes a balance between the performance and effi-
038 ciency of memory systems. Inspired by the Atkinson–Shiffrin model of human
039 memory, **LightMem** organizes memory into three complementary stages. First,
040 cognition-inspired sensory memory rapidly filters irrelevant information through
041 lightweight compression and groups information according to their topics. Next,
042 topic-aware short-term memory consolidates these topic-based groups, organizing
043 and summarizing content for more structured access. Finally, long-term memory
044 with sleep-time update employs an offline procedure that decouples consolida-
045 tion from online inference. [On LONGMEMEVAL and LoCOMO, using GPT and](#)
046 [Qwen backbones, LightMem consistently surpasses strong baselines, improving](#)
047 [QA accuracy by up to 7.7% / 29.3%, reducing total token usage by up to 38×](#)
048 [/ 20.9×](#) and API calls by up to 30× / 55.5×, while purely online test-time costs are
049 even lower, achieving up to 106× / 117× token reduction and 159× / 310× fewer
050 API calls. We will release the **LightMem** codebase in the near future.
051
052

1 INTRODUCTION

053 Memory is fundamental to intelligent agent, enabling the assimilation of prior experiences, context-
054 ual cues, and task-specific knowledge that underpin robust reasoning and decision-making ([Wang](#)
055 [et al., 2024; Behrouz et al., 2024; Du et al., 2025; Zhang et al., 2024](#)). While Large Language Models
056 (LLMs) ([DeepSeek-AI et al., 2025; Achiam et al., 2023](#)) demonstrate remarkable capabilities across
057 a wide range of tasks, they exhibit significant limitations when engaged in long-context or multi-
058 turn interaction scenarios due to fixed context windows and the “lost in the middle” problem ([Liu](#)
059 [et al., 2024](#)). Memory systems are pivotal for overcoming these limitations, as they allow LLMs to
060 maintain a persistent state across extended interactions. Recent works ([Li et al., 2025b; Yang et al.,](#)
061 [2024; Chhikara et al., 2025; Kang et al., 2025](#)) address this challenge by building explicit external
062 memory through sequential summarization and long term storage, enabling models to retain and
063 retrieve relevant information over long horizons.
064

065 Note that a typical LLM memory system processes raw interaction data into manageable chunks,
066 such as turn- or session-level in dialogue scenarios ([Xu et al., 2025; Li et al., 2025a](#)), organizes
067 them into long-term memory (e.g., databases or knowledge graphs) by indexing them into memory
068 units, and continuously updates by adding new information and discarding outdated or conflicting
069 content ([Zhong et al., 2024](#)). This enables retrieval of relevant memories, improving coherence, and
070 personalization in long-context, multi-turn scenarios.
071

072 **Challenges.** Despite these advances, as shown in Figure 1, contemporary memory systems still
073 suffer from significant inefficiencies and consistency issues. First, in long interactions (e.g., dia-
074 logue scenarios), both user inputs and model responses often contain substantial redundant infor-
075 mation ([Maharana et al., 2024; Wu et al., 2025](#)). Such information is typically irrelevant to down-
076 stream tasks or subsequent memory construction, and in some cases, may even negatively affect the
077

model’s in-context learning capability (Liu et al., 2023; Pan et al., 2025). However, current mainstream memory-related studies generally process the raw information directly without any filtering or refinement, leading to high overhead from noisy or irrelevant data. This inflates token consumption without proportional gains in reasoning quality or coherence. Second, memory construction typically **treats each turn in isolation or relies on rigid context-window boundaries**, failing to model semantic connections across different turns (Tan et al., 2025). As a result, during subsequent memory item construction, the backbone LLM may generate inaccurate or incomplete item representations due to overly entangled topics or semantics, leading to the loss of crucial contextual details. Third, memory updates and forgetting are usually performed directly **during inference and task execution**. This tight coupling introduces long test-time latency in long-horizon tasks and prevents deeper, reflective processing of past experiences.

In contrast, human memory efficiently processes information through a hierarchical system: sensory memory pre-filters stimuli, short-term memory actively integrates and reasons over relevant content, and long-term memory selectively consolidates salient information in sleep time.

Building Lightweight Memory. Inspired by the efficiency and structure of human memory, we introduce **LightMem**, a lightweight memory architecture designed to minimize redundancy while preserving performance. In particular, LightMem emulates human memory through three key components: (1) A *pre-compression sensory memory module* that filters redundant or low-value tokens from raw input and buffers the distilled content for downstream processing. This initial filtering step reduces noise before information enters the memory pipeline. (2) A *topic-aware short-term memory* that leverages semantic and topical similarity to dynamically group related utterances into coherent segments. By adaptively determining segment

boundaries based on content instead of fixed window sizes, this module produces more concentrated and meaningful memory units. This not only reduces the frequency of memory construction but also enables more precise and efficient retrieval during inference. (3) A *sleep-time update* mechanism for long-term memory maintenance. New memory entries are initially stored with timestamps to support immediate (“soft”) updates for real-time responsiveness. Later, during designated offline periods (i.e., “sleep”), the system reorganizes, de-duplicates, and abstracts these entries, resolving inconsistencies and strengthening cross-knowledge connections. Crucially, this decouples expensive memory maintenance from real-time inference, enabling reflective, high-fidelity updates without introducing latency. By systematically filtering, organizing, and consolidating relevant information, LightMem substantially reduces computational overhead and API costs while sustaining accurate, coherent reasoning over extended interactions. We detail each component in §3.

Results and Evaluation.

On LongMemEval (Wu et al., 2025), LightMem consistently outperforms the strongest baseline, improving accuracy by 2.09%–6.40% with GPT and up to 7.67% with Qwen. In terms of overall efficiency (online + offline), LightMem reduces total token usage by up to 38× for GPT and 21.8× for Qwen, lowers API calls by up to 30× and 17.1×, and accelerates runtime by up to 12.4× and 6.3×, respectively. If considering only online test-time costs, the gains become even larger: LightMem cuts token usage by up to 105.9× (GPT) and 117.1× (Qwen), and reduces API calls by up to 159.4× and 309.9×. On the LoCoMo benchmark (Maharana et al., 2024), LightMem maintains strong advantages, achieving 6.10%–29.29% higher accuracy and substantial efficiency improvements—boosting token efficiency by up to 20.92×, reducing API calls by up to 55.48×, and speeding up runtime by up to 8.21× across GPT and Qwen backbones. Furthermore, case studies

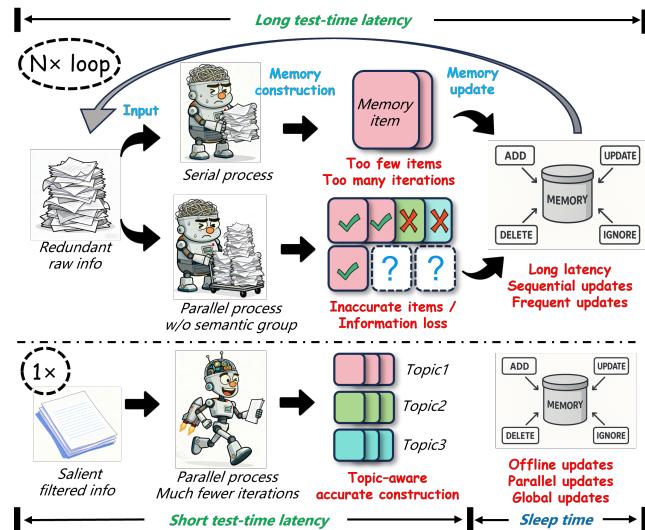


Figure 1: Comparison of previous works and LightMem.

108 in §5.6 show that the offline “sleep-time” consolidation enhances long-term memory reliability,
 109 mitigating information loss.
 110

111 2 PRELIMINARY

113 2.1 CONVENTIONAL MEMORY SYSTEMS FOR LLMs

115 We describe mainstream memory architectures pipeline in terms of two major stages. **(I) Memory**
116 Bank Construction. This stage can be further decomposed into three sub-stages: (a) Raw data D
 117 are first processed at a chosen level of granularity, $D^{(g)} = f_{\text{seg}}(D; g), g \in \{\text{turn, session, topic}\}$ in
 118 dialog scenario; (b) The segmented data $D^{(g)}$ are then summarized or extracted to generate mem-
 119 ory entries, $E = f_{\text{sum}}(D^{(g)})$, which are stored and organized within structural backends such as
 120 vector databases or knowledge graphs to enable long-term retention; (c) Many systems incorpo-
 121 rate an updating mechanism to mitigate issues such as context conflicts or outdated information,
 122 $M' = f_{\text{update}}(M, R; U)$, where M denotes the existing memory bank, R represents newly generated
 123 memory entries, and U specifies the update or forgetting policy. **(II) Retrieval and Usage.** When a
 124 new user query arrives, the system retrieves relevant entries from the memory bank, integrates them
 125 with the query to construct the final prompt, and then invokes the model to produce a response.

127 2.2 ATKINSON–SHIFFRIN HUMAN MEMORY MODEL

128 Following the Atkinson–Shiffrin human memory model (Atkinson & Shiffrin, 1968), raw environ-
 129 mental information in human brain is first briefly retained in *sensory memory*, which enables rapid
 130 pre-attentive feature extraction and filtering, effectively serving as a form of pre-compression. The
 131 processed input can then enter *short-term memory* (STM), where information and interaction se-
 132 quences are preserved for tens of seconds to minutes, supporting secondary filtering and more de-
 133 liberate processing. In contrast, *long-term memory* (LTM) provides durable storage and undergoes
 134 continuous reorganization through updating, abstraction, and forgetting. Importantly, Rasch & Born
 135 (2013) highlight that *sleep plays a critical role in this reorganization*, as oscillatory activity during
 136 sleep facilitates the integration and consolidation of memory systems.

138 2.3 LIMITATIONS OF EXISTING LLM MEMORY SYSTEMS

139 Compared to human memory, current LLM memory systems are burdened by high maintenance
 140 costs, mainly due to three limitations: **1) Redundant Sensory Memory.** In current systems, $f_{\text{sum}}()$
 141 and $f_{\text{gran}}(); g = \text{topic}$ are typically executed by calling stronger LLMs. Feeding raw data D directly
 142 wastes resources and even weakens in-context learning due to redundancy. A key challenge is to
 143 design lightweight mechanisms that pre-compress inputs and apply pre-attention strategies to cap-
 144 ture semantic units at different granularities efficiently. **2) Balancing Effectiveness and Efficiency**
 145 **in STM.** As shown in Figure 1, when input granularity is fixed, $D^{(g)}$ must pass through the entire
 146 pipeline. Excessively fine granularity increases latency and underutilizes STM capacity, whereas
 147 overly coarse granularity without semantic constraints or grouping may cause mixed or entangled
 148 semantics and topics, leading to inaccurate memory construction and loss of fine-grained details
 149 in subsequent processes. This calls for strategies that better balance effectiveness and efficiency
 150 in STM. **3) Inefficient LTM Updating.** Current $f_{\text{update}}()$ mechanisms face two main issues: (i)
 151 enforcing strict real-time updates at test time incurs significant latency, whereas STM can provide
 152 short-term context without immediate LTM updates; (ii) memory banks are updated sequentially due
 153 to ordering constraints (read-after-write/write-after-read), rather than being triggered dynamically.
 154 These limitations raise a research question: *Can we design LLM memory that is both efficient and*
 155 *lightweight, inspired by human memory mechanisms?*

157 3 LIGHTMEM ARCHITECTURE

158 Analogous to the human memory, we design LightMem as shown in Figure 2, which consists of three
 159 light modules: *Light1* implements an efficient *Sensory Memory Module* that selectively preserves
 160 salient information from raw input (§3.1), *Light2* realizes a topic-aware *STM Module* for transient
 161 information processing (§3.2), and *Light3* provides an *LTM module* designed to minimize test time

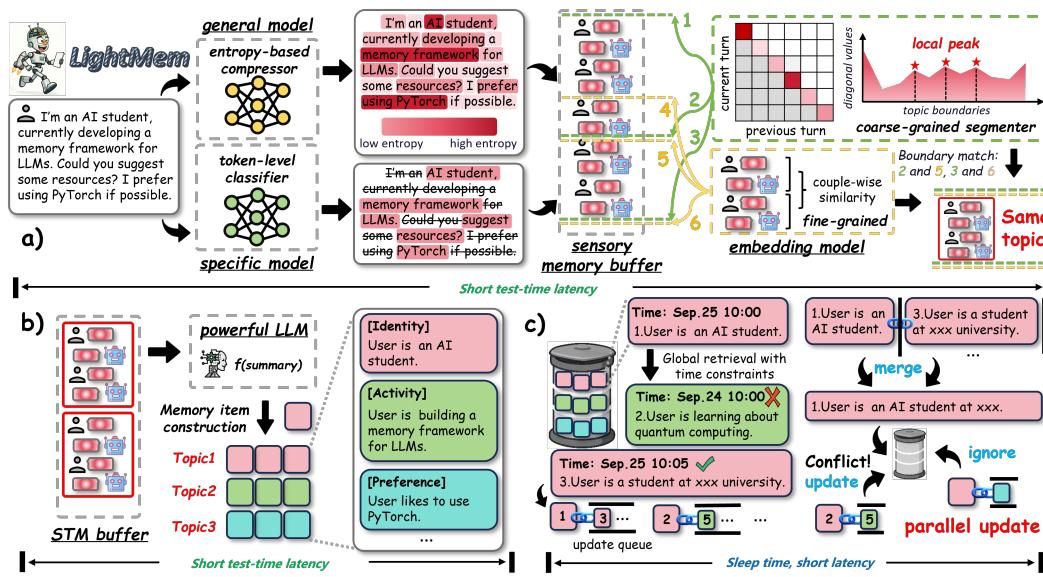


Figure 2: **The LightMem** architecture. **LightMem** consists of three modules: *a*) An efficient *Sensory Memory Module*, *b*) a topic aware *STM Module*, and *c*) an *LTM module* updated in sleep time.

update latency (§3.3) with a sleep time update mechanism. The overall pipeline framework of **LightMem**, its specific models, and comparisons with other memory frameworks are presented in Appendix A.1. The complexity analysis for LightMem’s efficiency gains is in Section 4.

3.1 LIGHT1: COGNITIVE-INSPIRED SENSORY MEMORY

In long horizon interaction scenarios, such as user–assistant dialogues, a large portion of the information is redundant. Therefore, we design a *Pre-Compressing Submodule* to eliminate redundant tokens, followed by the *Topic Segmentation Submodule* that forms semantic topic-based segments for following faster and more accurate memory construction.

Pre-Compressing Submodule. This module leverages a compression model θ to eliminate redundant tokens, tailored for compatibility with the downstream memory construction phase:

$$\hat{\mathbf{x}} = \{x_i \in \mathbf{x} \mid P(\text{retain } x_i \mid \mathbf{x}; \theta) > \tau\}, \tau = \text{Percentile}(\{x_j\}, r),$$

Following Xia et al. (2025), we use LLMLingua-2 (Pan et al., 2024b) as our compression model θ . Let \mathbf{x} be the raw input tokens, θ the model, and r the compression ratio. The threshold τ is set to the r -th percentile of retention scores, keeping only tokens above τ . For $P(\text{retain } x_i \mid \mathbf{x})$, we treat the compression process as a binary token classification task (“retain” or “discard”). For each token x_i in a sequence \mathbf{x} , the model θ outputs a logit vector ℓ_i , and the retention probability is given by:

$$P(\text{retain } x_i \mid \mathbf{x}; \theta) = \text{softmax}(\ell_i)_1,$$

where the subscript 1 denotes the “retain” class. Tokens with probabilities above a dynamic threshold are included in the compressed sequence. In addition, **LightMem** can also employ more general generative LLM as the pre-compression model. We further implement a token filtering mechanism based on the cross-entropy between the model’s predicted distribution and the true token labels:

$$P(\text{retain } x_i \mid \mathbf{x}; \theta) = - \sum_{x_i \in \mathcal{V}} q(x_i) \log P(x_i \mid \mathbf{x}; \theta)$$

where $q(x_i)$ denotes the true token label distribution. Tokens with higher conditional entropy under a given context are more uncertain and less predictable, indicating greater informational uniqueness and a more critical role in semantic expression, such distinctive tokens are essential for subsequent memory construction and are therefore retained.

216 **Topic Segmentation Submodule.** Existing works indicate that topic-granular input facilitates im-
 217 proved performance in memory systems (Pan et al., 2025; Tan et al., 2025). As shown in Fig-
 218 ure 2, **LightMem** maintains a sensory memory buffer to temporarily store information after pre-
 219 compression. When the accumulated information reaches the buffer’s maximum capacity, a hybrid
 220 topic segmentation operation based on attention and similarity is triggered. We use the compression
 221 model θ and an embedding model to compute attention matrices and semantic similarities, respec-
 222 tively. We define the final segmentation boundaries as the intersection of attention-based boundaries
 223 \mathcal{B}_1 and similarity-based boundaries \mathcal{B}_2 :

$$\mathcal{B}_1 = \{k \mid M_{k,k-1} > M_{k-1,k-2}, M_{k,k-1} > M_{k+1,k}, 1 < k < n\},$$

$$\mathcal{B}_2 = \left\{ k \mid \text{sim}(s_{k-1}, s_k) < \tau, 1 \leq k < n \right\}, \quad \mathcal{B} = \mathcal{B}_1 \cap \mathcal{B}_2.$$

227 Specifically, dialogue scenarios possess natural semantic units, namely the conversational turn. We
 228 construct a turn-level attention matrix $M \in \mathbb{R}^{n \times n}$. \mathcal{B}_1 are identified as local maxima in the sequence
 229 $\{M_{k,k-1}\}$, i.e., the sub-diagonal elements of M corresponding to attention between consecutive sen-
 230 tences. The detailed process of \mathcal{B}_1 and illustrative cases are provided in Appendix C.1. To mitigate
 231 attention sinks and dilution in attention-based methods, we compute semantic similarity between
 232 adjacent turns near each candidate boundary in \mathcal{B}_1 . Boundaries with similarity below threshold τ
 233 form set \mathcal{B}_2 , which helps determine the final topic boundaries \mathcal{B} .

234 3.2 LIGHT2: TOPIC-AWARE SHORT-TERM MEMORY

236 After obtaining individual topic segments, forming an index structure of {topic, message turns},
 237 where message turns = $\{user_i, model_i\}$. These are first placed into the STM buffer. When the token
 238 count in the buffer reaches a preset threshold, we invoke LLM f_{sum} to generate concise summaries
 239 of every structure. The final index structure stored in LTM is {topic, $\{sum_i, user_i, model_i\}$ }.

$$\text{sum}_i = f_{\text{sum}}(S_i), \quad S_i \subseteq \{user_i, model_i\}, \quad S_i \neq \emptyset,$$

$$\text{Entry}_i = \{\text{topic}, \mathbf{e}_i := \text{embedding}(\text{sum}_i), user_i, model_i\},$$

243 where Entry_i denotes the memory entry to be stored in LTM. Compared with inputting at the granu-
 244 larity of a single turn or session, directly feeding multiple sessions can reduce subsequent API calls
 245 but often introduces inaccurate memory entries due to excessive topic mixing, leading to perfor-
 246 mance degradation. In contrast, topic-constrained input granularity minimizes API calls to the great-
 247 est extent while preserving summarization accuracy and maintaining stable system performance.

248 3.3 LIGHT3: LONG-TERM MEMORY WITH SLEEP-TIME UPDATE

250 **Soft Updating at Test Time.** At test time, when memory entries arrive, LightMem directly inserts
 251 them into LTM with soft updates, thereby decoupling the update process from online inference. Due
 252 to real-time updates being converted to direct insertions, interaction latency is significantly reduced.
 253 After all entries are inserted or when an update trigger arrives, we compute an update queue for
 254 every entry in LTM.

$$\mathcal{Q}(e_i) = \text{Top}_k \left\{ (e_j, \text{sim}(v_i, v_j)) \mid t_j \geq t_i, j \neq i \right\}_{:n},$$

257 where e_i denotes the i -th memory entry with embedding v_i and timestamp t_i , $\text{sim}(\cdot, \cdot)$ is the sim-
 258 ilarity function, and $\text{Top}_k \{\cdot\}_{:n}$ indicates selecting the top- k most similar candidates, with the update
 259 queue $\mathcal{Q}(e_i)$ length fixed at n . Consistent with existing work, we select the top- k existing memory
 260 entries with the highest semantic similarity as potential update sources. On this basis, we further
 261 impose the constraint that only entries with later timestamps are allowed to update earlier ones
 262 ($t_j \geq t_i$), which is consistent with realistic temporal dynamics. Here, $\mathcal{Q}(e_i)$ denotes the queue of
 263 other entries that may update e_i . Since this process involves only similarity retrieval, it is fast and
 264 lightweight, and can be executed offline in parallel with online inference.

265 **Offline Parallel Update.** LightMem does not simply transfer online update latency to offline phases,
 266 it substantially reduces the overall update latency. The online update mechanism in existing memory
 267 frameworks enforces sequential updates, leading to a total latency that accumulates with each up-
 268 date. As shown in Figure 2, in LightMem, each memory entry maintains a global update queue, with
 269 each queue corresponding to a distinct f_{update} operation. Since the update targets are independent
 across queues, updates can be executed in parallel, thereby greatly reducing the total latency.

270 **4 COMPLEXITY ANALYSIS ABOUT LIGHTMEM**
271

Method	Summary Tokens	Update Tokens	API Calls	Runtime
Baselines	$N(L_{\text{sum-in}} + T + L_{\text{sum-out}})$	$N M_1 R_1 (L_{\text{up-in}} + L_{\text{up-out}})$	N	$O(N)$
LightMem	$\frac{Nr^xT}{th} (L_{\text{sum-in}} + th + L_{\text{sum-out}})$	$\frac{Nr^xT}{th} M_2 R_2 (L_{\text{up-in}} + L_{\text{up-out}})$	$\frac{Nr^xT}{th}$	$O\left(\frac{Nr^xT}{th}\right)$

277 Table 1: Complexity comparison between LightMem and other memory systems. The specific
278 definitions of each symbol are provided in the Appendix A.2.
279280 As shown in Table 4, we consider a dialogue with N turns, each containing on average T tokens.
281 In conventional memory systems, each turn triggers a summarization call, consuming $L_{\text{sum-in}} + T +$
282 $L_{\text{sum-out}}$ tokens and totaling $N(L_{\text{sum-in}} + T + L_{\text{sum-out}})$ tokens with N API calls. Each summarization
283 produces M_1 memory entries, a fraction R_1 of which retrieve at least one relevant neighbor and
284 trigger an update, resulting in an update-token cost of $N M_1 R_1 (L_{\text{up-in}} + L_{\text{up-out}})$.
285286 In **LightMem**, each turn is first passed through iterative pre-compression submodule, retaining only
287 r^xT tokens after x iterations, and appended to a short-term memory (STM) buffer of capacity th .
288 Summarization is triggered only when the buffer reaches capacity, yielding $\frac{Nr^xT}{th}$ summarization
289 calls, each consuming $L_{\text{sum-in}} + th + L_{\text{sum-out}}$ tokens. Each summarization produces M_2 memory
290 entries, but stricter retrieval constraints, including semantic similarity and timestamp filtering, re-
291 duce the fraction R_2 that trigger updates. Hence, the update phase involves $\frac{Nr^xT}{th} M_2 R_2$ calls, with
292 a total token cost of $\frac{Nr^xT}{th} M_2 R_2 (L_{\text{up-in}} + L_{\text{up-out}})$.
293294 Overall, **LightMem** requires only $\frac{Nr^xT}{th}$ API calls for both summarization operations, substantially
295 reducing token usage and call frequency compared to other systems. Correspondingly, the runtime
296 complexity of other memory systems is $O(N)$, while LightMem achieves a reduced runtime of
297 $O\left(\frac{Nr^xT}{th}\right)$, reflecting the efficiency gain from compressed summarization and selective updates.
298299 **5 EXPERIMENTS**
300301 **5.1 EXPERIMENTAL SETUP**
302303 **Experimental Details.** (1) Our experiments adopt a realistic *Incremental Dialogue Turn Feeding*
304 setting, where the entire dialogue history is fed and processed **at the turn level, one turn at a**
305 **time**. This reflects practical scenarios where interactions between user and model is incrementally
306 formed turn by turn. (Hu et al., 2025). (2) For considerations of both efficiency and effectiveness,
307 we employ LLMLingua-2 as our pre-compressor throughout all subsequent experiments. (3) The
308 attention scores for topic segmentation are also obtained using LLMLingua-2, the size of the sensory
309 memory buffer is 512 tokens. All specific models used in this paper, can be found in Table 5.
310311 **Datasets & Baseline Methods.** We use two well-known datasets, **LONGMEMEVAL** (Wu et al.,
312 2025) (specifically the LongMemEval-S split) and **LoCoMo** (Maharana et al., 2024) to evaluate
313 memory ability. We compare **LightMem** against several representative baselines of conversational
314 memory modeling. ① *Full Text*, ② *Naive RAG*, ③ *LangMem* (LangChain, 2025), ④ *A-MEM* (Xu
315 et al., 2025), ⑤ *MemoryOS* (Kang et al., 2025), ⑥ *Mem0* (Chhikara et al., 2025). In addition, all
316 methods use GPT-4o-mini and Qwen3-30B-A3B-Instruct-2507 as the LLM backbones. Details on
317 dataset, baselines, and experimental settings are provided in the Appendix D.
318319 **Metrics.** We evaluate these methods using both effectiveness and efficiency metrics. For effectiveness,
320 we report **Accuracy (ACC)**, defined as the proportion of correctly answered questions. The
321 evaluation is conducted with *GPT-4o-mini* as an LLM judge, guided by a detailed evaluation prompt
322 (see Appendix E.1). For efficiency, we focus on tracking the computational costs of the LLM invoca-
323 tions in memory bank construction stage (see Section 2.1), all averaged across the entire dataset,
324 as it is the one tied to the design and implementation differences of memory systems. The retrieval
325 and usage stage is not our focus, because for fair comparison, The $f_{\text{retrieve}}()$, $f_{\text{chat}}()$ and number of
326 retrieved entries are same among all methods. As a result, their costs exhibit only minor differences,
327 and this stage is largely orthogonal to the design of memory systems, as shown in the table. Within
328 the memory bank construction stage, only the two sub-processes **Summary** and **Update** involve the
329

324
 325 Table 2: Effectiveness and efficiency comparison on LONGMEMEVAL-S. The token usage is in
 326 thousands. – indicates no value for the metric. **Bold** denotes the best result, underline the second-
 327 best. r denotes the compression rate. th denotes the capacity threshold of the STM buffer, measured
 328 in tokens. Each pair of r and th corresponds to two rows: one for online soft update and one for
 329 offline update. OP-update denotes the offline parallel update process of **LightMem**.

330 Method	331 ACC (%)	332 Summary Tokens (k)		333 Update Tokens (k)		334 Total (k)	335 Calls	336 Runtime (s)
		337 In	338 Out	339 In	340 Out			
⌚ GPT-4o-mini								
FullText	56.80	–	–	–	–	105.07	–	–
NaiveRAG	61.00	–	–	–	–	–	–	867.38
LangMem	37.20	–	–	982.68	119.48	1,102.16	520.62	2,293.70
A-MEM	62.60	214.66	42.82	1,157.52	190.81	1,605.81	986.55	5,132.06
MemoryOS	44.80	2,302.35	304.18	350.02	35.19	2,991.75	2,938.41	8,030.04
Mem0	53.61	424.13	17.76	560.17	150.56	1,152.62	811.57	4,248.49
⚡ Qwen3-30B-A3B-Instruct-2507								
FullText	54.80	–	–	–	–	105.07	–	–
NaiveRAG	60.80	–	–	–	–	–	–	659.09
LangMem	50.80	–	–	1,311.96	118.06	1,430.02	495.12	3,237.16
A-MEM	65.20	219.21	66.98	1,260.54	318.20	1,864.93	989.30	5,367.51
MemoryOS	49.60	2,101.54	510.88	305.12	27.43	2,944.97	2,922.28	8,721.78
Mem0	39.51	424.20	15.34	411.50	111.35	1001.90	722.76	2,239.94
LightMem								
$r=0.5, th=256$	64.29	<u>20.80</u>	<u>10.01</u>	–	–	<u>30.81</u>	<u>25.67</u>	<u>302.69</u>
(OP-update)	64.69	–	–	44.46	2.56	47.02	70.23	342.63
$r=0.6, th=256$	<u>67.78</u>	24.58	10.53	–	–	35.11	30.47	329.61
(OP-update)	65.39	–	–	<u>53.98</u>	<u>3.18</u>	57.16	85.07	411.56
$r=0.7, th=512$	68.64	18.88	9.37	–	–	28.25	18.43	283.76
(OP-update)	67.07	–	–	79.38	4.06	83.44	125.47	496.03

358
 359
 360 use of LLMs, $f_{\text{sum/extract}}()$ and $f_{\text{update}}()$. So for both processes, we report the token consumption
 361 from LLM calls, including input tokens, output tokens, and total token usage (in thousands). Addi-
 362 tionally, we track **API Calls** counting the total number of LLM invocations, and **Runtime** recording
 363 the overall execution time for memory bank construction stage.

365 5.2 MAIN RESULTS

366 As shown in Table 2 and Table 3, **LightMem** demonstrates superior effectiveness and efficiency on
 367 both datasets across both GPT and Qwen backbones. For a fair comparison, all efficiency metrics
 368 for LightMem in the following analysis refer to the **combined online and offline** costs.

369
 370 **LongMemEval.** On the LongMemEval benchmark, LightMem consistently outperforms the
 371 strongest baseline, A-Mem, in the ACC metric, improving accuracy by 2.09%–6.40% with GPT and
 372 up to 7.67% with Qwen. In terms of efficiency, for GPT, LightMem reduces total token consump-
 373 tion by $10\times$ – $38\times$ and API calls by $3.6\times$ – $30\times$; for Qwen, it reduces total tokens by $6.9\times$ – $21.8\times$
 374 and API calls by $3.3\times$ – $17.1\times$. Regarding runtime, LightMem achieves $2.9\times$ – $12.4\times$ for GPT and
 375 $1.6\times$ – $6.3\times$ for Qwen speedup over other memory baselines.

376
 377 ¹MemoryOS(locomo) is the LoCoMo reproduction script in the MemoryOS library, simplifying the standard
 version, shown as MemoryOS(regular).

378
 379 Table 3: Effectiveness and efficiency comparison on LoCoMo. Due to space limitations and for
 380 ease of comparison, we merge the results before and after LightMem’s offline update into a single
 381 row. The ACC reported corresponds to the performance after the offline update.

Method	ACC (%)	Summary Tokens (k)		Update Tokens (k)		Total (k)	Calls	Runtime (s)
		In	Out	In	Out			
GPT-4o-mini								
FullText	71.83	—	—	—	—	—	—	—
NaiveRAG	63.64	—	—	—	—	—	—	—
LangMem	57.20	—	—	898.27	111.95	1010.22	920.62	2229.37
A-MEM	64.16	182.74	49.29	729.89	187.52	1149.43	1175.47	6060.73
MemoryOS(locomo) ¹	58.25	110.98	33.40	78.08	64.54	287.00	553.45	2422.05
MemoryOS(regular)	54.87	226.86	46.61	177.66	75.34	526.48	1016.06	3332.59
Mem0	61.69	851.32	20.53	632.12	189.42	1693.39	1602.20	4432.87
LightMem(0.7,512)	<u>71.95</u>	<u>73.19</u>	<u>20.13</u>	<u>6.05</u>	<u>0.40</u>	<u>99.76</u>	<u>41.65</u>	<u>848.49</u>
LightMem(0.7,768)	70.26	57.54	<u>18.92</u>	3.79	0.23	80.48	29.55	737.80
LightMem(0.8,768)	72.99	<u>62.82</u>	17.95	<u>4.14</u>	<u>0.28</u>	<u>85.19</u>	<u>29.83</u>	<u>815.32</u>
Qwen3-30B-A3B-Instruct-2507								
FullText	74.87	—	—	—	—	—	—	—
NaiveRAG	66.95	—	—	—	—	—	—	—
LangMem	60.53	—	—	1004.35	138.02	1142.37	1005.37	2268.57
A-MEM	56.10	158.29	60.85	924.19	483.51	1626.80	1175.40	5543.90
MemoryOS(locomo)	61.04	122.21	53.12	104.43	81.75	361.51	414.70	1269.70
MemoryOS(regular)	51.30	228.85	51.60	242.27	143.63	666.35	1004.60	1982.20
Mem0	43.31	827.09	18.64	763.88	189.80	1799.40	1614.50	4540.70
LightMem(0.6,768)	71.36	56.68	<u>34.14</u>	8.31	0.74	99.87	29.10	815.70
LightMem(0.8,1024)	72.60	<u>61.38</u>	<u>36.33</u>	<u>9.86</u>	<u>0.88</u>	<u>108.45</u>	<u>32.00</u>	<u>1079.40</u>

406 If considering only online test-time cost, LightMem shows an even larger efficiency advantage.
 407 For GPT, LightMem reduces total token consumption by $31.4\times$ – $105.9\times$ and API calls by $17.1\times$ –
 408 $159.4\times$; for Qwen, it reduces total tokens by $30.1\times$ – $117.1\times$ and API calls by $24.8\times$ – $309.9\times$.

409 **LoCoMo.** On the LoCoMo dataset, LightMem also demonstrates superior performance over other
 410 memory baselines. For the GPT backbone, it improves ACC by 6.10%–18.12%, achieves a $2.87\times$ –
 411 $20.92\times$ improvement in total token efficiency, reduces API calls by $13.29\times$ – $39.78\times$, and accelerates
 412 runtime by $2.63\times$ – $8.21\times$. On the Qwen backbone, LightMem maintains its advantage in both ef-
 413 fectiveness and efficiency, with 4.41%–29.29% higher ACC, $3.33\times$ – $18.02\times$ reduction in total token
 414 consumption, $12.96\times$ – $55.48\times$ fewer API calls, and $1.18\times$ – $5.57\times$ faster runtime.

415 **LightMem achieves superior performance on nearly all metrics and both LLM backbones,**
 416 **while demonstrating robust performance and efficiency on both LongMemEval and LoCoMo,**
 417 **highlighting its generalizability across different models and scenarios.**

419 5.3 ANALYSIS OF PRE-COMPRESSING SUBMODULE

421 **Performance and Overhead.** LightMem uses an additional model (Pan et al., 2024b; Xia et al.,
 422 2025) for pre-compression. We evaluate its performance by randomly sampling 1/5 of LONG-
 423 MEMEVAL and compressing it at ratios shown in Figure 3(a), then prompting LLMs for in-context
 424 QA. When compression ratio r ranges from 50%–80%, compressed and uncompressed performance
 425 are comparable, demonstrating LLMs can effectively understand compressed content and validating
 426 LightMem’s approach. The submodule is highly efficient, consuming under 2GB of GPU memory
 427 with negligible impact on overall runtime.

428 **Impact of r on Performance.** As shown in Tables 8 and 9, The optimal r for ACC is dependent
 429 on the STM buffer threshold th . For smaller thresholds ($th \in \{0, 256\}$), an r of 0.6 achieves the
 430 highest ACC. In contrast, for larger thresholds ($th \in \{512, 1024\}$), a higher retention rate of $r = 0.7$
 431 performs best. This suggests greater buffer capacity enables effective use of richer, less-compressed
 432 information, leveraging LLMs’ advanced long-context processing to mitigate the “lost in the middle”

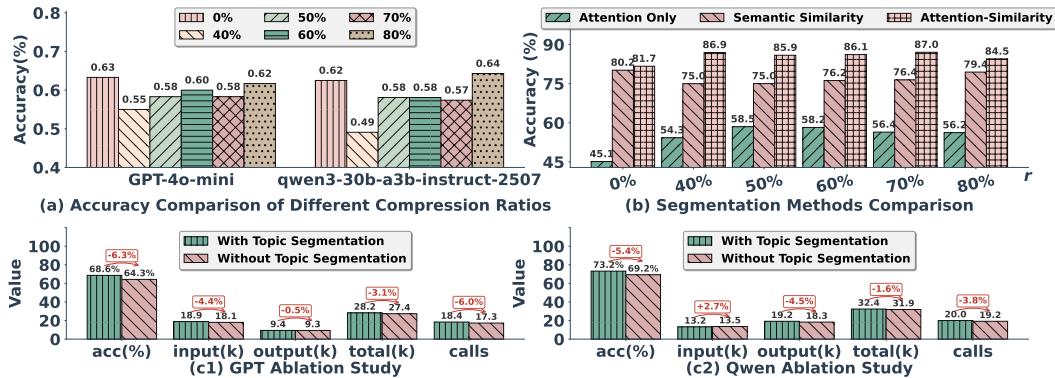


Figure 3: Analysis and Ablation Study of Key Modules. Fig.(a) depicts the QA accuracy when using prompts compressed at different ratios (r) as in-contexts to query the LLM directly. Fig.(b) compares the accuracy of different topic segmentation methods under these varying compression ratios. Fig.(c1) and Fig.(c2) present the ablation study for the topic segmentation module, evaluating its impact on both performance and efficiency for the GPT and Qwen models.

phenomenon. On average, the optimal r for ACC is 0.6, reflecting a trade-off between information compression rate and the quantity of information in the STM buffer. In terms of efficiency, a lower r generally leads to higher efficiency, as it triggers the buffer threshold less frequently under the same th , resulting in fewer API calls and lower token consumption.

5.4 ANALYSIS OF TOPIC SEGMENTATION SUBMODULE

Segmentation Accuracy. To validate the accuracy of our proposed hybrid topic segmentation method, we compare it with segmentation using only a single granularity: attention-only-based and similarity-only-based segmentation. Since the construction process of the LONGMEMEVAL indicates that different sessions naturally serve as topic boundaries, we directly use them as ground-truth labels. The final accuracy is calculated as the number of correctly identified segmentation points divided by the total number of labels. The results in Figure 3(b) validate the effectiveness of our method: it achieves higher accuracy than both individual segmentation methods across all compression ratios, with an absolute accuracy exceeding 80%.

Ablation Study. As shown in Figure 3(c), removing the topic segmentation submodule slightly improves efficiency but significantly harms accuracy, causing a 6.3% drop for GPT and 5.4% for Qwen. This indicates that the submodule effectively enables models to perceive semantic units in the input, facilitating subsequent memory unit generation.

5.5 ANALYSIS OF THE STM THRESHOLD'S IMPACT

As illustrated in the Figure 4, the STM buffer threshold (th) has a distinct but significant impact on both efficiency and performance metrics. A consistent trend is: as th increases, there is a marked improvement in efficiency. In contrast, the effect on QA accuracy is non-monotonic. The optimal threshold for accuracy varies depending on the model and the compression ratio (r), indicating that a larger buffer does not always yield better performance. This highlights a crucial trade-off: while a larger STM threshold is consistently better for reducing computational cost, the ideal setting for maximizing task accuracy requires careful tuning.

5.6 ANALYSIS OF SLEEP-TIME UPDATE

Why Soft Updates Work. A primary challenge in designing memory systems is handling updates. While powerful, LLMs can be unreliable when tasked with complex real-time update operations. For instance, when presented with two related but not contradictory pieces of information, an LLM might incorrectly interpret them as a conflict and delete the older memory entry, leading to irre-

486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 196

540 ETHICS STATEMENT

541

542 LightMem enhances LLM agents by creating an external memory of user interactions. While this
 543 improves agent coherence, it introduces critical ethical challenges. Storing dialogue histories poses
 544 inherent risks to user privacy, as conversations may contain sensitive data. The memory can also
 545 absorb and perpetuate biases or misinformation from user input, potentially leading to bad agent
 546 behavior. Therefore, any deployment of this technology must prioritize robust safeguards. We
 547 strongly advocate for strict privacy protocols, such as data anonymization and user consent, as well
 548 as mechanisms to mitigate the effects of biased or false memories. Responsible development is
 549 essential to ensure these memory-augmented systems are used in a safe and trustworthy manner.

550 REPRODUCIBILITY STATEMENT

551

552 To ensure the reproducibility of this work, we introduce the detailed implementations for LightMem
 553 are provided in in Section 3, Appendix C. Additionally, we plan to release our source code in the
 554 future to further support reproducibility. These measures are intended to facilitate the verification
 555 and replication of our results by other researchers in the field.

556

557 REFERENCES

558

559 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 560 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 561 report. *arXiv preprint arXiv:2303.08774*, 2023.

562

563 Richard C Atkinson and Richard M Shiffrin. Human memory: A proposed system and its control
 564 processes. In *Psychology of learning and motivation*, volume 2, pp. 89–195. Elsevier, 1968.

565

566 Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. *arXiv*
 567 preprint *arXiv:2501.00663*, 2024.

568

569 Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
 570 production-ready ai agents with scalable long-term memory. *ArXiv*, abs/2504.19413, 2025. URL
<https://api.semanticscholar.org/CorpusID:278165315>.

571

572 Yu-Neng Chuang, Tianwei Xing, Chia-Yuan Chang, Zirui Liu, Xun Chen, and Xia Ben Hu. Learning
 573 to compress prompt in natural language formats. In Kevin Duh, Helena Gómez-Adorno, and
 574 Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of
 575 the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
 576 Papers)*, NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 7756–7767. Association for
 577 Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.429. URL <https://doi.org/10.18653/v1/2024.naacl-long.429>.

578

579 Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
 580 guage models for interpretable logical reasoning. In *The Eleventh International Conference on
 581 Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023.
 582 URL <https://openreview.net/forum?id=3Pf3Wg6o-A4>.

583

584 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 585 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 586 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 587 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 588 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 589 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 590 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 591 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 592 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 593 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye,
 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing

594 reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025. doi: 10.
 595 48550/ARXIV.2501.12948. URL <https://doi.org/10.48550/arXiv.2501.12948>.
 596

597 Junnan Dong, Siyu An, Yifei Yu, Qian-Wen Zhang, Linhao Luo, Xiao Huang, Yunsheng Wu, Di Yin,
 598 and Xing Sun. Youtu-graphrag: Vertically unified agents for graph retrieval-augmented complex
 599 reasoning. *arXiv preprint arXiv:2508.19855*, 2025.

600 Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata,
 601 Kam-Fai Wong, and Jeff Z Pan. Rethinking memory in ai: Taxonomy, operations, topics, and
 602 future directions. *arXiv preprint arXiv:2505.00675*, 2025.

603 André V. Duarte, João Marques, Miguel Graça, Miguel Freire, Lei Li, and Arlindo L. Oliveira.
 604 Lumberchunker: Long-form narrative document segmentation. In Yaser Al-Onaizan, Mohit
 605 Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024*, pp. 6473–6486. Association
 606 for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-EMNLP.377. URL
 607 <https://doi.org/10.18653/v1/2024.findings-emnlp.377>.
 608

609 Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
 610 and Jonathan Larson. From local to global: A graph rag approach to query-focused summa-
 611 rization. *ArXiv*, abs/2404.16130, 2024. URL <https://api.semanticscholar.org/CorpusID:269363075>.
 612

613 Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
 614 Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory, 2025. URL
 615 <https://arxiv.org/abs/2508.06433>.
 616

617 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
 618 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
 619 *arXiv preprint arXiv:2312.10997*, 2023.

620 Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
 621 augmented generation. *arXiv preprint arXiv:2410.05779*, 2024.

622 Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neuro-
 623 biologically inspired long-term memory for large language models. In Amir Globersons, Lester
 624 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 625 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
 626 Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 627 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/6ddc001d07ca4f319af96a3024f6dbd1-Abstract-Conference.html.
 628

629 Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in llm agents via incremental
 630 multi-turn interactions, 2025. URL <https://arxiv.org/abs/2507.05257>.
 631

632 Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compress-
 633 ing prompts for accelerated inference of large language models. In Houda Bouamor, Juan Pino,
 634 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural
 635 Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 13358–13376. Associa-
 636 tion for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.825. URL
 637 <https://doi.org/10.18653/v1/2023.emnlp-main.825>.
 638

639 Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
 640 Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt
 641 compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the
 642 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
 643 pers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 1658–1677. Association for
 644 Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.91. URL <https://doi.org/10.18653/v1/2024.acl-long.91>.
 645

646 Jiazheng Kang, Mingming Ji, Zhe Zhao, and Ting Bai. Memory os of ai agent. *ArXiv*,
 647 abs/2506.06326, 2025. URL <https://api.semanticscholar.org/CorpusID:279250574>.
 648

648 LangChain. Langmem sdk for agent long-term memory, 2025. URL <https://blog.langchain.com/langmem-sdk-launch/>.

649

650

651 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
652 Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
653 and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In
654 Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
655 Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Con-
656 ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
657 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html>.

658

659 Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again!
660 lilm-powered personalized agent for long-term dialogue, 2025a. URL <https://arxiv.org/abs/2406.05925>.

661

662 Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to enhance inference
663 efficiency of large language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.),
664 *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
665 EMNLP 2023, Singapore, December 6-10, 2023*, pp. 6342–6353. Association for Computational
666 Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.391. URL <https://doi.org/10.18653/v1/2023.emnlp-main.391>.

667

668 Zhiyu Li, Shichao Song, Hanyu Wang, Simin Niu, Ding Chen, Jiawei Yang, Chenyang Xi, Huayi
669 Lai, Jihao Zhao, Yezhaohui Wang, Junpeng Ren, Zehao Lin, Jiahao Huo, Tianyi Chen, Kai Chen,
670 Ke-Rong Li, Zhiqiang Yin, Qingchen Yu, Bo Tang, Hongkang Yang, Zhiyang Xu, and Feiyu
671 Xiong. Memos: An operating system for memory-augmented generation (mag) in large language
672 models. *ArXiv*, abs/2505.22101, 2025b. URL <https://api.semanticscholar.org/CorpusID:278960153>.

673

674 Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Collier. Prompt compression for large lan-
675 guage models: A survey. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings
676 of the 2025 Conference of the Nations of the Americas Chapter of the Association for Com-
677 putational Linguistics: Human Language Technologies, NAACL 2025 - Volume 1: Long Pa-
678 pers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 7182–7195. Association
679 for Computational Linguistics, 2025c. doi: 10.18653/V1/2025.NAACL-LONG.368. URL
680 <https://doi.org/10.18653/v1/2025.naacl-long.368>.

681

682 Xinnian Liang, Bing Wang, Huijia Huang, Shuangzhi Wu, Peihao Wu, Lu Lu, Zejun Ma, and Zhou-
683 jun Li. Scm: Enhancing large language model with self-controlled memory framework. 2023.
684 URL <https://api.semanticscholar.org/CorpusID:258331553>.

685

686 Barys Liskavets, Maxim Ushakov, Shuvendu Roy, Mark Klibanov, Ali Etemad, and Shane K. Luke.
687 Prompt compression with context-aware sentence encoding for fast and improved LLM inference.
688 In Toby Walsh, Julie Shah, and Zico Kolter (eds.), *AAAI-25, Sponsored by the Association for the
689 Advancement of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA*, pp.
690 24595–24604. AAAI Press, 2025. doi: 10.1609/AAAI.V39I23.34639. URL <https://doi.org/10.1609/aaai.v39i23.34639>.

691

692 Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
693 Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
694 brain-inspired intelligence to evolutionary, collaborative, and safe systems. *arXiv preprint
arXiv:2504.01990*, 2025a.

695

696 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
697 and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
698 <https://arxiv.org/abs/2307.03172>.

699

700 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
701 Percy Liang. Lost in the middle: How language models use long contexts. *Trans. Assoc. Comput.
702 Linguistics*, 12:157–173, 2024. doi: 10.1162/TACL_A_00638. URL https://doi.org/10.1162/tacl_a_00638.

702 Zuhong Liu, Charles-Elie Simon, and Fabien Caspani. Passage segmentation of documents for ex-
 703 tractive question answering. In Claudia Hauff, Craig Macdonald, Dietmar Jannach, Gabriella
 704 Kazai, Franco Maria Nardini, Fabio Pinelli, Fabrizio Silvestri, and Nicola Tonello (eds.), *Ad-
 705 vances in Information Retrieval - 47th European Conference on Information Retrieval, ECIR
 706 2025, Lucca, Italy, April 6-10, 2025, Proceedings, Part III*, volume 15574 of *Lecture Notes in
 707 Computer Science*, pp. 345–352. Springer, 2025b. doi: 10.1007/978-3-031-88714-7_33. URL
 708 https://doi.org/10.1007/978-3-031-88714-7_33.

709 Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
 710 Fang. Evaluating very long-term conversational memory of llm agents, 2024. URL <https://arxiv.org/abs/2402.17753>.

711 Lingrui Mei, Jiayu Yao, Yuyao Ge, Yiwei Wang, Baolong Bi, Yujun Cai, Jiazhi Liu, Mingyu Li,
 712 Zhong-Zhi Li, Duzhen Zhang, et al. A survey of context engineering for large language models.
 713 *arXiv preprint arXiv:2507.13334*, 2025.

714 Jiayan Nan, Wenquan Ma, Wenlong Wu, and Yize Chen. Nemori: Self-organizing agent memory
 715 inspired by cognitive science. *arXiv preprint arXiv:2508.03341*, 2025.

716 Charles Packer, Vivian Fang, Shishir G. Patil, Kevin Lin, Sarah Wooders, and Joseph Gonzalez.
 717 Memgpt: Towards llms as operating systems. *ArXiv*, abs/2310.08560, 2023. URL <https://api.semanticscholar.org/CorpusID:263909014>.

718 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin, Vic-
 719 tor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang. Llmlingua-
 720 2: Data distillation for efficient and faithful task-agnostic prompt compression. In Lun-Wei Ku,
 721 Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Lin-
 722 guistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 963–981.
 723 Association for Computational Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-ACL.57.
 724 URL <https://doi.org/10.18653/v1/2024.findings-acl.57>.

725 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
 726 Victor Rühle, Yuqing Yang, Chin-Yew Lin, et al. Llmlingua-2: Data distillation for efficient and
 727 faithful task-agnostic prompt compression. *arXiv preprint arXiv:2403.12968*, 2024b.

728 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Xufang Luo, Hao Cheng, Dongsheng Li, Yuqing Yang,
 729 Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Jianfeng Gao. Secom: On memory construction
 730 and retrieval for personalized conversational agents. In *The Thirteenth International Conference
 731 on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025.
 732 URL <https://openreview.net/forum?id=xKDZAW0He3>.

733 Joon Sung Park, Joseph C. O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 734 Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean
 735 Follmer, Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), *Proceedings of the 36th
 736 Annual ACM Symposium on User Interface Software and Technology, UIST 2023, San Francisco,
 737 CA, USA, 29 October 2023- 1 November 2023*, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183.
 738 3606763. URL <https://doi.org/10.1145/3586183.3606763>.

739 Renyi Qu, Ruixuan Tu, and Forrest Sheng Bao. Is semantic chunking worth the computa-
 740 tional cost? In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Associa-
 741 tion for Computational Linguistics: NAACL 2025, Albuquerque, New Mexico, USA, April
 742 29 - May 4, 2025*, pp. 2155–2177. Association for Computational Linguistics, 2025. doi:
 743 10.18653/V1/2025.FINDINGS-NAACL.114. URL <https://doi.org/10.18653/v1/2025.findings-naacl.114>.

744 Björn Rasch and Jan Born. About sleep's role in memory. *Physiological reviews*, 2013.

745 Preston Rasmussen, Pavlo Paliychuk, Travis Beauvais, Jack Ryan, and Daniel Chalef. Zep: a tem-
 746 poral knowledge graph architecture for agent memory. *arXiv preprint arXiv:2501.13956*, 2025.

747 Alireza Rezazadeh, Zichao Li, Wei Wei, and Yujia Bao. From isolated conversations to hierarchical
 748 schemas: Dynamic tree memory representation for llms. In *The Thirteenth International Confer-
 749 ence on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net,
 750 2025. URL <https://openreview.net/forum?id=moXtEmCleY>.

756 Rana Salama, Jason Cai, Michelle Yuan, Anna Currey, Monica Sunkara, Yi Zhang, and Yassine Be-
 757 najiba. Memindsight: Autonomous memory augmentation for llm agents. *ArXiv*, abs/2503.21760,
 758 2025. URL <https://api.semanticscholar.org/CorpusID:277349587>.

759 Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D. Man-
 760 ning. RAPTOR: recursive abstractive processing for tree-organized retrieval. In *The Twelfth Inter-
 761 national Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.
 762 OpenReview.net, 2024. URL <https://openreview.net/forum?id=GN921JHCRw>.

763 Zhen Tan, Jun Yan, I-Hung Hsu, Rujun Han, Zifeng Wang, Long T. Le, Yiwen Song, Yanfei Chen,
 764 Hamid Palangi, George Lee, Anand Iyer, Tianlong Chen, Huan Liu, Chen-Yu Lee, and Tomas
 765 Pfister. In prospect and retrospect: Reflective memory management for long-term personalized
 766 dialogue agents, 2025. URL <https://arxiv.org/abs/2503.08026>.

767 Yu Wang and Xi Chen. Mirix: Multi-agent memory system for llm-based agents. *arXiv preprint
 768 arXiv:2507.07957*, 2025.

769 Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen, Zexue
 770 He, Wei Wang, Gholamreza Haffari, et al. Towards lifespan cognitive systems. *arXiv preprint
 771 arXiv:2409.13265*, 2024.

772 Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too).
 773 *arXiv preprint arXiv:2311.11829*, 2023.

774 Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval:
 775 Benchmarking chat assistants on long-term interactive memory. In *The Thirteenth International
 776 Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenRe-
 777 view.net, 2025. URL <https://openreview.net/forum?id=pZiyCaVuti>.

778 Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
 779 chain-of-thought compression in llms. *arXiv preprint arXiv:2502.12067*, 2025.

780 Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem:
 781 Agentic memory for llm agents. *ArXiv*, abs/2502.12110, 2025. URL <https://api.semanticscholar.org/CorpusID:276421617>.

782 Hongkang Yang, Zehao Lin, Wenjin Wang, Hao Wu, Zhiyu Li, Bo Tang, Wenqiang Wei, Jinbo
 783 Wang, Zeyun Tang, Shichao Song, Chenyang Xi, Yu Yu, Kai Chen, Feiyu Xiong, Linpeng Tang,
 784 and Weinan E. Memory³: Language modeling with explicit memory. *CoRR*, abs/2407.01178,
 785 2024. doi: 10.48550/ARXIV.2407.01178. URL <https://doi.org/10.48550/arXiv.2407.01178>.

786 Guibin Zhang, Muxin Fu, Guancheng Wan, Miao Yu, Kun Wang, and Shuicheng Yan. G-memory:
 787 Tracing hierarchical memory for multi-agent systems. *arXiv preprint arXiv:2506.07398*, 2025.

788 Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong,
 789 and Ji-Rong Wen. A survey on the memory mechanism of large language model based agents,
 790 2024. URL <https://arxiv.org/abs/2404.13501>.

791 Jihao Zhao, Zhiyuan Ji, Yuchen Feng, Pengnian Qi, Simin Niu, Bo Tang, Feiyu Xiong, and Zhiyu
 792 Li. Meta-chunking: Learning text segmentation and semantic completion via logical perception.
 793 2024. URL <https://api.semanticscholar.org/CorpusID:278782541>.

794 Yibo Zhao, Jiapeng Zhu, Ye Guo, Kangkang He, and Xiang Li. E[^] 2graphrag: Streamlining graph-
 795 based rag for high efficiency and effectiveness. *arXiv preprint arXiv:2505.24226*, 2025.

796 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
 797 language models with long-term memory. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
 798 Natarajan (eds.), *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-
 799 Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth
 800 Symposium on Educational Advances in Artificial Intelligence, EAAI 2024, February 20-27, 2024,
 801 Vancouver, Canada*, pp. 19724–19731. AAAI Press, 2024. doi: 10.1609/AAAI.V38I17.29946.
 802 URL <https://doi.org/10.1609/aaai.v38i17.29946>.

810 A BACKGROUND DETAILS
811812 A.1 BACKGROUND ABOUT CURRENT MEMORY SYSTEMS
813814 We describe both the mainstream memory architectures and the **LightMem** pipeline in terms of two
815 major stages. The first is the memory bank construction stage, which can be further decomposed
816 into the three sub-stages (I), (II), and (III) described in the Section 2.1. The second major stage
817 concerns the usage of the memory system, which consists of retrieval and question answering (QA).
818819
820 **Memory Bank Construction** As shown in Table 4, we detail the workflows of the three sub-stages
821 (I), (II), and (III) for naive RAG, prevailing memory systems, and our LightMem. It can be observed
822 that baseline memory systems typically perform their update stage during user–model interaction,
823 which introduces substantial test-time latency. In contrast, LightMem decouples this update process
824 from online interaction, thereby significantly reducing test-time latency. All models involved in
825 these processes are listed in Table 5. As shown, LightMem introduces only one additional model,
826 LLMlingua-2, beyond those used by baseline methods. This model follows a lightweight BERT
827 architecture and requires less than 2GB of GPU memory during inference, rendering its overhead
828 negligible. Moreover, for fairness, the latency introduced by this component is fully accounted for
829 in our reported Runtime metric.
830831 Table 4: The mainstream memory architectures and the LightMem pipeline of memory bank con-
832 struction stage. Black-font processes denote those executed during online test-time interactions,
833 whereas red-font processes denote those executed offline.

834 Method	835 (I) Segment	836 (II) Summary/Extract	837 (III) Update
838 NaiveRAG	839 Raw dialog $\rightarrow f_{\text{seg}}()$ $\rightarrow \{\text{seg}_i\}$	$\rightarrow f_{\text{index}}() \rightarrow \{\text{emb}_i\}$	\
840 Other 841 Memory 842 Systems	843 Raw dialog $\rightarrow f_{\text{seg}}()$ $\rightarrow \{\text{seg}_i\}$	844 $\rightarrow f_{\text{sum/extract}}() \rightarrow \{\text{memory entry}_i\}$ $\rightarrow f_{\text{index}}() \rightarrow \{\text{emb}_i\}$	845 $\rightarrow f_{\text{retrieve}}() \rightarrow \{\text{related entry}_i\}$ $\rightarrow f_{\text{update}}()$ $\rightarrow \{\text{add, delete, update, merge...}\}$
846 LightMem	847 Raw dialog $\rightarrow f_{\text{seg}}()$ $\rightarrow \{\text{seg}_i\}$ $\rightarrow f_{\text{pre.compress}}()$ $\rightarrow \{\text{comp_seg}_i\}$ $\rightarrow \text{sensory buffer full} \rightarrow f_{\text{topic}}()$ $\rightarrow \{\text{topic-wise comp_seg}_i\}$	848 $\rightarrow f_{\text{sum/extract}}()$ $\rightarrow \{\text{topic}_i, \{\text{memory entry}_j\}\}$ $\rightarrow f_{\text{index}}() \rightarrow \{\text{topic}_i, \{\text{emb}_j\}\}$	849 Offline update trigger $\{\text{every entry}_i\} \rightarrow f_{\text{retrieve}}()$ $\rightarrow \{\text{related entry}_j\} \rightarrow \{\text{update queue}\}$ All update queues established $\rightarrow \text{parallel } f_{\text{update}}()$ $\rightarrow \{\text{add, delete, update, merge...}\}$

848 Function	849 Model / Strategy	850 Implementation in This Paper
851 $f_{\text{seg}}()$	852 Segmentation strategy	853 Turn-level granularity input
854 $f_{\text{index}}()$	855 Embedding model	856 all-MiniLM-L6-v2
857 $f_{\text{sum/extract}}()$	858 System backbone model	859 GPT-4o-mini; Qwen3-30B-A3B-Instruct-2507
860 $f_{\text{retrieve}}()$	861 Retrieval strategy	862 Cosine similarity vector retrieval
863 $f_{\text{update}}()$	864 System backbone model	865 GPT-4o-mini; Qwen3-30B-A3B-Instruct-2507
866 $f_{\text{pre.compress}}()$	867 Token compression model	868 LLMlingua-2
869 $f_{\text{topic}}()$	870 Topic segmentation model	871 LLMlingua-2
872 $f_{\text{chat}}()$	873 Chat model	874 GPT-4o-mini; Qwen3-30B-A3B-Instruct-2507

858 Table 5: Mapping between functions, their roles, and the concrete models used in this paper. Black-
859 font entries denote models shared by both LightMem and baseline methods, whereas red-font entries
860 denote models unique to LightMem.861
862 **Retrieval and Usage** After the memory bank construction stage, we obtain an up-to-date memory
863 bank. When a new user query arrives, the memory system use $f_{\text{retrieve}}()$ to retrieve relevant entries

864 from this repository, appends them to the query, and then prompts the chat model $f_{\text{chat}}()$ to produce
 865 a response.
 866

867 **A.2 NOTATION AND COMPLEXITY DETAILS**
 868
 869

870 Table 6: Notation used in complexity analysis (§Section 4).
 871

872 Symbol	873 Definition
873 N	874 Total number of turns in a dialogue history.
874 T	875 Average number of tokens per turn.
875 r	876 Token compression rate (as defined in the main paper). After one compression step, 877 only a fraction r of tokens is retained.
877 x	878 Number of compression iterations. In LightMem, the <i>pre-compress</i> module may be 879 invoked multiple times for the same message to remove redundancy until the message 880 is sufficiently compact. This occurs frequently in datasets such as LongMemEval . 881 All time costs are included in runtime metrics.
882 th	883 Capacity of the Short-Term Memory (STM) buffer, as defined in the paper.
883 $L_{\text{sum-in}} / L_{\text{sum-out}}$	884 Number of tokens in the input prompt template and output of a single backbone 885 LLM call for <i>summarization</i> . These are similar across memory frameworks.
886 M_1 / M_2	887 Number of memory entries produced from a single summarization operation under 888 Other Memory Systems (M_1) and LightMem (M_2).
888 $L_{\text{up-in}} / L_{\text{up-out}}$	889 Number of tokens in the input prompt template and output of a single backbone 890 LLM call for <i>memory update</i> . Similar across frameworks.
891 R_1 / R_2	892 Proportion of summary entries that successfully retrieve at least one relevant memory 893 entry (triggering an update) for Other Memory Systems (R_1) and LightMem (R_2). 894 Some entries do not retrieve any relevant counterparts and thus do not trigger updates.

895 **B USAGE OF LLMs**
 896

897 Throughout the preparation of this manuscript, we used LLMs to assist with improving grammar,
 898 clarity, and wording in parts of this work. The use of LLMs was limited to language refinement,
 899 with all ideas, analyses, and conclusions solely developed by the authors.
 900

902 **C METHODOLOGY DETAILS**
 903

904 **C.1 TOPIC SEGMENTATION**
 905

906 In this part, we present the construction of the attention matrix, the underlying rationale for topic
 907 segmentation, and representative illustrative cases.
 908

909 We extract only the user sentences from multi-turn dialogues, as they are generally more concise
 910 and the assistant’s responses necessarily remain consistent with the user’s theme within the same
 911 turn. Moreover, since the maximum input length of the LLMLingua-2 Pan et al. (2024b) model is
 912 512 tokens, the assistant’s often lengthy sentences cannot be effectively accommodated. Therefore,
 913 we sequentially store the user sentences into a buffer and segment them, ensuring that as many
 914 sentences as possible are preserved while staying within the token limit. As a practical trick, if
 915 a sentence becomes empty after compression, we retain its original uncompressed version; if the
 916 token length of a sentence still exceeds the maximum limit, we continue to compress it using the
 917 LLMLingua-2 model at a 0.5 compression rate until the token length falls below the threshold. To
 918 reduce the effect of attention sinks, we mask out the contributions of the first and last three tokens
 919 in each sequence and subsequently normalize the remaining attention values. Attention is derived

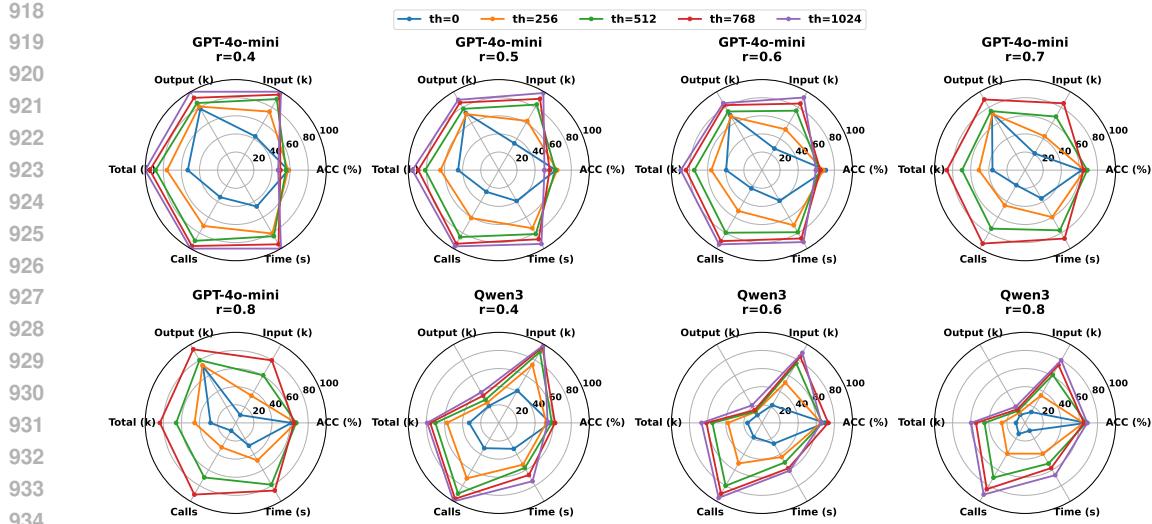


Figure 4: Impact of the STM buffer threshold (th) on performance and efficiency across different compression ratios (r). Each radar chart represents a specific configuration of a model (GPT-4o-mini or Qwen3) and a fixed compression ratio. The axes measure six key metrics: Accuracy (ACC), token consumption (Input, Output, Total), API Calls, and Runtime. To facilitate comparison, all values are normalized for visualization on the chart.

from the higher layers of LLMLingua-2 (layers 8, 9, 10, and 11). For any two sentences, we first compute token-level pairwise attention and average across tokens to obtain the overall attention of one sentence to the target sentence; we then average across the selected layers to obtain a more robust inter-sentence attention score. For each current sentence, the attention scores directed toward all preceding sentences are normalized within the sentence, yielding the final attention matrix. Residual fragments that remain after segmentation are carried over to the beginning of the next buffer for further processing, and this procedure continues iteratively until the dialogue ends.

Based on the attention pattern, we focus on the sequence formed by each sentence’s attention scores relative to its immediately preceding sentence, which directly reflects the continuity of local semantics. Therefore, we take the attention scores from the outermost layer of the attention map. When the attention score at a given position is higher than both its preceding and following positions, it is regarded as a local peak. If a sentence is identified as a peak, we set a segmentation point immediately before this sentence, making the peak sentence the beginning of a new segment. The rationale is that the peak sentence exhibits consistently low attention to all earlier sentences overall and reflects a clear transition from an old topic to a new one, indicating that the identified sentence marks the initiation of a new topic.

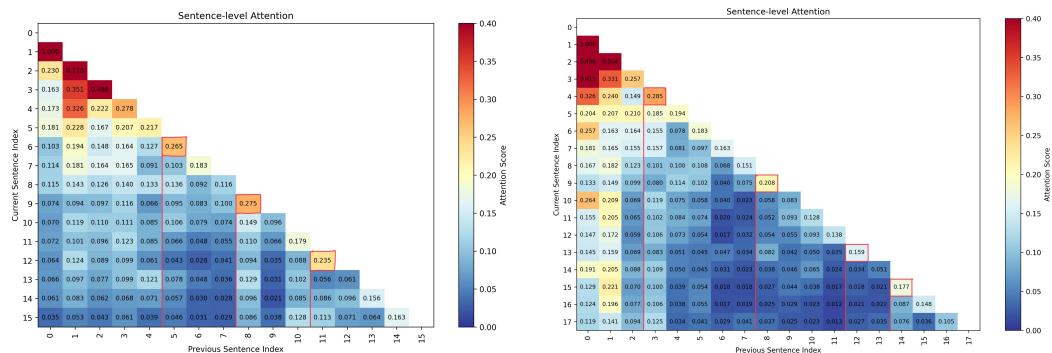


Figure 5: Example of Topic Segment Attention Matrix.

972
 973
 974
 975
 976
 977
 978
 979
 Figure 5 illustrates three representative examples of reliable segmentation under 50% compression
 rate. In the first attention map, local peaks in the adjacent-sentence attention sequence appear at
 positions 5, 8, and 11, where the actual segmentation boundaries lie between sentences 4–5 and 11–12.
 In the second attention map, peaks occur at positions 3, 8, 12, and 14, and the actual boundaries are
 located between sentences 7–8, 11–12, and 13–14. Overall, our method achieves close alignment
 with the majority of true boundaries while providing finer-grained segmentation. These examples
 demonstrate that our segmentation approach enables both fine-grained and reliable detection of topic
 boundaries, thereby validating its effectiveness.

980 981 C.2 CATEGORY-WISE ACCURACY

982
 983 As summarized in Table 7, retrieval-augmented and memory-centric methods (e.g., *A-MEM*, *Mem0*,
 984 *MemoryOS*) generally outperform *Full Text* on categories that demand information integration or
 985 belief revision, such as *Temporal*, *Multi-Session*, and *Knowledge-Update*. In contrast, categories
 986 such as *Single-User* and *Single-Assistant*, lightweight retrieval like *Naive RAG* is often competitive
 987 and can be the most reliable option, while *Single-Preference* shows higher variance due to its smaller
 988 sample size.

989
 990 **Table 7: Category-wise Accuracy.** Accuracy (%) by method across question types. Parentheses
 991 indicate category proportion and sample size. For GPT, LightMem is configured with parameters
 992 $r = 0.7$ and $th = 512$; for Qwen, LightMem is configured with $r = 0.4$ and $th = 768$.

993 994 Method	995 Temporal (n=133)	996 Multi-Session (n=133)	997 Knowledge-Update (n=78)	998 Single-User (n=70)	999 Single-Assistant (n=56)	1000 Single-Preference (n=30)
GPT-4o-mini						
<i>Full Text</i>	31.58	45.45	76.92	87.14	89.29	36.67
<i>Naive RAG</i>	39.85	48.48	67.95	90.00	98.21	53.33
<i>LangMem</i>	15.79	20.30	66.67	60.00	46.43	60.00
<i>A-MEM</i>	47.36	48.87	64.11	92.86	96.43	46.67
<i>MemoryOS</i>	32.33	31.06	48.72	80.00	64.29	30.00
<i>Mem0</i>	40.15	46.21	70.12	81.43	41.07	60.00
<i>LightMem</i>	67.18	71.74	83.12	87.14	32.14	68.18
Qwen3-30B-A3B-Instruct-2507						
<i>Full Text</i>	33.08	35.61	76.92	82.86	87.50	50.00
<i>Naive RAG</i>	36.84	47.73	65.38	91.43	98.21	70.00
<i>LangMem</i>	37.60	38.35	67.95	78.57	42.86	70.00
<i>A-MEM</i>	51.88	51.12	76.93	90.00	96.43	40.00
<i>MemoryOS</i>	28.57	36.84	61.54	72.86	92.86	33.33
<i>Mem0</i>	41.94	28.13	28.57	55.32	26.09	81.82
<i>LightMem</i>	54.20	51.91	66.67	80.00	31.25	80.00

1012 C.3 DETAILED PARAMETER ANALYSIS

1013
 1014 As Table 9 shows, we report the numerical results of the effects of LightMem parameters (compression
 1015 ratio r and STM threshold th).

1017 D EXPERIMENT DETAILS

1019 D.1 DATASETS AND BASELINES

1021
 1022 **Datasets** The LongMemEval dataset (Wu et al., 2025) is designed to benchmark long-term inter-
 1023 active memory in conversational agents. It comprises 500 evaluation questions built upon extended
 1024 user-assistant dialogues. It has two different versions with different lengths: the LONGMEMEVAL-
 1025 S setting contains approximately 115k tokens per problem, while the LONGMEMEVAL-M setting
 1026 extends up to 1.5 million tokens across 500 sessions. In our work, we adopt the LONGMEMEVAL-
 1027 S version due to its balance between dialogue length and computational feasibility. The questions

1026
 1027 Table 8: The impact of **LightMem** compression ratio r and STM buffer threshold th is reported
 1028 here. Due to space limitations, we only present a subset of representative results of the online soft
 1029 update results, with more results provided in the Figure 9.

1030	Model	th	r	ACC	Input (k)	Output (k)	Total (k)	Calls	Time
1031	GPT	256	0.5	64.29	20.80	10.01	30.81	25.67	302.69
1032		256	0.6	67.68	24.58	10.53	35.11	30.47	329.61
1033		256	0.7	65.68	27.66	9.97	37.63	34.26	403.59
1034		512	0.6	63.74	16.23	9.45	25.68	15.63	266.98
1035		512	0.7	68.64	18.88	9.37	28.25	18.43	283.76
1036		512	0.8	66.67	21.55	8.59	30.14	21.11	268.97
1037		1024	0.6	59.68	10.34	7.68	18.20	7.69	177.45
1038		1024	0.7	64.68	12.93	6.90	19.83	8.25	209.12
1039		1024	0.8	64.35	14.86	6.28	21.14	9.43	216.08
1040	Qwen	512	0.4	58.57	11.03	17.00	28.03	10.11	421.74
1041		512	0.6	66.57	16.22	19.50	35.72	15.40	471.09
1042		512	0.8	67.37	21.35	19.36	40.71	20.98	461.02
1043		768	0.4	61.95	9.01	16.14	25.15	6.54	357.13
1044		768	0.6	73.20	13.19	19.21	32.40	9.97	417.13
1045		768	0.8	64.95	16.94	19.06	36.00	13.09	420.14
1046		1024	0.4	53.91	8.02	15.44	23.46	4.83	300.56
1047		1024	0.6	65.67	11.50	18.21	29.71	7.18	396.35
1048		1024	0.8	68.69	14.82	18.49	33.31	9.43	355.71

1049
 1050
 1051 are categorized into multiple types: information extraction, multi-session reasoning, knowledge up-
 1052 dates, temporal reasoning, and abstention. Overall, the dataset is characterized by extremely long
 1053 histories, wide temporal spans, and diverse question types, making it a comprehensive benchmark
 1054 for evaluating conversational agents’ memory capabilities. During the experiments, five samples
 1055 from this dataset contained corrupted characters, which caused LightMem’s compression model to
 1056 fail to run properly. Consequently, LightMem directly discarded these five samples when processing
 1057 the dataset. However, their accuracy results were uniformly treated as false. The indices of these
 1058 five samples in the dataset are 74, 183, 278, 351, and 380.

1059 The LoCoMo benchmark targets the evaluation of long-range conversational memory. It features
 1060 extremely long dialogues, with each conversation spanning roughly 300 turns and around 9K tokens
 1061 on average. The accompanying questions fall into four categories—Single-hop, Multi-hop, Temporal,
 1062 and Open-domain—providing a comprehensive assessment of different dimensions of memory
 1063 in LLMs.

1064
 1065
 1066 **Baselines** We compare our approach against several representative baselines of conversational
 1067 memory modeling. ① LANGMEM ([LangChain, 2025](#)): The Langchain’s long-term memory module.
 1068 ② A-MEM ([Xu et al., 2025](#)): Constructs a memory-centric knowledge graph, encoding each
 1069 interaction as a structured memory note and linking these notes via LLM-driven reasoning. ③ MEM-
 1070 ORYOS ([Kang et al., 2025](#)): Organizes conversational memory in an OS-inspired hierarchy, structuring
 1071 interactions into short-term, mid-term, and long-term layers via paging and heat-based updating.
 1072 ④ MEMO0 ([Chhikara et al., 2025](#)): Extracts memories from dialogue turns through a combination of
 1073 global summaries and recent context, maintaining them via LLM-guided operations.

1076 D.2 IMPLEMENTATION DETAILS

1077
 1078 All the experiments are conducted on hardware equipped with 4xNVIDIA RTX 3090 GPUs, dual
 1079 Intel Xeon Gold 6133 CPUs (40 cores, 80 threads), and 256 GB of RAM.

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Table 9: The impact of LightMem’s compression ratio (r) and STM buffer threshold (th).

Model	th	r	ACC	Input (k)	Output (k)	Total (k)	Calls	Time
GPT-4o-mini	0	0.4	58.04	27.70	8.90	36.60	39.91	500.69
	256	0.4	57.78	16.64	8.40	25.04	20.25	254.93
	512	0.4	55.56	11.05	7.66	18.71	10.13	230.59
	768	0.4	49.29	9.05	6.55	15.60	6.57	157.13
	1024	0.4	46.87	7.75	5.25	13.00	4.82	118.11
	0	0.5	62.89	30.84	9.75	40.59	43.56	550.36
	256	0.5	64.29	20.80	10.01	30.81	25.67	302.69
	512	0.5	62.44	13.49	8.89	22.38	12.70	250.36
	768	0.5	56.12	10.93	7.57	18.50	8.12	203.13
	1024	0.5	50.36	8.34	6.97	15.31	6.32	160.35
	0	0.6	70.35	33.17	10.20	43.37	45.86	553.07
	256	0.6	67.68	24.58	10.53	35.11	30.47	329.61
	512	0.6	63.74	16.23	9.45	25.68	15.63	266.98
	768	0.6	64.44	13.04	8.10	21.14	9.90	210.05
	1024	0.6	59.68	10.34	7.68	18.20	7.69	177.45
	0	0.7	62.35	35.36	9.76	45.12	48.08	573.42
	256	0.7	65.68	27.66	9.97	37.63	34.26	403.59
	512	0.7	68.64	18.88	9.37	28.25	18.43	283.76
	1024	0.7	64.68	12.93	6.90	19.83	8.25	209.12
	0	0.8	61.52	39.32	9.89	49.21	52.97	622.90
	256	0.8	66.37	30.67	9.70	40.37	41.66	489.61
	512	0.8	66.67	21.55	8.59	30.14	21.11	268.97
	1024	0.8	64.35	14.86	6.28	21.14	9.43	216.08
Qwen3	0	0.4	56.89	28.44	18.30	46.74	41.08	594.94
	256	0.4	52.37	16.82	17.63	34.45	20.48	450.98
	512	0.4	58.57	11.03	17.00	28.03	10.11	421.74
	768	0.4	61.95	9.01	16.14	25.15	6.54	357.13
	1024	0.4	53.91	8.02	15.44	23.46	4.83	300.56
	0	0.6	69.56	34.90	20.26	55.16	48.63	642.10
	256	0.6	65.37	24.78	19.59	44.37	30.66	520.37
	512	0.6	66.57	16.22	19.50	35.72	15.40	471.09
	768	0.6	73.20	13.19	19.21	32.40	9.97	417.13
	1024	0.6	65.67	11.50	18.21	29.71	7.18	396.35
	0	0.8	67.68	37.97	20.18	58.15	50.81	759.15
	256	0.8	64.52	30.54	19.77	50.31	37.35	550.98
	512	0.8	67.37	21.35	19.36	40.71	20.98	461.02
	768	0.8	64.95	16.94	19.06	36.00	13.09	420.14
	1024	0.8	68.69	14.82	18.49	33.31	9.43	355.71

1134 E PROMPTS
11351136
1137 E.1 LLM-AS-JUDGE
11381139 Standard Tasks (Single-session-user/assistant Multi-session)
1140

1141 I will give you a question, a correct answer, and a response from a model. Please answer
1142 yes if the response contains the correct answer. Otherwise, answer no. If the response
1143 is equivalent to the correct answer or contains all the intermediate steps to get the correct
1144 answer, you should also answer yes. If the response only contains a subset of the information
1145 required by the answer, answer no.

Question: {question}

Correct Answer: {answer}

Model Response: {response}

Is the model response correct? Answer yes or no only.

1150
1151 Temporal Reasoning Tasks
1152

1153 I will give you a question, a correct answer, and a response from a model. Please answer
1154 yes if the response contains the correct answer. Otherwise, answer no. If the response
1155 is equivalent to the correct answer or contains all the intermediate steps to get the correct
1156 answer, you should also answer yes. If the response only contains a subset of the information
1157 required by the answer, answer no. In addition, do not penalize off-by-one errors for the
1158 number of days. If the question asks for the number of days/weeks/months, etc., and the
1159 model makes off-by-one errors (e.g., predicting 19 days when the answer is 18), the model's
1160 response is still correct.

Question: {question}

Correct Answer: {answer}

Model Response: {response}

Is the model response correct? Answer yes or no only.

1165
1166 Knowledge Update Tasks
1167

1168 I will give you a question, a correct answer, and a response from a model. Please answer yes
1169 if the response contains the correct answer. Otherwise, answer no. If the response contains
1170 some previous information along with an updated answer, the response should be considered
1171 as correct as long as the updated answer is the required answer.

Question: {question}

Correct Answer: {answer}

Model Response: {response}

Is the model response correct? Answer yes or no only.

1177
1178 Single-session Preference Tasks
1179

1180 I will give you a question, a rubric for desired personalized response, and a response from a
1181 model. Please answer yes if the response satisfies the desired response. Otherwise, answer
1182 no. The model does not need to reflect all the points in the rubric. The response is correct as
1183 long as it recalls and utilizes the user's personal information correctly.

Question: {question}

Rubric: {answer}

Model Response: {response}

Is the model response correct? Answer yes or no only.

1188
1189

Abstention Tasks

1190
1191
1192
1193

I will give you an unanswerable question, an explanation, and a response from a model. Please answer yes if the model correctly identifies the question as unanswerable. The model could say that the information is incomplete, or some other information is given but the asked information is not.

1194
1195
1196
1197

Question: {question}

Explanation: {answer}

Model Response: {response}

Does the model correctly identify the question as unanswerable? Answer yes or no only.

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241