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Abstract

Sparse Mixtures of Experts (SMoE) scales model capacity without significant
increases in computational costs. However, it exhibits the low expert activation
issue, i.e., only a small subset of experts are activated for optimization, leading to
suboptimal performance and limiting its effectiveness in learning a larger number of
experts in complex tasks. In this paper, we propose Multi-Head Mixture-of-Experts
(MH-MoE). MH-MoE split each input token into multiple sub-tokens, then these
sub-tokens are assigned to and processed by a diverse set of experts in parallel,
and seamlessly reintegrated into the original token form. The above operations
enables MH-MoE to significantly enhance expert activation while collectively
attend to information from various representation spaces within different experts
to deepen context understanding. Besides, it’s worth noting that our MH-MoE is
straightforward to implement and decouples from other SMoE frameworks, making
it easy to integrate with these frameworks for enhanced performance. Extensive
experimental results across different parameter scales (300M to 7B) and three
pre-training tasks—English-focused language modeling, multi-lingual language
modeling and masked multi-modality modeling—along with multiple downstream
validation tasks, demonstrate the effectiveness of MH-MoE.

1 Introduction

Large capacity models, such as Large Language Models (LLMs) [39, 28, 6, 25] and Large Multi-
modal Models (LMMs) [37, 27], have demonstrated their efficacy across various domains and tasks.
To further enhance performance, a reliable approach involves scaling up these models by augmenting
the parameter count [13]. But for most of these densely-activated large-capacity models (referred to
as Dense models), which utilize all their parameters to process all inputs, the extremely large size of
these models significantly reduces inference speed, further limiting their practicality.

A promising alternative, facilitating model scalability while mitigating the burdensome computational
costs, resides in Sparse Mixtures of Experts (SMoE) [31, 12, 5, 7]. In contrast to Dense model, SMoE
contains parallel feed-forward neural networks (referred to as experts) within each building block,
and strategically activates distinct experts for specific input tokens via a router, thereby yielding
noteworthy efficiency enhancements. For instance, GShard [21] scales a Dense model from 2B
to 600B parameters with lower training costs than a 100B Dense model. And recently, Mixtral
8×7B [16], a SMoE model containing 8 experts is shown to outperform or matches LLaMA-2
70B [34] and GPT-3.5.

Despite its success, SMoE exhibits the low experts activation issue, which means that only a small
subset of experts are activated during optimization and inference, e.g., 8.33% activation ratio1 shown
in Figure 1 (a), while the majority of them are not used at all (see the dark area). As a result, SMoE

1Experts activation ratio shown in Figre 1 (a) is the ratio of each expert’s selection frequency in each MoE
layer to the total number of tokens, where those exceeding a threshold (<1) are considered activated.
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fails to utilize the full expressive power of these experts, especially when the number of experts is
large, which significantly limits effectiveness and scalability of SMoE.

SMoE MH-MoE
Activation: 8.33% Activation: 90.71%

(a)

RGB Input Sub-tokens Assign
(b)

Figure 1: (a) Expert activation distribution
on XNLI [10] corpus, encompassing 6 par-
allel expert layers with 32 experts per layer.
(b) MH-MoE showcases finer-grained under-
standing by distributing sub-tokens split from
semantically-rich patches to more distinct ex-
perts to capture semantic information. Brighter
regions indicate that sub-tokens split from this
patch are distributed to a greater number of dif-
ferent experts.

Our aim in this paper is to achieve denser expert
activation (i.e., better utilization of “dead” ex-
perts) without increase in computational cost. To
achieve this, we propose Multi-Head Mixture-of-
Experts (MH-MoE). The workflow of MH-MoE is
illustrated in Figure 2. Inspired by the multi-head
mechanism utilized in Multi-Head Self-Attention
(MHSA) block, MH-MoE splits each input token
into multiple sub-tokens and distribute them to
different experts. After expert processing, sub-
tokens are seamlessly reintegrated into the origi-
nal token form, thereby achieving denser expert
activation, e.g., 90.71% activation in Figure 1 (a),
while also circumventing any additional compu-
tational burden in subsequent non-parallel layers,
e.g., MHSA block. Specifically, as shown in Fig-
ure 2, when provided with a single input token,
MH-MoE activates four experts by splitting it into
four sub-tokens, whereas SMoE only activates a
single expert.

Furthermore, we observe an interesting phe-
nomenon: for tokens with richer semantic infor-
mation, the sub-tokens split from these tokens are
more likely to be allocated to distinct experts. For
example, refer to the bright area in Figure 1 (b),
where sub-tokens split from these patches are al-
located to a greater number of different experts,
facilitating the capture of semantically-rich infor-
mation (e.g., the eagle in the figure). We therefore
speculate that the allocation of sub-tokens to dis-
tinct experts enables MH-MoE to simultaneously focus on information from various representation
spaces within different experts, ensuring a more granular understanding for subtle differences in
both vision and language patterns, finally achieving better finer-grained understanding ability. See in
Figure 2, sub-tokens assigned to Experts 3 and 2 capture a detailed understanding of each character’s
actions within an image patch, while those assigned to Experts 1 and 4 explicitly model the semantics
of the false cognate ‘camera’.

MH-MoE maintains following strengths: (1) Higher experts activation & better scalability. MH-
MoE can alleviate lower expert activation problem and significantly enhance the usage of larger
experts by enabling optimization of almost all of experts, allowing for more efficient scaling of model
capacity. (2) Finer-grained understanding ability. By adaptively assigning sub-tokens to different
experts based on the semantic richness of the token, MH-MoE enabling to jointly attend to information
from different representation spaces at different experts, and finally achieving better finer-grained
understanding ability. (3) Seamless integration. The implementation of MH-MoE is remarkably
straightforward and decoupled from other SMoE optimization methods (e.g., GShard [21]), making it
very easy to integrate them together to achieve better performance.

We evaluate the proposed MH-MoE on three model pre-training and fine-tuning setting: English-
focused language modeling, multi-lingual language modeling and masked multi-modality modeling,
across different parameter scales (300M to 7B). Extensive experimental among these three tasks
demonstrate the effectiveness of MH-MoE.
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Figure 2: Workflow of MH-MoE. For vision data, different heads routed to different experts try to
capture different aspects of details within patches and relations between patches. For language data,
different heads attend to capture the varying contexts of false cognates across different languages
(e.g., Italian and English) or polysemous words within a single language.

2 Background

Sparse Mixture-of-Experts (SMoE) [31, 12, 5, 7] enhances model capacity while maintaining a
constant computational demand, thus achieving better performance than densely-activated models on
various tasks [22, 19, 39, 28].

Different from densely-activated models, each MoE layer consists of N independent Feed-Forward
Networks (FFN) {fFFN

i }Ni=0 as the experts, along with a gating function g (·) to model a probability
distribution indicating the weights over these experts’ outputs. For the hidden representation h ∈ Rd

of each input token, the gating value of routing h to expert fFFN
i is denoted as:

g
(
fFFN
i

)
= exp (h · ei) /

N∑
j=0

exp (h · ej) , (1)

where ei denotes the trainable embedding of the i-th expert and
∑N

i=0 g
(
fFFN
i

)
= 1. Then, the

corresponding k experts, according to the top-k gated values, are activated and the output O of the
MoE layer is O = h+

∑
i∈Φ g

(
fFFN
i

)
· fFFN

i (h), where Φ denote activated experts set and |Φ| = k.

As described above, the most commonly used routing mechanism involves selecting the top-k experts
from N experts, where k ≪ N [32], e.g., k = 2 and N = 2048 in GShard [21]. Such a routing
mechanism allows the combination of data parallelism and expert parallelism. Some works [38, 21]
suggest that larger values of k often contribute to better model performance. However, with the
increase in the value of k, training models with conventional top-k routing implementation becomes
much less efficient [21]. In this paper, we introduce MH-MoE, a simple but efficient manner to make
denser expert activation without an increase in computational complexity.

3 Method

3.1 Multi-Head Mixture-of-Experts

Concretely, we denote a sequence of inputs tokens by X ∈ Rl×d, where l is the number of tokens
and d represents the length of token dimension. In MH-MoE, each parallel layer contains a set of N
experts, each presented as {fFFN

i : R d
h → R d

h }Ni=0, where h denotes the number of heads (i.e., the
number of sub-tokens a single token is split into), which is decoupled from the head in the multi-head
self-attention layer. For clarity, we describe the operation of a single MH-MoE layer here only.

The full architecture of MH-MoE can be seen in Figure 3. First, X is projected by a multi-head layer
with parameter matrices Whead ∈ Rd×d,

X̂ = X ·W⊤
head (2)

where X̂ ∈ Rl×d. After that, every token in X̂ is split into h sub-tokens along the token dimensions,
and these sub-tokens are arranged in parallel according to the original token sequence, forming a new
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Figure 3: Illustration of a typical SMoE layer and the proposed MH-MoE layer. (a) A SMoE
layer consists of a router and expert networks, where the experts are sparsely activated according to
dot-product token-expert routing scores. (b) MH-MoE introduces additional two MLP layers, namely
the multi-head layer and merge layer to split and merge tokens, respectively.

feature space Ẍ ∈ R(l×h)× d
h as2:

Ẍ = 𭟋s(X̂) =

 h︷ ︸︸ ︷
x0
0, . . . ,x

0
h−1, . . . ,

h︷ ︸︸ ︷
xi
0, . . . ,x

i
h−1, . . . ,

h︷ ︸︸ ︷
xl
0, . . . ,x

l
h−1︸ ︷︷ ︸

l×h

 , (3)

where function 𭟋s denotes the token splitting operation: Rl×d → R(l×h)× d
h , and each sub-token is

presented as xi
j ∈ R d

h , meaning it is the the jth sub-token split from the ith token. Then all these
sub-tokens are fed into the gating function g(·). The gating value of routing a certain sub-token xi

j

into the pth expert is computed as

g
(
fFFN
p

)
= exp

(
xi
j · ep

)
/

N∑
ξ=0

exp
(
xi
j · eξ

)
, (4)

where ep ∈ R d
h is the learnable embedding of the pth expert. In this paper, we mainly focus on top-k

routing, i.e., only the experts with the largest top-k routing score is activated. Φ = Topk

(
g
(
fFFN

))
denote the set of activated experts and |Φ| = k. Then xi

j is processed by these activated experts as
following,

oi
j = xi

j +
∑
p∈Φ

g
(
fFFN
p

)
· fFFN

p

(
xi
j

)
. (5)

After that, all obtained oi
j are rearranged in the original order of sub-tokens and concatenated together

as2:

O =

 h︷ ︸︸ ︷
o0
0, . . .o

0
h−1, . . . ,

h︷ ︸︸ ︷
oi
0, . . . ,o

i
h−1, . . . ,

h︷ ︸︸ ︷
ol
0, . . . ,o

l
h−1︸ ︷︷ ︸

l×h

 , (6)

where O ∈ R(l×h)× d
h . After that, O is transformed back the into original token form by a token

merging operation 𭟋m: R(l×h)× d
h → Rl×d and then projected by a merge layer with parameter ma-

trices Wmerge ∈ Rd×d to effective integration of multiple features oi
j capturing detailed information

from different expert representation spaces:

X̆ = 𭟋m (O)
⊤ ·W⊤

merge. (7)

Then we get the final output X̆ of the single MH-MoE layer.

By implementing the aforementioned operations, we effectively increase the average volume of data
routed to a specific expert by a factor of h (as demonstrated in Eq. 3), thus achieving denser expert

2Sub-tokens within regions marked with the same color are split from the same token.
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activation. Besides, the shapes of the input and output in the MH-MoE layer remain unchanged,
thus no additional computational cost is introduced in the subsequent block. Specifically, we
introduce a hyperparameter β to scale the inner dimensions of each expert, aiming to balance the
parameters introduced by the multi-head layer and merge layer, aligning the model’s parameters
and computational complexity with the original SMoE. Furthermore, the allocation of sub-tokens to
distinct experts within MH-MoE enables us to collectively capture semantic information from diverse
feature spaces across these experts, thereby enhancing the model’s ability to achieve a finer-grained
understanding.

As the Pytorch-like style pseudocode of MH-MoE shown in Appendix D, MH-MoE is characterized by
its overall simplicity of implementation and decoupled from other SMoE optimization strategies [21,
5], making it easy to integrate with other optimized SMoE frameworks to enhance performance.

3.2 Training Objectives

Load balancing loss. To mitigate the expert load imbalance issue, given the sub-token set Ẍ
(depicted in Eq. 3) and the frequency tp of how many sub-tokens are routed to the pth expert, we
follow existing works [21, 13] to compute the load balancing loss Lbalance via:

Lbalance =
N

|Ẍ|

N∑
p=1

∑
xi
j∈Ẍ

tp · g
(
fFFN
p

)
, (8)

where N denotes the number of experts, |Ẍ| is the number of sub-tokens contained in Ẍ. g
(
fFFN
p

)
denotes the gating value of routing a certain sub-token xi

j into the pth expert (see in Eq. 4).

Task specific loss. The term Ltask is dependent on the particular task that MH-MoE is designed to
learn. For instance, during pre-training in the English-focused Language Modeling task, we utilize
the language modeling loss [29], whereas the model predicts the next word in a sequence.

So, the overall training objective of MH-MoE is to minimize:

L = Ltask + αLbalance, (9)

where α is a coefficient for load balancing.

4 Experiments

4.1 Experimental Setup

Compared Baselines. We include two baseline models for comparison: (1) Dense, which represents
a Transformer decoder without the incorporation of sparsely-activated parallel modules (i.e., SMoE
layer). (2) X-MoE, which is our implementation based on the SMoE proposed by [5]. We build
MH-MoE upon X-MoE and use identical settings. Note that the all models are pre-trained using the
same training data and loss (Eq. 9) as MH-MoE, and we ensure that the parameter count of MH-MoE
remains consistent with or lower than that of X-MoE, ensuring a fair and equitable comparison. A
detailed comparison about parameter and computational complexity can be found in Table 11.

Pre-training Data. We detail the pre-training data of MH-MoE in three areas: (1) English-focused
experiments use the RedPajama dataset [8], which is an open-source pre-training dataset. (2) multi-
lingual tasks follow XLM [20] and use the multilingual Wikipedia as training data. (3) multimodal
tasks use a masked multi-modality modeling task with a large dataset of images, documents, and
image-text pairs. Further details are available in the Appendix A.

Model Architecture and Hyperparameters. For all experiments, we use the X-MoE [5] as our
backbone architecture to build our MH-MoE, which has shown better performance than prior SMoE
models such as Switch Transformers [13] on cross-lingual understanding benchmarks. For English-
focused Language Modeling and Multi-lingual Language Modeling, we construct Dense, X-MoE and
MH-MoE using the Transformer [36] decoder (L = 12, H = 768, A = 12) with the GPT-43 vocabulary

3https://github.com/openai/tiktoken
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(a) English-focused language modeling (b) Multi-lingual language modeling (c) Masked multi-modal modeling

Figure 4: Perplexity on validation dataset during the training phase reported for Dense, X-MoE
and MH-MoE across three pre-training tasks.
Table 2: Accuracy / accuracy-normalization scores for language understanding tasks using the LLM
Evaluation Harness [14]. N denotes the number of experts.

Model ARC-Challenge ARC-Easy RTE BookQA Winogrande PiQA BoolQ HellaSwag TruthfulQA (mc1/mc2) Avg

Dense 18.1/23.3 44.9/39.7 51.5 17.1/29.0 48.2 66.6 55.0 29.7/34.1 24.1/39.3 37.2

X-MoE (N = 8) 19.0/24.7 48.3/42.0 52.7 17.4/29.8 50.3 67.9 58.4 31.4/35.7 24.3/40.2 38.7
MH-MoE (N = 8) 19.6/25.2 50.2/42.2 53.0 18.2/30.3 51.1 68.7 59.6 33.2/40.3 24.7/40.9 39.8
X-MoE (N = 32) 19.4/24.8 50.4/42.5 52.7 17.8/30.0 51.3 68.8 52.8 33.4/40.1 24.3/39.1 39.1
MH-MoE (N = 32) 21.4/26.8 50.6/44.8 53.4 18.8/31.6 53.8 69.3 56.6 35.0/42.1 24.8/39.5 40.6

as the backbone architecture. The pre-training procedure takes 14 days on 2 NVIDIA DGX-2 Stations.
For Masked Multi-modal Modeling, we build Dense, X-MoE and MH-MoE following the same
Transformer encoder architecture as BEiT v3 [37]. The pre-training procedure takes 4 days on 2
NVIDIA DGX-2 Stations. For all three pre-training tasks, we set the head number h = 4. More
details about architecture and training hyperparameters can be found in Appendix B and C.

4.2 Perplexity Evaluation
Table 1: Results of upstream perplexity
evaluation. We report the validation per-
plexity cross two setting: 8 experts and
32 experts.

Model Perplexity ↓
8 Experts 32 Experts

English-focused language modeling
Dense (without Experts) 16.23 16.23
X-MoE 14.82 11.96
MH-MoE (Ours) 12.72 10.28

Multi-lingual language modeling
Dense (without Experts) 8.56 8.56
X-MoE 7.19 6.02
MH-MoE (Ours) 6.26 5.09

Masked multi-modal modeling
Dense (without Experts) 17.95 17.95
X-MoE 16.34 12.68
MH-MoE (Ours) 14.73 10.87

We examined the validation perplexity curves for all pre-
trained models and pre-training tasks under two expert
settings (8 experts and 32 experts). The perplexity trends
are depicted in Figure 4, with the final perplexity values
listed in Table 1. We can observe that as training pro-
gresses: 1) the perplexity of our MH-MoE remained lower
in comparison to the compared baselines, indicating more
effective learning; 2) MH-MoE achieved the lowest per-
plexity across three distinct experimental setups; 3) an
increase in the number of experts led to a corresponding
decrease in the perplexity of MH-MoE, suggesting that the
model benefits from enhanced representation learning ca-
pabilities as more experts are incorporated. These results
collectively demonstrate the superiority of MH-MoE in
terms of learning efficiency and language representation
across multiple pre-training paradigms.

4.3 Downstream Evaluation

English-focused Language Modeling. We evaluate our models on a total of 9 different zero-
shot benchmarks to assess their abilities across various natural language tasks like common sense
reasoning, general language understanding and knowledge understanding using the LLM Evaluation
Harness [14]. As shown in Table 2, comparing X-MoE with the Dense model, X-MoE show notable
improvement, indicating that SMoE models (e.g., X-MoE) benefit from the large model capacity.
Overall, for all benchmarks, our MH-MoE obtains the best performance, achieving an average
performance gain of 1.1 for 8 experts setting and 1.5 for 32 experts setting compared to X-MoE,
demonstrating the effectiveness of our proposed MH-MoE on modeling English-focused language.

Multi-lingual Language Modeling. We evaluate our multi-lingual language models on the cross-
lingual natural language inference (XNLI) corpus [10], which is the extension of the multi-genre NLI
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Table 3: Accuracy / accuracy-normalization scores on multilingual understanding tasks using the
LLM Evaluation Harness [14]. N denotes the number of experts.

Model bg de el en es fr hi ru sw th tr ur vi zh Avg

Dense 33.1 33.3 33.0 35.1 32.8 34.4 33.6 34.2 33.3 33.1 33.3 33.9 33.5 32.9 33.5

X-MoE (N = 8) 33.9 33.4 33.4 37.3 33.3 35.9 34.5 35.0 33.5 33.6 33.4 34.2 33.3 33.2 34.1
MH-MoE (N = 8) 34.4 33.2 33.9 40.1 34.0 36.4 34.6 35.2 33.8 34.4 33.3 34.7 34.6 33.5 34.7
X-MoE (N = 32) 34.5 34.5 33.4 39.6 33.1 35.3 34.1 35.4 33.6 34.7 33.7 33.6 34.5 33.3 34.5
MH-MoE (N = 32) 35.8 35.6 34.1 40.7 33.9 36.7 34.4 36.3 34.3 36.0 34.1 34.3 35.2 33.6 35.3

Table 4: Results of visual question answering, visual reason-
ing, and image captioning tasks.

Model VQAv2 NLVR2 COCO Caption

test-dev test-std dev test-P B@4 M C S
Dense 65.9 66.0 73.8 74.2 35.9 29.3 120.5 19.6
X-MoE 68.4 69.7 75.5 76.1 38.1 30.2 122.9 21.3
MH-MoE 70.1 71.4 77.0 77.8 39.7 33.1 124.1 23.0 Figure 5: Comparison results for dif-

ferent head number h.

(MultiNLI) corpus to 14 languages. We follow the LLM Evaluation Harness pipeline and use the zero-
shot setting to evaluate the multi-lingual ability. Table 3 presents the zero-shot evaluation results on
XNLI task. Similarly, X-MoE benefit from the large model capacity and show notable improvement
compared with Dense model. Overall, MH-MoE obtains the best performance, surpassing X-MoE by
an average performance gain of 0.6 for 8 experts setting and 0.8 for 32 experts setting. Comparing
MH-MoE with the X-MoE, it shows that MH-MoE models provide consistent gains on downstream
tasks, demonstrating the effectiveness of our proposed MH-MoE on modeling cross-lingual natural
language.

Masked Multi-modal Modeling. We evaluate on the widely used vision-language understanding
and generation benchmarks, including visual question answering [15], visual reasoning [33] and
image captioning [23]. We report vqa-score on VQAv2, accuracy for NLVR2. For COCO image
captioning, we report BLEU@4 (B@4), METEOR (M), CIDEr (C), and SPICE (S). Table 4 presents
the evaluation results. For VQA task, MH-MoE outperforms both Dense and X-MoE by a large
margin, e.g., 4.24 and 1.69 points gain on test-dev split, respectively. For visual reasoning task,
MH-MoE beats all these two baselines on both dev (1.5 points gain than X-MoE) and test-P split (1.7
points gain than X-MoE). For image captioning task, MH-MoE surpasses X-MoE by 4.2%, 10.2%,
9.4% in terms of B@4, M and S, respectively. Above results show that X-MoE exhibits enhanced
visual information comprehension, which also validates the effectiveness of our proposed MH-MoE
in capturing diverse semantic information within text-image pair data.

4.4 Ablation Studies

This section presents experimental analysis to demonstrate the functionality of MH-MoE. In all
comparative experiments, we ensure parameter equality across models by adjusting the internal
dimensions of the experts.

Number of Heads h. We conduct experiments by adjusting the number of heads (h = 2, 4, 6, 8, and
12) in MH-MoE. As shown in Figure 5, we find that across all settings of h, our model consistently
outperforms the X-MoE. Besides, as the value of h increases, we observe an initial improvement
followed by a decline in our model’s performance. This leads us to hypothesize that as h initially
increases, the enhancement in performance benefits from MH-MoE by activating a greater number
of experts, thereby enhancing the model’s effectiveness and capturing a wider range of fine-grained
token information. However, as h becomes too large, the excessive subdivision of tokens may impair
their original semantic content, leading to decreased model performance.

Does the Token-Splitting-Merging Really Matters? The key motivation of MH-MoE is to split
each token into several sub-tokens and then merge the sub-tokens after processing by experts. We use
two MLP layers for the splitting and merging processes. We conduct a detailed analysis to determine
whether the performance improvement is due to the Token-Split-Merging (TSM) operation or the
additional MLP layers.
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Table 5: Ablation studies of MH-MoE
components: MLP layers and the Token-
Splitting-Merging (TSM, Eq. 3 and
Eq. 6) operation.

Model MLP TSM Perplexity
Dense ✗ ✗ 16.23
Densew/ MLP ✓ ✗ 16.40
X-MoE ✗ ✗ 14.82
X-MoEw/ MLP ✓ ✗ 14.77

MH-MoEw/o TSM ✓ ✗ 14.77
MH-MoEw/o MLP ✗ ✓ 13.97
MH-MoE ✓ ✓ 12.72

X-MoE MH-MoE ℎ = 4 MH-MoE ℎ = 8X-MoE MH-MoE h = 4 MH-MoE h = 8

Figure 6: Distribution of expert activation in X-MoE
and MH-MoE on both Harness and XNLI corpus, where
h denotes the number of heads.

(a) Upstream perplexity (b) Downstream accuracy scores (c) Sub-tokens assign

Figure 7: (a) Upstream training perplexity (↓) when scaling the number of experts for both X-MoE
and MH-MoE. (b) Accuracy scores on the hellaswag task when scaling the number of experts for
both X-MoE and MH-MoE. (c) Comparison for sub-tokens assign diversity (the number of different
experts they are routed to) for P&F and Non P&F tokens.

The results are presented in Table 5. A comparative analysis between Dense v.s. Densew/ MLP, as
well as X-MoE v.s. X-MoEw/ MLP, reveals that introduction of the MLP layer does not enhance
the model’s performance. Similarly, when comparing MH-MoE with MH-MoEw/o TSM, it becomes
evident that the inclusion of only the MLP, in the absence of the TSM, also does not yield any
improvement in the model’s effectiveness. The parameter quantities of the models being compared
pairwise are equal.

An intriguing observation is made when comparing MH-MoE with MH-MoEw/o MLP. Introducing
TSM alone, without MLP, results in a slight increase in model performance. In contrast, a significant
enhancement in model performance is only achieved when both MLP and TSM are incorporated
simultaneously. We hypothesize that introduction of TSM, without the integration of MLP, activates
more experts, but the segmentation and merging of the model appears overly straightforward and
abrupt in its execution. This limitation hinders the model’s ability to meaningfully segment tokens
into sub-tokens and effectively merge the diverse information gathered from different expert spaces.

We also conducted additional ablation studies to examine the impact of varying the number of
MLP layers, different splitting-merging methods and different balance loss. The details of these
experiments are provided in Appendix E.

5 Analysis

Experts Activation. We visualize the activation of each expert varies across parallel expert layers for
X-MoE and MH-MoE at Figure 6. It can be observed that: 1) X-MoE demonstrate a more skewed
distribution, wherein a significant portion of experts remain inactivated all the time. 2) Our MH-MoE
achieves a denser expert activation compared to X-MoE, effectively mitigating the issue of low expert
utilization. 3) As the number of heads h increases, the expert activation frequency in MH-MoE also
rises.

Scalability. We explore the scalability for both X-MoE and MH-MoE by scaling up the number
of experts from 8 to 256 (about 7B parameters). For upstream performance, as shown in Figure 7
(a), with the increase of experts, our MH-MoE could bring more gains. It is because MH-MoE
could mitigate the low expert activation problem effectively. With this ability, the superiority of the
large-scale SMoE model will be better exerted, thereby achieving the improvement of the upper bound
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Table 6: Performance across multiple pure vision
tasks: classification (CLS) on ImageNet-1k, object
detection (OD) and instance segmentation (IS) on
COCO. The number of expert is set to 8.

Model CLS OD IS

ACC AP AP50 AP75 APmask

Dense 70.73 39.81 58.97 44.46 36.42
SMoE 75.66 42.23 60.30 44.58 37.50
MH-MoE 77.34 44.45 63.18 45.85 38.24

100k 200k 250k RGB
Table 7: Assign diversity of sub-tokens split
from different patches in vision data with respect
to training steps (100k → 200k → 250k steps).
Brighter regions indicate sub-tokens split from
this patch are distributed to a greater number of
diverse experts.

of SMoE with more experts. Detailed validation perplexity curves for these scaling up experiments
can be found in Figure 10 at Appendix F. For downstream performance shown in Figure 7 (b),
for X-MoE, expert number = 64 is the upper bound, meaning that continuing to increase the number
of experts will not bring performance gain. Our MH-MoE not only has a performance advantage
over the X-MoE with the same number of experts, but also improves the upper bound from 64 to 256,
which demonstrates the effectiveness of the scalability of our MH-MoE on downstream tasks.

Experts Assign within Token. We delve into a more granular analysis to validate how the multi-
head mechanism aids MH-MoE in capturing diverse and intricate semantic information that is often
challenging to comprehend, e.g., polysemous and false cognates words (denoted as PF tokens) in
languages, and semantically-rich areas in images.

For languages data, we compute and compare the divergence levels (i.e., the number of different
experts these sub-tokens are routed to) of sub-tokens split from PF tokens and Non-PF tokens. The
results, presented in Figure 7 (c), clearly demonstrate that the distribution of divergence for PF tokens
is significantly skewed towards the right when compared to that of Non-PF tokens. This indicates
that during the MH-MoE’s inference process, PF tokens route their sub-tokens to a greater number of
different experts, thereby capturing diverse semantic information in contrast to Non-PF tokens for
a better polysemous and false cognates word modeling. Note that we utilized the GPT-4 API [25]
to extract polysemous words and false cognates from the XNLI [10] corpus, and the corresponding
prompt can be found in Table 12.

For image data, we analyzed how the divergence levels of different patches evolve during the training
process, as illustrated in Figure 7. Notably, as training progresses, divergence levels gradually
increase in high-frequency texture regions (or regions with rich semantics), while they decrease in
low-frequency texture regions. This suggests that MH-MoE tends to route tokens from complex
texture areas to a wider variety of experts, thereby enhancing the finer-grained understanding of
semantics in those regions. For more visualization examples, please refer to Figure 11 in Appendix G.

Experiments on Pure Vision Tasks. We conduct small-scale experiments on pure vision tasks
to further validate the effectiveness of MH-MoE. We utilize ViT-B(ase) [11] as the Dense model
and AdaMV-MoE [4] as the SMoE baseline. AdaMV-MoE is a multi-task vision SMoE model
demonstrating a superior performance across various vision tasks. We build our MH-MoE upon
AdaMV-MoE. The comparison results are shown in Table 6, which demonstrates that MH-MoE
exhibits corresponding effectiveness and versatility in pure vision tasks.

Model Collapses. Concerns may arise that MH-MoE could revert to the original SMoE approach,
routing all sub-tokens from the same token to a single expert. In MH-MoE’s training framework, the
load balancing loss Lbalance (Eq 8) serves as a weak constraint, treating all sub-tokens as independent
entities and uniformly distributing them among experts, promoting a balanced allocation. Our
observations indicate that most sub-tokens from the same token are distributed among 3-5 different
experts (see Figures 7 and Figures 7 (c)).

6 Conclusion
In this paper, we study how we can to achieve a denser experts activation without introducing
additional cost, while improving the fine-grained understanding ability. With the proposed Multi-
Head Mixture-of-Experts, we can easily implement the aforementioned functionality. Furthermore,
the simplicity of MH-MoE allows it to integrate with other SMoE frameworks to enhance performance
easily. Extensive empirical results across three tasks demonstrate the effectiveness of MH-MoE.
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A Pre-training Data of Masked multi-modal modeling task

Table 8 presents of pre-training data in Masked multi-modal modeling task. For multi-modal data,
there are about 15M images and 21M image-text pairs collected from five public datasets: Conceptual
12M (CC12M) [3], Conceptual Captions (CC3M) [30], SBU Captions (SBU) [26], COCO [23] and
Visual Genome (VG) [17]. For monomodal data, we use 14M images from ImageNet-21K and
160GB text corpora [1] from English Wikipedia, BookCorpus [40], OpenWebText4, CC-News [24],
and Stories [35].

Table 8: Pretraining data of Masked multi-modal modeling task. All the data are academically
accessible.

Data Source Size

Image-Text Pair CC12M, CC3M, SBU, COCO, VG 21M pairs
Image ImageNet-21K 14M images
Text English Wikipedia, BookCorpus, OpenWebText, CC-News, Stories 160GB documents

B Model Hyperparameters of Language modeling tasks

Table 9 presents the model hyperparameters of X-MoE and MH-MoE for both English-focused lan-
guage modeling and Multi-lingual language modeling tasks. The gating temperature τ0 is initialized
as 0.3 and 0.07 for the softmax gating and sigmoid gating, respectively. We use the same vocabulary
as XLM-R [9] with 250K subwords tokenized by SentencePiece [18].

Table 9: Model hyperparameters of Dense, X-MoE and MH-MoE. The SMoE frequency refers to
how many experts each token will be assigned to, i.e., the value of k in the Top- expert selection.

Hyperparameters Dense X-MoE MH-MoE

FFNs within layer 2 2 2
Expert embedding dimension - 16 16/h
Initialized gating temperature τ0 - 0.3 / 0.07 0.3 / 0.07

Transformer blocks 12 12 12
Hidden size 768 768 768
FFN inner hidden size 3,072 3,072 3,072 ×β
Attention heads 12 12 12
SMoE frequency - 2 2

4http://skylion007.github.io/OpenWebTextCorpus

13

http://skylion007.github.io/OpenWebTextCorpus


C Hyperparameters for Pre-training

Table 10 presents the hyperparameters for pre-training across three tasks: Language modeling
tasks (English-focused language modeling and Multi-lingual language modeling tasks) and Masked
multi-modal modeling task.

Table 10: Pre-training hyperparameters for Language modeling tasks (English-focused language
modeling and Multi-lingual language modeling tasks) and Masked multi-modal modeling task tasks.

Hyperparameters Language modeling tasks Multi-modality modeling task

Batch size 256 512
Optimizer Adam AdamW
Batch tokens per task 1M -
Adam ϵ 1e-6 1e-6
Adam β (0.9, 0.98) (0.9, 0.98)
Maximum learning rate 5e-4 2.8e-3
Learning rate schedule Linear decay Cosine decay
Warmup steps 10,000 10,000
Weight decay 0.01 0.05
Transformer dropout 0.1 0.1
Dropout 0 0
Load balancing coefficient 1e-2 1e-2

Table 11: Parameter count setting of X-MoE and MH-MoE in our experiments for English-focused
language modeling, Multi-lingual language modeling and Masked multi-modality modeling tasks.
“non-expert param” refers to the parameters that are not part of the expert networks, such as the
attention layer, router, etc., while “expert params” represents the total number of parameters in the
parallel expert networks. For Dense models, since there are no expert network layers, we only list
the total number of parameters. All models under the same task utilize the same architecture and
hyperparameters, following identical training settings and steps.

Expert Setting Dense X-MoE MH-MoE
Sum non-expert params expert params Sum non-expert params expert params Sum

English-focused language modeling
0 expert 162M - - - - - -
8 experts - 134M 227M 361M 141M 213M 354M
16 experts - 134M 454M 588M 141M 430M 571M
32 experts - 134M 908M 1,042M 141M 898M 1,039M
64 experts - 134M 1,815M 1,949M 141M 1,797M 1,938M
128 experts - 134M 3,631M 3,765M 141M 3,624M 3,765M
256 experts - 134M 7,263M 7,397M 141M 7,230M 7,371M

Multi-lingual language modeling
0 expert 162M - - - - - -
8 experts - 134M 227M 361M 141M 213M 354M
32 experts - 134M 908M 1,042M 141M 898M 1,039M

Masked multi-modality modeling
0 expert 277M - - - - - -
8 experts - 191M 323M 514M 195M 310M 505M
32 experts - 191M 1,037M 1,228M 195M 1,014M 1,209M
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D PyTorch-style Code

We also provide the PyTorch-style code in Algorithm 1 to explain our MH-MoE, which including
two main aspects: 1) Stage 1. The creation and initialization of multi-head layer and merge layer.
2) Stage 2. The segmentation of tokens, followed by processing through an expert network, and
ultimately merging.

Algorithm 1 The Overall Procedures of MH-MoE in a PyTorch-like style.
Input: A MH-MoE model with L parallel SMoE layers M, the number of the experts k.
# Stage 1: Initial parameter of multi-head layer & merge layer

for i in range(1, L):
M[i].multi_head_layer = nn.Linear(hidden_dim, hidden_dim)
M[i].merge_layer = nn.Linear(hidden_dim, hidden_dim)

# Initialization
nn.init.xavier_uniform_(M[i].multi_head_layer.weight, gain=1 / math.sqrt(2))
nn.init.xavier_uniform_(M[i].merge_layer.weight)
nn.init.constant_(M[i].merge_layer.bias, 0.0)

# Stage 2: The segmentation and merge of tokens for the i-th MH-MoE layer

def MHMoE_Layer(x):
’’’
Input:

x : Tensor shape: (batch_size, Length, hidden_dim)
mask : Tensor shape: (batch_size, Length)

Output:
o : Tensor shape: (batch_size, Length, hidden_dim)

heads: head number of multi_head layer
’’’

# Processed by multi-head layer
x = M[i].multi_head_layer(x)

# Split token & rearrange sub-tokens in parallel
x = x.reshape(batch_size * Length * heads, hidden_dim // heads).contiguous()
mask = mask.reshape(-1, 1).repeat(1, heads).reshape(batch_size * Length * heads)

# Standrad SMoE routing block
x, mask = router(x, mask)

# Merge back to the original token form
x = x.reshape(batch_size * Length, heads, dim // heads).reshape(batch_size *

Length, dim).contiguous()
o = M[i].merge_layer(x)

return o
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Table 12: Prompt template for identifying polysemous and false cognates in different languages.

Your role is to identify polysemous and false cognates in different languages from the given textual input (### Input). Note that 
"Polysemous" refers to a word having two or more completely different meanings (for example, "grouse" has meanings related to 
complaining and also refers to a type of bird), while "false cognates in different languages" refers to words in different languages 
that have similar forms but carry different meanings (for example, in English and Italian, "camera" looks similar but represents 
different semantic concepts).  

### Input
Text: {Prompt}

Note: Please provide your identify results in the following format:

### Output for Word 1
Word: [Make sure that there is only a word here.]
Rationale: [Rationale for why this word is polysemous or false cognates, think step by step]

### Output for Word 2
Word: [Make sure that there is only a word here.]
Rationale: [Rationale for why this word is polysemous or false cognates, think step by step]
----

Table 13: Comparison results for different
numbers of MLP layers n. The results are
averaged over five runs.

n
Upstream Downstream

Perplexity RTE PIQA Winogrande

0 13.97 52.9 68.2 51.7
1 12.72 53.4 69.3 53.8
2 12.66 54.0 68.8 53.3
3 12.87 53.1 68.8 52.7

Figure 8: Comparison results for different
splitting method. K denotes the size of kernel
while S denotes the size of stride in Conv1D.

E Ablation Studies

Number of MLP layers. We explore the impact of varying the number of layers (n = 0, 1, 2, 3)
in MLP on MH-MoE performance. For configurations exceeding a single layer, ReLU activation
functions were incorporated between MLP layers to ensure the non-linearity of transformations. The
parameter quantities of the models being compared are equal. Upon analyzing the results in Table 13,
we observe that increasing the number of MLP layers beyond one had a negligible impact on the
model’s performance. This indicates that a single-layer MLP is sufficient for accomplishing token
segmentation and fusion.

What Makes a Good Splitting-Merging Method? We designed ablation experiments to investigate
whether the tokenization method affects the MH-MoE’s performance. We replace the multi-head
layer and merge layer (both are FC layers) with Conv1d layers (denoted as MH-MoE♯).

We conducted experiments in two settings (English-focused language modeling and Multi-lingual
language modeling tasks) and explored different levels of randomness by using different kernel sizes
and strides for the Conv1d layers. We ensure that the parameters are kept as consistent as possible
by adjusting the number of Conv1d layers and the dimensions of experts. Through experimental
results presented at Figure 8, we observe that replacing splitting method with Conv1d (denoted as
MH-MoE♯) resulted in significantly inferior performance compared to the original MH-MoE. This
underscores the importance of tokenization methods, indicating that tokenization methods such as
Conv1d, which disrupt the original input sequence features, are not suitable for this context.

Impact of different balance loss We conducted experiments with three groups to assess the impact
of different constraints on sub-token allocation: (1) MH-MoE¶: MH-MoE trained without the
Lbalance, (2) MH-MoE†: MH-MoE trained with the Lbalance, and (3) MH-MoE‡: MH-MoE trained
with both Lbalance and diversity loss Ldiv. Ldiv is designed to enhance sub-token allocation diversity
and defined as: given a set of sub-tokens Υ split from the same token, with Pi representing the
gating probability distribution of the ith sub-token, Ldiv = −

∑|Υ|
i=1

∑|Υ|
j=i+1 KL(Pi||Pj), where
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Figure 9: Experimental results for varying level constraints on sub-token allocation across two tasks:
English-focused language modeling (left) and Multi-lingual language modeling (right).

Figure 10: Validation perplexity reported for both X-MoE and MH-MoE.

KL(·) indicate Kullback–Leibler divergence. This constraint increases the inconsistency in gating
distributions among sub-tokens in Υ, enhancing expert allocation diversity.

The experimental results (perplexity) are summarized in the Figure 9. Key findings include: (1)
Without any constraints (MH-MoE¶), the model’s performance degrades, likely due to severe
imbalance, causing some experts to receive insufficient data, resulting in suboptimal performance.
(2) The addition of Ldiv did not significantly improve model performance compared to using only
Lbalance. We hypothesize that Lbalance alone provides sufficient diversity in sub-token allocation.

F Visualization of training perplexity

We provide the training perplexity curve for model training in the experimental setting of increasing
the number of experts (from 8 to 256) in Figure 10.

G Visualization

We provide more visualization of variation in assign diversity for sub-tokens split from different
patches in vision data at Figure 11.
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Figure 11: More visualization examples for assign diversity of sub-tokens split from different patches
with respect to training steps. We analyze MH-MoE with 8 heads (h=8) as the subject. Brighter
regions indicate that sub-tokens from this patch are distributed to a greater number of diverse experts,
while darker regions indicate that sub-tokens are assigned to more of the same experts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer:[Yes]
Justification: Please refer to our abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: If we discover limitations, we will include them in the latest version of the
paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: In our paper, we do not make any assumptions, and consequently, there are no
associated proof processes.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed explanations of the model training and data specifics in
Sections 3 and Appendix A B and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code for model training and testing in the supplementary
materials. The training data used are publicly available, and we detail the data specifics in
the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Sections 3 and Appendix A, B and C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: All results are reported as the average of five randomly initialized tests.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Sections 3 and Appendix A B and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our model serves as the foundational architecture for large models rather than
their socio-economic applications. As such, it operates on a different level, and we do not
provide an analysis of societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We will conduct this before our model is publicly released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to the README.md in our supplement code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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