
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Boosting LLM Reasoning via Spontaneous Self-Correction

Anonymous Authors1

Abstract

While large language models (LLMs) have
demonstrated remarkable success on a broad
range of tasks, math reasoning remains a chal-
lenging one. One of the approaches for improving
math reasoning is self-correction, which designs
self-improving loops to let the model correct its
own mistakes. However, existing self-correction
approaches treat corrections as standalone post-
generation refinements, relying on extra prompt
and system designs to elicit self-corrections, in-
stead of performing real-time, spontaneous self-
corrections in a single pass. To address this, we
propose SPOC, a spontaneous self-correction
approach that enables LLMs to generate inter-
leaved solutions and verifications in a single in-
ference pass, with generation dynamically termi-
nated based on verification outcomes, thereby ef-
fectively scaling inference time compute. SPOC
considers a multi-agent perspective by assigning
dual roles – solution proposer and verifier – to
the same model. We adopt a simple yet effec-
tive approach to generate synthetic data for fine-
tuning, enabling the model to develop capabilities
for self-verification and multi-agent collaboration.
We further improve its solution proposal and ver-
ification accuracy through online reinforcement
learning. Experiments on mathematical reason-
ing benchmarks show that SPOC significantly
improves performance. Notably, SPOC boosts
the accuracy of Llama-3.1-8B and 70B Instruct
models, achieving gains of 8.8% and 11.6% on
MATH500, 10.0% and 20.0% on AMC23, and
3.3% and 6.7% on AIME24, respectively.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

1. Introduction
Large Language Models (LLMs) have showcased promis-
ing results across a broad spectrum of text generation tasks.
Among the various domains of LLM applications, mathe-
matical reasoning remains particularly challenging due to
its symbolic and structured nature (Shao et al., 2024; Chen
et al., 2024). Recent advances in self-correction (Shinn
et al., 2023; Madaan et al., 2023) have emerged as a promis-
ing paradigm towards self-improvement through iterative
critique and refinement of model’s own responses.

However, the effectiveness and practicality of existing self-
correction approaches remain unclear. Naive prompting
methods may lead to minimal improvement or performance
degradation without access to external feedback (Huang
et al., 2023; Qu et al., 2024). Finetuning-based methods
seek to address such issues by post-training the LLM on re-
finement data collected from oracles (Saunders et al., 2022;
Qu et al., 2024) or the learner model itself (Kumar et al.,
2024). Nonetheless, these approaches typically rely on a
specific prompt after each model response to trigger self-
reflection or correction (Figures 1a and 1b), necessitating
additional system design to inject these prompts during infer-
ence. In other words, existing approaches lack the ability to
spontaneously and adaptively self reflect and correct, result-
ing in ineffective test-time compute scaling and inflexible
deployment in practice.

To address these challenges, we introduce SPOC, a sponta-
neous self-correction approach that enables LLMs to spon-
taneously generate interleaved solutions and verifications in
a single inference pass. SPOC employs an open-loop infer-
ence paradigm, which triggers self-correction only when the
self-verification identifies errors, and iteratively revises the
solution until it passes self-verification, without requiring
any external interventions during response generation. It dy-
namically elicits and terminates generations on-the-fly using
solely the model’s inherent capabilities, thereby effectively
scaling inference time compute. We consider a multi-agent
formalism that models the alternating solutions and verifi-
cations as the interaction between a solution proposer and
a verifier, and adopt a self-play training strategy by assign-
ing dual roles to the same model. We adopt a simple yet
effective approach to generate synthetic data from the initial
model for supervised fine-tuning (Welleck et al., 2022), en-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Boosting LLM Reasoning via Spontaneous Self-Correction

Question

Solution 1

Revise request 1

Solution 2

Revise request 2

Solution 3

Closed-loop
Correction

Revise request 3

Solution 4

(a)

Question

Solution 1

Reflection request 1

Reflection: No

Revise request

Solution 2

Closed-loop
Verification/Correction

Reflection request 2

Reflection: Yes

(b)

Question

Solution 1

Reflection: No

Solution 2

Open-loop
Verification/Correction

Reflection: Yes

(c)

Figure 1: Multi-turn generation formalisms. (a)&(b) Sample closed-loop paradigms that require extra system designs and prompting to
trigger and terminate correction; (c) Sample open-loop paradigm that spontaneously adapts generations.

abling the model to adhere to the multi-turn generation style,
meanwhile developing capabilities for self-verification and
inter-agent collaboration without distilling from a stronger
teacher. We further boost the model’s accuracy in its so-
lution proposal and verification via online reinforcement
learning, using the correctness of solutions and verifications
as the reward.

Our main contributions are threefold:

• We demonstrate that generating self-verification and
correction trajectories from the initial model’s correct
and incorrect outputs effectively bootstraps its spon-
taneous self-verification and correction behavior. We
call out the importance of data balancing in achieving
high verification accuracy in this stage, which in turn
benefits the subsequent RL phase.

• We propose the message-wise online RL framework
for SPOC, and present the formulation of RAFT (Dong
et al., 2023) and RLOO (Ahmadian et al., 2024) as the
RL stage of SPOC for enhancing self-verification and
correction accuracies. Our results show that RLOO,
augmented with process rewards for each solution or
verification step, yields stronger results.

• We achieve significant improvements on math reason-
ing tasks across model sizes and task difficulties using
our pipeline without distilling from stronger models.
SPOC boosts the pass@1 accuracy of Llama-3.1-8B
and 70B Instruct models—improving performance by

8.8% and 11.6% on MATH500, by 10.0% and 20.0%
on AMC23, and by 3.3% and 6.7% on AIME24.

2. Related work
Self-correction. Given that high-quality external feedback
is often unavailable across various realistic circumstances, it
is beneficial to enable an LLM to correct its initial responses
based on solely on its inherent capabilities. Prior works on
such intrinsic self-correction (Huang et al., 2023) or self-
refinement can be categorized into two groups based on the
problem settings and correction mechanisms: prompting
and finetuning. Recent works (Huang et al., 2023; Qu et al.,
2024) show that prior prompting methods lead to minimal
improvement or degrading performance without strong as-
sumptions on problem settings. For instance, Shinn et al.
(2023) rely on oracle labels which are often unavailable in
real-world applications; Madaan et al. (2023) use less infor-
mative prompts for initial responses, resulting in overestima-
tion of correction performance. Finetuning methods seek to
improve correction performance via finetuning the LLM on
refinement data, collected from human annotators (Saunders
et al., 2022), stronger models (Qu et al., 2024), or the learner
model itself (Kumar et al., 2024). However, these works
lack the mechanisms that correct errors while generating
solutions in a single inference pass (Ye et al., 2024). Our
work is akin to concurrent works on self-correction (Ma
et al., 2025; Xiong et al., 2025). Differently, Xiong et al.
(2023) re-attempts a solution within the verification instead
of evaluating the previous one; moreover, they only apply

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Boosting LLM Reasoning via Spontaneous Self-Correction

RAFT in their learning framework, while we also conduct
experiments on RLOO. Ma et al. (2025) uses the more com-
plex GRPO as their RL algorithm, while we show that better
performance can be achieved in the same setting (Llama 3.1
8B) by using simpler RL algorithms like RAFT for SPOC.

Multi-agent frameworks. By introducing multiple
roles into problem-solving, multi-agent formalisms serve
as a different perspective to address complex reasoning
tasks. AutoGen (Wu et al., 2023) and debate-based
frameworks (Du et al., 2023; Liang et al., 2023) solve math
problems through customized inter-agent conversations.
Despite increased test-time computation, these works lack
post-training for different agent roles, which may result in
suboptimal performance or distribution shifts at inference
time (Xiang et al., 2025). While other works train separate
models to perform correction (Motwani et al., 2024; Havrilla
et al., 2024; Akyürek et al., 2023; Paul et al., 2023), models
do not perform spontaneous corrections during solution gen-
erations; instead, they require extra system designs to trigger
and stop corrections at deployment. In contrast, our method
enables dynamic inference-time scaling by improving the
model’s own inherent deliberation capabilities.

3. Method
In this section, we first introduce the multi-turn formalism,
in which the agent performs interleaved solution and
verification turns. We then discuss how we finetune the
agent to ensure it consistently adheres to the multi-turn
response style. We finally describe our online reinforcement
learning scheme which further boosts the final accuracy of
the policy. Figure 2 illustrates the two stages, fine-tuning
and online RL, of SPOC.

3.1. Multi-turn formalism

Problem setup. Let D ≡ X × Y = {(xi, y
∗
i)}Ni=1 be a

dataset of N math problems, where each pair (x, y∗) con-
tains a question xi and the corresponding solution y∗i with
ground-truth final answer. An LLM agent is defined by
the policy πθ(·|x), parameterized by θ, that generates the
solution y to solve the given problem x.

Alternated-turn generation. Suppose given a question x,
the LLM generates a trajectory consisting of L interleaved
solutions and verifications τ = (y1, v1, . . . , yL, vL), where
a solution yl indicating the model’s l-th complete solution
attempt that reaches a final answer, and a verification vl
indicating the l-th self-verification validating correctness
of the solution yl. For clarity, message or turn refers to
each single solution yl or verification vl, and response or
generation τ refers to the entire trajectory until the end. For
brevity, we denote previous l turns by: τl = (y1:l, v1:l) and

τ vf
l = (y1:l, v1:l−1). The timestep t ∈ N0 indicates a single

decoding step where the LLM outputs one token from its
policy distribution.

Multi-agent formulation. We model the reasoning task
as an extensive-form game (EFG) (Osborne, 1994; Shoham
& Leyton-Brown, 2008), which generalizes the Markov De-
cision Process (MDP) (Sutton, 2018) to a turn-taking interac-
tion between solution proposer and verifier. At each turn, the
proposer outputs a solution to the given math problem, and
the verifier assesses its correctness. In this context, the EFG
is a tuple ⟨N ,A,S, T , r, I, γ⟩, where N = {1, . . . , n} is
the set of n = 2 players (i.e. the proposer and verifier),
A is a finite set of actions (i.e. the LLM’s token space), S
is a finite set of states (i.e. each state is a question and a
sequence of reasoning/verification steps in context), T ⊂ S
is a subset of terminal states (i.e. complete response trajec-
tories τ = (y1, v1, . . . , yL, vL)), r : T × N0 → ∆n

r ⊂ Rn

is the reward function assigning each player a scalar
utility at terminal states (i.e. ∆r = {0, 1} characterizes
binary outcome feedback), I : S → N is a player identity
function identifing which player acts at s (i.e. I(τl) = 1
and I(τ vf

l) = 2), and γ ∈ [0, 1] is the discount factor.

Unlike the general definition of EFGs, we do not distin-
guish between histories and states due to the determinis-
tic dynamics and perfect-information nature in mathemat-
ical reasoning (i.e. τl+1 = τl ∪ {yl+1, vl+1}). We denote
the proposer’s and the verifier’s action spaces as Asl ⊂ A
and Avf ⊂ A, representing the set of solution and verifica-
tion messages, respectively. We define a per-step reward
function for a transition as r(s, a) representing a vector
of reward to both agents. The return for player i ∈ N
is defined as Gt,i =

∑∞
k=0 γ

kri(st+k, at+k). The cor-
responding state-action value function under policy π is
Qπi

(s, a) = Eπ[Gt,i|st = s, at = a].

To improve reasoning capabilities by learning from both so-
lution and verification experiences, we adopt the commonly-
used self-play strategy with parameter sharing (Albrecht
et al., 2024), where the proposer policy πsl : S → ∆(Asl)
and the verifier policy πvf : S → ∆(Avf) share the same set
of parameters θ. The policy πθ outputs alternated solution
and verification messages depending on the context1.

Policy optimization. We optimize the policy πθ by maxi-
mizing the KL-regularized learning objective

J(θ) = Es∼ρ,a∼π[Qπ(s, a)]− η · Es∼ρ[KL(πθ|πθ0)] (1)

where ρ indicates the discounted state distribution, η > 0 is
the KL-regularization coefficient, and πθ0 is the reference

1Different from the classic self-play in zero-sum games (e.g.,
AlphaZero (Silver et al., 2017)), ours involves non-symmetrical
roles in the sense that two policies are different conditioned on the
context.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Boosting LLM Reasoning via Spontaneous Self-Correction

Figure 2: SPOC training overview. Left: PairSFT for initializing multi-turn generation. Right: Online RL for policy optimization.

policy parameterized by the initial parameters θ0. This
objective has a close-form solution for the optimal pol-
icy π∗(a|s) = 1

Z(s)πθ0(a|s) exp(1ηQ(s, a)), where Z(s) =

Ea∼πθ0
(·|s)[exp(

1
ηQ(s, a))]. Given our multi-agent formu-

lation, this objective introduces an individual objective for
each role, namely

J sl(θ) = E[Qsl
π(s, a)]− ηsl · E[KL(πsl

θ (·|s)|πsl
θ0(·|s))]

(2)

Jvf(θ) = E[Qvf
π (s, a)]− ηvf · E[KL(πvf

θ (·|s)|πvf
θ0(·|s))]

(3)

Due to shared parameters across both roles, we jointly
optimize both objectives using common generated trajec-
tory experiences. Hence the optimal proposer and verifier
policies satisfy πsl∗(a|s) ∝ πsl

θ0
(a|s) exp(1ηQ

sl(s, a)) and
πvf∗(a|s) ∝ πvf

θ0
(a|s) exp(1ηQ

vf(s, a)), respectively, imply-
ing the optimal shared policy increases the probability of
outputting high-rewarding solutions/verifications. Note that
the optimal policy for the unregularized learning objective
(η = 0) results in the maximizer of the action-value function:
π∗(·|s) = argmaxπ∈∆(A) Ea∼π[Qπ(s, a)] , also yielding
high probablity of generating high-rewarding messages.

Reward setting. To obtain a reward signal for each to-
ken in each message, we evaluate the outcome correct-
ness of each message. In particular, we assume access
to a rule-based checker for the final answer in the solu-
tion, and provide a binary outcome reward denoted by
rsl(y, y∗) ∈ {0, 1}, where rsl(y, y∗) = 1 when the model
answer matches the ground-truth answer. Similarly, we
parse the Yes/No conclusion in each verification, and
denote the reward function by rvf(v, v∗) ∈ {0, 1}, with
v∗ = rsl(y, y∗) indicating the ground-truth verification. Fig-
ure 3a shows the joint reward setting, denoted by Corr here-
after. To obtain maximal returns against each other role,

our reward setting admits one unique Nash equilibrium
(Shoham & Leyton-Brown, 2008) with the joint policy (i.e.
the shared policy π) generating both correct solutions and
correct verifications.

3.2. Enabling multi-turn generation

Since off-the-shelf LLMs do not adhere to the response style
of interleaved solution and verification turns by default, be-
fore conducting RL optimization, we first perform an initial
finetuning with multi-turn data to enable such behaviour. To
collect such data, we implement a variant of Pair-SFT (Ku-
mar et al., 2024; Welleck et al., 2022) to construct synthetic
correction responses.

In particular, we rollout the base policy πθ0 to collect
single-turn responses for each question xi ∈ X , denoted
by {yki }Kk=1 ∼ πθ0(·|xi). For each response, we record
its binary correctness using the solution reward function
rki = rsl(yki , y

∗
i). We obtain the verification message of one

single-turn response by pairing it with a correct sampled
response. To generate verification of one response, either
correct or incorrect, we prompt the same base model πθ0

to identify the potential error, briefly explain it, and output
a final binary conclusion indicating correctness of the given
solution. The entire verification message is denoted as vi ∼
πθ0(·|xi, yi, y

∗
i), where y∗i indicates the correct sample. We

denote this synthetic multi-turn correction dataset as the Pair-
SFT dataset Dpair = {(xi, y

−
i , v

−
i , y

∗
i)} ∪ {(xi, y

+
i , v

+
i)},

where the +/− superscripts indicates correctness of the
corresponding solution turn. We perform SFT finetuning on
the base model, with tokens in incorrect messages masked
out, and denote the finetuned model by πθsft . In practice, we
observe that reweighting the subsets {(xi, y

−
i , v

−
i , y

∗
i)} and

{(xi, y
+
i , v

+
i)} to approximately the same scale leads to a

πθsft with higher verification accuracy and more stable RL

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Boosting LLM Reasoning via Spontaneous Self-Correction

Figure 3: Reward configurations for policy optimization, where sl, vf, C, I indicate solution, verification, correct, and incorrect,
respectively. For Last and All, SPOC optimizes correct solutions (first row in each table) only when the last solution is correct.

sl
vf

C I

C 1, 1 1, 0
I 0, 1 0, 0

(a) Corr

sl
vf

C I

C 1, 0 1, 0
I 0, 0 0, 0

(b) Last

sl
vf

C I

C 1, 1 1, 1
I 0, 0 0, 0

(c) All

training afterwards. The complete training data collection
procedure is detailed in Algorithm 2.

When generating the verification messages, we adapt the
generative critic method (Zhang et al., 2024; Zheng et al.,
2024) that prompts the model to respond with rationales
before judging solution correctness, except that our vari-
ant concisely explains the error rather than performing a
chain-of-thought (COT) analysis. Obtaining a strong COT
verifier requires explicit training and it is out of scope of this
work. Prompt templates for data construction are detailed
in Appendix E.

Algorithm 1 SPOC Message-wise Online Reinforcement
Learning

1: Inputs: Question-answer dataset D = X × Y =
{(xj , y

∗
j)}Nj=1, policy model πθ parameterized by θ,

number of questions N , number of steps T , number of
rollouts per question K, batch size B, rule-based so-
lution correctness reward function rsl(y, y∗) ∈ {0, 1},
verification correctness reward function rvf(v, v∗) ∈
{0, 1}

2: for i = 1, . . . , T do
3: Sample a batch Di ⊂ D of size B
4: Sample K trajectories for each xj ∈ Xi: {τkj }Kk=1 ∼

πθ(·|xj), where τkj = (yj,k1:Lk
, vj,k1:Lk

)

5: Label binary rewards: rsl
j,k,l = rsl(yj,kl , y∗j), r

vf
j,k,l =

rvf(vj,kl , v∗j,k,l), where v∗j,k,l = rsl
j,k,l

6: Update policy with any policy optimization algorithm
(e.g. Algorithm 3, Algorithm 4)

7: end for
8: return πθ

3.3. Online reinforcement learning

With the multi-turn problem formulated and the agent adher-
ing to the multi-turn responses style, we conduct online rein-
forcement learning to improve the policy performance. The
overall message-level RL training procedure is described in
Algorithm 1. While SPOC is compatible with any policy
optimization method, we apply RAFT (Dong et al., 2023)
unless otherwise specified. The RAFT policy optimization
algorithm is presented in Algorithm 3.

Besides the RAFT policy optimizer, we also implement
an RLOO (Ahmadian et al., 2024) variant, which replaces
the leave-one-out procedure with subtraction of the mean
reward across all messages, followed by division by the
standard deviation. We refer to this approach as RLOO
for brevity. Unlike the best-of-N (BoN) response selection
strategy in RAFT, RLOO optimizes the policy using all
generated responses, enjoying better sample efficiency. The
RLOO policy optimization is detailed in Algorithm 4.

4. Experiments
In this section we present empirical experiments on math
reasoning benchmarks. We first overview the tasks we con-
duct experiments on. We then describe the experimental
setup and evaluation protocols. Finally we discuss the re-
sults and provide ablation studies.

4.1. Experimental setup

Tasks. We perform experiments on established math rea-
soning benchmarks. To enable rule-based answer checking,
all problems in selected benchmarks require a verifiable final
output. We evaluate models on benchmarks: (1) MATH500
(Lightman et al., 2023), a curated dataset of 500 problems
selected from the full MATH (Hendrycks et al., 2021) eval-
uation set; (2) AMC23 (AI-MO, 2023), a dataset of 40
challenging competition questions; (3) AIME24 (AI-MO,
2024), a dataset of 30 more difficult competition problems.

Evaluation protocol. Our primary evaluation metric is the
final answer accuracy. We additionally report cross-solution
correction accuracy serving as a complementary evaluation.

For all experiments, we finetune Llama-3-Instruct models
(Dubey et al., 2024) (3.1-8B & 70B, 3.3-70B, DeepSeek-R1-
Distill-Llama 8B & 70B) as the base models. We conduct
training using the NuminaMath dataset (LI et al., 2024),
which consists of training sets from various data sources,
covering a wide range of mathematical topics and difficulty
levels. We exclude the Orca-Math dataset (Mitra et al.,
2024) and synthetic data subset since their correctness are
not human-validated despite their large scale.

For evaluations, we report the pass@1 accuracy of the final

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Boosting LLM Reasoning via Spontaneous Self-Correction

Table 1: Main evaluation results. Baselines that we directly use results from their reports are marked with ∗. The best performance
under each initial model is marked with bold text (omitted prompting-based Self-Refine for fair comparisons). "R1tok" indicates the
model is evaluated using the R1 modified tokenizer and chat configs. "avg@4" indicates the model is evaluated using sampling, with
the temperature of 0.6, the top-p value of 0.95, and 4 responses generated per question to compute the mean pass@1 (Guo et al., 2025).
Blue indicates ours, and green indicates other RL based approaches.

Approach MATH500 AMC23 AIME24

Llama-3.1-8B-Instruct (Dubey et al., 2024) 52.2 22.5 3.3
SFT 53.6 32.5 3.3
RAFT 55.2 27.5 6.7
PairSFT 53.8 22.5 10.0
Self-Refine (w/o oracle) 39.4 20.0 3.3
Self-Refine (w/ oracle) 57.0 35.0 3.3
S2R-BI∗ (Ma et al., 2025) 49.6 20.0 10.0
S2R-PRL∗ 53.6 25.0 6.7
S2R-ORL∗ 55.0 32.5 6.7
SPOC 61.0 32.5 6.7

Llama-3.1-70B-Instruct (Dubey et al., 2024) 65.8 32.5 16.7
SFT 70.4 45.0 13.3
RAFT 74.2 52.5 20.0
PairSFT 74.8 47.5 23.3
Self-Refine (w/o oracle) 54.2 42.5 13.3
Self-Refine (w/ oracle) 72.2 47.5 26.7
SPOC 77.4 52.5 23.3

Llama-3.3-70B-Instruct (AI, 2024) 75.6 57.5 26.7
SFT 73.6 55.0 23.3
RAFT 76.6 62.5 20.0
PairSFT 75.0 62.5 23.3
Self-Refine (w/o oracle) 75.4 60.0 33.3
Self-Refine (w/ oracle) 76.2 65.0 26.7
SPOC 77.8 70.0 23.3

DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025) 62.6 62.5 26.7
SFT 76.8 65.0 30.0
RAFT 74.2 62.5 6.7
PairSFT 73.2 77.5 16.7
Self-Refine (w/o oracle) 67.4 75.0 10.0
Self-Refine (w/ oracle) 71.2 65.0 40.0
SPOC 77.6 70.0 23.3
SPOC-RLOO 87.2 87.5 50.0

DeepSeek-R1-Distill-Llama-70B (Guo et al., 2025) 82.8 72.5 60.0
SFT 90.6 80.0 40.0
RAFT 87.4 85.0 50.0
PairSFT 92.6 95.0 63.3
Self-Refine (w/o oracle) 86.2 80.0 30.0
Self-Refine (w/ oracle) 88.6 72.5 30.0
SPOC 89.6 85.0 53.3
SPOC-RLOO 94.6 92.5 76.7

Gemini-1.5-Flash (4-shot)∗ (Team et al., 2024) 54.9 - -
SCoRe∗ (Kumar et al., 2024) 64.4 - -

Llama-3-8B-Instruct (4-shot)∗ (Meta, 2024) 30.0 - -
Self-rewarding IFT∗ (Xiong et al., 2025) 27.9 - -
Self-rewarding-IFT + Gold RM∗ 33.9 - -

DeepSeek-R1-Distill-Llama-8B-R1tok-avg@4 88.9 92.5 48.3
DeepSeek-R1-Distill-Llama-70B-R1tok-avg@4 94.3 94.4 65.9
O1∗ 94.8 - 74.4
GPT-4o∗ 60.3 - 9.3
Claude 3.5 Sonnet∗ 78.0 - 16.0

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Boosting LLM Reasoning via Spontaneous Self-Correction

answer. We use greedy decoding and zero-shot COT prompt-
ing unless otherwise specified. As mentioned in previous
sections, we do not utilize additional external instructions to
prompt the finetuned model to attempt another solution trial;
instead the model spontaneously performs self-verification
to determine whether another attempt is needed. Our
prompt templates for evaluation are included in Appendix E.

Implementation details. All models are prompted with
the original Llama tokenizer and chat configs (Dubey et al.,
2024) unless otherwise specified. All models except the
DeepSeek-R1-Distill-Llama based ones are evaluated us-
ing the maximum generation length of 6, 144 tokens, while
the DeepSeek-R1-Distill-Llama based models are evaluated
using the maximum generation length of 32, 768 tokens,
as per Guo et al. (2025). To support training with multi-
message responses, we utilize different special termination
tokens for each model message. In particular, in each model
response each message starts with assistant header
tokens, indicating the source of message is the model. Be-
sides, every assitant message except the last ends with an
<|eom_id|> termination token, representing the end of
one message. The last assistant message ends with an
<|eot_id|> token, which concludes the entire model
response. We implement RAFT (Dong et al., 2023) un-
der the CGPO (Xu et al., 2024) framework, which allows
for filtering out prompts whose all corresponding sampled
responses contain no correct solutions or verifications.

4.2. Results

Table 1 presents the comprehensive evaluation results,
showing the comparisons across different initial models
and parameter scales. In general, SPOC consistently
outperforms the base models on all initialization models
across all benchmark tasks. Notably, SPOC enhances the
accuracy of Llama3.1 8B and 70B, reaching gains of 8.8%
and 11.6% on MATH500, 10.0% and 20.0% on AMC23,
and 3.3% and 6.7% on AIME24, respectively. This result
highlights the effectiveness of SPOC across different
parameter scales and task difficulties.

SPOC also achieves consistent enhancement when
fine-tuned with strong initial models. Despite marginal
improvement on Llama3.3-70B model, SPOC obtains
significant overall outperformance compared to the
baselines after finetuning the DeepSeek-R1-Distill-Llama
models. Respectively on MATH500/AMC23/AIME24,
SPOC reaches 77.6%/70.0%/23.3% with the 8B model,
and 89.9%/85.0%/53.3% with the 70B model. Fur-
thermore, SPOC achieves more drastic performance
improvement using the RLOO policy optimizer, ob-
taining 87.2%/87.5%/50.0% with the 8B model, and
94.6%/92.5%/76.7% with the 70B model. It is important
to note that the gap between our evaluation of DeepSeek-

R1-Distill-Llama base models for post-training and their
corresponding R1tok results is attributed to different
tokenizers and chat configurations.

Table 2 shows performance across the first two solution
turns on MATH500. Overall, SPOC achieves consistent
improvement on the second solution turns over the first.
With the smaller Llama3.1-8B model, SPOC shows more
inclination to generate a second solution turn, resulting
in a more significant improvement margin. With larger
70B models that achieve higher final accuracy, on the
other hand, SPOC tends to get the first solution message
correct in the first place, resulting in an already strong turn1
performance and a marginal ∆(t1, t2). Such behaviour is
well aligned with our expected Nash equilibrium admitted
by the Corr reward setting, where policy optimization
encourages the joint policy to generate both correct
solutions and correct verifications in the first place. The
complete per-turn performance analysis and diagnostics of
verifier reliability are presented in Appendix C.

Table 3 shows the performance of applying multiple iter-
ations of PairSFT-RL training procedure. Results indicate
that the second iteration still leads to overall consistent
improvement over all models. Although the overall
improvement is mainly marginal, the second iteration shows
a larger gain in challenging competition benchmarks. For
instance, with Llama3.1-70B, iter2 improves over iter1 by
10% and 6.7% on AMC23 and AIME24, respectively.

4.3. Ablations

We conduct ablation experiments on different reward
configurations, as overviewed in Figure 3. We present
comparisons with the default Corr reward setting in
Table 4, using Llama-3.1-8B-Instruct as the base model.
Compared to Corr, the ablation variants Last and All do
not yield a unique Nash equilibrium; instead, they promote
generating correct solutions regardless of the correctness of
verifications. Results show that both variants still improve
performance over the baseline; however, they both underper-
form Corr on two out of three tasks. Last and All obtains
only one more correct answer than Corr in AIME24 and
AMC23, respectively, while the performance discrepancy
on MATH500 dominates the overall gap. The ablation high-
lights the importance of jointly optimizing the correctness
of both solutions and verifications.

5. Conclusions
In this work, we tackle the mathematical reasoning chal-
lenge for Large Language Models by promoting intrinsic
self-corrections. We propose SPOC, a novel approach
that enables spontaneous, real-time solution proposal and
verification within a single inference pass. SPOC frames

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Boosting LLM Reasoning via Spontaneous Self-Correction

Table 2: Performance across first two solution turns on MATH500. ∆c→i&∆i→c presents (#correct/#all) at the next turn.

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t1 Acc.@t1 Acc.@t2 ∆(t1, t2) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 52.2 80.2 59.0 61.0 2.0 8/29 18/79
Llama-3.1-70B-Instruct 65.8 80.0 77.0 77.4 0.4 3/10 5/8
Llama-3.3-70B-Instruct 75.6 81.8 77.8 77.8 0.0 1/4 1/20

Table 3: Iterative training performance. The second iteration still
leads to overall consistent improvement over all models.

Approach MATH500 AMC23 AIME24

Llama-3.1-8B-Instruct 52.2 22.5 3.3
PairSFT (iter1) 53.8 22.5 10.0
SPOC (iter1) 61.0 32.5 6.7
PairSFT (iter2) 60.8 35.0 6.7
SPOC (iter2) 62.0 32.5 10.0

Llama-3.1-70B-Instruct 65.8 32.5 16.7
PairSFT (iter1) 74.8 47.5 23.3
SPOC (iter1) 77.4 52.5 23.3
PairSFT (iter2) 76.4 67.5 20.0
SPOC (iter2) 77.6 62.5 30.0

Llama-3.3-70B-Instruct 75.6 57.5 26.7
PairSFT (iter1) 75.0 62.5 23.3
SPOC (iter1) 77.8 70.0 23.3
PairSFT (iter2) 79.6 72.5 26.7
SPOC (iter2) 79.8 70.0 30.0

Table 4: Ablation experiments under different reward settings.
Experiments are conducted on the Llama-3.1-8B-Instruct model.

Model MATH500 AMC23 AIME24

Base 52.2 22.5 3.3
SPOC-Corr 61.0 32.5 6.7
SPOC-Last 59.8 27.5 10.0
SPOC-All 58.4 35.0 6.7

the reasoning process as a multi-agent collaboration, where
the model assumes both the roles of a solution proposer
and verifier. SPOC dynamically elicits and terminates
reasoning generations based on verification results, which
flexibly and efficiently scales inference-time compute while
improving accuracy. SPOC leverages synthetic data for
fine-tuning and further enhances performance via online
reinforcement learning, without requiring human or oracle
input. Comprehensive empirical evaluations on challenging
math reasoning benchmarks showcase SPOC’s efficacy,
yielding substantial performance improvement.

Our results highlight the potential of spontaneous self-
correction as an effective strategy for advancing LLM rea-
soning capabilities. To address the prohibitive length of
long CoTs (Marjanović et al., 2025), future work could ex-
plore extending SPOC to partial solutions in long reasoning
chains, using step-level process rewards to guide RL train-

ing and enable dynamic revisions when errors are detected
until reaching the final answer. It would also be interest-
ing to adopt SPOC to broader reasoning domains beyond
mathematics, further enhancing its applicability.

References
Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,

J., Pietquin, O., Üstün, A., and Hooker, S. Back
to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. arXiv preprint
arXiv:2402.14740, 2024.

AI, M. Llama-3.3-70b-instruct. https:
//huggingface.co/meta-llama/Llama-3.
3-70B-Instruct, 2024.

AI-MO. American mathematics contest. https:
//huggingface.co/datasets/AI-MO/
aimo-validation-amc, 2023.

AI-MO. American invitational mathematics examina-
tion. https://huggingface.co/datasets/
AI-MO/aimo-validation-aime, 2024.

Akyürek, A. F., Akyürek, E., Madaan, A., Kalyan, A., Clark,
P., Wijaya, D., and Tandon, N. Rl4f: Generating natural
language feedback with reinforcement learning for re-
pairing model outputs. arXiv preprint arXiv:2305.08844,
2023.

Albrecht, S. V., Christianos, F., and Schäfer, L. Multi-
agent reinforcement learning: Foundations and modern
approaches. MIT Press, 2024.

Chen, Z., Zhao, Z., Zhu, Z., Zhang, R., Li, X., Raj, B.,
and Yao, H. Autoprm: Automating procedural supervi-
sion for multi-step reasoning via controllable question
decomposition. arXiv preprint arXiv:2402.11452, 2024.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W., Pan,
R., Diao, S., Zhang, J., Shum, K., and Zhang, T. Raft: Re-
ward ranked finetuning for generative foundation model
alignment. arXiv preprint arXiv:2304.06767, 2023.

Du, Y., Li, S., Torralba, A., Tenenbaum, J. B., and Mordatch,
I. Improving factuality and reasoning in language models
through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

8

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Boosting LLM Reasoning via Spontaneous Self-Correction

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Havrilla, A., Raparthy, S., Nalmpantis, C., Dwivedi-Yu,
J., Zhuravinskyi, M., Hambro, E., and Raileanu, R.
Glore: When, where, and how to improve llm reason-
ing via global and local refinements. arXiv preprint
arXiv:2402.10963, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu,
A. W., Song, X., and Zhou, D. Large language mod-
els cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Iqbal, S., Bishop, C., Roelofs,
R., et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917,
2024.

LI, J., Beeching, E., Tunstall, L., Lipkin, B., So-
letskyi, R., Huang, S. C., Rasul, K., Yu, L.,
Jiang, A., Shen, Z., Qin, Z., Dong, B., Zhou, L.,
Fleureau, Y., Lample, G., and Polu, S. Numina-
math. [https://huggingface.co/AI-MO/
NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/
blob/main/report/numina_dataset.pdf),
2024.

Liang, T., He, Z., Jiao, W., Wang, X., Wang, Y., Wang,
R., Yang, Y., Shi, S., and Tu, Z. Encouraging divergent
thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Ma, R., Wang, P., Liu, C., Liu, X., Chen, J., Zhang, B.,
Zhou, X., Du, N., and Li, J. S 2 r: Teaching llms to self-
verify and self-correct via reinforcement learning. arXiv
preprint arXiv:2502.12853, 2025.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,
L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,
Yang, Y., et al. Self-refine: Iterative refinement with self-
feedback. Advances in Neural Information Processing
Systems, 36:46534–46594, 2023.

Marjanović, S. V., Patel, A., Adlakha, V., Aghajohari, M.,
BehnamGhader, P., Bhatia, M., Khandelwal, A., Kraft,
A., Krojer, B., Lù, X. H., et al. Deepseek-r1 thoughtol-
ogy: Let’s think about llm reasoning. arXiv preprint
arXiv:2504.07128, 2025.

Meta, A. Introducing meta llama 3: The most capable
openly available llm to date. Meta AI, 2(5):6, 2024.

Mitra, A., Khanpour, H., Rosset, C., and Awadallah, A.
Orca-math: Unlocking the potential of slms in grade
school math. arXiv preprint arXiv:2402.14830, 2024.

Motwani, S. R., Smith, C., Das, R. J., Rafailov, R., Laptev,
I., Torr, P. H., Pizzati, F., Clark, R., and de Witt, C. S.
Malt: Improving reasoning with multi-agent llm training.
arXiv preprint arXiv:2412.01928, 2024.

Osborne, M. J. A course in game theory. MIT Press, 1994.

Paul, D., Ismayilzada, M., Peyrard, M., Borges, B., Bosse-
lut, A., West, R., and Faltings, B. Refiner: Reasoning
feedback on intermediate representations. arXiv preprint
arXiv:2304.01904, 2023.

Qu, Y., Zhang, T., Garg, N., and Kumar, A. Recursive
introspection: Teaching language model agents how to
self-improve. arXiv preprint arXiv:2407.18219, 2024.

Saunders, W., Yeh, C., Wu, J., Bills, S., Ouyang, L., Ward, J.,
and Leike, J. Self-critiquing models for assisting human
evaluators. arXiv preprint arXiv:2206.05802, 2022.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

Shoham, Y. and Leyton-Brown, K. Multiagent systems: Al-
gorithmic, game-theoretic, and logical foundations. Cam-
bridge University Press, 2008.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017.

9

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Boosting LLM Reasoning via Spontaneous Self-Correction

Sutton, R. S. Reinforcement learning: An introduction. A
Bradford Book, 2018.

Team, G., Georgiev, P., Lei, V. I., Burnell, R., Bai, L.,
Gulati, A., Tanzer, G., Vincent, D., Pan, Z., Wang, S.,
et al. Gemini 1.5: Unlocking multimodal understand-
ing across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Welleck, S., Lu, X., West, P., Brahman, F., Shen, T.,
Khashabi, D., and Choi, Y. Generating sequences by
learning to self-correct. arXiv preprint arXiv:2211.00053,
2022.

Wu, Q., Bansal, G., Zhang, J., Wu, Y., Li, B., Zhu, E., Jiang,
L., Zhang, X., Zhang, S., Liu, J., et al. Autogen: Enabling
next-gen llm applications via multi-agent conversation.
arXiv preprint arXiv:2308.08155, 2023.

Xiang, V., Snell, C., Gandhi, K., Albalak, A., Singh, A.,
Blagden, C., Phung, D., Rafailov, R., Lile, N., Mahan,
D., et al. Towards system 2 reasoning in llms: Learning
how to think with meta chain-of-though. arXiv preprint
arXiv:2501.04682, 2025.

Xiong, W., Dong, H., Ye, C., Wang, Z., Zhong, H., Ji, H.,
Jiang, N., and Zhang, T. Iterative preference learning
from human feedback: Bridging theory and practice for
rlhf under kl-constraint. arXiv preprint arXiv:2312.11456,
2023.

Xiong, W., Zhang, H., Ye, C., Chen, L., Jiang, N., and
Zhang, T. Self-rewarding correction for mathematical
reasoning. arXiv preprint arXiv:2502.19613, 2025.

Xu, T., Helenowski, E., Sankararaman, K. A., Jin, D., Peng,
K., Han, E., Nie, S., Zhu, C., Zhang, H., Zhou, W., et al.
The perfect blend: Redefining rlhf with mixture of judges.
arXiv preprint arXiv:2409.20370, 2024.

Ye, T., Xu, Z., Li, Y., and Allen-Zhu, Z. Physics of language
models: Part 2.2, how to learn from mistakes on grade-
school math problems. arXiv preprint arXiv:2408.16293,
2024.

Zhang, L., Hosseini, A., Bansal, H., Kazemi, M., Ku-
mar, A., and Agarwal, R. Generative verifiers: Re-
ward modeling as next-token prediction. arXiv preprint
arXiv:2408.15240, 2024.

Zheng, X., Lou, J., Cao, B., Wen, X., Ji, Y., Lin, H., Lu, Y.,
Han, X., Zhang, D., and Sun, L. Critic-cot: Boosting the
reasoning abilities of large language model via chain-of-
thoughts critic. arXiv preprint arXiv:2408.16326, 2024.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Boosting LLM Reasoning via Spontaneous Self-Correction

A. Algorithms

Algorithm 2 Pair-SFT Data Construction

1: Inputs: Question-answer dataset D = X × Y = {(xi, y
∗
i)}Ni=1, policy model π0, number of questions N , number of

single-turn rollouts per question K, rule-based solution correctness reward function rsl(y, y∗) ∈ {0, 1}, single-turn
sampling set Drjs ← {}, multi-turn correction set Dpair ← {}, verification message validator f vf(v) ∈ {0, 1}

2: for i = 1, . . . , N do
3: // Solution rollout
4: Sample K solutions for each question xi ∈ X : {yki }Kk=1 ∼ π0(·|xi)
5: Label binary reward for each solution yki : rki = rsl(yki , y

∗
i)

6: Append to rejection sampling set: Drjs ← Drjs ∪ {(xi, y
k
i , r

k
i)}

7: // Obtain verifications
8: Choose the best/worst-of-N samples: k+ = argmaxk r

k
i , k

− = argmink r
k
i

9: if rk
+

i = 0 or rk
−

i = 1 then
10: continue // All correct or all incorrect solutions
11: else
12: y∗i ← yk

+

i , c_flag← false, i_flag← false
13: for k = 1, . . . ,K do
14: if rki = 0 then
15: v−i ∼ π0(·|xi, y

k
i , y

∗
i)

16: if f vf(v−i) = 1 then
17: i_flag← 1
18: Dpair ← Dpair ∪ {(xi, y

k
i , v

−
i , y

∗
i)}

19: end if
20: else if rki = 1 and k ̸= k+ then
21: v+i ∼ π0(·|xi, y

k
i , y

∗
i)

22: if f vf(v+i) = 1 then
23: c_flag← 1
24: Dpair ← Dpair ∪ {(xi, y

k
i , v

+
i)}

25: end if
26: end if
27: if c_flag = 1 and i_flag = 1 then
28: break
29: end if
30: end for
31: end if
32: end for
33: return Dpair

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Boosting LLM Reasoning via Spontaneous Self-Correction

Algorithm 3 RAFT Message-wise Policy Optimization

1: Inputs: Question-answer batch Di = Xi × Yi = {(xj , y
∗
j)}Bj=1, batch size B, policy model πθ, number of rollouts per

question K, generated trajectory {τkj }Kk=1, solution correctness rewards {rsl
j,k,l}k∈[K],l∈[Lk], verification correctness

rewards {rvf
j,k,l}k∈[K],l∈[Lk]

2: Choose the best-of-N trajectory for each question xj based on last solution message:
k+ = argmaxk r

sl
j,k,Lk

3: // Apply constraint
4: Filter out questions with no correct final solution or no correct verification, i.e. learning batch is

Dlearn =
{
xj , τ

k+

j , {rsl
j,k+,l}l∈[Lk], {rvf

j,k+,l}l∈[Lk]

∣∣ rsl
j,k+,Lk

= 1 ∨ rvf
j,k+,l = 1

}
j∈[B]

5: Perform one gradient update on θ with Equations (2) and (3) using Dlearn

Algorithm 4 RLOO Message-wise Policy Optimization

1: Inputs: Question-answer batch Di = Xi × Yi = {(xj , y
∗
j)}Bj=1, batch size B, policy model πθ, number of rollouts per

question K, generated trajectory {τkj }Kk=1, solution correctness rewards {rsl
j,k,l}k∈[K],l∈[Lk], verification correctness

rewards {rvf
j,k,l}k∈[K],l∈[Lk]

2: // Message-wise advantage
3: for l = 1, . . . ,maxk Lk; r = rsl, rvf do
4: µj,l =

1
K

∑
k∈[K] rj,k,l

5: σj,l =
(

1
K

∑
k∈[K] |rj,k,l − µj,l|2

) 1
2

6: Aj,k,l =
rj,k,l−µj,l

σj,l

7: end for
8: Learning batch contains all K samples for each question:

Dlearn =
{
xj , τ

k
j , {Asl

j,k,l}l∈[Lk], {Avf
j,k,l}l∈[Lk]

}
j∈[B],k∈[K]

9: Perform one gradient update on θ with Equations (2) and (3) using Dlearn

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Boosting LLM Reasoning via Spontaneous Self-Correction

B. Experimental setup details
Tasks. We evaluate model on test sets as follows:

• MATH500 (Lightman et al., 2023). A dataset of 500 problems selected from the full MATH (Hendrycks et al., 2021)
evaluation set. This test set spans five difficulty levels and seven subjects, which promotes a comprehensive evaluation
of reasoning capabilities.

• AMC23. A dataset of 40 problems from the American Mathematics Contest 12 (AMC12) 2023 (AI-MO, 2023). This
test set consists of challenging competition questions intending to evaluate the model’s capability to solve complex
reasoning problems.

• AIME24. A dataset of 30 problems from the American Invitational Mathematics Examination (AIME) 2024 (AI-MO,
2024). This test set contains difficult questions, with few at AMC level and others drastically more difficult in
comparison, aim to access the model’s abiblity to perform more intricate math reasoning.

Implementation details. We use the AdamW optimizer with β1 = 0.9, β2 = 0.95, weight decay = 0.1, and a constant
learning rate 1.0× 10−6. We conduct all training runs on 32 NVIDIA H100 GPUs. We set the global batch size to 2048,
and train for 256 steps.

C. Extra results
C.1. Verifier reliability

We provide detailed diagnostics for verifier reliability in Table 5. Each confusion matrix corresponds to a base model and
task pair, with the rows and columns indicating the actual and predicted solution correctness, respectively - i.e., diagonal
cells represent the true positive (TP) and true negative (TN) rates while the off-diagonal cells represent the false positive
(FP) and false negative (FN) rates. We observe the following phenomena:

• On easier tasks, the proposer has higher solution accuracy, and the verifier tends to show higher TP&FP and lower
TN&FN.

• Stronger models that reach higher solution accuracy also have higher TP&FP.

• The small model’s high verification accuracy attributes largely to its higher TN.

Table 5: Diagnostics for verifier reliability at the first turn across MATH500, AMC2023, and AIME2024 benchmarks.

Base Model MATH500 AMC2023 AIME2024

3.1-8B 90.2 (266/295) 9.8 (29/295) 81.9 (9/11) 18.2 (2/11) 0 (0/1) 100 (1/1)
34.1 (70/205) 65.9 (135/205) 24.1 (7/29) 75.9 (22/29) 0 (0/29) 100 (29/29)

3.1-70B 100 (385/385) 0 (0/385) 100 (21/21) 0 (0/21) 85.7 (6/7) 14.3 (1/7)
87.0 (100/115) 13.0 (15/115) 84.2 (16/19) 15.8 (3/19) 82.6 (19/23) 17.4 (4/23)

3.3-70B 99.0 (385/389) 1.0 (4/389) 93.1 (27/29) 6.9 (2/29) 100 (7/7) 0 (0/7)
78.4 (87/111) 21.6 (24/111) 72.7 (8/11) 27.3 (3/11) 82.6 (19/23) 17.4 (4/23)

C.2. Per-turn performance analysis

We provide the per-turn performance statistics for AIME24 and AMC23 in Table 6 and Table 7, respectively. The results
are consistent with MATH500 analysis in Table 2. SPOC generally improves or maintains performance on the second
solution turns. The smaller model has lower final accuracy yet larger turn-wise improvements, while larger models tend to
achieve correct solutions sooner at turn1. Moreover, turn-wise corrections occurs less in these two challenging competition
benchmarks, as they contain significantly fewer questions than MATH500. We will include both tables in the appendix of
our revised manuscript.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Boosting LLM Reasoning via Spontaneous Self-Correction

Table 6: Performance across first two solution turns on AIME2024. ∆c→i&∆i→c presents (#correct/#all) at the next turn.

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t1 Acc.@t1 Acc.@t2 ∆(t1, t2) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 3.3 29/30 1/30 2/30 1/30 0/1 1/7
Llama-3.1-70B-Instruct 16.7 10/30 7/30 7/30 0/30 0/1 0/1
Llama-3.3-70B-Instruct 26.7 11/30 7/30 7/30 0/30 0 0/1

Table 7: Performance across first two solution turns on AMC2023. ∆c→i&∆i→c presents (#correct/#all) at the next turn.

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t1 Acc.@t1 Acc.@t2 ∆(t1, t2) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 22.5 31/40 27.5 32.5 5.0 0/2 2/11
Llama-3.1-70B-Instruct 32.5 24/40 21/40 21/40 0 0 0
Llama-3.3-70B-Instruct 57.5 30/40 29/40 28/40 -2.5 1/2 0/2

Table 2 presents our per-turn performance analysis over turn1→ 2, where the majority of self-correction occurs. In practice,
all finetuned models perform multiple rounds of self-reflection. We hereby present the complete results, where the Table 8
shows the turn 2 → 3 performance of all models, and Table 9 shows the all-turn performance of the 8B model (as the
other stopped reflection earlier). Results suggest that the 8B model reaches a maximum of 6 turns while the 70B models
reach a maximum of 3 turns across all 500 evaluation questions. This observation aligns with our discussion in Section 4.2,
where stronger models tend to achieve correct solutions sooner. We also observe that the amount of questions requiring
additional solutions drops over turns, aligning with the looping until verified correctness behavior. Overall, SPOC achieves
improvement over turns.

Table 8: Performance across solution turns 2 → 3 on MATH500. ∆c→i&∆i→c presents (#correct/#all) at the next turn.

Base Model trained w/ SPOC Base.Acc. Verif.Acc.@t2 Acc.@t2 Acc.@t3 ∆(t2, t3) ∆c→i ∆i→c

Llama-3.1-8B-Instruct 52.2 19/22 61.0 61.2 0.2 0/3 1/18
Llama-3.1-70B-Instruct 65.8 0 77.4 77.4 0 - -
Llama-3.3-70B-Instruct 75.6 4/24 77.8 77.8 0 - -

Table 9: Performance across all solution turns on MATH500 for Llama-3.1-8B-Instruct base model.

Turn l Verif.Acc.@tl Acc.@tl Acc.@tl+1 ∆(tl, tl+1) ∆c→i ∆i→c

1 401/500 59.0 61.0 2.0 8/29 18/79
2 19/22 61.0 61.2 0.2 0/3 1/18
3 6/8 61.2 61.0 -0.2 2/2 1/6
4 2/2 61.0 61.0 0.0 - 0/2
5 1/1 61.0 61.0 0.0 - 0/1
6 0/1 61.0 - - - -

D. Preliminaries
CGPO (Xu et al., 2024) is a constrained RL framework that allows for flexible applications of constraints on model
generations. Denoting the contraints that the LLM generations need to satisfy as {C1, . . . , CM}, the prompt-generation
set that satisfies constraint Cm is defined as Σm = {(x, y) ∈ X × Y : (x, y) satisfies Cm}. The feasible region is defined
as the prompt-generation set that satisfies all constraints, i.e., Σ = ∩Mm=1Cm. In the single-task setting, CGPO solves the
constrained optimization problem as follows:

max
θ

Ex∼X ,y∼πθ(x) [r(x, y)]

s.t. Px∼X ,y∼πθ(x) ((x, y) ∈ Σ) > 0,

KLx∼X (πθ(x)∥πref(x)) ≤ KLmax

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Boosting LLM Reasoning via Spontaneous Self-Correction

where r(x, y) is the reward function. CGPO is compatible with a wide spectrum of policy optimizers. The RAFT (Dong
et al., 2023) algorithm prompts the current policy to generate multiple responses for each prompt, and the best-of-N (BoN)
response is used to perform a one-step SFT update on the policy.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Boosting LLM Reasoning via Spontaneous Self-Correction

E. Prompts

Llama 3.1 COT query template

User:
Solve the following math problem efficiently and clearly:

- For simple problems (2 steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (3 steps or more):
Use this step-by-step format:

Step 1: [Concise description]
[Brief explanation and calculations]

Step 2: [Concise description]
[Brief explanation and calculations]

...

Regardless of the approach, always conclude with:

Therefore, the final answer is: $\\boxed{answer}$. I hope it is correct.

Where [answer] is just the final number or expression that solves the problem.

Problem: {{ Question }}

Figure 4: Llama 3.1 COT query template (Dubey et al., 2024).

Simple COT query template

User:
Please reason step by step, and put your final answer within \\boxed{}.
Question: {{ Question }}

Figure 5: Simple COT query template (Guo et al., 2025).

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Boosting LLM Reasoning via Spontaneous Self-Correction

Instance reflection query template

User:
Compare a correct solution and a potential solution to the same math question,
identify the error in the potential solution, if any, and briefly explain the
error in two sentences or less in the <reflection> ... </reflection> tags,
and then conclude with:

Verification: Is the previous solution correct? (Yes/No)

The explanation should be "I think the solution is correct." if the potential
solution is correct.

DO NOT solve the question. DO NOT include phrases implying the comparison
between the two solutions.

Question: {{ Question }}

Correct solution: {{ correct_solution }}

Potential solution: {{ potential_solution }}

Figure 6: Instance reflection query template.

SPOC simple COT query template

User:
Please reason step by step, and put your final answer within \\boxed{}.

After each solution attempt, reflect on its correctness within <reflection>
... </reflection> tags.

Your reflection should first concisely evaluate the previous solution, and
then conclude with:

Verification: Is the previous solution correct? (Yes/No)

If the verification is "No", rewrite the solution in a separate attempt,
either correcting the error or choosing a different approach altogether.

Question: {{ Question }}

Figure 7: SPOC simple COT query template.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Boosting LLM Reasoning via Spontaneous Self-Correction

Self-Refine w/o oracle query template

User:
There might be an error in the solution above because of lack of understanding
of the question.
Please correct the error, if any, and rewrite the solution.
Be sure to apply the given format and conclude with:
"Therefore, the final answer is: $\\boxed{answer}$."

Figure 8: Self-Refine w/o oracle query template (Madaan et al., 2023).

Self-Refine w/ oracle query template

User:
There is an error in the solution above because of lack of understanding of
the question.
Please correct the error and rewrite the solution.
Ensure you use the information from past attempts.
If you arrive at a solution you have already had, the answer is incorrect once
again, so take that into account and retry if necessary.
Be sure to apply the given format and conclude with:
"Therefore, the final answer is: $\\boxed{answer}$."

Figure 9: Self-Refine w/ oracle query template (Madaan et al., 2023).

F. Example response
We present example responses of SPOC finetuned on Llama-3.1-70B-Instruct on MATH500.

SPOC sample response

Problem info:
Problem: Positive integers a, b, and 2009, with $a<b<2009$, form a geometric
sequence with an integer ratio. What is a?
Answer: 41
Subject: Algebra
Level: 4
Unique_id: test/algebra/791.json

User:
Please reason step by step, and put your final answer within \\boxed{}.

After each solution attempt, reflect on its correctness within <reflection> ...
</reflection> tags.

Your reflection should first concisely evaluate the previous solution, and then
conclude with:

Verification: Is the previous solution correct? (Yes/No)

If the verification is "No", rewrite the solution in a separate attempt, either
correcting the error or choosing a different approach altogether.

Question: Positive integers a, b, and 2009, with $a<b<2009$, form a geometric
sequence with an integer ratio. What is a?

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Boosting LLM Reasoning via Spontaneous Self-Correction

Assistant:
Step 1: Understand the problem and recall the formula for a geometric sequence.
A geometric sequence is defined by the formula \(a, ar, ar^2, \ldots, ar^{n-1} \),
where \(a \) is the first term and \(r \) is the common ratio. In this problem, we
have \(a, b, 2009 \) as the terms of the geometric sequence, with \(a < b < 2009 \).
Therefore, we can write \(b = ar \) and \(2009 = ar^2 \).

Step 2: Express \(b \) in terms of \(a \) and \(r \), and \(2009 \) in terms of
\(a \) and \(r \) to find the relationship between \(a \) and \(r \).
Given \(b = ar \) and \(2009 = ar^2 \), we can see that \(r = \frac{b}{a} \) and
\(r^2 = \frac{2009}{a} \). Since \(r \) is an integer, \(r^2 \) must also be an
integer, which means \(\frac{2009}{a} \) must be an integer. Therefore, \(a \) must
be a factor of 2009.

Step 3: Find the factors of 2009 to determine possible values for \(a \).
To find the factors of 2009, we can start by checking for its prime factorization. 2009
is a prime number, which means its only factors are 1 and 2009. However, since \(a < b
< 2009 \), \(a \) cannot be 2009. Thus, the only possible value for \(a \) is 1, but
we need to verify if this satisfies the condition of forming a geometric sequence with
an integer ratio.

Step 4: Verify if \(a = 1 \) satisfies the conditions of the problem.
If \(a = 1 \), then \(b = ar = 1 \cdot r = r \) and \(2009 = ar^2 = 1 \cdot r^2 =
r^2 \). This implies \(r^2 = 2009 \), but since 2009 is not a perfect square (it is a
prime number), \(r \) cannot be an integer. Therefore, \(a = 1 \) does not satisfy
the condition of having an integer ratio \(r \). We need to reconsider our approach
based on the prime factorization of 2009 and the properties of geometric sequences.

Step 5: Reconsider the prime factorization of 2009 and its implications for \(a \)
and \(r \).
Given that 2009 is a prime number, for \(a, b, 2009 \) to form a geometric sequence
with \(a < b < 2009 \) and an integer ratio \(r \), we must have \(b = ar \) and
\(2009 = ar^2 \). Since \(r \) is an integer and \(2009 = ar^2 \), \(r^2 \) must
divide 2009. However, since 2009 is prime, the only integer divisors of 2009 are 1 and
2009 itself. This means \(r^2 = 2009 \) is not possible for any integer \(r \) since
2009 is not a perfect square. The only other option is \(r^2 = 1 \), which gives
\(r = 1 \) or \(r = -1 \), but \(r = 1 \) would not give a geometric sequence with
distinct terms, and \(r = -1 \) would not satisfy \(a < b < 2009 \) since multiplying
by -1 would change the order of the terms. We need to think about the factors of 2009
in a different way, considering that \(a \) and \(r \) must both be integers and
\(a < b < 2009 \).

Step 6: Consider the factorization of 2009 in the context of geometric sequences.
Since 2009 is a prime number, for \(a, b, 2009 \) to be in a geometric sequence, we
have to think about how \(a \) and \(r \) can be chosen such that \(b = ar \) and
\(2009 = ar^2 \) are both integers and \(a < b < 2009 \). Given \(2009 = ar^2 \),
and knowing 2009 is prime, we realize that for \(r^2 \) to divide 2009, \(r^2 \)
must be 1 (since 2009 is prime and has no other divisors besides 1 and itself).
This implies \(r = 1 \) or \(r = -1 \), but as discussed, \(r = 1 \) does not yield
a geometric sequence with distinct terms, and \(r = -1 \) does not satisfy the
condition \(a < b < 2009 \) because multiplying by -1 would reverse the order. We must
reconsider the relationship between \(a \), \(b \), and 2009 in terms of their
prime factorization and the properties of geometric sequences.

Step 7: Apply the correct relationship between \(a \), \(b \), and 2009
considering the geometric sequence and integer ratio.
Given \(b = ar \) and \(2009 = ar^2 \), dividing the second equation by the first
gives \(\frac{2009}{b} = r \). Since \(r \) is an integer, \(b \) must be a factor
of 2009.
The factors of 2009 are 1 and 2009 (since 2009 is prime), but \(b \) cannot be 2009
because \(b < 2009 \). Thus, \(b = 1 \) is not possible since \(a < b \), implying
\(a \) would have to be less than 1, which is not possible for positive integers. We
need to find a factor of 2009 that fits the geometric sequence criteria. However, our
analysis has been misguided because we overlooked the simplest factorization that allows
for a geometric sequence with integer ratio. Let’s correct this by directly applying the
condition that \(a, b, 2009 \) form a geometric sequence with \(r \) being an integer.

Step 8: Correctly apply the geometric sequence formula and the fact that
2009 is a prime number.
Since \(2009 = ar^2 \) and \(r \) is an integer, we look for integer factors of 2009.
However, since 2009 is prime, its only factors are 1 and 2009. For \(a, b, 2009 \) to be
in a geometric sequence, we must have \(b = ar \) and \(2009 = ar^2 \). Given \(r \)
is an integer and \(a < b < 2009 \), we examine the possibility of \(r = 2009 \) and
\(a = 1 \), but this does not fit because \(b \) would then be 2009, violating
\(b < 2009 \). The correct approach involves recognizing that since 2009 is prime, the
only way \(a, b, 2009 \) can form a geometric sequence with integer \(r \) is if
\(r \) itself is a factor of 2009, but since 2009 is prime, \(r \) must effectively be
1 or 2009 for the sequence to hold with integer values. However, \(r = 1 \) does not

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Boosting LLM Reasoning via Spontaneous Self-Correction

yield a geometric sequence with distinct terms, and \(r = 2009 \) does not fit the
\(a < b < 2009 \) condition. We need to think about the factors of 2009 in a way that
allows for a geometric sequence with \(a < b < 2009 \) and \(r \) being an integer.

Step 9: Re-evaluate the conditions for \(a \), \(b \), and 2009 to form a geometric
sequence.
Given \(b = ar \) and \(2009 = ar^2 \), and knowing 2009 is prime, for \(r \) to be an
integer, \(a \) must be such that \(ar^2 = 2009 \) holds true with \(r \) being an
integer. Since 2009 is prime, \(r^2 \) must divide 2009, implying \(r^2 = 1 \) or
\(r^2 = 2009 \) since these are the only divisors of 2009. \(r^2 = 2009 \) is not
possible for integer \(r \) since 2009 is not a perfect square. Thus, \(r^2 = 1 \),
giving \(r = 1 \) or \(r = -1 \). However, \(r = 1 \) does not yield a geometric
sequence with distinct terms, and \(r = -1 \) would imply \(b = -a \), which does not
fit \(a < b < 2009 \) for positive integers. We must consider the nature of geometric
sequences and prime numbers to find \(a \).

Step 10: Apply the properties of geometric sequences and prime numbers correctly.
For \(a, b, 2009 \) to be a geometric sequence with integer \(r \), and given 2009 is
prime, we look for \(a \) and \(r \) such that \(2009 = ar^2 \) and \(b = ar \).
Since \(r \) must be an integer and 2009 is prime, \(r^2 \) must be a factor of 2009,
which means \(r^2 = 1 \) (since 2009 is prime and has no other square factors). This
implies \(r = 1 \) or \(r = -1 \), but \(r = 1 \) does not give a geometric sequence
with distinct terms, and \(r = -1 \) does not fit the condition \(a < b < 2009 \) for
positive \(a \) and \(b \). We need to think about the prime factorization of 2009 and
how it applies to geometric sequences. Given 2009 is prime, for \(a, b, 2009 \) to form
a geometric sequence, \(a \) must be 1, and \(r \) must be such that \(r^2 = 2009 \),
but since 2009 is not a perfect square, this approach is flawed. We must reconsider the
basic properties of geometric sequences and the given conditions.

Step 11: Correctly identify \(a \) based on the geometric sequence and prime number
conditions.
Given \(a, b, 2009 \) form a geometric sequence with integer \(r \), and 2009 is prime,
we have \(b = ar \) and \(2009 = ar^2 \). Since \(r \) is an integer and 2009 is
prime, \(r^2 \) must divide 2009, implying \(r^2 = 1 \) or \(r^2 = 2009 \). Since
\(r^2 = 2009 \) is not possible for integer \(r \) (2009 is not a perfect square), we
consider \(r^2 = 1 \), giving \(r = 1 \) or \(r = -1 \). However, \(r = 1 \) does not
yield a geometric sequence with distinct terms, and \(r = -1 \) does not fit
\(a < b < 2009 \) for positive integers. The error lies in assuming \(r^2 \) must
directly divide 2009; instead, we should consider how \(a \) and \(r \) relate through
the geometric sequence formula. Since 2009 is prime, and \(a, b, 2009 \) are in a
geometric sequence, we look for \(a \) and \(r \) such that \(2009 = ar^2 \) and
\(b = ar \), with \(r \) being an integer. Given 2009’s primality, \(a \) must be 1
for \(r^2 \) to be an integer factor of 2009, but since 2009 is not a perfect square,
\(r \) cannot be an integer if \(a = 1 \). We need to reconsider the relationship
between \(a \), \(b \), and 2009 in the context of geometric sequences and prime
numbers.

Step 12: Finalize the correct approach for finding \(a \).
Given \(a, b, 2009 \) form a geometric sequence with \(r \) as an integer, and 2009 is
prime, we must find \(a \) such that \(b = ar \) and \(2009 = ar^2 \). Since 2009 is
prime, for \(r^2 \) to divide 2009, \(r^2 \) must be 1 (since 2009 is not a perfect
square). This implies \(r = 1 \) or \(r = -1 \), but \(r = 1 \) does not yield a
geometric sequence with distinct terms, and \(r = -1 \) does not fit \(a < b < 2009 \)
for positive \(a \) and \(b \). The key insight is recognizing that since 2009 is
prime, \(a \) must be such that \(ar^2 = 2009 \) holds with \(r \) being an integer.
Given \(r^2 = 1 \) is the only integer square factor of 2009 (since 2009 is not a
perfect square), we must consider how \(a \) and \(r \) relate through the geometric
sequence. If \(r = -1 \), then \(b = -a \), which does not fit \(a < b < 2009 \) for
positive integers. Thus, we need to think about the factors of 2009 in a way that allows
for a geometric sequence. Since 2009 is prime, the only factors are 1 and 2009, implying
\(a \) could be 1 if \(r^2 = 2009 \), but \(r \) cannot be an integer in this case.
The correct approach involves recognizing that \(a \) must be a factor of 2009 such that
\(r \) can be an integer, but since 2009 is prime, \(a \) must effectively be 1 for
\(r \) to be an integer, given \(r^2 = 1 \) as the only viable integer square factor
of 2009.

Therefore, the final answer is: \boxed{1}<|eom_id|>

<reflection>
The error lies in the incorrect assumption that \(r^2 \) must directly divide 2009,
leading to a flawed analysis of possible values for \(r \) and \(a \). This mistake
results in an incorrect conclusion that \(a \) must be 1, when in fact, \(a \) should
be derived from considering the factors of 2009 and the properties of geometric sequences
with integer ratios.

Verification: Is the previous solution correct? No
</reflection><|eom_id|>

Step 1: Understand the problem and recall the formula for a geometric sequence.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Boosting LLM Reasoning via Spontaneous Self-Correction

A geometric sequence is defined by the formula \(a_n = a_1 \cdot r^{(n-1)}\), where
\(a_n\) is the nth term of the sequence, \(a_1\) is the first term, \(r\) is the common
ratio, and \(n\) is the term number. For the given problem, we have \(a_1 = a\),
\(a_2 = b\), and \(a_3 = 2009\). Therefore, we can write the equations \(b = ar\) and
\(2009 = ar^2\).

Step 2: Express \(b\) in terms of \(a\) and \(r\), and \(2009\) in terms of \(a\) and
\(r\).
From the geometric sequence formula, we have \(b = ar\) and \(2009 = ar^2\).

Step 3: Solve for \(r\) using the information given.
Dividing the equation \(2009 = ar^2\) by \(b = ar\), we get \(\frac{2009}{b} = r\). Since
\(b = ar\), we can substitute \(b\) in the equation to get \(\frac{2009}{ar} = r\), which
simplifies to \(2009 = ar^2\). We already know this, so let’s directly use the
relationship between \(a\), \(b\), and \(2009\) to find \(r\). Given \(b = ar\) and
\(2009 = ar^2\), dividing these equations gives \(r = \frac{2009}{b}\).

Step 4: Determine the possible values of \(r\) and \(a\).
Since \(a\), \(b\), and \(2009\) form a geometric sequence with \(a < b < 2009\), and
\(r\) is an integer, we need to find integer factors of \(2009\) that could serve as
\(r\). The prime factorization of \(2009\) is \(7^2 \cdot 41\). Thus, possible values
for \(r\) could be \(1\), \(7\), \(41\), or \(49\), considering the factors of \(2009\).
However, since \(a < b < 2009\), \(r\) must be greater than \(1\).

Step 5: Test possible values of \(r\) to find \(a\).
Let’s test \(r = 7\): If \(r = 7\), then \(2009 = a \cdot 7^2\), which gives
\(a = \frac{2009}{49}\). Calculating this, \(a = 41\), which is an integer and satisfies
\(a < b < 2009\).
Let’s test \(r = 41\): If \(r = 41\), then \(2009 = a \cdot 41^2\), which does not yield
an integer \(a\) since \(41^2 = 1681\) and \(2009 / 1681\) is not an integer.
Let’s test \(r = 49\): If \(r = 49\), then \(2009 = a \cdot 49^2\) does not apply since
\(49^2 = 2401\), which is larger than \(2009\), making it impossible for \(a\) to be an
integer in this context.

Step 6: Verify the solution.
Given \(r = 7\) and \(a = 41\), we find \(b = ar = 41 \cdot 7 = 287\). Thus, the sequence
is \(41, 287, 2009\), which satisfies the given conditions.

The final answer is: $\boxed{41}$<|eom_id|>

<reflection>
I think the solution is correct.\n\nVerification: Is the previous solution correct? Yes
</reflection><|eot_id|>

21

	Introduction
	Related work
	Method
	Multi-turn formalism
	Enabling multi-turn generation
	Online reinforcement learning

	Experiments
	Experimental setup
	Results
	Ablations

	Conclusions
	Algorithms
	Experimental setup details
	Extra results
	Verifier reliability
	Per-turn performance analysis

	Preliminaries
	Prompts
	Example response

