CLIN: A Continually Learning Language Agent
for Rapid Task Adaptation and Generalization

Anonymous Authors'

Abstract

Language agents have shown some ability to in-
teract with an external environment, e.g., a virtual
world such as ScienceWorld, to perform complex
tasks, e.g., growing a plant, without the startup
costs of reinforcement learning. However, despite
their zero-shot capabilities, these agents to date
do not continually improve over time, beyond per-
formance refinement on a specific task. Here we
present CLIN, the first language-based agent to
achieve this, so that it continually improves over
multiple trials, including when both the environ-
ment and task are varied, and without requiring
parameter updates. Our approach is to use a per-
sistent, dynamic, textual memory, centered on
causal abstractions (rather than general “helpful
hints”), that is regularly updated after each trial
so that the agent gradually learns useful knowl-
edge. CLIN is able to continually improve on
repeated trials on the same task and environment,
outperforming state-of-the-art reflective language
agents like Reflexion by 23 points in Science-
World and 1.4 points in ALFWorld benchmarks.
CLIN can also transfer its learning to new envi-
ronments and tasks, enhancing performance by
21 points in ScienceWorld and 11 points in ALF-
World. This suggests a new architecture for agents
built on frozen models that can still continually
and rapidly improve over time.

1. Introduction

Large language models (LLMs) have been increasingly
used to interact with external environments (e.g., simulated
worlds) as goal-driven agents (Reed et al., 2022). How-
ever, it has been challenging for these language agents to
efficiently learn from trial-and-error as traditional reinforce-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

ment learning methods require extensive training samples
and expensive model fine-tuning (Chen et al., 2021; Am-
manabrolu et al., 2020). More recently, new techniques
have appeared in which an agent reflects on its own past
experience solving a task in a particular environment, and
generates language-based insights to help it retry the task,
e.g., Reflexion (Shinn et al., 2023). Such methods have the
advantage of not requiring parameter updates (particularly
with the frozen large language models). However, the style
of such insights plays a crucial role in performance, and
not all insights improve generalization performance. For
example, a specific insight such as "I should go to desk 1
and find the lamp" (Shinn et al., 2023) may have limited
value (or even hurt) for a different environment or task.

Our goal is a system that will continually improve over time,
both while attempting the same task in the same environ-
ment, and across different tasks and environments. Our
approach builds on prior work on reflection in two ways:
First, we conjecture that a specific style of insight will be
useful, namely one that captures causal abstractions about
agent’s actions, e.g., “opening doors may be necessary for
movement between rooms”. Causal abstractions can po-
tentially help the agent decide which action to take in the
future, and can be viewed as a kind of action model learning
(Arora et al., 2018), but placed in the modern context of
language models. Second, we maintain these abstractions in
a continually evolving, dynamic memory, which is regu-
larly updated as the agent gains experience, allowing useful
causal knowledge to persist (and unhelpful knowledge to be
dropped) over time and between tasks and environments, as
illustrated in Figure 1.

We operationalize and evaluate this approach in a memory-
augmented language agent called CLIN (continual learning
from interactions)!. CLIN is an agent that operates in a
virtual, text-based environment (e.g., ScienceWorld (Wang
et al., 2022), ALFWorld (Shridhar et al., 2021)) in which an
agent is tasked with goals, e.g., boiling a liquid or growing
a plant. We find that CLIN is able to rapidly learn about the
environment and its action vocabulary and continually im-
prove on repeated trials on the same task and environment,
outperforming state-of-the-art (SOTA) reflective language

'We will release code upon publication.

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

CREATION (Env1, Trial1)

Task: Grow an orange

Goal: Find seeds

Action: Go to the bedroom
Observation: ...(no seeds)...
Action: Go to the garden
Observation: ...(no seeds)...
Action: Go to the kitchen
Observation: You see seeds
Action: Pick up seeds

Goal: Plant the seeds ...

MEMORY: @

Going to the kitchen may be
necessary to find seeds

ADAPTATION (Env1, Trial2)

Task: Grow an orange
Goal: Find seeds

Memory: .
‘Going to the kitchen may be

\necessary to find seeds
Action: Go to the kitchen
Observation: you see seeds
Action: pick up seeds... Env1, Trial3
Goal: plant the seeds (etc)
Action: move seeds to the pot ...

tTriaI completed successfully!]

MEMORY:

Going to the kitchen may be
necessary to find seeds

Moving seeds to the pot may be
necessary for planting seeds

GENERALIZATION (for new Env3)

A B

Env1 4 T
Triall Trial2 Trial3
JM”
Env2 TS s
We W k%
Triall Trial2 Trial3
@ Env3, Triall
MEMORY:

Moving to different rooms
may be necessary to find
an object

Figure 1. CLIN creates (Triall) or adapts (Trial2+) a memory of causal abstractions to help in future trials by reflecting on the last
trial and current memory. It does this using a suitably prompted LLM to generate the updated memory (Section 3.4 Adaptation). Here,
reflecting on Triall, CLIN notes in memory that going to the kitchen helped with finding seeds, enabling it to find the seeds faster in
Trial2. From there, it also learns that moving the seeds to the pot helped plant the seeds. To further generalize across episodes (sequences
of trials, right figure) for use in new environments, CLIN generates a summary (“meta-memory”’) of the best (starred) memories from
each prior episode, here generating the generalization that moving to different rooms helps finding objects (Section 3.4 Generalization).

agents like Reflexion by 23 points in ScienceWorld. CLIN
can also transfer its learning to new environments (or tasks),
through continual memory updates and achieving 21 (20
for new tasks) points performance boost. Similarly, in ALF-
World, CLIN enhances its base performance by 11 points
in unseen tasks/environments. Our contributions:

¢ We describe and evaluate CLIN, an architecture for
a novel nonparametric learning paradigm. We show
using a dynamic, evolving memory over time, CLIN
learns faster than the short-term “reflect, use, then dis-
card” approach used in Reflexion and other memory-
based agents and generalizes better to new tasks and
new environments, achieving state-of-the-art.

* We show that memory of causal abstractions (or “ac-
tion models”) is effective at helping the agents learn
over an extended period and for varying tasks and
environments—{irst to apply in the modern context
of language-based agents.

» Overall, this work suggests that a dynamic memory,
centered around causal knowledge, is a promising way
forward for agents built on frozen models to continually
improve over time.

2. Related Work

There is a long literature of work on agents that can navigate
complex environments. A common approach is to use rein-
forcement learning (RL), e.g., DRRN (He et al., 2015), KG-
A2C (Ammanabrolu & Hausknecht, 2020), CALM (Yao
et al., 2020), where agents learn a task over repeated trials.
However, while effective, such agents typically require a
large number of trials to learn and have trouble adapting to

unexpected changes in the test environment. More recently,
(Adaptive-Agent-Team et al., 2023) demonstrated AdA, an
agent that could rapidly adapt to open-ended novel 3D prob-
lems, using meta-reinforcement learning, essentially being
able to change its policy on the fly. However, AdA required
vast amounts of pretraining, and this skill was still limited to
the style of environments and problems seen in pretraining.

Recently, LLMs have provided a new tool for building goal-
directed agents (Huang et al., 2022). Given a linguistic
description of the world state, a task, and a history, the LLM
can be prompted to suggest next actions to take to achieve a
goal, exploiting their wealth of semantic knowledge about
the world and requiring little training, e.g., SayCan (Ahn
et al., 2022), ReAct (Yao et al., 2022), and more recently
SwiftSage (Lin et al., 2023), which combines a supervised
agent and a deliberative agent together. However, while
performing reasonably with little training data, such agents
are unable to learn and adapt from experience.

Two recent systems have demonstrated how a frozen-model-
based agent could improve at a task. Voyager (Wang et al.,
2023) operates in the world of Minecraft, growing a (code-
based) skill library from rich feedback of its failures. Re-
flexion (Shinn et al., 2023) improves at a task by reflecting
on a failed attempt at that task and devise a new plan that
accounted for that mistake, used in the subsequent prompt
to retry the task. While Reflexion did not have a long-term
memory, and its reflections were task- and environment-
specific, e.g., “In the next trial, I will go to desk 1 and find
the lamp.”, we take inspiration from it to build an agent,
CLIN, which continually maintains and adapts a long-term,
persistent memory of reflections, useful across different

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

‘Convert water into steam” “Activating sink may be

necessary to obtain water, ... etc.” CLIN

Simulator

Task ~N

“Find the water”
Memory
'\ %ﬁ‘\ A

goal
vg'-\ g Controller
p KT

GAOGAQ.. trial so far (goal-action-observation-...)

—> Executor

(ScienceWorld, ALFWorld)

“Go to kitchen”
action

\

N End of trial

Memory | Final trial sequence {GAO}* and final reward r;
Generator

(success/failure)

Figure 2. The architecture of CLIN. A controller takes the current task, retrievals from memory, and the trial so far, to generate the next
goal to achieve. The executor then converts this to a valid action to perform towards that goal. The simulator then performs the action and
returns an observation of that action’s effect. Memory is updated at the end of each trial by the memory generator (Section 3.4).

trials, tasks, and environments.

More generally, others have found that a memory of useful
learnings can be used to improve frozen LLM behavior, e.g.,
in QA (Dalvi et al., 2022; Tandon et al., 2022; Madaan et al.,
2023), or for modeling social behavior (Park et al., 2023).
We apply this finding to goal-directed agents.

Finally, we note that the content of experiential memory
is also important. Specifically, CLIN learns a memory of
causal abstractions, which can be seen as learning a linguis-
tic form of action model, describing the causal effects of
actions. While there has been work in the planning commu-
nity of learning action models in a fully formalized context
(Arora et al., 2018; Aineto et al., 2018), CLIN loosely ap-
plies this idea in the linguistic world of LLM agents.

3. Approach
3.1. Acting in the World

We follow the normal formalization for an agent performing
actions in a partially observable environment, but add a
memory S as an additional input for decision making. The
memory contains learned task/environment knowledge to
help the agent make better decisions in the next trial, and is
updated at the end of each trial (described shortly). At each
time step ¢, given a task m (e.g., “grow an orange”), memory
S, and the history of actions so far, the agent decides on
its next goal g and action a in pursuit of that goal. In
response, the environment returns the result of executing a
in the form of an observation o and a reward r. This repeats
until an end state is reached (such as completing, failing,
or timing out). Thus at each step ¢, the history so far is
T<i = {gi, ai, 0; }}<,, and the agent’s decision-making task
at each time step ¢ can be described as:

ey

m+e+ Ty +5 = gip1 — apq1

We describe the implementation of this shortly. The full
sequence of steps Te,q to an end-state is called a trial. If the
same task m is attempted in the same environment K times
(resetting the environment each time), we call the collection
of the K trials an episode.

3.2. Continual Learning

The agent’s goal is to maximize its reward r (e.g., complet-
ing the task) on new trials. Learning occurs by updating
the dynamic memory S between (not during) trials, using
a memory update function that takes memories from old
trials as input, and generates a new memory for the next
trial. Note that the memory does not grow monotonically; it
may drop previous memory items and add new ones. Also
note it is not perfect; some memory items may be erroneous,
and ideally be dropped or modified in subsequent iterations.
Learning is continuous in the sense that each new memory
is generated from an ever-growing collection of previous
memories. We define two classes of learning:

1. Within-episode learning (‘‘adaptation”) - same task
m and environment e. After each trial k, a new memory
Sk+1 1s generated from the most recent trial history 7y,
and final reward r, and memories from prior trials:

Te + 7+ {Sgk} — Sk11 2)

Sk+1 18 then used to retry the same task m, next trial.

2. Cross-episode learning (‘“generalization”) - new task
Mpew OF ENVIronment €,,.,,. Given a new task or envi-
ronment, an initial starting memory is generated using
memories from other episodes. Specifically, we se-
lect the “best” (defined later) memory from each prior
episode as inputs, and generate a new memory for use
in this unexplored task/environment as output:

3

Mpew + €new + {Sbesb T‘k}priorfepisodes — Shew

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Because this new memory generalizes prior memories, we
also refer to it as a “meta-memory”. Note that some general-
izations in Spey may be overly specific or wrong. However,
we see both a net initial benefit in using Sy, and further
task improvement in subsequent trials as Spey is refined
(adaptation), described later in Section 4.

3.3. CLIN: Agent Architecture

Our implementation, called CLIN, comprises three compo-
nents for acting: the memory, a controller, and an execu-
tor. Learning then occurs using a fourth module, a memory
generator, to generate an updated memory after each trial.
These are illustrated in Figure 2.

Memory. CLIN’s memory (S) is a persistent, dynamic
collection of NL sentences expressing CLIN’s current un-
derstanding of actions and their effects. Specifically, each
sentence expresses a causal abstraction between actions,
e.g., “opening the fridge is necessary to access apple
juice”, as well as negative learnings, e.g., “moving to an-
other room does not contribute to freezing mer-
cury.”. Such statements are learned from past experiences
(described shortly). Their role is to help CLIN make bet-
ter action choices (Eqn 1). Causal abstractions constitute
CLIN’s current understanding of the way the world behaves,
and can be viewed as a modern version of action models
used in formal planning, describing the effects of actions in
the world (Arora et al., 2018).

Controller. At each time step in a trial, the controller
generates the next goal to pursue in service of the overall
task m. In CLIN the controller is a frozen LLM, whose
prompt includes the current task m, e.g., “convert water
into steam”, selected statements from the current memory
S (alist of sentences), and the trial so far (the sequence of
goal-action-observation triples. It is prompted to output the
next goal g, to pursue, e.g., “find water”. Note we only
use selected statements from memory (rather than the whole
memory), in order to avoid irrelevant knowledge distracting
the controller. Selection is itself done with a separate query
to the LLM, prompting it to list relevant memory items, with
the full memory S and the task included in that prompt.

Executor. The role of the executor is to convert the gener-
ated goal g1 into a valid action a, that can be executed
in the environment in pursuit of that goal. In other words,
it serves to map goals into the specific action space of the
environment. Again a (frozen) LLM is used, whose prompt
includes the goal g;4; (from the controller, above), the trial
so far, and all the possible actions that can be performed in
the current state (provided by the environment, as is stan-
dard practice in current generative agent research (Ahn et al.,
2022; Yao et al., 2022; Lin et al., 2023; Park et al., 2023)).
The list of possible actions is expressed as possible action
templates and available objects that can instantiate them,

X (actions) relation Y (actions)
Memory §; Using the lighter may be to heat the
endof trial 1 | on the metal pot necessary water in the pot
ADAPTATION @
Using the lighter ~ should be to heat the
Memory S on the metal pot necessary water in the pot 4%\; ;
end of trial 5 Turning on doesnot to boiling if the | &<
the stove contribute stove is broken
Memory §'s Using the lighter should be to heat the fﬁﬁj
bestin Env1| onthe metal pot necessary waterinthe pot | &
Memory &5 Turning on should be to create a heat ‘v'ﬂ\;
best in Env 2 the stove necessary source e
GENERALIZATION @
Using a heat v
m'\ed;toar source (stove, should be to heat a w "1\;. 5
for Envg lighter) on the necessary substance S Z
container KR

Figure 3. Examples of Memory Update in CLIN.

rather than a combinatorially large enumeration of possible
actions. The model is then prompted to generate a candidate
action to perform (see prompt in Figure 6). Finally, CLIN
checks this candidate action is one of the valid actions. If
it is not, it finds the most similar valid action using the pre-
trained embeddings from the sentence-transformer model
(Reimers & Gurevych, 2019). If the top-ranked valid action
has a similarity score greater than a threshold (here, 0.9,
chosen as a hyperparameter), the action is selected. Other-
wise, we perform iterative refinement (Madaan et al., 2023)
by suffixing the context with feedback that the generated
candidate action is not executable. This allows the executor
to retry the generation up to a max number of tries (here, 5).

Finally, upon executing the action a;4;, CLIN receives a
partial next state, as an observation, from the environment
and the reward (r) € [0, 1], provided by the environment. A
snapshot of a full trial is given in lines 4-10 in Algorithm 1.

Note that CLIN does not make use of any gold data to
identify goals and memories. Rather, we expect CLIN to
perform a balanced act of exploration-exploitation by in-
teracting, learning, and adapting to unseen tasks or envi-
ronment configurations—a key difference from few-shot
generative agents in previous work (Ahn et al., 2022; Yao
et al., 2022; Lin et al., 2023; Park et al., 2023).

3.4. Continual Learning in CLIN

At the end of each trial (completion or failure), CLIN uses
a memory generator to create or update its memory. The
memory generator is a (frozen) LLM prompted to reflect on
the current trial and memory, and generate a new memory
of insights in the form of (English sentences expressing)
useful causal abstractions.

To make the LLM to generate causal abstractions, we use

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Algorithm 1 Continual Learning with CLIN

procedure ADAPTATION(Task: m, Env: e, Memory: S):
Initialize Memory: So
forkel,--- K do:
Intialize Trial 7, ¢
while ¢ < max. steps or task not complete do:
g+ = Controller (m,e, T<t, Sk—1)
a; = Executor (g¢, admissible actions)
r¢,0¢ = Simulator (T<¢, at)
T<t+1 =Tt + (gt, at, 0¢, 1¢)
Final reward 7y = ¢
Sk =memory-generator ({S<k}, Tk, Tk)

procedure GENERALIZATION(Task: m, Env: e, past m'/e’)
{Stest; T} = best-memories (past m'/e’)

Smeta = meta-memory ({Seest, 7'k }» M, €)
ADAPTATION(M, €, Smeta)

special instructions in the prompt that ask the LLM to gen-
erate insights in a particular templated syntax (see prompt
in Figure 7). To capture actions enabling desired changes
and helpful state transitions, we use the template “X is
NECESSARY to Y7, and to capture contrastive examples
of unsuitable actions and state transitions, we employ “X
DOES NOT CONTRIBUTE to Y”(Figure 3), where X, Y
are related to actions. These abstractions are functionally
analogous to hindsight experience replay (Andrychowicz
et al., 2017), obtained from CLIN’s past self-explorations.
In addition, to allow the LLM to express uncertainty, we
encourage it to use modifiers: “X may ” to denote
moderate to high uncertainty, and “X should ” to
indicate low uncertainty (See Figure 3).

As described earlier, there are two kinds of memory up-
date needed: (a) re-generating the memory when retrying
the same task in the same environment (‘“‘adaptation”) (b)
re-generating the memory for a new task / environment
(“generalization”), as we now describe.

Within-episode learning (‘“adaptation’). To update the
memory after each trial within an episode (Eqn 2), the
memory generator is prompted with the most recent trial
(a sequence of (g¢, a;, oy) tuples and the final reward
72), and the memories from the three most recent trials
{Sk—2,8k—1,Sk}. It is then prompted to generate an up-
dated memory Sk 1, namely a new list of semi-structured
causal abstractions in the forms described above, for use in
the next trial. Although we do not specify a maximum size
for the memory, we observe that size of the generated mem-
ory (i.e., the number of causal abstractions generated) is far
less than the number of actions executed in the trial, indicat-
ing the memory-generator additionally performs a saliency-

The reward is converted to NL feedback for a LLM using 7
simple rules, e.g., “if score >= 0 and score < 20 then feedback
= "The agent performed poorly and made some progress but not
enough to solve the task."

based pruning to keep only important insights based on the
success of the trial (final reward r;, for trial 7).

Cross-episode learning (‘“‘generalization’). Given a
new task mpey Or environment ey, the memory genera-
tor is prompted to generate a suitable memory generaliz-
ing from the best trials in previous episodes on different
tasks/environments, suitable for this new situation (Eqn 3).
Following the prioritized level replay scheme (Jiang et al.,
2021), we choose the most successful trial per episode
(based on the reward r) and retrieve memories abstracted
from those trials with a fixed archive of size 10, a hyperpa-
rameter. If the environment is new, the prompt instructs the
LLM to generate a memory helpful “to solve the same task
in a new environment configuration”, given the new task
description. The prompt is designed to encourage the LLM
to generate generic causal insights about the task, not tied
to specific environmental details (Figure 8). Similarly, if the
task is new, the prompt is modified accordingly (Figure 9).

4. Results and Analysis

Experimental Setup. Test-time adaptation and generaliza-
tion via continual learning require a variety of complex tasks
and environment configurations to allow an agent to explore,
learn latent causal insights from interactions, and exploit
them in the future. We evaluate CLIN’s performance in two
benchmarks: ScienceWorld (Wang et al., 2022) and ALF-
World (Shridhar et al., 2021). Both benchmarks consists
of a text-based interactive environment requiring complex
interactive reasoning processes to solve a plethora of tasks.
ScienceWorld focuses on science-theory-based tasks® span-
ning several diverse classes (e.g., thermodynamics, genetics,
friction, etc.). ALFWorld has 6 categories of household
tasks: Pick, Clean, Heat, Cool, Look, and Pick-two-items.

For ScienceWorld, we evaluate on 18 tasks (two task in-
stances from 9 task classes) in several environment con-
figurations from the test split resulting in a total of 164
task-environment combinations. For ALFWorld, we have
a total of 134 task-environment combinations (test split).
We evaluate based on the final score provided by the sim-
ulator; for ScienceWorld, the score ranges from 0 — 100,
and for ALFWorld score is binary, success/failure. Now,
we define our setups for zero-shot adaptation (ADAPT) and
generalization (GEN-ENV and GEN-TASK).

ADAPT: This setup focuses on CLIN’s ability to adapt to
a task by attempting it for several trials in the same envi-
ronment configuration. Most importantly, CLIN initializes
with an empty memory at the beginning of the first trial
and generates memory at the end of each trial. While the
environment gets reset at the trial boundary, CLIN’s mem-

3ScienceWorld tasks are grouped into Short (S), e.g., pick &
place and Long (L), e.g., grow plant, based on the # of gold actions.

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

1007 90 - 100
ScienceWorld ScienceWorld ALFWorld
—_— A Short Task

a [ReAct W Reflexion [0 BASE [ADAPT |
72 1 «——Past SOTA——> +———CLIN——> 80

80P~ ,

® —
T e, T—n —

60 54

A Long Task
40 s

20 —e— Avg reward: Pick & Place (S) 18
—e— Avg reward: Grow Fruit (L)
== Avg no. of steps (All)

Avg Reward
Avg Reward

36

0 1 2 3 4 s
Trials

(@)

)]
o

B
o

Task succes (%)

—e— Pick: ADAPT
—8- Pick: Reflexion

20 —e— Pick2: ADAPT
-8 - Pick2: Reflexion
0
0 1 2 3 4
L All Trials
) ©

Figure 4. Rapid task adaptation with CLIN. (a) Example tasks with CLIN’s adaptation. For CLIN, Trial-0 is BASE, Trial-4 is ADAPT.
Comparison of CLIN with Reflexion (Shinn et al., 2023) in (b) ScienceWorld and (¢) ALFWorld. (More in Appendix C).

ory continues to be updated, capturing informative causal
abstractions pertaining to both successful and failed actions.
Here, we compare with Reflexion (Shinn et al., 2023), a
SOTA, however, CLIN differs from Reflexion by how the
memory is abstracted.

GEN-ENV: In this setup, we focus on CLIN’s ability to
transfer its learning from past experiences to solve tasks in
an unseen environment. For a task m, we run CLIN for 10
different (train) environment settings (with varying objects
and starting locations) and then create meta-memories from
its exploration to solve the same task in an unseen (test) envi-
ronment. Here, we compare CLIN with RL methods DRRN
(He et al., 2015), KG-A2C (Ammanabrolu & Hausknecht,
2020), and CALM (Yao et al., 2020) trained on all (large)
training variations with simulator reward and Generative
Language agents, SayCan (Ahn et al., 2022), ReAct (Yao
et al., 2022), and Reflexion (Shinn et al., 2023), prompted
with few-shot demonstrations.

GEN-TASK: In this setup, we focus on CLIN’s ability to
transfer its learning from past experiences to solve a new
task in the same environment. For an environment e, we run
CLIN for to solve a task m and then condense its learning to
solve a novel task mm/ in the environment e. We took all test
examples where we have a different task defined in the same
environment configuration. (Adaptive-Agent-Team et al.,
2023) suggests that transferring learning from a random
task can be very hard; hence we couple tasks that are related
(revolve around overlapping task-critical objects/locations
such water, kitchen), such as boil and freeze to measure
transfer learning from one to the other. This is a novel setup
where we do not have any off-the-shelf baselines. However,
here, we compare against CLIN-BASE, a strong baseline.

GEN-ADAPT (G+A): If CLIN, in GEN-ENV or GEN-TASK
setting, does not successfully complete the new task, it can
continue learning and retrying that task. We refer to this
setup as GEN-ADAPT. CLIN can use any instruction-tuned
LLM (Chung et al., 2022) as part of the controller, executor,

and memory generator. In this paper, we use gpt -4, the
same as our generative agent baselines.

4.1. CLIN Exhibits Rapid Task Adaptation

Figure 4a demonstrates two example trends in ScienceWorld
where CLIN learns from its own prior attempts (ADAPT)
and gets better at solving a given task. Apart from length,
the difficulty level of a task also depends on the environment
configuration (hence, variance across environment config-
urations for each task). CLIN quickly adapts to a short
task, Pick & Place, solving it in its 4th attempt, whereas
a longer task, Grow Fruit is not solved after 5 (max) tries.
Furthermore, CLIN becomes more efficient in later trials
by solving the tasks with a lower number of (average) steps.

Next, we compare CLIN with Reflexion, the reflective
SOTA agent, in Figure 4b. CLIN already starts off with a
stronger base performance (see discussion in 4.3), however,
CLIN’s relative improvement in ADAPT is significantly
stronger than Reflexion’s gain from its base agent ReAct.
CLIN’s relative improvement is higher for longer tasks.
This can be attributed to CLIN’s persistent memory, which
gets refined over past trials. CLIN accumulates both useful
(for the task) and harmful (for the task) causal learnings,
whereas Reflexion only learns from its mistakes, lacking
comprehensive learning.

We found similar trends on the ALFWorld benchmark. Fig-
ure 4c shows how CLIN can improve its performance across
trials for task types: Pick and Pick2. During adaptation,
CLIN (1) learns facts specific to the environment: e.g.,
“Searching on sofa should be necessary to find the second
keychain.”, and (2) hypothesizes for sub-goals it couldn’t
achieve “Checking other locations like drawers and shelves
may be necessary to finding the second CD.”. After 5 trials,
CLIN achieves highest performance on 5 out of 6 task types
(Table 2). CLIN-ADAPT outperforms ReAct by 8.9 points
and Reflexion by 1.4 points when averaged over all tasks.

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

[RL Methods | Generative Language Agents | CLIN (ours)

Task Type || DRRN KGA2C CALM | SayCan ReAct Reflexion | BASE GEN-ENV | G+A
Temp S 6.6 6.0 1.0 26.4 7.2 5.9 25.2 15.7 13.8
Temp S 5.5 11.0 1.0 8.0 6.1 28.6 53.2 49.7 58.2
Pick&Place S 15.0 18.0 10.0 229 26.7 64.9 92.5 59.2 100.0
Pick&Place S 21.7 16.0 10.0 20.9 53.3 16.4 55.0 100.0 100.0
Chemistry S 15.8 17.0 3.0 47.8 51.0 70.4 44.5 422 51.7
Chemistry S 26.7 19.0 6.0 39.3 58.9 70.7 56.7 85.6 93.3
Lifespan S 50.0 43.0 6.0 80.0 60.0 100.0 85.0 65.0 100.0
Lifespan S 50.0 32.0 10.0 67.5 67.5 84.4 70.0 75.0 90.0
Biology S 8.0 10.0 0.0 16.0 8.0 8.0 10.0 32.0 32.0
Boil L 3.5 0.0 0.0 33.1 3.5 4.2 7.0 4.4 16.3
Freeze L 0.0 4.0 0.0 3.9 7.8 7.8 10.0 8.9 10.0
GrowPlant L 8.0 6.0 2.0 9.9 9.1 7.3 10.2 10.9 11.2
GrowFruit L 14.3 11.0 4.0 13.9 18.6 13.0 35.9 70.8 94.5
Biology L 21.0 5.0 4.0 20.9 27.7 2.6 70.0 42.8 85.6
Force L 10.0 4.0 0.0 21.9 40.5 50.6 53.5 70.0 100.0
Friction L 10.0 4.0 3.0 32.3 44.0 100.0 56.5 70.0 94.0
Genetics L 16.8 11.0 2.0 67.5 25.7 50.9 77.4 84.5 100.0
Genetics L 17.0 11.0 2.0 59.5 16.8 23.7 62.3 61.4 100.0

S 22.1 19.1 5.2 36.5 37.6 49.9 54.7 58.3 71.0

L 11.2 6.2 1.9 29.2 21.5 28.9 42.5 47.1 68.0

All 16.7 12.7 3.6 32.9 29.6 394 48.6 52.7 69.5

Table 1. Comparing CLIN with baselines for generalization across unseen environments in ScienceWorld

Method Pick Clean Heat Cool Look Pick2 ‘ All
ReAct 583 710 87.0 810 944 412 | 724
Reflexion 75.0 742 91.3 90.5 100.0 47.1 | 799
CLIN

ADAPT 792 742 87.0 90.5 1000 58.8 | 81.3
GEN-ENV+A 833 774 87.0 952 1000 58.8 | 83.6
GEN-TASK+A 792 742 91.3 90.5 100.0 64.7 | 82.8

Table 2. Adaptation and generalization results in ALFWorld

4.2. CLIN Outperforms SOTA, Generalizing to Novel
Environments and Tasks

New ScienceWorld environments. Table 1 compares
CLIN with baselines that learn from training environmental
variants for a task to improve its performance in a novel envi-
ronment 4. Language agents (including CLIN) that use NL
feedback from the ScienceWorld (e.g., “Door to the kitchen
is closed”) perform significantly better compared to RL
methods that purely rely on (sparse) numeric rewards from
the environment to learn a policy. We observe a positive
generalization effect in GEN-ENV (average 4 point gain)
compared to BASE where CLIN tries to solve the tasks
zero-shot. With a strong BASE performance, CLIN beats
all baselines in generalization performance. Furthermore, in
G+A, CLIN shows a substantial 16 additional improvement,
beating the SOTA reflective agent by 23 points. Figure 5(a)
additionally shows trend of improvement compared to when
CLIN does not start with a meta-memory. Meta-memory
helps CLIN with a stronger start than BASE (52.7 vs. 48.6),
with a continued gain in scores till the end of Trial-4 (G+A:
69.5 vs. ADAPT: 62.2). The stronger start for CLIN with

“Baseline numbers are derived from Table 1 in (Lin et al., 2023)

meta-memory also results in fewer steps to solve a task.
Unlike imitation learning-based agents, TDT (Wang et al.,
2022) and SwiftSage (Lin et al., 2023), CLIN (and most
baselines) do not use any gold trajectories. Learning only
from self-generated trajectories, CLIN outperforms TDT
on all 18 tasks and SwiftSage on 8/18 (mostly long) tasks.

New ScienceWorld tasks. Mirroring trends from GEN-
ENv, CLIN demonstrates strong transfer learning to new
tasks (Figure 5(b)) with 13-point improvement over its
BASE performance, being better at 38.8% of datapoints.
The improvement attributes to critical learning about the
environment (“apple juice is in the fridge”, required for
both boiling and freezing it), leading to improvement in
previously low-performing tasks in both ADAPT and GEN-
ENV setups. This transfer learning in GEN-TASK and G+A
helps CLIN to solve the tasks with fewer steps® and achieve
higher rewards.

New ALFWorld environments/tasks. Table 2 shows
that CLIN can generalize its learnings across environments
(GEN-ENV) and across tasks (GEN-TASK) to improve its
success rate further. In the GEN-ENV setting, CLIN had ac-
cess to memories from other tasks of same type. This helped
CLIN improve its success rate by 11.2% for GEN-ENV and
by 10.4% for GEN-TASK from its base performance.

4.3. Discussion

A qualitative example. Figure 3 depicts how memory
items get refined during task adaptation and for generaliza-

4 steps in Figure 5(a),(b) are normalized between 0-1, 1 being
maximum #steps allowed for a task.

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

CLIN in GEN-ENV

100 1.0
BASE
80 cenl | 0805, ADAPT
GEN ~ . L
60'//./4—0-—: 0.6] GEN® " =0 = s o— . —
@ ADAPT G+A
40 gase 0.4

20{ —®— Avg reward: ADAPT 0.2{ == Avg #steps: ADAPT
—e— Avg reward: G + A == Avg #steps: G + A

00 1 2 3 4 0'00 1 2 3 4
100 1.0
gBASE ADAPT
801 |Gen G+A | 08K N —e—
/ GEN| T T 0 o— - —
60 G+A

//‘ﬂ\\‘
0.6

40 0.4
BASE
20{ —®— Avg reward: ADAPT 0.2{ == Avg #steps: ADAPT
—eo— Avg reward: G + A =e= Avg #steps: G + A

00 1 2 3 4 0'00 1 2 3 4
Trials Trials
CLIN in GEN-TASK

Figure 5. Reward and #steps trends for CLIN in (a) GEN-ENV
and (b) GEN-TASK for ScienceWorld.

tion for a task boil. Env2 has a working stove, whereas in
Envl, the stove is broken, but a lighter is available as an
alternative. CLIN acquires that knowledge through adap-
tation, which later can be applied to cross-episode learning
via the generalized meta-memory. Appendix B contains
example memories for adaptation and generalization.

Importance of memory structure. CLIN extracts causal
abstractions structured around ‘necessary’ and ‘does not
contribute’ relations. To ablate, we modified our mem-
ory generator to generate free-form advice for future trials,
which, however, ended up generating generic insights with-
out any causal abstractions (Figure 13). In ScieneWorld, the
average reward drops by 6 points (in 10% cases than CLIN),
and in ALFWorld, the success rate drops by 1.4 points when
using the unstructured memory, indicating the usefulness of
causal abstractions, as shown in Table 3.

Ablation Setup Aavg %o ep.
score () drop. (1)

ScienceWorld -6.2 10.0

ALFWorld - 1.4

Table 3. Ablation for CLIN’s causal memory

Memory correctness. While the final performance with
memory is indicative of their effectiveness, we performed
additional human evaluation of generated memory insights
for correctness. For generalization setups, we randomly 10
task-environment combinations to evaluate the correctness
of memories used in them, notably the meta-memory used
for trial 0 (GEN) and memory adapted for the best trial
(GEN-ADAPT). Two annotators rated the insights (cohen’s

K = 0.78) for correctness with reference to gold trajectories.
Table 4 shows that some meta-memories may not be appli-
cable initially; however, with adaptation, in later trials, the
correctness of the memory insights significantly improves,
leading to a direct increase in task performance.

ScienceWorld ALFWorld
Insights | GEN-ENV ~ G+A | GEN-TASK G+A | GEN G+A
Total 100 105 98 107 94 92
Correct 72.0% 91.4% 73.9% 911% | 72.3% 90.1%

Table 4. Memory correctness for CLIN

Limitation: Lack of exploration. CLIN’s learnings are
dependent on its own past experience. An insight related
to an unobserved location or unexplored action can never
be generated. Hence, exploration becomes important when
task-critical location or action is unknown to CLIN from
past trials. For example, to create orange paint, the agent
must find red and yellow paint from the art studio. How-
ever, the art studio is not visible when CLIN starts from
the ‘outside.” Without that knowledge, CLIN tries alterna-
tive methods failingly to create orange paints from other
irrelevant objects (e.g., an orange) and remains unsuccess-
ful. If an insight related to the art studio appears from past
exploration, CLIN is able to successfully complete the task.

Limitation: Poor memory retrieval. For a task of boiling
gallium, CLIN is supposed to use oven/blast furnace and
not a stove. In the meta-memory for boiling tasks, there
are two insights regarding the act of boiling: “Activating
stove should be necessary to boil a substance” and “Using
an alternative heat source (e.g., oven or fire pit) may be
necessary if the initial heat source is insufficient.” However,
CLIN repeatedly retrieves the former and hence failing
at the task despite performing other actions (e.g., finding
gallium) correctly. This problem intensifies at the initial
trial during generalization due to the presence of insights
with varied initial conditions for them to be applied. This
can be circumvented by improved memory representation,
which we leave as a future work.

5. Conclusion

Our goal is a system that can continually improve over time,
both while rapidly adapting to a task by multiple retries
and efficiently generalizing to novel tasks and environments.
We propose CLIN, an architecture for language agents that
constructs a persistent, dynamic memory of causal abstrac-
tions, refines it over time and uses it effectively to improve
its performance on future tasks, achieving state-of-the-art
performance. Our work systematically evaluates a novel
nonparametric learning paradigm, promising never-ending
learning abilities to frozen language agents.

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

6. Impact Statement

This work aims to develop a novel learning paradigm for
frozen models using a memory-based framework requiring
parameter updates. Since our agent operates in a closed en-
vironment, we do not foresee any negative consequences of
our system. We hope to contribute to the growing literature
on language agents by formally exploring their capabilities
in continual learning setups. We will release our code upon
publication for reproducibility.

References

Adaptive-Agent-Team, Bauer, J., Baumli, K., Baveja, S., Be-
hbahani, F. M. P, Bhoopchand, A., Bradley-Schmieg, N.,
Chang, M., Clay, N., Collister, A., Dasagi, V., Gonzalez,
L., Gregor, K., Hughes, E., Kashem, S., Loks-Thompson,
M., Openshaw, H., Parker-Holder, J., Pathak, S., Nieves,
N. P, Rakicevic, N., Rocktéschel, T., Schroecker, Y., Syg-
nowski, J., Tuyls, K., York, S., Zacherl, A., and Zhang,
L. M. Human-timescale adaptation in an open-ended task
space. In International Conference on Machine Learning,
2023. URL https://api.semanticscholar.
org/CorpusID:255998274.

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes,
0., David, B., Finn, C., Gopalakrishnan, K., Hausman,
K., Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter, B., Ir-
pan, A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth,
S., Joshi, N. J., Julian, R. C., Kalashnikov, D., Kuang,
Y., Lee, K.-H., Levine, S., Lu, Y., Luu, L., Parada, C.,
Pastor, P, Quiambao, J., Rao, K., Rettinghouse, J., Reyes,
D. M., Sermanet, P., Sievers, N., Tan, C., Toshev, A.,
Vanhoucke, V., Xia, F., Xiao, T., Xu, P., Xu, S., and Yan,
M. Do as i can, not as i say: Grounding language in
robotic affordances. In Conference on Robot Learning,
2022. URL https://api.semanticscholar.
org/CorpusID:247939706.

Aineto, D., Jiménez, S., and Onaindia, E. Learning strips
action models with classical planning. In International
Conference on Automated Planning and Scheduling,
2018. URL https://api.semanticscholar.
org/CorpusID:49405691.

Ammanabrolu, P. and Hausknecht, M. J. Graph constrained
reinforcement learning for natural language action spaces.
In ICLR, 2020.

Ammanabrolu, P., Urbanek, J., Li, M., Szlam, A., Rock-
taschel, T., and Weston, J. How to motivate your
dragon: Teaching goal-driven agents to speak and
act in fantasy worlds. In North American Chapter
of the Association for Computational Linguistics,
2020. URL https://api.semanticscholar.
org/CorpusID:222125301.

Andrychowicz, M., Crow, D., Ray, A., Schneider, J.,
Fong, R., Welinder, P., McGrew, B., Tobin, J., Abbeel,
P, and Zaremba, W. Hindsight experience replay.
ArXiv, abs/1707.01495, 2017. URL https://api.
semanticscholar.org/CorpusID:3532908.

Arora, A., Fiorino, H., Pellier, D., Métivier, M., and

Pesty, S. A review of learning planning action
models. The Knowledge Engineering Review, 33,
2018. URL https://api.semanticscholar.

org/CorpusID:56483203.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P, Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.
org/CorpusID:235294299.

Chung, H. W.,, Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Valter, D., Narang, S., Mishra, G., Yu,
A. W., Zhao, V., Huang, Y., Dai, A. M., Yu, H., Petrov,
S., hsin Chi, E. H., Dean, J., Devlin, J., Roberts, A.,
Zhou, D., Le, Q. V., and Wei, J. Scaling instruction-
finetuned language models. ArXiv, abs/2210.11416,
2022. URL https://api.semanticscholar.
org/CorpusID:253018554.

Dalvi, B., Tafjord, O., and Clark, P. Towards teachable
reasoning systems: Using a dynamic memory of user
feedback for continual system improvement. In EMNLP,
2022.

He, J., Chen, J., He, X., Gao, J.,, Li, L., Deng, L., and
Ostendorf, M. Deep reinforcement learning with a natu-
ral language action space. arXiv: Artificial Intelligence,
2015. URL https://api.semanticscholar.
org/CorpusID:15986631.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In International
Conference on Machine Learning, pp. 9118-9147.
PMLR, 2022.

Jiang, M., Dennis, M., Parker-Holder, J., Foer-
ster, J. N., Grefenstette, E., and Rocktaschel,
T. Replay-guided adversarial environment de-
sign. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.
org/CorpusID:238408352.

Lin, B. Y., Fu, Y., Yang, K., Ammanabrolu, P., Brahman,
F., Huang, S., Bhagavatula, C., Choi, Y., and Ren, X.

https://api.semanticscholar.org/CorpusID:255998274
https://api.semanticscholar.org/CorpusID:255998274
https://api.semanticscholar.org/CorpusID:247939706
https://api.semanticscholar.org/CorpusID:247939706
https://api.semanticscholar.org/CorpusID:49405691
https://api.semanticscholar.org/CorpusID:49405691
https://api.semanticscholar.org/CorpusID:222125301
https://api.semanticscholar.org/CorpusID:222125301
https://api.semanticscholar.org/CorpusID:3532908
https://api.semanticscholar.org/CorpusID:3532908
https://api.semanticscholar.org/CorpusID:56483203
https://api.semanticscholar.org/CorpusID:56483203
https://api.semanticscholar.org/CorpusID:235294299
https://api.semanticscholar.org/CorpusID:235294299
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:253018554
https://api.semanticscholar.org/CorpusID:15986631
https://api.semanticscholar.org/CorpusID:15986631
https://api.semanticscholar.org/CorpusID:238408352
https://api.semanticscholar.org/CorpusID:238408352

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Swiftsage: A generative agent with fast and slow think-
ing for complex interactive tasks. ArXiv, abs/2305.17390,
2023. URL https://api.semanticscholar.
org/CorpusID:258960143.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., Welleck, S., Majumder, B. P., Gupta, S., Yaz-
danbakhsh, A., and Clark, P. Self-refine: Iterative re-
finement with self-feedback. ArXiv, abs/2303.17651,
2023. URL https://api.semanticscholar.
org/CorpusID:257900871.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R,
Liang, P.,, and Bernstein, M. S. Generative agents: In-
teractive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J.,
Razavi, A., Edwards, A. D., Heess, N. M. O., Chen, Y.,
Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas,
N. A generalist agent. Trans. Mach. Learn. Res., 2022,
2022. URL https://api.semanticscholar.
org/CorpusID:248722148.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence em-
beddings using siamese bert-networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics, 11 2019. URL https://arxiv.org/
abs/1908.10084.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
arXiv preprint arXiv:2303.11366, 2023.

Shridhar, M., Yuan, X., Coté, M.-A., Bisk, Y., Trischler,
A., and Hausknecht, M. ALFWorld: Aligning Text
and Embodied Environments for Interactive Learn-
ing. In Proceedings of the International Conference on
Learning Representations (ICLR), 2021. URL https:
//arxiv.org/abs/2010.03768.

Tandon, N., Madaan, A., Clark, P.,, and Yang, Y.
Memory-assisted prompt editing to improve GPT-3 af-
ter deployment. In ACL Workshop on Commonsense
Representation and Reasoning (CSRR’22), 2022. (also
arxiv:2201.06009).

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao,
C., Zhu, Y., Fan, L. J.,, and Anandkumar, A.
Voyager: An open-ended embodied agent with
large language models. ArXiv, abs/2305.16291,
2023. URL https://api.semanticscholar.
org/CorpusID:2588878409.

10

Wang, R., Jansen, P. A., Coté, M.-A., and Am-
manabrolu, P. Scienceworld: Is your agent
smarter than a 5th grader? In Conference on
Empirical Methods in Natural Language Processing,
2022. URL https://api.semanticscholar.

org/CorpusID:247451124.

Yao, S., Rao, R., Hausknecht, M. J., and Narasimhan, K.
Keep calm and explore: Language models for action gen-
eration in text-based games. ArXiv, abs/2010.02903,
2020. URL https://api.semanticscholar.
org/CorpusID:222142129.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and
acting in language models. ArXiv, abs/2210.03629,
2022. URL https://api.semanticscholar.
org/CorpusID:252762395.

https://api.semanticscholar.org/CorpusID:258960143
https://api.semanticscholar.org/CorpusID:258960143
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:248722148
https://api.semanticscholar.org/CorpusID:248722148
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://api.semanticscholar.org/CorpusID:258887849
https://api.semanticscholar.org/CorpusID:258887849
https://api.semanticscholar.org/CorpusID:247451124
https://api.semanticscholar.org/CorpusID:247451124
https://api.semanticscholar.org/CorpusID:222142129
https://api.semanticscholar.org/CorpusID:222142129
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

A. CLIN prompts

Figures 6 to 9 are the complete prompts for next-action generation (controller + executor), memory-generator during ADAPT,
GEN-ENV, and GEN-TASK.

B. Example Memories

Example generated memory for ADAPT, GEN-ENV, and GEN-TASKsetups in Figures 10 to 12.

C. More results

Full results for CLIN outperforming Reflexion is in Table 5. For the ScienceWorld benchmark, we exclude electricity tasks
since they deviate from standard electrical conventions, prohibiting us from fairly using LLM agents. We choose the first 10
test variants for each 18 tasks selected. The full list of 18 tasks from the benchmark, with the number of test variants used in
parentheses:

grow-plant (10), identify-life-stages-1 (5), grow-fruit (10), measure-melting-point-known-substance (10), mendelian-
genetics-unknown-plant (10), chemistry-mix-paint-secondary-color (9), freeze (9), lifespan-longest-lived (10), inclined-
plane-determine-angle (10), boil (9), use-thermometer (10), chemistry-mix (8), lifespan-shortest-lived (10), find-plant
(10), find-living-thing (10), identify-life-stages-2 (4), mendelian-genetics-known-plant (10), inclined-plane-friction-named-
surfaces (10).

Short tasks have oracle lengths less than 37 steps (median), and Long tasks have oracle lengths more than equal to 37 steps.
The map to the short names used for tasks in the paper:

Temp: use-thermometer, measure-melting-point-known-substance; Pick&Place: find-plant, find-living-thing; Chemistry:
chemistry-mix, chemistry-mix-paint-secondary-color; Lifespan: lifespan-longest-lived, lifespan-shortest-lived; Biology:
identify-life-stages-1, identify-life-stages-2, Boil; Freeze; Grow Plant, Grow Fruit; Force: inclined-plane-determine-angle;
Friction: inclined-plane-friction-named-surfaces; Genetics: mendelian-genetics-known-plant, mendelian-genetics-unknown-
plant.

Superior BASE performance. Figure 4 depicts a superior BASE performance for CLIN than the final performance of
both ReAct and Reflexion despite using the same underlying LLM (here, gpt —4). We find if we ablate for the controller
module in CLIN, responsible for generating a goal before outputting the next action, CLIN’s BASE performance drops
in 44% cases. With an 18-point drop in average reward, the Abl-Contoller-BASE version of CLIN becomes equivalent to
ReAct, the base agent for Reflexion, demonstrating the importance of the controller.

11

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

|| Generative L. Agents | CLIN (ours)

Task Type || ReAct Reflexion | BASE ~ ADAPT
Temp S 7.2 59 25.2 14.3
Temp S 6.1 28.6 53.2 51.8
Pick&Place S 26.7 64.9 92.5 100.0
Pick&Place S 533 16.4 55.0 100.0
Chemistry S 51.0 70.4 44.5 44.4
Chemistry S 58.9 70.7 56.7 56.7
Lifespan S 60.0 100.0 85.0 100.0
Lifespan S 67.5 84.4 70.0 90.0
Biology S 8.0 8.0 10.0 8.0
Boil L 3.5 4.2 7.0 15.2
Freeze L 7.8 7.8 10.0 10.0
GrowPlant L 9.1 7.3 10.2 11.1
GrowFruit L 18.6 13.0 35.9 71.6
Biology L 27.7 2.6 70.0 81.0
Force L 40.5 50.6 53.5 100.0
Friction L 44.0 100.0 56.5 72.5
Genetics L 25.7 50.9 77.4 100.0
Genetics L 16.8 23.7 62.3 92.6
S 37.6 49.9 54.7 62.8
L 21.5 28.9 42.5 61.6
All 29.6 394 48.6 62.2

Table 5. Comparing CLIN with baselines for adaptation in ScienceWorld

Type #trials to % ep.
success (/) improv.

S 33 29.2
L 3.2 37.2
All 33 332

Table 6. CLIN’s ADAPT improvements in Science World

Type GEN-TASK G+A
Aavg Yo ep. Aavg %0 ep.
score improv. | score improv.

S 14.6 40.0 4.9 5.7

L 10.3 36.7 9.2 15.6

All || 13.0 388 | 65 9.3

Table 7. CLIN’s GEN-TASK improvements in Science World

12

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

[System] : You are an AI agent helping execute a science experiment in a simulated
environment with limited number of objects and actions available at each step.

[User]:
Possible objects (value an OBJ can take):
{objects_str}

Your next action should be in one of the following formats:
Possible actions:
{actions_str}

If I say \"Ambiguous request\", your action might mean multiple things. In that case,
respond with the number corresponding to the action you want to take.

What action would you like to do next?

First, scan the (unordered) list of learnings, if provided. Decide if any of the
learnings are applicable given the last observation to make progress in this task. Then
only use selected learnings, if any, to construct a rationale for picking the next
action. If no Learning is selected, construct the rationale based on the last
observation. Format your response as follows:

Write 'I used learning id(s):' as a comma separated list; the list can be empty if no
learnings selected. Then, write $$$ followed by the rationale. Finally, write ###
followed by the single next action you would like to take.

If you think you have completed the task, please write TASK _COMPLETE as the next action.

If the task requires you to 'focus' on something (OBJ), please write FOCUS ON <OBJ> as
the next action. FOCUS is a extremely critical action that can be only used the number of
times 'focus' is mentioned in the task description. Using it more than that or
inappropiately (such as on a wrong object) will terminate the session and the task will
be rendered as incomplete.

If you performed an action that requires waiting to see the effect, please write 'wait'
as the next action.

Figure 6. Prompt for the Controller and the Executor

13

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

[System]: You are an expert assistant.

[User] :
You are given CURRENT TRACE, a sequence of actions that an agent made in a world to
accomplish a task.

Task is detailed at the beginning.

For each action, there is a rationale why the agent made that action.

There is an observation that provide details about the new state of the world after each
action was executed.

The CURRENT TRACE is accompanied by an EVALUATION REPORT indicating the success of the
attempt to the task.

You can also be provided with PREVIOUS LEARNINGS which are learnings from the previous
attempts by the agent for the same task in the same environment/world. TASK indicates the
task description. EPISODE indicates the number of previous attempts of the task.

Generate a summary of learning, as a numbered list, that will help the agent to
successfully accomplish the SAME task AGAIN, in the SAME world.

Each numbered item in the summary can ONLY be of the form:
X MAY BE NECCESSARY to Y.

X SHOULD BE NECCESSARY to Y.

X MAY BE CONTRIBUTE to Y.

X DOES NOT CONTRIBUTE to Y.

{CURRENT TRACE}
Action:
Observation:

EVALUATION REPORT:
REWARD_FINAL: 100. This means: The agent has performed exceptionally well and

successfully solved the task.

Summary of learning as a numbered list:

Figure 7. Prompt for CLIN’s memory generator during ADAPT

14

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

[System] : You are an expert assistant.

[User]: You are given a collection of learning lists, that are derived from actions made
by an agent and subsequent observations from a world to accomplish a TYPE of TASKs. All
of these TASKs belong to a same TYPE (such as 'boiling') but they are executed in
different ENVIRONMENT configurations. A different ENVIRONMENT configuration means there
are presence of a different set of objects (lighter instead of a stove) that are critical
for solving the TASK, presence of a different set of distractor objects that are not
useful for the TASK, a different floor plan, etc.

For each learning list, the TASK description is provided at the beginning as TASK:

Each learning list indicates a list of learnings from the agent's best attempt to solve
the TASK.

Each learning list is associated with an EVALUATION REPORT indicated how sucessful the
respective attempt was for solving the task.

Consider all learning lists and combine them in to a summary of learnings, as a numbered
list, that will help the agent to successfully accomplish a NEW TASK related to the
previous TASKs (such as 'boliing') in an ENVIRONMENT configuration that it has not seen
before. The NEW TASK description will be provided.

Each numbered item in the summary can ONLY be of the form:
X MAY BE NECCESSARY to Y.

X SHOULD BE NECCESSARY to Y.

X MAY NOT CONTRIBUTE to Y.

X DOES NOT CONTRIBUTE to Y.

{PREVIOUS LEARNINGS}

TASK:

LEARNINGS:...

EVALUATION REPORT:

REWARD_FINAL: 100. This means: The agent has performed exceptionally well and
successfully solved the task.

NEW TASK:

Summary of learning as a numbered list:

Figure 8. Prompt for CLIN’s memory generator during GEN-ENV

15

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

[System] : You are an expert assistant.

[User]: You may be given a list of learnings, that are derived from actions made by an
agent and subsequent observations from a world to accomplish a TASK in an ENVIRONMENT
CONFIGURATION.

For the learning list, the TASK description is provided at the beginning as TASK:

The learnings are from the agent's best attempt to solve the TASK.

The learning list is associated with an EVALUATION REPORT indicated how sucessful the
attempt was for solving the task.

Now, generate a summary of learnings from the existing ones if provided, such that they
will be useful to the NEW TASK in the SAME ENVIRONMENT CONFIGURATION. The NEW TASK may
require different actions which are not captured in the given learnings but given
learnings can be used to infer about the ENVIRONMENT CONFIGURATION. The NEW TASK
description will be given. If PREVIOUS LEARNINGS says 'No learnings available', improvise
learnings for the NEW TASK.

Each numbered item in the summary can ONLY be of the form:
X MAY BE NECCESSARY to Y.

X SHOULD BE NECCESSARY to Y.

X MAY NOT CONTRIBUTE to Y.

X DOES NOT CONTRIBUTE to Y.

{PREVIOUS LEARNINGS}

TASK:

LEARNINGS:...

EVALUATION REPORT:

REWARD_FINAL: 100. This means: The agent has performed exceptionally well and
successfully solved the task.

NEW TASK:
Summary of learning as a numbered list:

Figure 9. Prompt for CLIN’s memory generator during GEN-TASK

16

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Task: Your task is to determine whether round seed shape is a dominant or recessive trait
in the pea plant. If the trait is dominant, focus on the blue box. If the trait is
recessive, focus on the orange box.

Memory (ADAPT), after Trialb:

1. Looking around MAY BE NECESSARY to gather information about the environment.

2. Moving to the greenhouse SHOULD BE NECESSARY to find the pea seeds.

3. Picking the jar SHOULD BE NECESSARY to access the pea seeds.

4. Moving the round green pea seed to flower pot 2 SHOULD BE NECESSARY to grow the pea
plants.

5. Moving the wrinkly green pea seed to flower pot 3 SHOULD BE NECESSARY to grow the pea
plants.

6. Waiting SHOULD BE NECESSARY for the pea plants to grow and show their traits.

7. Looking at the adult pea plant in flower pots 2 and 3 MAY BE NECESSARY to observe the
traits of the offspring.

8. Focusing on the blue box SHOULD BE NECESSARY to indicate the trait of the seed shape.
9. Continuously looking at the same environment DOES NOT CONTRIBUTE to the task of
determining the dominant or recessive trait in the pea plant.

10. Moving to the workshop DOES NOT CONTRIBUTE to determining the dominant or recessive
trait in the pea plant.

11. Picking up the battery or the wires in the workshop DOES NOT CONTRIBUTE to finding
the pea seeds.

12. Waiting for longer periods MAY BE NECESSARY to allow the pea plants to fully grow and
show their traits.

Figure 10. Memory generated after Trial5 in ADAPT for a Genetics task in ScienceWorld.

17

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Task: Your task is to determine which of the two inclined planes (aluminum, platinum) has
the most friction. After completing your experiment, focus on the inclined plane with the
most friction.

Meta-memory (GEN-ENV) :

1. Moving to the hallway SHOULD BE NECESSARY to reach the workshop.

2. Moving to the workshop SHOULD BE NECESSARY to find the block.

3. Picking up the block SHOULD BE NECESSARY to move it to the inclined planes.

4. Placing the block on the first inclined plane (either aluminum or platinum) SHOULD BE
NECESSARY to measure the friction.

5. Activating the stopwatch SHOULD BE NECESSARY to time the experiment.

6. Waiting for a certain period MAY CONTRIBUTE to observing the friction effect.

7. Deactivating the stopwatch SHOULD BE NECESSARY to stop timing the experiment.

8. Moving the block to the second inclined plane (either aluminum or platinum) SHOULD BE
NECESSARY to compare the friction.

9. Activating the stopwatch again SHOULD BE NECESSARY to time the second part of the
experiment.

10. Waiting for a certain period again MAY BE NECESSARY to observe the friction effect.
11. Deactivating the stopwatch again SHOULD BE NECESSARY to stop timing the experiment.
12. Focusing on the inclined plane with the most friction SHOULD BE NECESSARY to conclude
the experiment.

13. Repeating the experiment multiple times MAY BE NECESSARY for more accurate results.
14. Looking around in the initial room multiple times DOES NOT CONTRIBUTE to the task.
15. Moving the block back and forth between the two inclined planes DOES NOT CONTRIBUTE
to the task.

Figure 11. Meta-memory used in GEN-ENV for a Friction task in ScienceWorld.

18

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Task: Your task is to freeze mercury. First, focus on the substance. Then, take actions
that will cause it to change its state of matter.

Meta-memory (GEN-TASK) :

1. Looking around MAY BE NECESSARY to identify the available resources and the layout of
the environment.

2. Moving to different rooms SHOULD BE NECESSARY to find the tools and materials needed
to change the state of the substance.

3. Picking up items like glass cups or metal pots SHOULD BE NECESSARY to contain the
substance for changing its state.

4. Focusing on the substance SHOULD BE NECESSARY to understand its properties and how to
interact with it.

5. Picking up the thermometer SHOULD BE NECESSARY to monitor the temperature of the
substance.

6. Using the thermometer on the substance SHOULD BE NECESSARY to monitor the progress of
the task.

7. Puring the substance into the container SHOULD BE NECESSARY to prepare it for cooling.
8. Moving the container to a cooling device SHOULD BE NECESSARY to cool the substance.
9. Waiting for a period of time after cooling the substance SHOULD BE NECESSARY to allow
the substance to change state.

10. Repeatedly checking the temperature of the substance SHOULD BE NECESSARY to monitor
the progress of the task.

11. Activating the stove DOES NOT CONTRIBUTE to the task as it does not progress the
task.

12. Picking up unrelated items like a lighter DOES NOT CONTRIBUTE to the task as it does
not progress the task.

13. Moving to unrelated rooms like the workshop DOES NOT CONTRIBUTE to the task as it
does not progress the task.

14. Teleporting to the kitchen MAY BE NECESSARY for the task as it speeds up the process
of moving between rooms.

15. Using the thermometer multiple times on the substance after it reaches freezing point
DOES NOT CONTRIBUTE to the task as it does not progress the task.

Figure 12. Meta-memory used in GEN-TASK for a Freeze task in ScienceWorld.

19

CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization

Task: Your task is to make a red paper.

Ablated memory (GEN-TASK) :

1. Avoid repeating actions: The agent performed the "look around" action twice at the
beginning of the task. This is unnecessary and wastes time. Once you have a clear
understanding of your surroundings, move on to the next step.

2. Be mindful of the order of actions: The agent moved to the workshop and read the
instructions after looking around twice. It's better to first read the instructions to
understand the task requirements.

3. Use the correct containers for mixing: The agent used a cup for mixing the
ingredients, which was successful. Continue using suitable containers like a cup or a
bowl for mixing.

4. Be clear with your actions: The agent made an ambiguous request when trying to mix the
cup containing red paint. Be specific with your actions to avoid confusion.

5. Avoid unnecessary movements: The agent teleported to the art studio after picking up
the paper. Plan your actions carefully to avoid unnecessary movements.

6. Use the correct method to combine ingredients: The agent successfully mixed the
ingredients in the cup. Continue using suitable methods to combine the ingredients, such
as using a blender or a food processor.

7. Keep track of your actions: The agent moved the paper to the cup and then back to the
inventory. This is unnecessary and wastes time. Keep track of your actions to avoid
repeating them.

8. Always refer back to the instructions: The agent seemed to forget the instructions to
make the red paper. Always refer back to the instructions to ensure you are following the
correct steps.

Figure 13. Meta-memory generated for ablation in GEN-ENV for a Chemistry task in ScienceWorld.

20

